Nothing Special   »   [go: up one dir, main page]

CA2856466A1 - Preparation of 5-hydroxymethylfurfural (hmf) from saccharide solutions in the presence of a solvent having a boiling point greater than 60 degree c and less than 200 degree c (at standard pressure, called low boiler for short) - Google Patents

Preparation of 5-hydroxymethylfurfural (hmf) from saccharide solutions in the presence of a solvent having a boiling point greater than 60 degree c and less than 200 degree c (at standard pressure, called low boiler for short) Download PDF

Info

Publication number
CA2856466A1
CA2856466A1 CA2856466A CA2856466A CA2856466A1 CA 2856466 A1 CA2856466 A1 CA 2856466A1 CA 2856466 A CA2856466 A CA 2856466A CA 2856466 A CA2856466 A CA 2856466A CA 2856466 A1 CA2856466 A1 CA 2856466A1
Authority
CA
Canada
Prior art keywords
hmf
process according
starting solution
distillate
fructose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2856466A
Other languages
French (fr)
Inventor
Rene Backes
Benoit BLANK
Alois Kindler
Carmen FELDNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CA2856466A1 publication Critical patent/CA2856466A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

A process for preparing 5-hydroxymethylfurfural (HMF), characterized in that a) solutions (called starting solution hereinafter) comprising one or more saccharides and an organic solvent having a boiling point greater than 200°C (at standard pressure) (called high boiler for short) and water and a solvent having a boiling point greater than 60°C and less than 200°C (at standard pressure, called low boiler for short) are supplied to a reaction vessel, b) a conversion of the hexose to HMF in the presence of steam with simultaneous distillative removal of the HMF is effected in the reaction vessel and c) the distillate obtained is an aqueous, HMF containing solution (called distillate hereinafter).

Description

A
Preparation of 5-hydroxymethylfurfural (HMF) from saccharide solutions in the presence of a solvent having a boiling point greater than 60 C and less than 200 C (at standard pressure, called low boiler for short) Description:
The present invention relates to a process for preparing 5-hydroxymethylfurfural (HMF), which comprises a) feeding solutions (hereinafter called starting solution) comprising - one or more hexoses or oligomers or polymers formed from hexoses (collectively called saccharides hereinafter) and - an organic solvent having a boiling point greater than 200 C (at standard pressure) (called high boiler for short) and - water, and a solvent having a boiling point greater than 60 C and less than 200 C (at standard pressure, called low boiler for short) to a reaction vessel, b) effecting a conversion of hexose to HMF in the reaction vessel in the presence of the low boiler with simultaneous distillative removal of the HMF and c) obtaining, as the distillate, a dilute solution comprising HMF, water and low boilers (hereinafter called distillate).
For chemical syntheses, increasing significance is being gained by compounds which are obtained from renewable raw materials and can be converted easily by chemical reactions to industrially usable compounds.
In this context, 5-hydroxymethylfurfural (HMF) is known, this being preparable by different processes from hexoses or other saccharides. From HMF, for example, 2,5-furandicarboxylic acid is easily obtainable, the latter being suitable as a dicarboxylic acid for preparation of polymers, such as polyesters or polyurethanes, and can replace other dicarboxylic acids from non-renewable raw materials in industrial applications.
HMF is generally prepared by acid-catalyzed dehydration of hexoses such as glucose or fructose. The reaction products obtained are acidic solutions which, as well as the HMF, comprise unconverted starting materials and/or by-products. In the HMF
synthesis, there is generally only a partial conversion of the starting materials in order to avoid the formation of by-products. In general, the solutions obtained therefore comprise unconverted starting materials such as hexoses, or oligomers or polymers formed from hexoses. At higher conversions, the amount of by-products increases.
, The removal of the HMF from the reaction solution, which comprises starting materials or by-products from the HMF synthesis, is complex and makes it difficult to obtain HMF.
Feroz Kabir Kazi et al. in Chem Eng. J. 169 (2011), pages 329-338, describe the separation of the HMF from the acidic reaction solution by a complex extraction process using an organic solvent (butanol); a solution of HMF in butanol is obtained.
DE-A 3601281 discloses a chromatographic removal process in which any organic solvents are first removed and the aqueous HMF solution is separated with an ion exchanger column. The HMF fraction obtained is crystallized.
A further method of separating HMF from the reaction solution is the conversion of the HMF to another, more easily removable compound, optionally followed by a reverse conversion to HMF
on completion of removal. For instance, HMF, according to Mark Mascal and Edward B. Nikitin in 2008 Angew. Chemie Vol. 47, pages 7924-7926, is converted to the more stable 5-chloromethylfurfural and then back to HMF or derivatives thereof.
Alternatively, the ethers of HMF are prepared according to EP-A 1834950, or the esters according to EP-A
1834951, these being directly suitable for further syntheses on completion of removal.
Haru Kawamoto, Shinya Saito et al. describe, in J. Wood Sci. (2007), 53, pages 127-133, the pyrolysis of cellulose to form levoglucosenone, furfural and/or HMF under various conditions, including the supply of water vapor.
FR2663933 and FR2664273 describe how fructose and sucrose are converted to HMF
in a melt of acidic salts (Na3PO4 and KH2PO4) under the action of superheated steam. A
small portion of the HMF is entrained by the steam, but the majority of the HMF is subsequently isolated from the salt melt by means of extraction.
US4400468 discloses the acidic hydrolysis of biomass under the action of water vapor to give sugars, and the direct conversion of the hexose components present in the mixture to HMF. In this case, the HMF formed, however, is not isolated in pure form.
HMF should be present in a form of maximum purity for further syntheses.
Aqueous solutions of HMF suitable for further syntheses are particularly those which comprise by-products or residual starting materials in very small amounts at most, if any. Processes known to date for preparing HMF or aqueous solutions thereof with sufficient purity are extremely complex.
CN102399203 and Wei et al. in Green Chem. , 2012, 14, pages 1220-1226 disclose a distillative process for simultaneous preparation and isolation of HMF by degradation of fructose and glucose in ionic liquids. The process comprises the addition of a saccharide to an ionic liquid based on imidazolium derivatives, preferably with long alkyl side chains (e.g. 1-methyl-3-, PF 72809-2 CA 02856466 2014-05-21 octylimidazolium chloride) in the presence of a cocatalyst and of a stripping medium at 100 to 500 Pa, a reaction temperature of 120-180 C and a reaction time of 10 to 60 minutes. The stripping medium is nitrogen, another inert gas, carbon dioxide, a C1-C8 alkane, acetone or methyl isobutyl ketone.
The cobalt catalyst used is a metal salt or metal oxide which serves for stabilization of the HMF
formed, but also serves as a catalyst for the isomerization of glucose to fructose. Such an isomerization with metal salts is already known from the literature (Glucose-isomerization with Chromium-salts ¨ Science 2007, 316, 1597-1600; Angew. Chem. Int. Ed. 2008, 47, 9345-9348;
Chem. Eur. J. 2011, 17, 5281-5288; Glucose-isomerization with rare-earth metals - J. Mol. Cat.
A, 2012, 356, 158-164; HMF from Glucose with lanthanides - Green Chem., 2010, 12, 321-325;
Conversion of Cellulose to Furans with metal salts - J. Mol, Catal. A, 2012, 357, 11-18; Sn-Beta Zeolites -ACS Catal. 2011, 1,408-410).
The use of ionic liquids, especially of substituted imidazolium chloride derivatives, for the synthesis of HMF from fructose and glucose is well known in the literature.
However, not only is the isolation of the HMF formed from the ionic liquid very complex ¨ usually, the IL is extracted with an organic solvent, and the reaction in ILs also proceeds much more slowly in the presence of water and the saccharide is therefore converted in very substantially anhydrous IL in all cases. The latter has to be dewatered in a complex manner prior to further use (e.g. Blares.
Tech. 2011, 102, 4179-4183).
The adverse effect of water in the reaction medium in the conversion of sugars, especially fructose and glucose, to HMF has been adequately described in the literature (e.g. Carbohydr.
Res. 1977, 54, 177-183; Science 2007, 136, 1597-1600). As is well known to those skilled in the art, water firstly slows the dehydration reaction of the sugars, and also promotes the rehydration and splitting of the HMF formed to formic acid and levulinic acid (for the postulated mechanism of the reaction see Science 2006, 312, 1933-1937). As shown in example 1, the reaction proceeds much more slowly with rising water content and gives lower yields of HMF.
The object of the present invention was therefore an industrial scale process with which HMF
can be prepared in a very simple and effective manner, HMF is at the same time obtained in very substantially pure form, and HMF is therefore separated directly and very substantially completely from converted starting materials or by-products.
In industrial scale processes, the conversion is to be performed within an industrially and economically advantageous temperature and pressure range with high conversion and high space-time yield. More particularly, the use of commercially available aqueous saccharide solutions in different concentrations, as opposed to crystalline saccharides, is of high significance. Furthermore, the feedstocks should make minimum demands on the apparatuses and the procedure, and enable simple purification and isolation of the product of value. The use of a gas as a stripping medium in a reaction regime under reduced pressure is difficult to , PF 72809-2 CA 02856466 2014-05-21 implement on the industrial scale since a high pump output is required in order that the desired vacuum can be maintained. In the case of the industrial scale use of organic solvents as stripping media, the high costs and complex recovery thereof are disadvantageous. In the case of preparation of HMF, moreover, short residence times at high temperatures are highly advantageous due to the instability of the product. Especially a rapid removal of the HMF
formed from the reaction solution enables higher yields. A significant factor in industrial scale processes is the complexity of the process, such that, for example, one-pot processes are preferable for different reasons. A particularly preferred process variant is reactive distillation, in which the target product is formed in a one-pot process and is simultaneously separated from the reaction solution.
Accordingly, the process defined at the outset has been found.
In the process according to the invention, HMF is prepared in the presence of a solvent having a boiling point greater than 60 C and less than 200 C (at standard pressure, called low boiler for short) and is separated directly from by-products and unconverted starting materials of the HMF synthesis. In contrast to the prior art, this process can be performed on the industrial scale.
Process step a) In process step a), solutions (hereinafter called starting solution) comprising - one or more hexoses or oligomers or polymers formed from hexoses (collectively called saccharides hereinafter) and - an organic solvent having a boiling point greater than 200 C (at standard pressure) (called high boiler for short) and - water, and a solvent having a boiling point greater than 60 C and less than 200 C (at standard pressure, called low boiler for short) are fed to a reaction vessel.
The saccharide comprises hexoses, or oligomers or polymers formed from hexoses. The hexoses are preferably fructose, glucose or mixtures of fructose and glucose.
Particular preference is given to fructose or mixtures of fructose with glucose. The hexose is most preferably fructose.
The starting solution may also comprise by-products or starting materials from the preparation of the saccharides. For example, saccharides can be obtained by degradation of polymers such as cellulose or starch. Therefore, the starting solution may still comprise residual amounts of such polymers or the oligomeric degradation products thereof.

The starting solution preferably comprises 1 to 60% by weight of saccharide, more preferably 10 to 50% by weight of saccharide, based on the total weight of the starting solution.
The starting solution preferably comprises less than 10% by weight, especially less than 5% by 5 weight and more preferably less than 1% by weight of by-products or starting materials from the preparation of saccharides (based on the total weight of the starting solution). More particularly, the starting solution is essentially free of by-products and starting materials from the preparation of saccharides.
In an alternative embodiment, the starting solution may also comprise metal chlorides or metal nitrates of the general formula MXn as isomerization salts, where M is a metal, X is chlorine or nitrate and n is an integer from 1 to 4. These isomerization salts are preferably present in the starting solution when the saccharide in the starting solution is glucose or a saccharide comprising glucose units, for example sucrose. The use of isomerization salts has already been described in the literature (Science 2007, 316, 1597-1600, Carbohydr. Pol.
2012, 90, 792-798, Chem. Eur. J. 2011, 17, 5281-5288, Green Chem. 2009, 11, 1746-1749).
Preference is given to using metal chlorides or metal nitrates selected from the group of CrCl2, CrCI3, AlC13, FeCl2, FeCI3, CuCI, CuC12, CuBr, VCI3, MoCI3, PdC12, PtC12, RuC13, RhCI3, Ni(NO3)2, Co(NO3)2, Cr(NO3)3, SnC14. Very particular preference is given to CrCl2 and CrCI3.
The starting solution further comprises an organic solvent having a boiling point greater than 200 C (at standard pressure), especially greater than 250 C (called high boiler for short hereinafter).
Useful high boilers include hydrophilic solvents; these may be protic, hydrophilic organic solvents, for example alcohols, or aprotic hydrophilic solvents, for example ethers or ketones, such as dimethyl sulfoxide. Also useful are ionic liquids, high-boiling oils, for example paraffins, and high-boiling esters, for example Hexamoll DINCH (diisononyl 1,2-cyclohexane-dicarboxylate). Further possible high boilers are: 1,3-dimethylpropyleneurea (DMPU), tn-n-oxide (TOPO), hexamethylphosphoramide (HMP), 3-methyl-2-oxazolidone, 2-oxazolidone, o-dihydroxybenzene, catechol, N,N-dibutylurea and dibutyl sulfone.
High boilers preferred in the context of this invention are polyethers and ionic liquids.
Polyethers The polyethers preferably have a melting point less than 60 C, especially less than 30 C (at standard pressure, 1 bar). Particularly preferred polyethers are liquid at 20 C (standard pressure).
The polyethers comprise at least two ether groups. The polyethers preferably comprise at least 3, especially at least 4 and more preferably at least 6 ether groups. In general, they comprise not more than 40 and especially not more than 30 ether groups, more preferably not more than 20 ether groups.
In a particular embodiment, the polyethers do not comprise any heteroatoms apart from oxygen in the form of ether groups and optionally hydroxyl groups.
More particularly, the polyethers are aliphatic polyethers, particularly preferred polyethers being polyalkylene glycols, where the terminal hydroxyl groups may be etherified with alkyl groups, especially C1-C4-alkyl groups.
The alkylene groups of the polyalkylene glycols may, for example, be C2 to C10 and especially 02 to 04 alkylene groups, such as ethylene, propylene or butylene groups. The polyalkylene glycols may also comprise various alkylene groups, for example in the form of blocks.
Very particular preference is therefore given to poly-C2- to -C4-alkylene glycols, especially polyethylene glycol, the terminal hydroxyl groups of which may optionally be etherified with alkyl groups; the number of repeat alkylene ether groups corresponds to the above number of ether groups, the number of repeat alkylene ether groups being especially 4 to 30, more preferably 6 to 20. The terminal hydroxyl groups of the polyalkylene glycols may be etherified with alkyl groups, especially Cl to C4 alkyl groups.
Ionic liquid (IL) Ionic liquids refer in the context of the present application to organic salts which are liquid even at temperatures below 180 C. The ionic liquids preferably have a melting point of less than 150 C, more preferably less than 120 C, especially less than 100 C.
Ionic liquids which are present in the liquid state even at room temperature are described, for=
example, by K. N. Marsh et al., Fluid Phase Equilibria 219 (2004), 93-98 and J. G. Huddleston et al., Green Chemistry 2001, 3,156-164.
Ionic liquids suitable for use in the process according to the invention are described in WO 2008/090155 (page 4, line 38 to page 37, line 31) and WO 2008/090156 (page 7, line 1 to page 39, line 37), reference being made thereto.
In the ionic liquid, cations and anions are present. Within the ionic liquid, a proton or an alkyl radical can be transferred from the cation to the anion, resulting in two uncharged molecules. In the ionic liquid used in accordance with the invention, there may thus be an equilibrium of anions, cations and uncharged molecules formed therefrom.
Preferred ionic liquids are combinations of nitrogen-containing cation components (such as imidazolium derivatives) and halogen ions as anions.
Suitable compounds suitable for formation of the cation of ionic liquids are described, for example, in DE 102 02 838 Al ([0030] to [0073]). These compounds preferably comprise at least one heteroatom, for example 1 to 10 heteroatoms, which are preferably selected from nitrogen, oxygen, phosphorus and sulfur atoms. Preference is given to compounds which comprise at least one nitrogen atom and optionally additionally at least one further heteroatom other than nitrogen. Preference is given to compounds comprising at least one nitrogen atom, more preferably 1 to 10 nitrogen atoms, especially 1 to 5 nitrogen atoms, even more preferably 1 to 3 nitrogen atoms and especially 1 or 2 nitrogen atoms. The latter nitrogen compounds may comprise further heteroatoms such as oxygen, sulfur or phosphorus atoms.
Preference is given to those compounds which comprise at least one five- to six-membered heterocycle, especially a five-membered heterocycle, which has at least one nitrogen atom and optionally an oxygen or sulfur atom. Particular preference is given to those compounds which comprise at least one five- to six-membered heterocycle which has one, two or three nitrogen atoms and one sulfur or one oxygen atom, very particular preference to those having two nitrogen atoms. Preference is further given to aromatic heterocycles.
Preferred cations are unsubstituted or substituted imidazolium ions.
Particularly suitable imidazolium ions are 1-methylimidazolium, 1-ethylimidazolium, 1-(1-propyl)imidazolium, 1-(1-allyl)imidazolium, 1-(1-butyl)imidazolium, 1-(1-octyl)imidazolium, 1-(1-dodecyl)imidazolium, 1-(1-tetradecyl)imidazolium, 1-(1-hexadecyl)imidazolium, 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1-ethyl-3-methylimidazolium, 1-(1-buty1)-3-methylimidazolium,1-(1-buty1)-3-ethylimidazolium, 1-(1-hexyl)-3-methylimidazolium, 1-(1-hexyl)-3-ethylimidazolium, 1-(1-hexyl)-3-butylimidazolium, 1-(1-octy1)-3-methylimidazolium, 1-(1-octyI)-3-ethylimidazolium, 1-(1-octyI)-3-butylimidazolium, 1-(1-dodecy1)-3-methylimidazolium, 1-(1-dodecy1)-3-ethylimidazolium, 1-(1-dodecy1)-3-butylimidazolium, 1-(1-dodecy1)-3-octylimidazolium, 1-(1-tetradecyI)-3-methylimidazolium, 1-(1-tetradecyI)-3-ethylimidazolium, 1-(1-tetradecyI)-3-butylimidazolium, 1-(1-tetradecyI)-3-octylimidazolium, 1-(1-hexadecyI)-3-methylimidazolium, 1-(1-hexadecy1)-3-ethylimidazolium, 1-(1-hexadecyI)-3-butylimidazolium, 1-(1-hexadecyI)-3-octylimidazolium, 1,2-dimethylimidazolium, 1,2,3-trimethylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-(1-buty1)-2,3-dimethylimidazolium, 1-(1-hexyl)-2,3-dimethylimidazolium, 1-(1-octy1)-2,3-dimethylimidazolium, 1,4-dimethylimidazolium, 1,3,4-trimethylimidazolium, 1,4-dimethy1-3-ethylimidazolium, 3-methylimidazolium, 3-ethylimidazolium, 3-n-propylimidazolium, 3-n-butylimidazolium, 1,4-dimethy1-3-octylimidazolium, 1,4,5-trimethylimidazolium, 1,3,4,5-tetramethylimidazolium, 1,4,5-trimethy1-3-ethylimidazolium, 1,4,5-trimethy1-3-butylimidazolium, 1,4,5-trimethy1-3-octylimidazolium, 1-prop-1-en-3-y1-3-methylimidazolium and 1-prop-1-en-3-yl-3-butylimidazolium. Specifically suitable imidazolium ions (1Ve) are 1,3-diethylimidazolium, 1-ethy1-3-methylimidazolium, 1-(n-buty1)-3-methylimidazolium.
The anion of the ionic liquid is selected, for example, from 1) anions of the formulae: F-, Cl-, Br-, 1-, BF4-, PFs-, CF3503-, (CF3S03)2N-, CF3CO2-, CCI3CO2-, CN-, SCN-, OCN-.
2) anions of the formulae: S042-, HSO4-, S032-, H503-, RcOS03-, RcS03-.
3) anions of the formulae: P043-, HP042-, H2PO4-, RcP042-, HRcPO4-, RcRdPO4-=
4) anions of the formulae: RcHP03-,RcRdP02-, RcRdP03-.
5) anions of the formulae: P033-, HP032-, H2P03-, RcP032-, RcHP03-, RcRdP03-.
6) anions of the formulae: RcRdP02-, RcHP02-, RcIRdP0-, RcHP0-.
7) anions of the formula RcC00-.
8) anions of the formulae: B033-, HB032-, H2B03-, RcIRdB03-, RcHB03-, RcB032-, B(0172c)(0Rd)(0Re)(0Rf)-, B(HSO4)4-, B(RcSO4) 4-.

. PF 72809-2 CA 02856466 2014-05-21 9) anions of the formulae: RcI3022-, RcRcB0-.
10) anions of the formulae: HCO3-, C032-, RcCO3-11) anions of the formulae: S1044-, HSi043-, H2Si042-, H3S104-, RcSi043-, RcRdSi042-, RcRdReS104-, HRcSi042-, H2RcSiO4-, HRcRdS104-12) anions of the formulae: RcSi033-, RcRdsio22-, RcRdResio-, RcRdResio3-, RcRdResio2-, RcRdSi032-.
13) anions of the formulae:
NC\
N
/, -NC
10 00 0õ0 \\//
Pc RC¨S\ _ Rc¨S
\ _ _ N N N
i d Rd R ¨//S Rd ' 14) anions of the formulae:
SO2 -Rc 1 _ C
d R6-0 S.Z \ SO -R
15) anions of the formula WO-.
16) anions of the formulae HS-, [Sv]2-, [HSv]-, [RCS]-, where v is a positive integer from 2 to 10.
The RC, Rd, Re and I:21 radicals are preferably each independently -hydrogen;
- unsubstituted or substituted alkyl, preferably unsubstituted or substituted C1-C30-alkyl, more preferably unsubstituted or substituted C1-C18-alkyl, which may be interrupted by at least one heteroatom or a heteroatom-containing group;
- unsubstituted or substituted aryl, preferably unsubstituted or substituted C6-C14-aryl, more preferably unsubstituted or substituted C6-C10-aryl;
- unsubstituted or substituted cycloalkyl, preferably unsubstituted or substituted C5-C12-cycloalkyl;
- unsubstituted or substituted heterocycloalkyl, preferably unsubstituted or substituted heterocycloalkyl having 5 or 6 ring atoms, where the ring, as well as carbon ring atoms, has 1, 2 or 3 heteroatoms or heteroatom-containing groups;
- unsubstituted or substituted heteroaryl, preferably unsubstituted or substituted heteroaryl having 5 to 10 ring atoms, where the ring, as well as carbon ring atoms, has 1, 2 or 3 heteroatoms or heteroatom-containing groups selected from oxygen, nitrogen, sulfur and NRa;
where any two of these radicals in anions having a plurality of Rc to Rf radicals, together with the part of the anion to which they are bonded, may be at least one saturated, unsaturated or aromatic ring or a ring system having 1 to 12 carbon atoms, where the ring or ring system may have 1 to 5 nonadjacent heteroatoms or heteroatom-containing groups preferably selected from oxygen, nitrogen, sulfur and NRa, and where the ring or ring system is unsubstituted or may be substituted.
Preferred anions are Cl-, Br, formate, acetate, propionate, butyrate, lactate, saccharinate, carbonate, hydrogencarbonate, sulfate, sulfite, C1-C4-alkylsulfates, methanesulfonate, tosylate, trifluoroacetate, C1-C4-dialkylphosphates and hydrogensulfate.
Particularly preferred anions are Cl-, Br, HC00-, CH3C00-, CH3CH2C00-, carbonate, hydrogencarbonate, sulfate, sulfite, tosylate, CH3S03- or CH30S03 More particularly, the anions are selected from Cl- and CH3S03-.
Suitable ionic liquids for use in the process according to the invention are commercially available, for example, under the Basionic brand name from BASF SE.
Advantageous ionic liquids for use in the process according to the invention are imidazolium chlorides or imidazolium methanesulfonates or mixtures thereof.
Further advantageous ionic liquids for use in the process according to the invention are, for example, 1-ethyl-3-methylimidazolium chloride (EMIM Cl, Basionic ST 80), 1-ethyl-3-methylimidazolium methanesulfonate (EMIM CH3S03, Basionic ST 35), 1-butyl-3-methylimidazolium chloride (BMIM Cl, Basionic ST 70), 1-buty1-3-methylimidazolium methanesulfonate (BMIM CH3S03, Basionic ST 78), methylimidazolium chloride (HM1M Cl, Basionic AC 75), methylimidazolium hydrogensulfate (HMIM HSO4 Basionic AC 39), 1-ethyl-3-methylimidazolium hydrogensulfate (EMIM HSO4 Basionic AC 25), 1-buty1-3-methylimidazolium hydrogensulfate (BMIM HSO4 Basionic AC 28) 1-ethyl-3-methylimidazolium acetate (EMIM
acetate, Basionic BC 01), 1-butyl-3-methylimidazolium acetate (BMIM acetate, Basionic BC 02).
Particular preference is given to 1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, methylimidazolium chloride, 1-ethy1-3-methylimidazolium methanesulfonate, 1-buty1-3-methylimidazolium methanesulfonate and mixtures thereof.
Very particular preference is given to 1-ethyl-3-methylimidazolium chloride (EMIM Cl, Basionic ST 80), 1-butyl-3-methylimidazolium chloride (BMIM Cl, Basionic ST 70) and 1-ethyl-3-methylimidazolium methanesulfonate (EMIM CH3S03, Basionic ST 35).
The starting solution comprises, as well as the high boiler, at least one further solvent. The further solvent is especially water.This may also include mixtures of water with hydrophilic organic solvents having a boiling point less than 200 C (called low boilers) in which the saccharide used should preferably be soluble.
The further solvent is more preferably water. The starting solution is therefore more preferably an aqueous solution.

In a particular embodiment, the starting solution comprises exclusively water and the high boiler as solvents.
The starting solution comprises the high boiler, especially the polyether or the ionic liquid, 5 preferably in amounts of 5 to 90% by weight, especially of 30 to 80% by weight, more preferably of 40 to 80% by weight, based on the total weight of the starting solution.
The water content of the starting solution is preferably less than 60% by weight, especially less than 50% by weight and more preferably less than 40% by weight, based on the total weight of 10 the starting solution.
The starting solution preferably further comprises a catalyst. The catalyst catalyzes the conversion of the saccharide to HMF. Suitable catalysts are acids. Useful acids include heterogeneous acids which are dispersed in the starting solution, or homogeneous acids which are dissolved in the starting solution. Useful homogeneous acids include any desired inorganic or organic acids. Particular preference is given to using homogeneous protic acids. Examples include para-toluenesulfonic acid, methanesulfonic acid (Me0S03H), oxalic acid, sulfuric acid, hydrochloric acid or phosphoric acid.
If the high boiler used is an ionic liquid or DMSO, the use of a catalyst is not absolutely necessary, especially in the case of halide-containing ILs, for example EMIMCI
and BMIMCI.
However, the use of a catalyst accelerates the reaction and hence reduces the residence time in process step b). Thus, in the case of use of ionic liquids or DMSO as high boilers, preference is given to using a catalyst.
If a polyether, especially polyethylene glycol, is used as the high boiler, the use of a catalyst is absolutely necessary.
The starting solution comprises the acid preferably in amounts of 0.1 to 10 mol%, more preferably of 0.1 to 5 mol% (based on the saccharide).
Preferred starting solutions comprise, for example, 1 to 40% by weight of saccharide 5 to 90% by weight of high boiler, preferably polyether or ionic liquid 1 to 50% by weight of water 0.1 to 10 mol% of acid (based on the saccharide) 0 to 10% by weight of other constituents, for example by-products from the synthesis of the saccharide, based on the total weight of the solution.

Particularly preferred starting solutions comprise, for example, to 30% by weight of saccharide 30 to 80% by weight of high boiler, preferably polyether or ionic liquid 5 10 to 50% by weight of water 0.1 to 5 mol% of acid (based on the saccharide) 0 to 5% by weight of other constituents, for example by-products from the synthesis of the saccharide, based on the total weight of the solution.
The starting solution can be prepared here in various ways. In one embodiment, the components of the starting solution are supplied to a reaction vessel and premixed therein. In that case, this starting solution is supplied to process step b). In this case, this starting solution, in a particular embodiment, can also be preheated beforehand to a temperature of 150-200 C.
In an alternative embodiment, the starting solution is prepared by the following steps:
al) The saccharide and water are present in a reaction vessel.
a2) A further reaction vessel is initially charged with the high boiler and preferably the catalyst.
a3) Immediately prior to process step b), the components are mixed, preferably in a mixing chamber.
In a further alternative embodiment, as well as the high boiler and preferably the catalyst, a metal chloride or metal nitrate may also be initially charged in process step a2). Preference is given to initially charging a metal chloride or metal nitrate when the saccharide used in process step al) is glucose or the saccharide used comprises glucose units, for example sucrose.
"Immediately prior to process step b)" means that the period from commencement of the mixing time in process step a) until the entry of the mixture into the reaction vessel, preferably an evaporator, is at most 5 minutes, more preferably at most one minute.
In an alternative embodiment, the mixed starting solution can additionally be partly vaporized by an instantaneous pressure gradient (transition from standard pressure to a vacuum by means of a pressure regulator) and converted to the gas phase (called "flashing").
In a further alternative embodiment, the solutions of steps al and a2 in the two reaction vessels can be preheated to a temperature between 150 and 200 C, for example by means of a heat exchanger, separately from one another prior to the mixing.
In this case, the aqueous starting solution is already in a supercritical state and may, in a further alternative embodiment, be vaporized particularly efficiently by an instantaneous pressure gradient (transition from elevated pressure to a vacuum by means of a pressure regulator) and a relatively large proportion of water can be converted to the gas phase (called "flashing").
In the case of high boilers which are solid or else very viscous at room temperature, heating of the reservoir vessels may be necessary in order that they are melted beforehand and are pumpable.
The above-described starting solution and the solvent having a boiling point greater than 60 C
and less than 200 C (at standard pressure, called low boilers for short) are supplied to a reaction vessel.

= PF 72809-2 CA 02856466 2014-05-21 Process step b) In process step b), the starting solution is converted to HMF in conjunction with a distillation which is known per se, in the presence of a solvent having a boiling point greater than 60 C and less than 200 C (at standard pressure, called low boiler for short). For this purpose, the starting solution is contacted with the low boiler in the reaction vessel.
Preferred low boilers are water vapor, alcohols, for example methanol, ethanol, 2-butanol, mono-, di- and polyethers, such as ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, triethylene glycol, ketones such as 2-butanone or methyl isobutyl ketone, esters such as butyl acetate, and aromatics such as toluene or xylene. Preference is given to polar protic low boilers which enable a good interaction with HMF. The low boilers used are more preferably water vapor, methanol and 2-butanol. Very particular preference is given to water vapor.
The treatment of the starting solution with the low boiler is effected preferably under reduced pressure, a useful pressure being especially from 10 to 200 mbar. The pressure in the reaction vessel is preferably 10 to 100 mbar, more preferably 20 to 80 mbar.
The treatment of the starting solution with the low boiler is effected preferably at a temperature of the starting solution of 100 to 250 C, more preferably of 140 to 250 C and more preferably of 160 to 220 C and most preferably 170 to 220 C.
If the high boiler used is a polyethylene glycol, the starting solution is treated with the low boiler preferably at a temperature of 160 to 220 C.
If the high boiler used is an ionic liquid, the starting solution is treated with the low boiler preferably at a temperature of 180 to 220 C.
If the low boiler used is water vapor, the treatment of the starting solution with water vapor is effected preferably at a temperature of 140 to 220 C, more preferably at 160 to 220 C and most preferably at 180 to 220 C. At these temperatures, the treatment can be effected with an industrially viable but minimal amount of water vapor. By increasing the amount of water vapor, the separating performance of the reactive distillation can be increased or kept constant at the same or a low temperature, but the use of an elevated amount of water vapor is less preferred for industrial reasons, since a high level of complexity is necessary to keep the pressure constant, a higher cooling performance on the distillate side is needed, and the steam costs rise.
In a further alternative embodiment, no low boiler is supplied to the reaction vessel. In this embodiment, the low boiler takes the form of water vapor in the reaction vessel from the water in the starting solution.
The process according to the invention is preferably operated continuously.
\
\

For this purpose, the starting solution and the low boiler are supplied continuously to the reaction vessel, and the product obtained, or distillate, is removed continuously.
The volume flow rates depend on the size, the reactor performance and the separation performance of the reaction vessel selected.
In a preferred embodiment, the ratio of the amount of low boiler supplied to the amount of the starting solution supplied is within a range from 0.2 to 4 weight units of low boiler to 1 weight unit of starting solution, more preferably in the range from 0.3 to 2 weight units of low boiler to 1 weight unit of starting solution, and especially 0.3 to 1.5 weight units of low boiler to 1 weight unit of starting solution.
Suitable reaction vessels are customary evaporators which are designed for the supply of starting solution and low boiler and especially for the above-described continuous procedure.
The evaporator used is preferably an evaporator with short residence time in the range of seconds to minutes (2 seconds to 10 minutes). Advantageously, low thermal stress on the dehydration products formed is thus achieved. The residence time has a strong influence on the yield of HMF, since the distillation yield of HMF declines significantly as a result of an increased residence time in the event that conversion is already complete.
The residence time is therefore preferably 1 to 120 seconds, more preferably 1 to 60 seconds, most preferably 5 to 30 seconds.
A suitable evaporator is in principle an apparatus customary for that purpose, which in the simplest case comprises a vessel or tubes with heatable walls as heat transfer surfaces. The evaporator may suitably be supplied with heat from the outside through the walls, for example with steam. The temperature in the evaporator is preferably within a range from 100 to 300 C, more preferably within a range from 150 C to 250 C. The pressure in the evaporator is preferably at most 100 mbar. The pressure in the evaporator is more preferably within a range from 10 mbar to 100 mbar, especially 10 mbar to 80 mbar.
In one embodiment, the evaporator used is a thin-film evaporator in which the starting solution in the evaporator is present as a liquid film.
Particular preference is given to vertical thin-film evaporators; such vertical thin-film evaporators are known by device names such as "Luwa" or especially "Sambay" from Buss or Sulzer.
The thin-film evaporator can be used with or without a rotating wiper blade.
The preferred vertical thin-film evaporators are ultimately a vertical tube with internal devices for distribution and mixing of the starting solution, and external devices for heating of the tube wall.
The starting solution is preferably supplied in the upper part of the thin-film evaporator and distributed as a film on to the heated pipe wall. The low boiler can be supplied to the evaporator, preferably to the thin-film evaporator, together with the starting solution or at any other point in the evaporator. The starting solution and the low boiler may be conducted within the evaporator in the same direction (cocurrent) or in opposite directions (countercurrent).

The low boiler is preferably conducted in countercurrent to the starting solution. For this purpose, the starting solution is supplied especially in the upper part of the evaporator and the steam in the lower part of the evaporator.
5 The low boiler and the volatile constituents of the starting solution are preferably discharged via a separator at the top of the evaporator and condensed (distillate).
The nonvolatile constituents pass through the evaporator and are removed as liquid bottom product.
10 Figure 1 (FIG 1) shows a corresponding apparatus composed of thin-film evaporator (Sambay) and device for condensation.
In an alternative embodiment, conversion and removal are accomplished using a distillation column, preferably a stripping column. The stripping column may consist of a vertical tube with 15 external heating and a plurality of separation stages for the establishment of the liquid/vapor equilibrium. The feed is preferably to the top of the stripping column.
In a further alternative embodiment, a droplet separator (demister) is arranged above the distillation column. This prevents droplet entrainment (a sign of nonestablishment of equilibrium and simultaneously fluid-dynamic/flow-related overloading).
The starting solution is preferably supplied to the top of the distillation column. The low boiler can be supplied to the evaporator together with the starting solution or at any other point in the evaporator. The starting solution and the low boiler can be conducted within the evaporator in the same direction (cocurrent) or opposite directions (countercurrent).
The low boiler is preferably conducted in countercurrent to the starting solution. For this purpose, the starting solution is especially supplied in the upper part of the evaporator and the low boiler in the lower part of the evaporator.
The low boiler and the volatile constituents of the starting solution are preferably discharged via a separator at the top of the evaporator and condensed (distillate).
The nonvolatile constituents pass through the evaporator and are removed as liquid bottom product.
Figure 2 (FIG 2) shows a corresponding apparatus composed of distillation column and device for condensation with a simple feed.
Figure 3 (FIG 3) shows a corresponding apparatus composed of distillation column and device for condensation with separate heatable feeds and mixer.
The reaction in process step b) can, if desired, be performed such that only partial conversion of the saccharide to HMF or full conversion of the saccharide to HMF is effected.
In the case of partial conversion, unconverted saccharide can be converted again; in the case of full conversion, there may be increased formation of by-products, especially what are called humins, i.e. oligomers of HMF.
Preferably at least 60%, especially at least 80% and, in a particular embodiment, at least 90%
of the saccharide used is converted.
Process step c) The distillate obtained is a dilute, HMF-comprising solution. The distillate comprises the HMF
formed in the conversion and water, and the low boiler from the distillation.
The distillate preferably comprises the HMF formed in the conversion and water from the reaction and distillation.
The distillate comprises especially more than 60%, especially more than 80%, of the HMF
obtained overall in the conversion.
The distillate comprises especially at least 3% by weight of HMF, more preferably at least 4% by weight of HMF and most preferably at least 6% by weight of HMF, based on the total weight of the distillate.
In addition, the distillate may also comprise high boilers. In the case of use of polyethers or ionic liquids as high boilers, the distillate comprises only very small amounts of high boilers, if any;
the content of polyethers or ionic liquids in the distillate is then especially less than 5% by weight, preferably less than 2% by weight and more preferably less than 1 or less than 0.5% by weight, based on the total weight of the distillate.
By-products which form in the conversion of the saccharide to HMF are especially humins (oligomers of HMF). The humins are obtained in the process according to the invention essentially not in the distillate but in the bottoms (see figure 1).
The distillate therefore comprises only very small amounts of humins, if any;
the content of humins in the distillate is generally less than 2% by weight, especially less than 0.5% by weight and more preferably less than 0.1% by weight, based on the total weight of the distillate. The distillate is clear and has a pale yellow or orange color (according to the HMF content).
In addition, the distillate comprises only small amounts of unconverted saccharide, if any;
unconverted saccharide is present predominantly in the bottoms.
The content of unconverted saccharide in the distillate is generally less than 5% by weight, especially less than 2% by weight and more preferably less than 1% by weight, based on the total weight of the distillate.
It is an advantage of the process according to the invention that by-products of the HMF
synthesis, polyethers or ionic liquids as high boilers and unconverted saccharide are obtained essentially in the bottoms.
HMF is obtained in the preparation process according to the invention directly as distillate with high purity. The process according to the invention is therefore a simple and effective process for preparation of HMF and simultaneous removal of HMF from by-products and unconverted starting materials.
The distillate is suitable for chemical syntheses in which HMF is used as a starting material.
More particularly, the distillate is suitable for chemical syntheses in which the HMF starting material is desired or required in high purity. An example given here is that of the use of the product solution for preparation of 2,5-furandicarboxylic acid or of 2,5-bis(hydroxymethyl)furan.
Examples Example 1: Batch experiments for HMF preparation in IL with variable water content The experiments were performed batchwise in a glass round-bottom flask with reflux condenser, mechanical stirrer and oil bath heating.
The starting solutions comprised: fructose (20 g), high boiler (100 g), p-toluenesulfonic acid (1 mol% based on fructose) and variable amounts of water.
The high boilers used were:
PEG-600: a polyethylene glycol having a molecular weight of 600 BMIMCI: 1-butyl-3-methylimidazolium chloride (BMIM Cl, Basionic ST 70) Performance of the batch reactions:
All substances were initially charged in the round-bottom flask, heated rapidly to 100 C and, after attainment of the target temperature, the timing was started and samples were taken from the reaction vessel at regular intervals for reaction monitoring.
The composition was determined by means of HPLC.
The conversions of fructose reported are calculated from the residual amounts of fructose in the samples analyzed; fructose was converted to HMF and to by-products (humins).
The HMF yield is the percentage of HMF formed based on the fructose content in the starting solution.

=
Table 1: Batch experiments for HMF preparation in IL with variable water content Solvent Water content Time Conversion (%) Yield (%) BMIMCI none <10 min 93% 84%
BMIMCI approx. 10% by wt. 1 h 98% 74%
BMIMCI approx. 20% by wt. 2 h 99% 74%
PEG-600 none 8 h 97% 43%
PEG-600 2% by weight 8 h (18 h) 94% (98%) 33% (43%) Example 2: In situ dehydration of fructose and isolation of HMF by means of steam distillation Starting solution The starting solutions were obtained by mixing pure substances.
The starting solutions comprised fructose, high boiler, acid and water (see table).
The high boilers used were:
DMSO: dimethyl sulfoxide PEG-600: a polyethylene glycol having a molecular weight of 600 Tetraglyme: tetraethylene glycol dimethyl ether The acids used were:
H2SO4: sulfuric acid p-TSA: para-toluenesulfonic acid MSA: methanesulfonic acid Oxalic acid Performance of steam distillation The steam distillation was performed in the apparatus according to figure 1.
The apparatus consisted of a glass Sambay which is operated in countercurrent mode.
The starting solution was supplied at the top and flashed into vacuum by means of a pressure regulator, and the water vapor as the low boiler in the lower third.
The composition of the starting solution for various high boilers and the selected temperatures and pressures are listed in the table.
The temperature reported is that of the heating medium at the outer pipe wall, which corresponds in a good approximation to that of the liquid film of the starting solution on the inner pipe wall.

. PF 72809-2 CA 02856466 2014-05-21 , The experiments were performed continuously; after each new temperature and pressure adjustment, attainment of a steady state was awaited.
The composition was determined by means of HPLC.
The reported conversions of fructose are calculated from the residual amounts of fructose in the bottoms and distillate; fructose was converted to HMF and to by-products (humins). The reported catalytic amounts of acid are based on fructose. The HMF yield is the molar percentage of the HMF in the distillate or in the bottoms, based on the fructose content in the starting solution.
HMF yield: m(HMF)/M/HMF) *100 m(Fru)/M (Fru) -n Table 2: Continuous experiments for in situ dehydration of fructose and isolation of HMF
N
CO

eP
High High Fructose Acid Amount Temp- Press- Fructose [% by HMF Conversion .. HMF yield .. N
boiler boiler conc. of acid erature ure wt.] in the [% by wt.] in the of fructose Ickl conc. [% by wt.] [mol%, [ C] [mbar] Distillate Bottoms Distillate Bottoms [%] Distillate Bottoms [% by based wt.] on mol of fructose]
oxalic P
tetraglyme 50 10 18 160 180 0.01 0.00 0.44 0.0 99.7 18.6 0.0 .
acid rõ

0 g DMS01 90 10 H2SO4 0.9 160 180 0.00 0.00 0.90 0.00 100.0 17.21 0.01 .

DMSO 90 10 H2SO4 0.01 110 380 0.00 5.43 0.05 2.94 72.1 1.0 21.6 ' , , PEG-600 49 24 MSA 0.6 160 25 0.17 5.73 1.73 0.22 80.9 19.1 1.0 u, , rõ
, PEG-600 49 24 MSA 1.0 160 30 0.16 0.13 1.87 0.26 98.5 19.9 1.0 PEG-600 49 24 p-TSA 1.0 160 30 0.03 0.07 2.12 0.39 99.6 22.2 0 oxalic PEG-600 49 24 1.0 160 30 0.17 12.72 0.40 0.31 65.7 4.0 1.2 acid 1 with DMSO as the added solvent, no bottoms were obtained at this temperature with these pressure settings; the entire amount of HMF, DMSO and water is in the distillate.

. PF 72809-2 CA 02856466 2014-05-21 , Example 3: Isolation of HMF from HMF/high boiler solutions with different low boilers Starting solution The starting solutions were obtained by mixing pure substances.
The starting solutions comprised HMF (10% by weight), fructose (10% by weight), water (20%
by weight) and PEG-600 (60% by weight) based on the total weight of the starting solution. No conversion of fructose to HMF takes place in this solution since no acid has been added.
The fructose was added only to show that it is distilled over into the distillate only in a very small proportion.
Performance of the distillation The distillation was performed in the apparatus according to figure 1. The apparatus consists of a glass Sambay which is operated in countercurrent mode.
The starting solution was supplied at the top and flashed into vacuum by means of a pressure regulator, and the low boiler in the lower third. The low boiler is heated to 125 C by means of electrical heating and decompressed by means of a pressure regulator and introduced into the distillation column.
The temperature specified is that of the heating medium at the outer pipe wall, which corresponds in a good approximation to that of the liquid film of the starting solution at the inner pipe wall.
The experiments were performed continuously; after each new temperature and pressure adjustment, attainment of a steady state was awaited.
The composition was determined by means of HPLC.
The HMF yield is the percentage of HMF in the distillate or in the bottoms, based on the HMF
content in the starting solution.
The distillation separation performance is calculated from percentage of HMF
in the distillate/percentage of HMF in the bottoms *100.
The fructose recovery is calculated from percentage of fructose in the bottoms/percentage of fructose in the starting solution *100 and is supposed to show that, under these conditions, fructose is not converted and is recovered for the most part in the bottoms.

CO

cig"
Table 3: Results of the isolation of HMF from HMF/high boiler solutions with different low boilers High Low boiler HMF yield (%) Fructose content in the Distillation separation boiler in the in the distillate (% by wt.) performance distillate bottoms HMF distillate/bottoms PEG-600 H20 82.3 7.6 0.06 91.5 PEG-600 no low boiler 12.1 82.7 0.12 12.8 PEG-600 2-BuOH 43.2 49.7 0.07 46.5 PEG-600 EGDME 29.5 53.9 0.09 35.4 PEG-600 MiBK 51.2 54.5 0.23 48.4 PEG-600 Bu-Ac 18.1 66.9 0.16 21.3 n) v ;
PEG-600 toluene 31.6 57.78 0.15 35.4 ' PF 72809-2 CA 02856466 2014-05-21 , Example 4: In situ dehydration of fructose and isolation of HMF in a stripping column Starting solution The starting solutions were obtained by mixing pure substances.
The starting solutions comprised fructose (20% by weight), high boiler (see table), acid (1 mol%
based on fructose) and water (20% by weight), based on the total weight of the starting solution.
The high boilers used were:
PEG-600: a polyethylene glycol having a molecular weight of 600 EMImCI: 1-ethyl-3-methylimidazolium chloride (EMIM Cl, Basionic ST 80) The acid used was para-toluenesulfonic acid.
Performance of the reactive distillation The reactive distillation was performed in the apparatus according to figure 2. The apparatus consists of a two-part thermostatted glass Vigreux column with a reaction section (below) and a a demister (above the feed of the starting solution). The apparatus is operated in countercurrent mode and the starting solution is supplied via a single feed and flashed into vacuum by means of a pressure regulator.
The starting solution was supplied between demister and reaction section, and the low boiler in the lower third of the column.
The composition of the starting solution for various high boilers and the temperatures and pressures selected are listed in the table.
The temperature reported is that of the heating medium at the outer column wall, which corresponds in a good approximation to that of the liquid of the starting solution at the inner column wall.
The experiments were performed continuously; after each new temperature and pressure setting, attainment of a steady state was awaited.
The composition was determined by means of HPLC.
The reported conversions of fructose are calculated from the residual amounts of fructose in the bottoms and distillate; fructose was converted to HMF and to by-products (humins). The reported catalytic amounts of acid are based on fructose. The HMF yield is the percentage of HMF in the distillate or in the bottoms, based on the fructose content in the starting solution.

, , The distillation separation performance is calculated from the percentage of HMF in the distillate/percentage of HMF in the bottoms *100 ll V
f.) Table 4: Continuous experiments for in situ dehydration of fructose and isolation of HMF co c.
CD
t%) Entry High Starting Distillation Distillation Low Low Low boiler / HMF conc. Fructose HMF conc. Fructose boiler solution temp. pressure boiler boiler starting in distillate conc. in in bottoms conc. in flow rate ( C) (mbar) flow solution (% by wt.) distillate (% by wt.) bottoms (g/min) rate ratio (% by wt.) (% by (g/min) wt.) 1 EM1mC1 2.1 140 27 2.3 H20 1.1 0.72 0.00 0.67 19.10 2 EM1mCI 2.1 160 33 2.3 H20 1.1 1.53 0.00 1.61 0 3 EM1mCI 2.1 180 32 2.3 H20 1.1 2.88 0.00 4.09 4.09 P
4 EM1mCI 2.4 200 34 2.4 H20 1.0 6.05 0.00 2.95 0.00 .

EM1mCI 2.6 220 35 2.5 H20 1.0 8.10 0.00 1.14 0.00 CM ,72 6 EM1mCI 2.9 180 41 5.9 H20 2.0 1.53 0.00 1.06 4.72 rõ
7 EM1mCI 2.7 220 81 2.5 H20 0.9 8.33 0.00 1.94 0.00 , , 8 EM1mC1 2.8 220 35 1.5 2-butanol 0.6 7.72 0.00 4.13 0.00 , rõ
, 9 EM1mCI 1.3 180 28 1.0 H20 1.0 4.35 0.00 5.52 2.26 EM1mCI 1.2 180 27 3.0 H20 2.5 2.79 0.00 1.56 0.87 11 EM1mCI 2.5 180 44 2.3 methanol 0.9 2.39 0.00 9.49 5.22 12 EM1mCI 2.6 220 45 2.3 methanol 0.9 7.80 0.00 1.80 0.13 13 1.2 140 27 2.5 2.1 0.66 0.00 0.84 3.51 14 1.1 160 27 2.6 2.3 1.54 0.00 0.89 0.83 1.3 180 29 2.5 2.0 2.44 0.01 0.63 0.29 ' 26 co cy ,-. o O ci coco ci, O
,-. co o o ci O
IC) o in (0 CV CV
co CV
CV CV

. r--(NI (\i -:rLc) co cn C o o CV

1¨ (N!
N-- e=-=
th 0 th 0 co N-, , . PF 72809-2 CA 02856466 2014-05-21 , Entry Overall HMF yield HMF yield Overall Distillation fructose in distillate in bottoms (%) HMF separation conversion (%) select. performance for (%) (%) HMF
dist./bottoms 1 17.8 5.5 4.1 53.9 57.1 _ 2 100.0 12.1 8.8 20.9 57.8 3 86.1 25.3 19.9 52.5 56.0 4 100.0 50.6 13.4 64.1 79.1 100.0 62.6 5.5 68.1 92.0 6 67.8 16.8 10.3 40.0 62.0 7 100.0 62.9 11.7 74.6 84.3 8 100.0 51.3 16.1 67.4 76.1 9 92.8 36.0 24.9 65.6 59.1 94.5 46.9 14.0 64.4 77.1 11 82.6 19.4 45.0 78.0 30.1 12 99.7 58.1 6.8 65.1 89.5 13 81.5 10.1 6.3 20.2 61.7 14 96.3 25.9 5.7 32.8 81.9 98.8 38.2 3.4 42.1 91.8 16 99.2 44.0 0.8 45.2 98.2 17 99.6 42.6 0.2 42.9 99.6 Explanations:

Entries 1-5: Variation of temperature of 140 C-220 C with EMIMCI under otherwise identical conditions. The distillation separation performance remains constant at approx. 50% up to 180 C and then rises rapidly up to 92% at 220 C. It is thus possible to show clearly that the process optimum is at 220 C in the case of !Ls such as EMIMCI.
Entries 3 & 6 and 9 & 10: Increase in the steam rate under otherwise identical conditions.
Shows a slight improvement in distillation performance.
Entries 5 & 7: Variation of vacuum. In the case of poorer vacuum from 30 to 80 mbar, the distillation performance falls by 8%.
Entries 5, 8, 12: Use of different low boilers. The same overall selectivity of the reaction is obtained with respect to HMF, but clear differences are found in distillation performance in the sequence of H20>Me0H>2-BuOH.

Entries 13-17: Use of PEG-600 at different temperatures. The optimum is at 200 C, where the highest HMF selectivity is obtained with high distillation performance.
However, at the high temperatures, slight entrainment of sugar into the distillate can be observed, which does not occur in the case of ILs.
Example 5: In situ dehydration of fructose and isolation of HMF in a stripping column with separate feeds Starting solutions The starting solutions were obtained by mixing pure substances.
Feed 1 is the saccharide solution and comprises fructose (40-70% by weight) and water.
Feed 2 is the high boiler solution and comprises the high boiler (EMI MCI ¨
95% by weight), para-toluenesulfonic acid (0.44% by weight) and water (4.5% by weight) based on the total weight of the starting solution.
Feed 3 is the low boiler (water, methanol ¨ Me0H or ethyl acetate - Et0Ac).
Performance of the reactive distillation The reactive distillation was performed in the apparatus according to figure 3. The apparatus consists of a two-part thermostatted glass Vigreux column with a reaction section (below) and a demister (above the feed of the starting solution). The apparatus is operated in countercurrent mode and the starting solution is obtained by mixing possibly preheated feed 1 and feed 2, and is flashed into vacuum by means of a pressure regulator.
The starting solution was supplied between demister and reaction section, and the low boiler in the lower third of the column.
The temperature reported is that of the heating medium at the outer column wall, which corresponds in a good approximation to that of the liquid of the starting solution at the inner column wall.
The experiments were performed continuously; after each new temperature and pressure setting, attainment of a steady state was awaited.
The composition was determined by means of HPLC.
The reported conversions of fructose are calculated from the residual amounts of fructose in the bottoms and distillate; fructose was converted to HMF and to by-products (humins). The reported catalytic amounts of acid are based on fructose. The HMF yield is the percentage of HMF in the distillate or in the bottoms, based on the fructose content in the starting solution.

. PF 72809-2 CA 02856466 2014-05-21 , The distillation separation performance is calculated from the percentage of HMF in the distillate/percentage of HMF in the bottoms *100 Table 5: Continuous experiments for in situ dehydration of fructose and isolation of HMF with separate feeds , -o m -.I
r.) co Entry Fructose Preheater Feed 1 Feed 2 Amount Distillation Distillation Feed 3 flow .. Low .. Ratio of feed .. a conc. in feed temp. flow flow of acid temp.
pressure rate (g/min) boiler 2/ feed 1 r..) 1 (% by wt.) ( C) rate rate (mol%) ( C) (mbar) (g/min) (g/min) 1 40 180 1.3 1.2 0.9 200 17 2.4 , H20 0.9 2 40 180 1.3 1.1 0.8 220 25 2.4 H20 0.8 3 40 180 2.5 2.2 0.8 220 32 2.4 H20 0.9 _ 4 70 180 1.5 1.1 0.7 220 27 2.4 H20 0.8 _ 70 180 1.5 1 0.8 180 22 2.4 H20 0.9 .
_ 6 40 25 2.5 2.3 0.8 220 18 2.4 H20 0.9 P
_ 7 40 180 .1.3 1.4 1.0 220 35 1.9 Me0H 1.0 r., _ .
8 40 180 1.3 1.2 1.0 220 18 2.3 Et0Ac 1.0 co g 9a 40 180 1.3 1.4 1.0 220 28 2.4 H20 1.0 , , u, ' Entry Ratio of HMF Fructose HMF Fructose Overall HMF HMF Overall HMF Distillation separation , feed conc. in conc. in conc. in conc. in fructose yield in yield in selectivity performance for HMF
3/feeds distillate distillate bottoms bottoms conversion distillate bottoms (%) -dist./bottoms 1 842 (% by wt.) (% by wt.) (% by wt.) (% by wt.) (%) (%) (%) 1 0.9 7.23 0 1.67 0 100 65.9 5.9 71.8 91.8 2 1 7.21 _ 0 0.66 0 100 69.8 2.4 72.2 96.7 3 0.5 10.52 0 1.05 0 100 70.9 3.6 74.5 95.2 4 0.9 10.32 _ 0.00 _ 2.27 0.00 100.0 51.1 4.1 55.2 92.6 5 0.9 7.9 0.0 5.68 2.91 94.9 33.8 14.3 50.8 70.2 Entry Ratio of HMF Fructose HMF Fructose Overall HMF
HMF Overall HMF Distillation separation feed conc. in conc. in conc. in conc. in fructose yield in yield in selectivity performance for HMF 11 3/feeds distillate distillate bottoms bottoms conversion distillate bottoms (%) -dist./bottoms CO
a 18,2 (% by wt.) (% by wt.) (% by wt.) (% by wt.) (%) (%) (%) co 6 0.5 7.41 0.00 3.88 0.62 98.2 42.8 16.1 60.0 72.6 7 0.7 6.58 0.00 1.01 0.00 100.0 58.5 4.3 60.6 93.0 8 0.9 17.89 0.00 1.76 0.00 100.0 54.1 6.8 60.9 88.8 9a 0.9 7.25 0.00 0.38 0.13 99.6 69.7 1.6 71.5 97.8 a in the high boiler solution, EMIM CH3S03 rather than EMIM Cl was used a a a ,õ

Explanations:
Entries 1 & 2: The increase in the reaction/distillation temperature achieves a better distillation separation performance, with equal overall selectivity of the reaction.
Entries 2 & 3: A reduction in the amount of low boiler is economically and industrially viable and, for the same overall selectivity and distillation separation performance, gives high HMF contents in the distillate of approx. 10% by weight.
Entries 2 & 4: If a higher concentration of fructose in feed 1 is used, the total water content in the system falls and a poorer selectivity of the reaction is obtained because the HMF formed cannot be removed rapidly enough from the reaction medium.
Entries 4 & 5: A reduction in the reaction temperature to 180 C, even in the case of high fructose contents in feed 1, leads to a poorer distillation separation performance and only to a partial conversion of the fructose.
Entries 3 & 6: If feeds 1 & 2 are not heated, a poorer distillation separation performance and a lower overall selectivity of the reaction are found. This is probably because, as a result of heating of the aqueous saccharide solution, the water is already in a supercritical state and, as a result of the instantaneous decompression, vaporizes much better into the vacuum and thus entrains the HMF formed with it (better flash).
Entries 7 & 8: The low boilers used may also be methanol and ethyl acetate, but slightly poorer distillation separation performances and overall selectivities of the reaction compared to water are obtained. With ethyl acetate, a biphasic distillate is obtained, in which the main proportion of the HMF is in the aqueous phase (the yield reported is based on the overall distillate).
Entry 9: The reaction can be performed with equal yields also with EMIM
CH3S03.
Example 8: In situ dehydration of glucose or glucose/fructose mixtures and isolation of HMF in a stripping column with separate feeds Starting solutions The starting solutions were obtained by mixing pure substances.
Feed 1 is the saccharide solution and comprises glucose (40% by weight) or glucose/fructose (ratio 58:42 ¨ 40% by weight total sugar) and water.

Feed 2 is the high boiler solution and comprises the high boiler (EMI MCI ¨
92.95% by weight), CrCI3 (1.72% by weight), para-toluenesulfonic acid (0.42% by weight) and water (4.91% by weight), based on the total weight of the starting solution.
Feed 3 is the low boiler (water).

= CA 02856466 2014-05-21 Performance of the reactive distillation The reactive distillation was performed in the apparatus according to figure 3. The apparatus consists of a two-part thermostatted glass Vigreux column with a reaction section (below) and a demister (above the feed of the starting solution). The apparatus is operated in countercurrent mode and the starting solution is obtained by mixing possibly preheated feed 1 and feed 2, and is flashed into vacuum by means of a pressure regulator.
The starting solution was supplied between demister and reaction section, and the low boiler in the lower third of the column.
The temperature reported is that of the heating medium at the outer column wall, which corresponds in a good approximation to that of the liquid of the starting solution at the inner column wall.
The experiments were performed continuously; after each new temperature and pressure setting, attainment of a steady state was awaited.
The composition was determined by means of HPLC.
The reported conversions of total sugar are calculated from the residual amounts of glucose and fructose in the bottoms and distillate; glucose and fructose were converted to HMF and to by-products (humins). The reported catalytic amounts of acid are based on total sugar. The HMF yield is the percentage of HMF in the distillate or in the bottoms, based on the total sugar content in the starting solution.
The distillation separation performance is calculated from the percentage of HMF in the distillate/percentage of HMF in the bottoms *100 -a -n Table 6: Continuous experiments for in situ dehydration of glucose or glucose/fructose mixtures and isolation of HMF with separate feeds.

Entry Feed Preheater Feed 1 flow Feed 2 Amount Distillation Distillation Feed 3 Low boiler rv temp. rate (g/min) flow rate of acid temp. ( C) pressure flow rate ( C) (g/min) (mol%) (mbar) (g/min) -1 glucose 180 1.3 1.3 0.8 220 27 2.4 2 glucose 180 1.3 1.3 0.8 220 33 1.3 3 glucose 180 1.3 1.2 0.8 180 37 2.2 Glu/Fru 4 180 1.3 1.3 0.8 220 37 2.3 (58:42) Glu/Fru 180 1.3 t 3 0.8 220 35 1.3 P
(58:42) .
6a glucose 180 t 1.3 1.4 1.0 200 22 2.4 H20 co g , N) , Entry Ratio of Ratio of HMF Sugar HMF Sugar yield in Overall sugar Overall HMF Overall Distillation .
, feed feed yield in yield in yield in bottoms (%) conversion select. HMF separation , 2/feed 1 3/feeds distillate distillate bottoms (%) (%) yield performance for 1&2 (%) (%) (%) (%) HMF
dist./bottoms 1 0.9 _ 0.9 51.8 0.0 0.4 0.4 99.6 52.4 52.2 99.2 2 1.0 0.5 47.6 0.0 2.7 0.6 _ 99.4 50.6 50.3 94.4 3 0.9 0.9 19.7 Ø0 34.3 8.9 91.1 59.3 54.0 36.9 4 1.0 0.9 51.7 0.0 0.5 0.7 99.3 52.5 52.2 99.0 5 0.9 0.5 51.8 0.0 0.6 0.6 99.4 52.6 52.3 98.9 6a 1.0 0.9 54.2 0.6 2.9 0.4 99.0 57.6 57.1 -95.0 a in the high boiler solution, EMIM CH3S03 rather than EMIM Cl was used . PF 72809-2 CA 02856466 2014-05-21 Explanation:
Entries 1 & 2: The reaction can also be performed with glucose and gives good yields of HMF in the distillate. Compared to fructose (table 4), the reaction with glucose is somewhat less selective and leads to an increased extent of unwanted side reactions if the HMF formed cannot be removed quickly enough from the reaction solution.
Entry 3: At a lower reaction temperature of 180 C, the selectivity for HMF
rises, but the distillation separation performance falls at the same time.
Entries 4 & 5: The reaction with a mixture of glucose and fructose leads to similarly good yields of HMF to those with pure glucose.
Entry 6: The reaction can be performed with equal yields also with EMIM
CH3S03.

Claims (16)

1. A process for preparing 5-hydroxymethylfurfural (HMF), which comprises a) feeding solutions (hereinafter called starting solution) comprising - one or more saccharides and - an organic solvent having a boiling point greater than 200°C (at standard pressure) (called high boiler for short) and - water, and a solvent having a boiling point greater than 60°C and less than 200°C (at standard pressure, called low boiler for short) to a reaction vessel, b) effecting a conversion of hexose to HMF in the reaction vessel in the presence of water vapor with simultaneous distillative removal of the HMF and c) obtaining, as the distillate, an aqueous, HMF-comprising solution (hereinafter called distillate).
2. The process according to claim 1, wherein the saccharide is fructose, glucose or mixtures of fructose and glucose.
3. The process according to claim 1 or 2, wherein the high boiler is a polyether or an ionic liquid.
4. The process according to any of claims 1 to 3, wherein the ionic liquid comprises imidazolium chlorides or imidazolium methanesulfonates, more preferably 1-ethyl-3-methylimidazolium chloride (EMIM Cl), 1-butyl-3-methylimidazolium chloride (BMIM Cl), 1-ethyl-3-methylimidazolium methanesulfonate (EMIM CH3SO3) or 1-butyl-3-methylimidazolium methanesulfonate (BEMIM CH3SO3) or mixtures thereof.
5. The process according to any of claims 1 to 4, wherein the starting solution is prepared by the following steps:
A1) the saccharide and water are present in a reaction vessel, A2) a further reaction vessel is initially charged with the high boiler and preferably a catalyst, A3) immediately prior to process step b), the components are mixed, preferably in a mixing chamber, the solutions of steps A1 and A2 preferably being preheated to a temperature between 150 and 200°C in the two reaction vessels separated from one another prior to the mixing.
6. The process according to any of claims 1 to 5, wherein the low boiler is water vapor, methanol or 2-butanol.
7. The process according to any of claims 1 to 7, wherein the starting solution comprises the high boiler in amounts of 5 to 90% by weight.
8. The process according to any of claims 1 to 8, wherein the starting solution comprises a metal chloride or metal nitrate of the general formula MXn where M is a metal, X is chlorine or nitrate and n is an integer from 1 to 4.
9. The process according to any of claims 1 to 8, wherein the conversion to HMF is effected in the presence of an acid soluble in the starting solution.
10. The process according to any of claims 1 to 9, wherein the conversion to HMF is effected at 100°C to 250°C.
11. The process according to any of claims 1 to 10, wherein the conversion to HMF is effected at a pressure of 10 to 200 mbar.
12. The process according to any of claims 1 to 11, which is performed continuously, the starting solution and the low boiler being supplied continuously to the evaporator and the product solution being removed continuously.
13. The process according to any of claims 1 to 12, wherein the reaction vessel is a thin-film evaporator or a stripping column.
14. The process according to any of claims 1 to 13, wherein the low boiler is supplied in countercurrent to the starting solution.
15. The process according to any of claims 1 to 14, wherein more than 60% of the HMF
obtained is present in the distillate.
16. The process according to any of claims 1 to 15, wherein the distillate is used for preparation of 2,5-furandicarboxylic acid or 2,5-bis(hydroxymethyl)furan.
CA2856466A 2011-12-13 2012-12-11 Preparation of 5-hydroxymethylfurfural (hmf) from saccharide solutions in the presence of a solvent having a boiling point greater than 60 degree c and less than 200 degree c (at standard pressure, called low boiler for short) Abandoned CA2856466A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP11193157 2011-12-13
EP11193157.2 2011-12-13
EP12180908.1 2012-08-17
EP12180908 2012-08-17
PCT/EP2012/075059 WO2013087614A1 (en) 2011-12-13 2012-12-11 Preparation of 5-hydroxymethylfurfural (hmf) from saccharide solutions in the presence of a solvent having a boiling point greater than 60°c and less than 200°c (at standard pressure, called low boiler for short)

Publications (1)

Publication Number Publication Date
CA2856466A1 true CA2856466A1 (en) 2013-06-20

Family

ID=47351664

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2856466A Abandoned CA2856466A1 (en) 2011-12-13 2012-12-11 Preparation of 5-hydroxymethylfurfural (hmf) from saccharide solutions in the presence of a solvent having a boiling point greater than 60 degree c and less than 200 degree c (at standard pressure, called low boiler for short)

Country Status (11)

Country Link
EP (1) EP2791125B1 (en)
JP (1) JP6073364B2 (en)
KR (1) KR20140101850A (en)
CN (1) CN103974942B (en)
BR (1) BR112014014052B1 (en)
CA (1) CA2856466A1 (en)
ES (1) ES2648908T3 (en)
HU (1) HUE034627T2 (en)
IN (1) IN2014CN04393A (en)
RU (1) RU2014128459A (en)
WO (1) WO2013087614A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029642A (en) * 2014-01-27 2016-10-12 莱诺维亚公司 Conversion of fructose-containing feedstocks to hmf-containing product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156802B2 (en) 2011-12-13 2015-10-13 Basf Se Separating off 5-hydroxymethylfurfural (HMF) from reaction solutions by steam distillation
WO2016207025A1 (en) 2015-06-24 2016-12-29 Basf Se Method for synthesizing and separating hmf
US10259797B2 (en) 2015-11-04 2019-04-16 Basf Se Process for preparing a mixture comprising 5-(hydroxymethyl) furfural and specific HMF esters
RU187166U1 (en) * 2018-11-15 2019-02-21 Нина Владимировна Смирнова LABORATORY RESEARCH STAND FOR STUDYING CARBOHYDRATE DEHYDRATION PROCESSES
AU2020257864A1 (en) * 2019-04-15 2021-12-09 Stora Enso Oyj Process for the recovery of solvent and isolation of humin materials and compositions thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2929823A (en) * 1956-11-26 1960-03-22 Merck & Co Inc Production of 5-hydroxymethylfurfural
US3201331A (en) * 1962-10-17 1965-08-17 Atlas Chem Ind Purification of hydroxymethyl furfural
US4400468A (en) 1981-10-05 1983-08-23 Hydrocarbon Research Inc. Process for producing adipic acid from biomass
DE3601281A1 (en) 1986-01-17 1987-07-23 Sueddeutsche Zucker Ag METHOD FOR PRODUCING 5-HYDROXYMETHYLFURFURAL, INCLUDING A CRYSTALINE PRODUCT, WITH THE EXCLUSIVE USE OF WATER AS A SOLVENT
FR2664273B1 (en) 1990-06-27 1994-04-29 Beghin Say Sa NEW PROCESS FOR THE PREPARATION OF 5-HYDROXYMETHYLFURFURAL FROM SACCHARIDES.
FR2663933B1 (en) 1990-06-27 1994-06-17 Beghin Say Sa NEW PROCESS FOR THE PREPARATION OF 5-HYDROXYMETHYLFURFURAL FROM SACCHARIDES.
DE10202838A1 (en) 2002-01-24 2003-08-07 Basf Ag Separation of acids from reaction mixtures by means of an auxiliary base that forms a liquid salt with the acid to result in two non-miscible phases with the product or solution of the product in a suitable solvent
EP2053047A1 (en) 2006-03-10 2009-04-29 Furanix Technologies B.V Method for the synthesis of organic acid esters of 5-hydroxymethylfurfural and their use
EP1834950A1 (en) 2006-03-10 2007-09-19 Avantium International B.V. Method for the synthesis of 5-alkoxymethylfurfural ethers and their use
AU2008208870B2 (en) 2007-01-23 2013-05-02 Basf Se Method for producing glucose by enzymatic hydrolysis of cellulose that is obtained from material containing ligno-cellulose using an ionic liquid that comprises a polyatomic anion
CA2674941A1 (en) 2007-01-23 2008-07-31 Basf Se Method for producing glucose by enzymatic hydrolysis of cellulose that can be pretreated with an ionic liquid containing a polyatomic anion
EP2033958A1 (en) * 2007-09-07 2009-03-11 Furanix Technologies B.V Hydroxymethylfurfural ethers from sugars and di- and triols
CN101456850A (en) * 2007-12-12 2009-06-17 中国科学院大连化学物理研究所 Method for preparing 5-hydroxymethyl-furfural
CN101812039B (en) * 2010-05-14 2012-09-26 天津大学 Method for generating 5-hydroxymethylfurfural by using ionic liquid catalysis
CN102399203B (en) 2011-12-19 2014-05-07 浙江大学 Method for preparing 5-hydroxymethylfurfural by degrading carbonhydrate through ionic liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029642A (en) * 2014-01-27 2016-10-12 莱诺维亚公司 Conversion of fructose-containing feedstocks to hmf-containing product
US10017486B2 (en) 2014-01-27 2018-07-10 Archer-Daniels-Midland Company Conversion of fructose-containing feedstocks to HMF-containing product
CN106029642B (en) * 2014-01-27 2019-11-29 阿彻丹尼尔斯米德兰公司 Conversion of the raw material containing fructose to the product containing HMF

Also Published As

Publication number Publication date
EP2791125B1 (en) 2017-08-23
ES2648908T3 (en) 2018-01-08
RU2014128459A (en) 2016-02-10
HUE034627T2 (en) 2018-02-28
WO2013087614A1 (en) 2013-06-20
KR20140101850A (en) 2014-08-20
CN103974942B (en) 2016-08-24
IN2014CN04393A (en) 2015-09-04
JP2015501821A (en) 2015-01-19
CN103974942A (en) 2014-08-06
BR112014014052B1 (en) 2019-03-26
JP6073364B2 (en) 2017-02-01
EP2791125A1 (en) 2014-10-22
BR112014014052A2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
US9162998B2 (en) Preparation of 5-hydroxymethylfurfural (HMF) from saccharide solutions in the presence of a solvent having a boiling point greater than 60° C. and less than 200° C. (at standard pressure, called low boiler for short)
US9260402B2 (en) Process for the preparation of 5-hydroxymethylfurfural (HMF)
US8455668B2 (en) Method for preparing hydroxymethylfurfural
EP2750789B1 (en) Spray oxidation process for producing 2,5-furandicarboxylic acid from hydroxymethylfurfural
US4339387A (en) Process for manufacturing 5-hydroxymethylfurfural
CA2856466A1 (en) Preparation of 5-hydroxymethylfurfural (hmf) from saccharide solutions in the presence of a solvent having a boiling point greater than 60 degree c and less than 200 degree c (at standard pressure, called low boiler for short)
US9012664B2 (en) Process for the production of furfural
DE102008009933A1 (en) Preparing 5-hydroxymethylfurfural, useful e.g. to manufacture pharmaceutical products such as fungicides, comprises thermally reacting carbohydrates in ionic liquid and discharging formed 5-hydroxymethylfurfural using extracting agent
WO2017076942A1 (en) A process for preparing a mixture comprising 5-(hydroxymethyl)furfural and specific hmf esters
EA037637B1 (en) Hmf production method
JP6672941B2 (en) Method for producing furan compound and furfural composition
US8952186B2 (en) Method for dehydrating a carbohydrate-comprising
US20110184195A1 (en) Process for the hydrogenolysis of furfuryl derivatives
EP2495239B1 (en) Method for preparing 4-hydroxymethylfurfural
TWI548644B (en) Method for dehydrating a carbohydrate-comprising composition
AU2019276050B2 (en) Salt and acid mixture catalyzed hmf production
EP3865478B1 (en) Preparing method for 5-alkoxymethylfurfural
KR20140101849A (en) Preparation of 5-hydroxymethylfurfural (hmf) from hexose solutions in the presence of steam

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20171208

FZDE Discontinued

Effective date: 20200831