[0001] La présente invention concerne un dispositif d'affichage comprenant une cellule d'affichage à cristaux liquides. Plus précisément, l'invention concerne un dispositif d'affichage comprenant une cellule d'affichage à cristaux liquides avec un colorant dichroïque dissous dans le cristal liquide.
[0002] Une cellule à cristal liquide comprend essentiellement un substrat avant transparent et un substrat arrière qui peut être également transparent ou non, ces deux substrats étant maintenus ensemble à distance constante l'un de l'autre par un cadre de scellement qui s'étend le long du périmètre desdits deux substrats. En plus de maintenir ensemble et parallèlement l'un à l'autre les deux substrats de la cellule, le cadre de scellement a pour autre fonction de définir un volume étanche pour le confinement du cristal liquide. Des électrodes et des contre-électrodes correspondantes sont structurées sur la face arrière du substrat avant et sur la face avant du substrat arrière.
Par application d'une tension électrique entre une électrode et une contre-électrode sélectionnées, on modifie les propriétés optiques du cristal liquide au point de croisement des électrodes considérées.
[0003] Il est déjà connu de réaliser les substrats d'une cellule à cristal liquide au moyen d'un matériau plastique souple. La cellule à cristal liquide résultante peut alors être pliée pour pouvoir s'adapter au profil courbe d'un support rigide sur lequel elle va être fixée de manière permanente. Dans ce cas, les problèmes d'affichage liés à la perte des propriétés optiques du cristal liquide que l'on observe au moment où l'on plie la cellule disparaissent une fois que la cellule est fixée sur son support courbe rigide. On obtient ainsi une cellule à cristal liquide au profil courbe qui procure notamment des effets esthétiques intéressants.
[0004] Il faut néanmoins comprendre que les cellules à cristal liquide à substrats souples brièvement décrites ci-dessus ne sont destinées à être pliées qu'une seule fois lors de leur fixation sur le support rigide courbe. Après cette opération de montage initiale, les cellules à cristal liquide souples conservent leur profil courbé de manière définitive.
[0005] Au contraire, la présente invention vise une seconde catégorie de cellules à cristal liquide souples qui soient capables d'afficher des éléments d'information tout en pouvant être déformées de manière dynamique au gré de leur utilisation. De telles cellules souples peuvent se présenter par exemple sous la forme d'un bracelet souple destiné à être porté au poignet d'un utilisateur et indiquant l'heure. Elles peuvent aussi être incorporées dans l'épaisseur d'une carte souple par exemple du type carte de crédit.
[0006] Pour atteindre cet objectif, la présente invention procure un dispositif d'affichage d'une information comprenant une cellule à cristal liquide comportant un substrat avant transparent et souple et un substrat arrière également transparent ou non et souple, au moins une électrode et une contre-électrode correspondante étant structurées sur les faces en regard du substrat avant et du substrat arrière, les deux substrats avant et arrière étant réunis et maintenus à distance constante l'un de l'autre par un cadre de scellement, ce cadre de scellement délimitant un volume étanche pour le confinement d'un cristal liquide de type nématique en hélice ou super-nématique en hélice, un colorant dichroïque étant dissous dans le cristal liquide,
le dispositif d'affichage étant caractérisé en ce que la cellule à cristal liquide souple est intégrée dans un support également souple.
[0007] Dans une cellule à cristal liquide par exemple de type nématique en hélice ordinaire, l'orientation au repos des molécules de cristal liquide est planaire, autrement dit le grand axe des molécules est parallèle aux substrats de la cellule. Pour pouvoir afficher des informations au moyen de la cellule, on utilise les propriétés optiques du cristal liquide vis-à-vis de la lumière. Plus précisément, dans les zones non commutées de la cellule, l'orientation des molécules de cristal liquide sera planaire et le vecteur lumineux va être tourné de 90[deg.], tandis que dans les zones commutées de la cellule, l'orientation des molécules de cristal liquide sera homéotrope, de sorte que les molécules seront sans effet sur la direction de propagation de la lumière. Si les deux substrats de la cellule sont souples, on peut courber cette dernière.
Sous l'effet de la flexion de la cellule, les molécules de cristal liquide vont, dans les zones non adressées de la cellule, tourner sur elles-mêmes de manière non contrôlable en sens horaire ou antihoraire dans des plans parallèles aux plans des substrats, ce qui va occasionner une dégradation du fond de l'affichage duquel se détachent les informations affichées. Ce problème ne sera pas aussi aigu dans les zones commutées de la cellule où le champ électrique maintient l'alignement homéotrope des molécules même si ces dernières se déplacent.
[0008] Le problème ci-dessus ne se rencontre pas dans le cas où l'on dissout dans le cristal liquide nématique en hélice un colorant dichroïque. En effet, les molécules du colorant qui s'orientent parallèlement aux molécules de cristal liquide ont la propriété de polariser la lumière en absorbant la composante du vecteur lumineux qui est parallèle à leur grand axe. Ainsi, lorsqu'on courbe la cellule, les molécules de cristal liquide vont, dans les zones non adressées de la cellule, tourner dans des plans parallèles aux plans des substrats en entraînant avec elles les molécules de colorant. L'effet absorbant des molécules de colorant va subsister dans la mesure où le grand axe des molécules de colorant reste parallèle aux plans des substrats. Ainsi, même lorsqu'on courbe la cellule, le fond de l'affichage ne va pas se dégrader.
Comme, d'autre part, dans les zones adressées de la cellule, c'est-à-dire dans les zones dans lesquelles une tension est appliquée entre des électrodes et des contre-électrodes sélectionnées, les molécules de cristal liquide et donc les molécules de colorant vont adopter un alignement homéotrope et le conserver en raison de la présence du champ électrique même si elles se déplacent du fait de la flexion de la cellule, les informations affichées vont être conservées inchangées.
[0009] Le contraste est grandement amélioré si la cellule à cristal liquide est munie d'un filtre polarisant. Selon une première variante, un filtre polarisant est disposé sur la face avant du substrat avant et une couche réfléchissante est prévue sur la face arrière du substrat arrière. Selon une deuxième variante, on dispose successivement sur la face arrière du substrat arrière un filtre polarisant et une couche réfléchissante. Selon une troisième variante, on place sur la face arrière du substrat arrière un filtre polarisant réflectif. Selon une autre variante, la cellule souple est rétro-éclairée et l'on prévoit un polariseur simple, c'est-à-dire non réflectif, soit sur la face arrière du substrat arrière, soit sur la face avant du substrat avant.
Selon une dernière variante, on prévoit de réaliser une couche réfléchissante sur la face avant du substrat arrière, mode de réalisation mieux connu sous son nom de réflecteur intégré, et l'on prévoit, le cas échéant, un polariseur sur la face avant du substrat avant.
[0010] Lorsque la cellule souple selon l'invention est à plat, les molécules de colorant adoptent la même orientation planaire que les molécules de cristal liquide et polarisent la lumière en absorbant la composante du vecteur lumineux qui est parallèle à leur grand axe. Si les directions de polarisation des molécules de colorant et du polariseur sont croisées, on observe une extinction totale de la lumière dans les zones où les molécules de cristal liquide sont alignées de manière planaire. On obtient donc un affichage en clair sur fond noir. Lorsque l'on courbe la cellule souple selon l'invention, les molécules de colorant vont tourner en même temps que les molécules de cristal liquide dans des plans parallèles aux plans des substrats.
Leur effet polarisant va pratiquement disparaître, mais leur effet absorbant va lui subsister dans la mesure où le grand axe des molécules de colorant reste parallèle aux plans des substrats. Ainsi, en courbant la cellule, on passe d'une situation où pratiquement toute la lumière est absorbée à une situation où, dans le cas le plus défavorable, environ la moitié de la lumière est absorbée. Dans tous les cas, on conserve donc un fond homogène dont la couleur varie entre la couleur saturée du colorant dichroïque et la même couleur plus claire.
[0011] D'autres caractéristiques et avantages de la présente invention ressortiront plus clairement de la description détaillée qui suit d'un mode de réalisation du dispositif d'affichage selon l'invention, cet exemple étant donné à titre purement iliustratif et non limitatif seulement en liaison avec le dessin annexé sur lequel:
<tb>la fig. 1<sep>est une vue en coupe d'une cellule d'affichage à cristal liquide selon l'invention dans sa forme de réalisation simplifiée;
<tb>les fig. 2a à 2c<sep>sont des vues analogues à celle de la fig. 1, la cellule à cristaux liquides étant munie d'un polariseur pour l'amélioration du contraste d'affichage;
<tb>la fig. 3<sep>est une vue analogue à celle de la fig. 1qui illustre l'alignement planaire et homéotrope des molécules de cristal liquide et de colorant dans les zones respectivement non commutées et commutées de la cellule;
<tb>la fig. 4<sep>illustre l'intégration d'une cellule souple à cristal liquide dans un bracelet également souple, et
<tb>la fig. 5<sep>illustre l'intégration d'une cellule souple à cristal liquide dans un corps de carte également souple.
[0012] La présente invention procède de l'idée générale inventive qui consiste à procurer un dispositif d'affichage comprenant une cellule à cristaux liquides souple capable d'être déformée de manière dynamique au gré de son utilisation tout en conservant ses qualités d'affichage inchangées. A cet effet, la présente invention enseigne d'intégrer sur un substrat souple une cellule à cristaux liquides souple comprenant un cristal liquide de type nématique ou super-nématique en hélice dans lequel est dissous un colorant dichroïque. En effet, un tel colorant, dont les molécules s'alignent parallèlement aux molécules de cristal liquide, a la propriété de polariser la lumière en absorbant la composante du vecteur lumineux qui est parallèle au grand axe de ses molécules.
Quand la cellule à cristaux liquides est à plat, l'orientation des molécules de cristal liquide et donc des molécules de colorant est planaire dans les zones non commutées de la cellule et homéotrope dans les zones commutées de cette dernière. Quand on déforme la cellule, les molécules de colorant tournent dans les zones non commutées de la cellule avec les molécules de cristal liquide dans des plans parallèles aux plans des substrats et perdent leur pouvoir de polarisation de la lumière. Par contre, elles conservent leur propriété d'absorption de la lumière. Par conséquent, le fond de l'affichage reste inchangé même quand la cellule à cristal liquide se déforme.
Comme de plus dans les zones commutées de la cellule les molécules de cristal liquide et donc les molécules de colorant conservent leur alignement homéotrope sous l'effet du champ électrique même si elles bougent, l'affichage global de la cellule reste inchangé même si celle-ci se déforme au gré de son utilisation.
[0013] Dans son acception la plus simple, la cellule à cristal liquide selon l'invention, désignée dans son ensemble par la référence numérique générale 1, comprend (voir fig. 1) un substrat avant 2 et un substrat arrière 4 tous deux réalisés dans un matériau souple et transparent tel qu'un matériau plastique ou un verre mince. Les deux substrats avant 2 et arrière 4 sont maintenus ensemble à distance l'un de l'autre par un cadre de scellement 6 qui définit également un volume 8 pour le confinement du cristal liquide ÇJ_ et du colorant dichroïque A dissous dans le cristal liquide CL. Le cristal liquide Ç_L est un cristal liquide nématique ou super-nématique en hélice. Une pluralité d'électrodes 10 et de contre-électrodes 12 sont respectivement structurées sur la face arrière 2a du substrat avant 2 et sur la face avant 4a du substrat arrière 4.
Enfin, une couche réfléchissante 14 est disposée sur la face arrière 4b du substrat arrière 4. On peut également disposer une couche réfléchissante 14 sur la face avant 4a du substrat arrière 4 (réflecteur intégré). De même, la couche réfléchissante peut être remplacée par un dispositif de rétro-éclairage 22.
[0014] Pour améliorer le contraste de l'affichage, on associe habituellement à une cellule du genre ci-dessus un filtre polarisant 16. Ce filtre polarisant 16 peut être disposé sur la face avant 2b du substrat avant 2 de la cellule 1 (fig. 2a) ou entre la face arrière 4b du substrat arrière 4 et la couche réfléchissante 14 (fig. 2b). Le filtre polarisant peut aussi être un filtre polarisant réflectif 16 placé sur la face arrière 4b du substrat arrière 4 (fig. 2c). Dans le cas où la couche réfléchissante 14 est disposée sur la face avant 4a du substrat arrière 4 (réflecteur intégré), le polariseur 16 doit être placé nécessairement sur la face avant 2b du substrat avant 2 (fig. 2d). a la fig. 2e, on voit que le polariseur 16 est disposé entre la face arrière 4b du substrat arrière 4 et le dispositif de rétro-éclairage 22.
[0015] Dans les zones Z1 non commutées de la cellule 1, l'alignement des molécules de cristal liquide et de colorant est planaire, tandis que dans les zones Z2 commutées de la cellule 1, l'alignement des molécules de cristal liquide et de colorant est homéotrope. Lorsque la cellule 1 selon l'invention est à plat, les molécules de cristal liquide font tourner la direction de polarisation de la lumière incidente et les molécules de colorant ont sur la lumière un effet polarisant en absorbant la composante du vecteur lumineux qui est parallèle à leur grand axe. En choisissant convenablement l'orientation du filtre polarisant 16, on peut donc obtenir une extinction complète de la lumière dans les zones non commutées de la cellule 1.
Quand la cellule souple 1 se déforme au cours de son utilisation, les molécules de cristal liquide tournent dans des plans parallèles aux plans des substrats et entraînent les molécules de colorant qui perdent leurs propriétés de polarisation de la lumière. Néanmoins, comme les molécules de colorant restent parallèles aux plans des substrats, elles continuent d'absorber la lumière. On passe donc d'une situation dans laquelle pratiquement toute la lumière est absorbée et où le fond de l'affichage a une couleur saturée qui correspond à la couleur du colorant dichroïque à une situation dans laquelle, dans le cas le plus défavorable, environ la moitié de la lumière est absorbée et où le fond de l'affichage s'éclaircit.
Le fond de l'affichage reste donc sensiblement inchangé quelles que soient les conditions d'utilisation de la cellule souple 1 selon l'invention. Comme d'autre part les molécules de cristal liquide et donc de colorant conservent leur alignement homéotrope dans les zones commutées sous l'effet du champ électrique même si elles se déplacent, les informations affichées sont conservées. Ainsi, la présente invention, en enseignant d'appliquer une cellule souple à cristal liquide dans lequel est dissous un colorant dichroïque à la réalisation d'un dispositif d'affichage procure un tel dispositif d'affichage destiné à rester souple et qui peut être déformé dynamiquement au gré de son utilisation quotidienne.
[0016] Deux exemples de réalisation du dispositif d'affichage selon l'invention sont représentés aux fig. 4et 5. A la fig. 4, la cellule d'affichage souple 1 est incorporée dans un bracelet également souple 18 qui peut être enfilé autour du poignet. On peut également munir le bracelet de moyens de fermeture (non représentés) et l'enrouler autour du poignet. La cellule d'affichage 1 indique l'heure à la façon d'une montre-bracelet. Dans un autre exemple illustré à la fig. 5, la cellule d'affichage souple 1 est incorporée dans un logement ménagé dans l'épaisseur d'une carte également souple 20 par exemple du type carte bancaire. Le fond du logement peut être utilisé comme surface réfléchissante pour la cellule 1.
Outre le fait que l'on se soit aperçu qu'une cellule souple à cristal liquide dans lequel est dissous un colorant dichroïque conserve pratiquement inchangées ses caractéristiques d'affichage qu'elle soit à plat ou déformée de manière dynamique, une telle cellule s'est révélée une excellente candidate pour son intégration dans une carte bancaire. En effet, l'épaisseur typique d'une carte bancaire est de huit dixièmes de millimètre et les fabricants de telles cartes ont fixé à environ 400 micromètres l'épaisseur maximale des dispositifs qui pouvaient être intégrés dans de telles cartes. Or, du fait qu'une cellule d'affichage dichroïque du genre décrit ci-dessus ne nécessite qu'un seul polariseur permet de vérifier ce cahier des charges.
Ainsi, une cellule à cristal liquide de type dichroïque présente une épaisseur totale parfaitement adaptée pour son intégration dans une carte bancaire.
The present invention relates to a display device comprising a liquid crystal display cell. More specifically, the invention relates to a display device comprising a liquid crystal display cell with a dichroic dye dissolved in the liquid crystal.
[0002] A liquid crystal cell essentially comprises a transparent front substrate and a rear substrate which may also be transparent or not, these two substrates being held together at a constant distance from one another by a sealing frame which is extends along the perimeter of said two substrates. In addition to maintaining the two substrates of the cell together and parallel to one another, the sealing frame has the additional function of defining a sealed volume for the confinement of the liquid crystal. Corresponding electrodes and counter electrodes are structured on the rear face of the front substrate and on the front face of the rear substrate.
By applying an electrical voltage between a selected electrode and counter-electrode, the optical properties of the liquid crystal are modified at the point of intersection of the electrodes in question.
It is already known to make the substrates of a liquid crystal cell by means of a flexible plastic material. The resulting liquid crystal cell can then be folded to fit the curved profile of a rigid support on which it will be permanently fixed. In this case, the display problems related to the loss of the optical properties of the liquid crystal that are observed at the moment when the cell is folded disappear once the cell is fixed on its rigid curved support. A liquid crystal cell with a curved profile is thus obtained, which in particular provides attractive aesthetic effects.
However, it should be understood that the liquid crystal cells with flexible substrates briefly described above are intended to be folded only once during their attachment to the curved rigid support. After this initial mounting operation, the soft liquid crystal cells retain their curved profile permanently.
On the contrary, the present invention provides a second class of flexible liquid crystal cells that are able to display information elements while being able to be dynamically deformed according to their use. Such flexible cells may be for example in the form of a flexible bracelet intended to be worn on the wrist of a user and indicating the time. They can also be incorporated in the thickness of a flexible card for example of the credit card type.
To achieve this objective, the present invention provides an information display device comprising a liquid crystal cell having a transparent and flexible front substrate and a rear substrate also transparent or not and flexible, at least one electrode and a corresponding counter-electrode being structured on the opposite faces of the front substrate and the rear substrate, the two front and rear substrates being joined and kept at a constant distance from one another by a sealing frame, this sealing frame delimiting a sealed volume for confining a helical or super-nematic helical nematic type liquid crystal, a dichroic dye being dissolved in the liquid crystal,
the display device being characterized in that the flexible liquid crystal cell is integrated into an equally flexible support.
In a liquid crystal cell, for example of ordinary helical nematic type, the rest orientation of the liquid crystal molecules is planar, in other words the long axis of the molecules is parallel to the substrates of the cell. In order to display information by means of the cell, the optical properties of the liquid crystal vis-à-vis the light are used. More precisely, in the unswitched areas of the cell, the orientation of the liquid crystal molecules will be planar and the luminous vector will be rotated by 90 [deg.], Whereas in the switched areas of the cell, the orientation of the liquid crystal molecules will be 90 °. Liquid crystal molecules will be homeotropic, so the molecules will have no effect on the direction of light propagation. If the two substrates of the cell are flexible, it can bend the latter.
Under the effect of the flexion of the cell, the liquid crystal molecules go, in the unaddressed areas of the cell, to turn on themselves in a non-controllable manner clockwise or counterclockwise in planes parallel to the planes of the substrates, this will cause a degradation of the background of the display from which stand the information displayed. This problem will not be so acute in the switched areas of the cell where the electric field maintains the homeotropic alignment of the molecules even if they move.
The above problem is not encountered in the case where a dichroic dye is dissolved in the nematic liquid crystal in a helix. Indeed, the molecules of the dye that are oriented parallel to the liquid crystal molecules have the property of polarizing the light by absorbing the component of the light vector which is parallel to their major axis. Thus, when the cell is curved, the liquid crystal molecules go, in the unaddressed areas of the cell, to rotate in planes parallel to the planes of the substrates, dragging with them the dye molecules. The absorbing effect of the dye molecules will remain insofar as the major axis of the dye molecules remains parallel to the planes of the substrates. Thus, even when bending the cell, the bottom of the display will not degrade.
As, on the other hand, in the addressed areas of the cell, that is to say in the areas in which a voltage is applied between selected electrodes and counter-electrodes, the liquid crystal molecules and therefore the molecules of dye will adopt a homeotropic alignment and keep it because of the presence of the electric field even if they move because of the bending of the cell, the information displayed will be kept unchanged.
The contrast is greatly improved if the liquid crystal cell is provided with a polarizing filter. According to a first variant, a polarizing filter is disposed on the front face of the front substrate and a reflective layer is provided on the rear face of the rear substrate. According to a second variant, a polarizing filter and a reflective layer are successively arranged on the rear face of the rear substrate. According to a third variant, a reflective polarizing filter is placed on the rear face of the rear substrate. According to another variant, the flexible cell is backlit and there is provided a simple polarizer, that is to say non-reflective, either on the rear face of the rear substrate, or on the front face of the front substrate.
According to a last variant, provision is made to make a reflective layer on the front face of the rear substrate, an embodiment better known under the name of integrated reflector, and provision is made, if necessary, a polarizer on the front face of the substrate. before.
When the flexible cell according to the invention is flat, the dye molecules adopt the same planar orientation as the liquid crystal molecules and polarize the light by absorbing the component of the light vector which is parallel to their major axis. If the polarization directions of the dye molecules and the polarizer are crossed, a total extinction of the light is observed in the areas where the liquid crystal molecules are planarly aligned. We thus obtain a display in clear on a black background. When the flexible cell according to the invention is curved, the dye molecules will rotate at the same time as the liquid crystal molecules in planes parallel to the planes of the substrates.
Their polarizing effect will practically disappear, but their absorbing effect will subsist to the extent that the major axis of the dye molecules remains parallel to the planes of the substrates. Thus, by bending the cell, one goes from a situation where practically all the light is absorbed to a situation where, in the most unfavorable case, about half of the light is absorbed. In all cases, therefore, a homogeneous background is maintained whose color varies between the saturated color of the dichroic dye and the same lighter color.
Other features and advantages of the present invention will emerge more clearly from the following detailed description of an embodiment of the display device according to the invention, this example being given purely for illustrative and not limiting purposes only. in conjunction with the accompanying drawing in which:
<tb> fig. 1 <sep> is a sectional view of a liquid crystal display cell according to the invention in its simplified embodiment;
<tb> figs. 2a to 2c <sep> are views similar to that of fig. 1, the liquid crystal cell being provided with a polarizer for improving the display contrast;
<tb> fig. 3 <sep> is a view similar to that of FIG. 1 which illustrates the planar and homeotropic alignment of the liquid crystal and dye molecules in the respectively unswitched and switched areas of the cell;
<tb> fig. 4 <sep> illustrates the integration of a flexible liquid crystal cell into a flexible bracelet, and
<tb> fig. <Sep> illustrates the integration of a flexible liquid crystal cell into an equally flexible card body.
The present invention proceeds from the general inventive idea of providing a display device comprising a flexible liquid crystal cell capable of being dynamically deformed according to its use while retaining its display qualities. unchanged. For this purpose, the present invention teaches the integration on a flexible substrate of a flexible liquid crystal cell comprising a nematic-type or super-nematic-type liquid crystal in which a dichroic dye is dissolved. Indeed, such a dye, whose molecules align parallel to liquid crystal molecules, has the property of polarizing light by absorbing the component of the light vector which is parallel to the major axis of its molecules.
When the liquid crystal cell is flat, the orientation of the liquid crystal molecules and therefore dye molecules is planar in the unswitched areas of the cell and homeotropic in the switched areas thereof. When the cell is deformed, the dye molecules turn in the unswitched areas of the cell with the liquid crystal molecules in planes parallel to the planes of the substrates and lose their polarization power of the light. On the other hand, they retain their property of absorption of light. Therefore, the background of the display remains unchanged even when the liquid crystal cell is deformed.
As furthermore in the switched areas of the cell the liquid crystal molecules and thus the dye molecules retain their homeotropic alignment under the effect of the electric field even if they move, the overall display of the cell remains unchanged even if it deforms according to its use.
In its simplest sense, the liquid crystal cell according to the invention, designated as a whole by the general numerical reference 1, comprises (see FIG 1) a front substrate 2 and a rear substrate 4 both made in a flexible and transparent material such as a plastic material or a thin glass. The two front and rear substrates 4 are held together at a distance from each other by a sealing frame 6 which also defines a volume 8 for the confinement of the liquid crystal and the dichroic dye A dissolved in the liquid crystal CL . The LI liquid crystal is a nematic or super-nematic liquid crystal in a helix. A plurality of electrodes 10 and counter-electrodes 12 are respectively structured on the rear face 2a of the front substrate 2 and on the front face 4a of the rear substrate 4.
Finally, a reflective layer 14 is disposed on the rear face 4b of the rear substrate 4. It can also have a reflective layer 14 on the front face 4a of the rear substrate 4 (integrated reflector). Similarly, the reflective layer can be replaced by a backlighting device 22.
To improve the contrast of the display, it is usually associated with a cell of the above kind a polarizing filter 16. This polarizing filter 16 may be disposed on the front face 2b of the front substrate 2 of the cell 1 (FIG. 2a) or between the rear face 4b of the rear substrate 4 and the reflecting layer 14 (FIG 2b). The polarizing filter may also be a reflective polarizing filter 16 placed on the rear face 4b of the rear substrate 4 (FIG 2c). In the case where the reflecting layer 14 is disposed on the front face 4a of the rear substrate 4 (integrated reflector), the polarizer 16 must necessarily be placed on the front face 2b of the front substrate 2 (FIG 2d). in fig. 2e, we see that the polarizer 16 is disposed between the rear face 4b of the rear substrate 4 and the backlighting device 22.
In the unswitched zones Z1 of the cell 1, the alignment of the liquid crystal and dye molecules is planar, whereas in the switched Z2 zones of the cell 1, the alignment of the liquid crystal molecules and the dye is homeotropic. When the cell 1 according to the invention is flat, the liquid crystal molecules rotate the direction of polarization of the incident light and the dye molecules have on the light a polarizing effect by absorbing the component of the light vector which is parallel to their major axis. By appropriately choosing the orientation of the polarizing filter 16, it is possible to obtain a complete extinction of the light in the unswitched zones of the cell 1.
When the flexible cell 1 deforms during use, the liquid crystal molecules rotate in planes parallel to the planes of the substrates and drive the dye molecules that lose their light polarization properties. Nevertheless, since the dye molecules remain parallel to the planes of the substrates, they continue to absorb light. We thus move from a situation in which almost all the light is absorbed and where the background of the display has a saturated color which corresponds to the color of the dichroic dye to a situation in which, in the most unfavorable case, approximately the half of the light is absorbed and the background of the display clears.
The bottom of the display therefore remains substantially unchanged regardless of the conditions of use of the flexible cell 1 according to the invention. As, on the other hand, the liquid crystal and therefore the dye molecules retain their homeotropic alignment in the switched zones under the effect of the electric field even if they move, the information displayed is preserved. Thus, the present invention, by teaching to apply a flexible liquid crystal cell in which is dissolved a dichroic dye to the realization of a display device provides such a display device to remain flexible and can be deformed dynamically according to its daily use.
Two embodiments of the display device according to the invention are shown in FIGS. 4 and 5. In fig. 4, the flexible display cell 1 is incorporated in a flexible bracelet 18 which can be threaded around the wrist. It is also possible to provide the bracelet with closure means (not shown) and to wrap it around the wrist. The display cell 1 indicates the time in the manner of a wristwatch. In another example illustrated in FIG. 5, the flexible display cell 1 is incorporated in a housing formed in the thickness of a card also flexible 20 for example of the bank card type. The bottom of the housing can be used as a reflective surface for cell 1.
Apart from the fact that it has been found that a flexible liquid crystal cell in which a dichroic dye is dissolved retains its display characteristics substantially unchanged whether it is flat or dynamically deformed, such a cell is has proven to be an excellent candidate for inclusion in a bank card. Indeed, the typical thickness of a bank card is eight tenths of a millimeter and the manufacturers of such cards have fixed at about 400 micrometers the maximum thickness of the devices that could be integrated in such cards. However, since a dichroic display cell of the kind described above requires only a single polarizer to verify this specification.
Thus, a dichroic type liquid crystal cell has a total thickness perfectly adapted for its integration in a bank card.