CA2745037A1 - Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8(3-(r)-amino-piperidin-1-yl)-xanthine - Google Patents
Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8(3-(r)-amino-piperidin-1-yl)-xanthine Download PDFInfo
- Publication number
- CA2745037A1 CA2745037A1 CA2745037A CA2745037A CA2745037A1 CA 2745037 A1 CA2745037 A1 CA 2745037A1 CA 2745037 A CA2745037 A CA 2745037A CA 2745037 A CA2745037 A CA 2745037A CA 2745037 A1 CA2745037 A1 CA 2745037A1
- Authority
- CA
- Canada
- Prior art keywords
- acid
- salt
- methyl
- xanthine
- butyn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/02—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
- C07D473/04—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/194—Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
- A61K31/522—Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/02—Sulfonic acids having sulfo groups bound to acyclic carbon atoms
- C07C309/03—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C309/04—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing only one sulfo group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/28—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C309/29—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/01—Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
- C07C59/06—Glycolic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/235—Saturated compounds containing more than one carboxyl group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C63/00—Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
- C07C63/04—Monocyclic monocarboxylic acids
- C07C63/06—Benzoic acid
- C07C63/08—Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C65/00—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C65/01—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
- C07C65/03—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
- C07C65/05—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring o-Hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C65/00—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C65/01—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
- C07C65/03—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
- C07C65/05—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring o-Hydroxy carboxylic acids
- C07C65/10—Salicylic acid
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Diabetes (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Physical Education & Sports Medicine (AREA)
- Rheumatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Urology & Nephrology (AREA)
- Emergency Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Neurology (AREA)
- Ophthalmology & Optometry (AREA)
- Pain & Pain Management (AREA)
- Vascular Medicine (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Child & Adolescent Psychology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to novel salt forms of 1- [ (4 -methyl -quinazolin- 2 -yl) methyl] -3-methyl-7- (2 -butyn-1-yl) -8- (3- (R) -amino-piperidin-1-yl) -xanthine, a DPP- 4 inhibitor and their use in pharmaceutical compositions useful in the treatment of type 2, diabetes, as well as they production.
Description
SALT FORMS OF ORGANIC COMPOUND
The present invention relates to certain salt forms of a xanthine derivative, namely certain salt forms of the pharmaceutically active compound 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine, including amorphous and crystalline forms thereof (including solvate and hydrate forms), and to processes for the manufacture thereof, as well as to the use thereof in pharmaceutical compositions. Methods for treating and/or preventing of diseases which are associated with the enzyme dipeptidyl peptidase IV (DPP-4), such as e.g. metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and diseases related thereto, with these compounds as defined herein optionally in combination with one or more other active substances are also contemplated.
In general, salts, solvates, hydrates, polymorphs, crystalline and amorphous forms of a given substance differ often in crystal habits and/or crystalline solid state properties and hence they may have different physical and pharmaceutical properties such as, for example, shape, density, hardness, deformability, stability, purity, hygroscopicity, flowability, compactation, solubility and/or dissolution properties or the like, which may influence, for example, their manufacturability, processability, pharmacokinetic profile (e.g. bioavailability), drug stability (shelf life), administrability and/or formulability or the like, such as e.g. their suitability as solid, semi-solid or liquid pharmaceutical dosage forms, e.g. as tablets, capsules, suspensions, solutions, suppositories or other pharmaceutical dosage forms (including e.g. sustained release formulations or combination preparations comprising a further active ingredient).
A number of xanthine derivatives are already known in the prior art as DPP-4 inhibitors.
The enzyme DPP-4 (dipeptidyl peptidase IV) also known as CD26 is a serine protease known to lead to the cleavage of a dipeptide from the N-terminal end of a number of proteins having at their N-terminal end a prolin or alanin residue. Due to this property DPP-4 inhibitors interfere with the plasma level of bioactive peptides including the peptide GLP-1 and are considered to be promising drugs for the treatment of diabetes mellitus.
The present invention relates to certain salt forms of a xanthine derivative, namely certain salt forms of the pharmaceutically active compound 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine, including amorphous and crystalline forms thereof (including solvate and hydrate forms), and to processes for the manufacture thereof, as well as to the use thereof in pharmaceutical compositions. Methods for treating and/or preventing of diseases which are associated with the enzyme dipeptidyl peptidase IV (DPP-4), such as e.g. metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and diseases related thereto, with these compounds as defined herein optionally in combination with one or more other active substances are also contemplated.
In general, salts, solvates, hydrates, polymorphs, crystalline and amorphous forms of a given substance differ often in crystal habits and/or crystalline solid state properties and hence they may have different physical and pharmaceutical properties such as, for example, shape, density, hardness, deformability, stability, purity, hygroscopicity, flowability, compactation, solubility and/or dissolution properties or the like, which may influence, for example, their manufacturability, processability, pharmacokinetic profile (e.g. bioavailability), drug stability (shelf life), administrability and/or formulability or the like, such as e.g. their suitability as solid, semi-solid or liquid pharmaceutical dosage forms, e.g. as tablets, capsules, suspensions, solutions, suppositories or other pharmaceutical dosage forms (including e.g. sustained release formulations or combination preparations comprising a further active ingredient).
A number of xanthine derivatives are already known in the prior art as DPP-4 inhibitors.
The enzyme DPP-4 (dipeptidyl peptidase IV) also known as CD26 is a serine protease known to lead to the cleavage of a dipeptide from the N-terminal end of a number of proteins having at their N-terminal end a prolin or alanin residue. Due to this property DPP-4 inhibitors interfere with the plasma level of bioactive peptides including the peptide GLP-1 and are considered to be promising drugs for the treatment of diabetes mellitus.
-2-For example, DPP-4 inhibitors and their uses, particularly their uses in metabolic (especially diabetic) diseases, are disclosed in WO 2002/068420, WO
2004/018467, WO 2004/018468, WO 2004/018469, WO 2004/041820, WO 2004/046148, WO
2005/051950, WO 2005/082906, WO 2005/063750, WO 2005/085246, WO
2006/027204, WO 2006/029769 or W02007/014886; or in WO 2004/050658, WO
2004/111051, WO 2005/058901 or WO 2005/097798; or in WO 2006/068163, WO
2007/071738 or WO 2008/017670; or in WO 2007/128721 or WO 2007/128761.
The compound 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine is an orally active DPP-4 inhibitor with therapeutic value for treating type 2 diabetes mellitus, obesity and related diseases.
It has now been found that certain salts of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine have surprising and useful properties.
Thus, the present invention relates to compounds which are acid addition salts of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine, especially pharmaceutically acceptable inorganic or organic acid addition salts. Particular mention may be made of the physiologically acceptable salts with inorganic or organic acids customarily used in pharmacy, such as e.g. any of those inorganic and organic acids mentioned below. The salts include water-insoluble and, particularly, water-soluble salts.
Inorganic acids customarily used for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, and the like.
Organic acids customarily used for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, acetic acid, 2,2-dichloroacetic acid, adipic acid, ascorbic acid (D- or L-form thereof, especially the L-form thereof), aspartic acid (D- or L-form thereof, especially the L-form thereof), benzenesulfonic acid, benzoic acid, 4-acetamido-benzoic acid, camphoric acid ((+)- or (-)-form thereof, especially the (+)-form thereof), camphor-1 0-sulfonic acid ((+)- or (-)-form thereof, especially the (+)-form thereof), capric acid (decanoic acid), caproic acid (hexanoic acid), caprylic acid (octanoic acid), carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric
2004/018467, WO 2004/018468, WO 2004/018469, WO 2004/041820, WO 2004/046148, WO
2005/051950, WO 2005/082906, WO 2005/063750, WO 2005/085246, WO
2006/027204, WO 2006/029769 or W02007/014886; or in WO 2004/050658, WO
2004/111051, WO 2005/058901 or WO 2005/097798; or in WO 2006/068163, WO
2007/071738 or WO 2008/017670; or in WO 2007/128721 or WO 2007/128761.
The compound 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine is an orally active DPP-4 inhibitor with therapeutic value for treating type 2 diabetes mellitus, obesity and related diseases.
It has now been found that certain salts of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine have surprising and useful properties.
Thus, the present invention relates to compounds which are acid addition salts of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine, especially pharmaceutically acceptable inorganic or organic acid addition salts. Particular mention may be made of the physiologically acceptable salts with inorganic or organic acids customarily used in pharmacy, such as e.g. any of those inorganic and organic acids mentioned below. The salts include water-insoluble and, particularly, water-soluble salts.
Inorganic acids customarily used for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, and the like.
Organic acids customarily used for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, acetic acid, 2,2-dichloroacetic acid, adipic acid, ascorbic acid (D- or L-form thereof, especially the L-form thereof), aspartic acid (D- or L-form thereof, especially the L-form thereof), benzenesulfonic acid, benzoic acid, 4-acetamido-benzoic acid, camphoric acid ((+)- or (-)-form thereof, especially the (+)-form thereof), camphor-1 0-sulfonic acid ((+)- or (-)-form thereof, especially the (+)-form thereof), capric acid (decanoic acid), caproic acid (hexanoic acid), caprylic acid (octanoic acid), carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric
-3-acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxy-ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid (D- or L-form thereof, especially the D-form thereof), gluconic acid (D- or L-form thereof, especially the D-form thereof); glucuronic acid (D- or L-form thereof, especially the D-form thereof), glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid (D- or L-form thereof), lactobionic acid, lauric acid, maleic acid, malic acid (D- or L-form thereof), malonic acid, mandelic acid (D- or L-form thereof), methanesulfonic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid (embonic acid), propionic acid, pyroglutamic acid (D- or L-form thereof, especially the L-form thereof), salicyclic acid,
4-aminosalicyclic acid, sebacic acid, stearic acid, succinic acid, tartaric acid (D- or L-form thereof), thiocyanic acid, toluenesulfonic acid (especially the p-isomer thereof), undecylenic acid, and the like.
A class of above-mentioned organic acids includes carboxylic acid derivatives.
Another class of above-mentioned organic acids includes sulfonic acid derivatives.
The acids may be monobasic or polybasic acids, illustrative polybasic acids are dibasic or tribasic. These polybasic acids can be, depending on their nature, substantially singly, twicely or tricely deprotonated, typically they are substantially singly deprotonated.
For example, in carboxylic acid salts the acid can be a mono- or polycarboxylic acid having one or, respectively, two or more carboxylic acid groups. In a first sub-class of polycarboxylic acid salts, the polycarboxylic acids in these salts can be substantially singly deprotonated, as for example in the case of a dicarboxylic acid salt having a 1 :1 stoichiometry of free compound and dicarboxylic acid. In a second sub-class of polycarboxylic acid salts, the polybasic carboxylic acid and the free compound can be in a substantially 1 :1 stoichiometry, irrespective of the number of carboxylic acid groups in the acid.
A sub-group of above-mentioned inorganic or organic acids includes, by way of example and not limitation, acetic, adipic, L-ascorbic, capric, carbonic, citric, fumaric, galactaric, D-glucoheptanoic, D-gluconic, D-glucuronic, glutamic, glutaric, glycerophosphoric, hippuric, hydrochloric, D- or L-lactic, lauric, maleic, (-)-L-malic, phosphoric, sebacic, succinic, sulphuric, (+)-L-tartaric and thiocyanic acid.
Another sub-group of above-mentioned inorganic or organic acids includes, by way of example and not limitation, alginic, benzenesulfonic, benzoic, (+)-camphoric, caprylic, cyclamic, dodecylsulfuric, ethane-1,2-disulfonic, ethanesulfonic, 2-hydroxy-ethanesulfonic, gentisic, 2-oxoglutaric, isobutyric, lactobionic, malonic, methanesulfonic, naphthalene-1,5-disulfonic, naphthalene-2-sulfonic, 1-hydroxy-naphthoic, nicotinic, oleic, orotic, oxalic, pamoic, propionic, (-)-L-pyroglutamic and p-toluenesulfonic acid.
The acids are employed in salt preparation - depending on whether a mono- or polybasic acid is concerned and depending on which salt is desired - in an equimolar quantitative ratio or one differing therefrom.
Thus, within the acid addition salts of this invention the acid and the free compound may be substantially in 1:1 stoichiometry or one differing therefrom, such as e.g. from about 1:2 to about 2:1 stoichiometry. Non-integral stoichiometry ratios may be also possible, such as e.g. 1:1.5 or 1.5:1.
A certain sub-group of acid addition salts with inorganic or organic acids includes, by way of example and not limitation, the hydrochloride, mesylate, hydrobromide, acetate, fumarate, sulfate, succinate, citrate, phosphate, maleate, tartrate, lactate, benzoate and carbonate salt.
Another certain sub-group of acid addition salts with inorganic or organic acids includes, by way of example and not limitation, the hydrochloride, sulphate, tartrate, maleate, citrate, phosphate, acetate, lactate and fumarate salt.
The invention also includes mixtures of salts.
Furthermore, any salt given herein is intended to embrace all tautomers, hydrates, solvates, crystalline, amorphous and polymorphous forms thereof, as well as mixtures thereof.
Those skilled in the art will appreciate that organic compounds can be isolated in association with solvent molecules or can form complexes with solvents in which they
A class of above-mentioned organic acids includes carboxylic acid derivatives.
Another class of above-mentioned organic acids includes sulfonic acid derivatives.
The acids may be monobasic or polybasic acids, illustrative polybasic acids are dibasic or tribasic. These polybasic acids can be, depending on their nature, substantially singly, twicely or tricely deprotonated, typically they are substantially singly deprotonated.
For example, in carboxylic acid salts the acid can be a mono- or polycarboxylic acid having one or, respectively, two or more carboxylic acid groups. In a first sub-class of polycarboxylic acid salts, the polycarboxylic acids in these salts can be substantially singly deprotonated, as for example in the case of a dicarboxylic acid salt having a 1 :1 stoichiometry of free compound and dicarboxylic acid. In a second sub-class of polycarboxylic acid salts, the polybasic carboxylic acid and the free compound can be in a substantially 1 :1 stoichiometry, irrespective of the number of carboxylic acid groups in the acid.
A sub-group of above-mentioned inorganic or organic acids includes, by way of example and not limitation, acetic, adipic, L-ascorbic, capric, carbonic, citric, fumaric, galactaric, D-glucoheptanoic, D-gluconic, D-glucuronic, glutamic, glutaric, glycerophosphoric, hippuric, hydrochloric, D- or L-lactic, lauric, maleic, (-)-L-malic, phosphoric, sebacic, succinic, sulphuric, (+)-L-tartaric and thiocyanic acid.
Another sub-group of above-mentioned inorganic or organic acids includes, by way of example and not limitation, alginic, benzenesulfonic, benzoic, (+)-camphoric, caprylic, cyclamic, dodecylsulfuric, ethane-1,2-disulfonic, ethanesulfonic, 2-hydroxy-ethanesulfonic, gentisic, 2-oxoglutaric, isobutyric, lactobionic, malonic, methanesulfonic, naphthalene-1,5-disulfonic, naphthalene-2-sulfonic, 1-hydroxy-naphthoic, nicotinic, oleic, orotic, oxalic, pamoic, propionic, (-)-L-pyroglutamic and p-toluenesulfonic acid.
The acids are employed in salt preparation - depending on whether a mono- or polybasic acid is concerned and depending on which salt is desired - in an equimolar quantitative ratio or one differing therefrom.
Thus, within the acid addition salts of this invention the acid and the free compound may be substantially in 1:1 stoichiometry or one differing therefrom, such as e.g. from about 1:2 to about 2:1 stoichiometry. Non-integral stoichiometry ratios may be also possible, such as e.g. 1:1.5 or 1.5:1.
A certain sub-group of acid addition salts with inorganic or organic acids includes, by way of example and not limitation, the hydrochloride, mesylate, hydrobromide, acetate, fumarate, sulfate, succinate, citrate, phosphate, maleate, tartrate, lactate, benzoate and carbonate salt.
Another certain sub-group of acid addition salts with inorganic or organic acids includes, by way of example and not limitation, the hydrochloride, sulphate, tartrate, maleate, citrate, phosphate, acetate, lactate and fumarate salt.
The invention also includes mixtures of salts.
Furthermore, any salt given herein is intended to embrace all tautomers, hydrates, solvates, crystalline, amorphous and polymorphous forms thereof, as well as mixtures thereof.
Those skilled in the art will appreciate that organic compounds can be isolated in association with solvent molecules or can form complexes with solvents in which they
-5-are reacted or from which they are precipitated, crystallized or isolated.
According to expert's awareness, some of the salts according to this invention may contain, e.g.
when isolated in solid form, varying or fixed amounts of solvents (including aqueous and/or non-aqueous solvents). Included within the scope of the invention are therefore solvates (including hydrates, organic solvates and mixed hydrates/organic solvates) of the salts according to this invention. Solvates of the salt forms according to this invention include stoichiometric and non-stoichiometric solvates. Preferably the solvent(s) used is a pharmaceutically acceptable solvent(s), e.g. water and/or ethanol or the like. The present invention embraces both the unsolvated and all solvated forms.
Likewise, the present invention embraces all hydrate, anhydrous, hygroscopic and/or non-hygroscopic forms.
In a further aspect, the present invention relates to compounds which are solvates of the salts according to this invention either in simple, such as e.g. solvates comprising an organic solvent alone or water alone, or in mixed form, such as e.g. mixed solvates comprising at least one organic solvent, such as e.g. a low molecular weight aliphatic alcohol, with water (e.g. mixed hydrates/solvates), or mixed solvates comprising at least two different organic solvents with or without water, in any mixing ratios, including homosolvates (solvates in which there is solely one type of solvent) and heterosolvates (solvates in which there are two or more different types of solvents).
For more detailed example, solvates of the salts according to this invention include hydrates and alcoholates (solvates with alcohol, such as e.g. ethanol) as well as mixtures thereof (including mixed hydrates/alcoholates).
The one or more solvents may be present in an non-stoichiometric amount or in a stoichiometric amount, such as e.g. 0.5:1, 1:1, 1.5:1, 2:1, 3:1, or 4:1 molar ratio based on the amount of the solvate-free salt. Where the crystalline forms are solvated, they may contain, for example, up to four molecules of solvens, more usually up to two or three molecules, e.g. one molecule of solvent or two molecules of solvents.
Non-stoichiometric solvates may also be formed in which the number of molecules of solvent present is less than one or is otherwise a non-integer, such as e.g., where there is less than one molecule of solvent present, there may be for example 0.4, or 0.5, or 0.6, or 0.7, or 0.8, or 0.9 molecules of solvent present per molecule of compound. For example, solvates or hydrates of the salts according to this invention include, without being limited to, hemi-, mono-, sesqui-, di-, tri- and tetra-solvates or -
According to expert's awareness, some of the salts according to this invention may contain, e.g.
when isolated in solid form, varying or fixed amounts of solvents (including aqueous and/or non-aqueous solvents). Included within the scope of the invention are therefore solvates (including hydrates, organic solvates and mixed hydrates/organic solvates) of the salts according to this invention. Solvates of the salt forms according to this invention include stoichiometric and non-stoichiometric solvates. Preferably the solvent(s) used is a pharmaceutically acceptable solvent(s), e.g. water and/or ethanol or the like. The present invention embraces both the unsolvated and all solvated forms.
Likewise, the present invention embraces all hydrate, anhydrous, hygroscopic and/or non-hygroscopic forms.
In a further aspect, the present invention relates to compounds which are solvates of the salts according to this invention either in simple, such as e.g. solvates comprising an organic solvent alone or water alone, or in mixed form, such as e.g. mixed solvates comprising at least one organic solvent, such as e.g. a low molecular weight aliphatic alcohol, with water (e.g. mixed hydrates/solvates), or mixed solvates comprising at least two different organic solvents with or without water, in any mixing ratios, including homosolvates (solvates in which there is solely one type of solvent) and heterosolvates (solvates in which there are two or more different types of solvents).
For more detailed example, solvates of the salts according to this invention include hydrates and alcoholates (solvates with alcohol, such as e.g. ethanol) as well as mixtures thereof (including mixed hydrates/alcoholates).
The one or more solvents may be present in an non-stoichiometric amount or in a stoichiometric amount, such as e.g. 0.5:1, 1:1, 1.5:1, 2:1, 3:1, or 4:1 molar ratio based on the amount of the solvate-free salt. Where the crystalline forms are solvated, they may contain, for example, up to four molecules of solvens, more usually up to two or three molecules, e.g. one molecule of solvent or two molecules of solvents.
Non-stoichiometric solvates may also be formed in which the number of molecules of solvent present is less than one or is otherwise a non-integer, such as e.g., where there is less than one molecule of solvent present, there may be for example 0.4, or 0.5, or 0.6, or 0.7, or 0.8, or 0.9 molecules of solvent present per molecule of compound. For example, solvates or hydrates of the salts according to this invention include, without being limited to, hemi-, mono-, sesqui-, di-, tri- and tetra-solvates or -
6 PCT/EP2009/067772 hydrates, respectively. Stoichiometric and non-stoichiometric mixed solvates of these hydrates with one or more organic solvents (such as e.g. with an alcohol, particularly ethanole) in any mixing ratios are also contemplated within this invention.
In a certain embodiment, the present invention relates to hydrates, solvates with ethanol (ethanolates) and mixed hydrates/ethanolates of the salts of this invention.
Within the solvates of this invention, the solvent molecules can be incorporated into the solid-state structure (such as e.g. they may be become trapped in the crystals upon isolation) or not (such as e.g. they may be retained on the surface of the crystals).
When the solvent or water is tightly bound (as e.g. in isolated site solvates), the complex has often a well defined stoichiometry independent of humidity. When, however, the solvent or water is weakly bound (as e.g. in channel solvates and in hygroscopic compounds), the water/solvent content is often dependent on humidity and/or drying conditions and the non-stoichiometry is the norm.
Pharmaceutically non-acceptable salts (including their solvates and hydrates), which can be obtained, for example, as process products during the manufacture on an industrial scale, can be converted into pharmaceutically acceptable salts (including their solvates and hydrates) by processes known to the person skilled in the art, e.g. by salt and/or solvate exchange or displacement, or via the salt- and/or solvate-free compound (with or without isolation).
Salts (including solvates, hydrates and/or other forms) which are unsuitable for pharmaceutical uses but which can be employed, for example, for the isolation or purification of the free compound 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-l -yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine or of their pharmaceutically acceptable salts (including solvates, hydrates and/or other forms), are also included within this invention.
A particular embodiment of this invention relates to an acid addition salt of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1 -yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine selected from the group consisting of a besylate salt, a hydrobromide salt, a benzoate salt, an esylate salt, a fumarate salt, a mesylate salt, a salicylate salt, a tosylate salt, a hydrochloride salt, a glycolate salt, a malonate salt and a gentisate salt,
In a certain embodiment, the present invention relates to hydrates, solvates with ethanol (ethanolates) and mixed hydrates/ethanolates of the salts of this invention.
Within the solvates of this invention, the solvent molecules can be incorporated into the solid-state structure (such as e.g. they may be become trapped in the crystals upon isolation) or not (such as e.g. they may be retained on the surface of the crystals).
When the solvent or water is tightly bound (as e.g. in isolated site solvates), the complex has often a well defined stoichiometry independent of humidity. When, however, the solvent or water is weakly bound (as e.g. in channel solvates and in hygroscopic compounds), the water/solvent content is often dependent on humidity and/or drying conditions and the non-stoichiometry is the norm.
Pharmaceutically non-acceptable salts (including their solvates and hydrates), which can be obtained, for example, as process products during the manufacture on an industrial scale, can be converted into pharmaceutically acceptable salts (including their solvates and hydrates) by processes known to the person skilled in the art, e.g. by salt and/or solvate exchange or displacement, or via the salt- and/or solvate-free compound (with or without isolation).
Salts (including solvates, hydrates and/or other forms) which are unsuitable for pharmaceutical uses but which can be employed, for example, for the isolation or purification of the free compound 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-l -yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine or of their pharmaceutically acceptable salts (including solvates, hydrates and/or other forms), are also included within this invention.
A particular embodiment of this invention relates to an acid addition salt of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1 -yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine selected from the group consisting of a besylate salt, a hydrobromide salt, a benzoate salt, an esylate salt, a fumarate salt, a mesylate salt, a salicylate salt, a tosylate salt, a hydrochloride salt, a glycolate salt, a malonate salt and a gentisate salt,
-7-as well as the solvates, in particular the organic solvates, the hydrates and the mixed organic solvates/hydrates thereof.
The salts (including their solvate, hydrate and/or other forms) of this invention can be obtained by methods known to the skilled person for making acid addition salts, e.g.
these salts can be prepared (e.g. in situ) during the final reaction, deprotection, isolation, purification and/or further processing of the free compound (or prod rug, precursor or protected compound), or by reacting the free compound with the desired acid or a suitable anion exchange reagent, such as e.g. via a process comprising one or more of the steps described herein. Typically, the free compound is combined with the desired acid, e.g. by dissolving, dispersing or slurrying the free compound in a suitable solvent or mixture of solvents, which contains the desired acid, or to which the desired acid (optionally dissolved in a suitable solvent or mixture of solvents) is then added, or vice versa, with or without heating (e.g. dissolving, mixing and/or reacting can be conducted at ambient temperature or at elevated temperature (such as e.g.
from about 30 C to 70 C or from 40 C to 60 C) or at the boiling temperature of the solvent(s) used, such as temperatures up to 100 C may be applied to form solutions).
The salts can be isolated, e.g. by filtering, crystallization, precipitating e.g. with a nonsolvent for the addition salt or by cooling, or by concentrating (e.g. by heating, removing or evaporating the solvent), and, if desired, purified, e.g. by re-crystallization from an appropriate re-crystallization solvent or mixture of solvents by methods customary to one of skill in the art (e.g. analogously or similarly as described afore), and/or, if required, the process further comprises, at a suitable stage, removing or separating any undesired material or impurities, and finally, optionally, the salts may be washed and/or dried.
In general, solvents, which the skilled person may consider within this invention, may include, without being limited to, organic, non-aqueous or aqueous, protic or aprotic, polar or apolar solvents, such as, for example, ketones such as e.g. acetone, methyl ethyl ketone, methyl propyl ketone, methyl tert- or isobutyl ketone or the like, lactones such as e.g. valerolactone, ethers such as e.g. diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, tetrahydrofuran, dioxane or the like, hydrocarbons such as e.g.
toluene, hexane or the like, chlorinated hydrocarbons such as e.g. methylene chloride, chloroform or the like, low-molecular-weight aliphatic alcohols such as e.g.
methanol, ethanol, 1-propanol, isopropanol, butanol or the like, esters such as e.g.
acetic acid lower alkyl esters (e.g. ethyl acetate) or the like, amides or lactames such as e.g. N,N-
The salts (including their solvate, hydrate and/or other forms) of this invention can be obtained by methods known to the skilled person for making acid addition salts, e.g.
these salts can be prepared (e.g. in situ) during the final reaction, deprotection, isolation, purification and/or further processing of the free compound (or prod rug, precursor or protected compound), or by reacting the free compound with the desired acid or a suitable anion exchange reagent, such as e.g. via a process comprising one or more of the steps described herein. Typically, the free compound is combined with the desired acid, e.g. by dissolving, dispersing or slurrying the free compound in a suitable solvent or mixture of solvents, which contains the desired acid, or to which the desired acid (optionally dissolved in a suitable solvent or mixture of solvents) is then added, or vice versa, with or without heating (e.g. dissolving, mixing and/or reacting can be conducted at ambient temperature or at elevated temperature (such as e.g.
from about 30 C to 70 C or from 40 C to 60 C) or at the boiling temperature of the solvent(s) used, such as temperatures up to 100 C may be applied to form solutions).
The salts can be isolated, e.g. by filtering, crystallization, precipitating e.g. with a nonsolvent for the addition salt or by cooling, or by concentrating (e.g. by heating, removing or evaporating the solvent), and, if desired, purified, e.g. by re-crystallization from an appropriate re-crystallization solvent or mixture of solvents by methods customary to one of skill in the art (e.g. analogously or similarly as described afore), and/or, if required, the process further comprises, at a suitable stage, removing or separating any undesired material or impurities, and finally, optionally, the salts may be washed and/or dried.
In general, solvents, which the skilled person may consider within this invention, may include, without being limited to, organic, non-aqueous or aqueous, protic or aprotic, polar or apolar solvents, such as, for example, ketones such as e.g. acetone, methyl ethyl ketone, methyl propyl ketone, methyl tert- or isobutyl ketone or the like, lactones such as e.g. valerolactone, ethers such as e.g. diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, tetrahydrofuran, dioxane or the like, hydrocarbons such as e.g.
toluene, hexane or the like, chlorinated hydrocarbons such as e.g. methylene chloride, chloroform or the like, low-molecular-weight aliphatic alcohols such as e.g.
methanol, ethanol, 1-propanol, isopropanol, butanol or the like, esters such as e.g.
acetic acid lower alkyl esters (e.g. ethyl acetate) or the like, amides or lactames such as e.g. N,N-
-8-dimethylformamide, N-methyl-2-pyrrolidone or the like, nitriles such as e.g.
acetonitrile or the like, or sulfoxides such as e.g. DMSO or the like, or water, or mixtures thereof.
Appropriate solvents or nonsolvents may be determined by solubility tests in various solvents.
Within the meaning of this invention, as particular solvents may be mentioned organic solvents which are wholly or partly water miscible, such as e.g. a suitable solvent for salt formation and/or crystallization is a low-molecular-weight aliphatic alcohol, e.g.
ethanol, optionally in combination with water.
In a further aspect, the present invention relates to a process for preparing a salt of the invention, particularly in crystalline form, which comprises one or more of the steps of:
i.) forming a solution comprising 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-l-yl)-8-(3-(R)-amino-piperidin-l-yl)-xanthine and an acid, such as e.g. any of those pharmaceutically acceptable acids described herein, particularly any of those described by way of example in the following examples, ii.) inducing crystallization of the salt e.g. from solution, and iii.) recovering the crystalline 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-l-yl)-8-(3-(R)-amino-piperidin-l-yl)-xanthine salt.
In embodiments of this method, 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-l-yl)-8-(3-(R)-amino-piperidin-l-yl)-xanthine and the acid are in 1:1 stoichiometry.
In further embodiments of this method, reacting and/or (re-)crystallization may be performed in an alcohol (particularly ethanol), optionally in the presence of water.
Salts prepared can be converted to another, e.g. by reaction with an appropriate acid or by means of a suitable ion exchanger. Likewise, salts obtained can be converted into the free compounds (e.g. via neutralization with a suitable base, with or without isolation of the free base, e.g. by extraction), which can in turn be converted into salts, by acidification. In this manner, physiologically unacceptable salts can be converted into physiologically acceptable salts.
acetonitrile or the like, or sulfoxides such as e.g. DMSO or the like, or water, or mixtures thereof.
Appropriate solvents or nonsolvents may be determined by solubility tests in various solvents.
Within the meaning of this invention, as particular solvents may be mentioned organic solvents which are wholly or partly water miscible, such as e.g. a suitable solvent for salt formation and/or crystallization is a low-molecular-weight aliphatic alcohol, e.g.
ethanol, optionally in combination with water.
In a further aspect, the present invention relates to a process for preparing a salt of the invention, particularly in crystalline form, which comprises one or more of the steps of:
i.) forming a solution comprising 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-l-yl)-8-(3-(R)-amino-piperidin-l-yl)-xanthine and an acid, such as e.g. any of those pharmaceutically acceptable acids described herein, particularly any of those described by way of example in the following examples, ii.) inducing crystallization of the salt e.g. from solution, and iii.) recovering the crystalline 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-l-yl)-8-(3-(R)-amino-piperidin-l-yl)-xanthine salt.
In embodiments of this method, 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-l-yl)-8-(3-(R)-amino-piperidin-l-yl)-xanthine and the acid are in 1:1 stoichiometry.
In further embodiments of this method, reacting and/or (re-)crystallization may be performed in an alcohol (particularly ethanol), optionally in the presence of water.
Salts prepared can be converted to another, e.g. by reaction with an appropriate acid or by means of a suitable ion exchanger. Likewise, salts obtained can be converted into the free compounds (e.g. via neutralization with a suitable base, with or without isolation of the free base, e.g. by extraction), which can in turn be converted into salts, by acidification. In this manner, physiologically unacceptable salts can be converted into physiologically acceptable salts.
-9-In a further aspect, the present invention relates to salts of the invention (including their solvates and hydrates) in solid forms, including amorphous, semi-amorphous, polymorphous, semi-crystalline and crystalline forms, as well as mixtures thereof.
For more detailed example, the invention concerns the salts (including their solvates and hydrates whether mixed or not) of the invention in partially crystalline form (such as e.g. from about 5 to 20 % crystalline) as well as in substantially crystalline form (such as e.g. greater than any of about 20, 30, 40, 50, 60, 70, 80, 90 or 95%
crystalline).
The presence of crystal forms and degree (%) of crystallinity may be determined by the skilled person using X-ray powder diffraction (XRPD). Other techniques, such as solid state NMR, FT-IR, Raman spectroscopy, differential scanning calorimetry (DSC) and microcalorimetry, may also be used.
The crystalline forms and polymorphs of the salts of the present invention may be characterized by their melting points (obtained e.g. by DSC method) or by their respective x-ray powder diffraction spectra data or pattern comprising major peaks (e.g. with a relative intensity of greater than or equal about 10%, 20% or 25%
or the like), as shown in the examples hereinafter. Such as for example, a crystalline form of the hydrochloride salt of this invention has the X-ray powder diffraction pattern essentially as defined in Table 10 and/or essentially as defined in Figure 9.
Crystalline forms and polymorphs may be prepared by crystallization of a compound of this invention. Various crystallization techniques may be used to form and isolate crystalline compounds and polymorphs, such as e.g. any of those crystalline forming procedures descibed herein, such as, for example, crystallization or precipitation from a suitable solvent or solvent mixtures, stirring of a suspension (phase equilibration), slurrying, solvent evaporation, allowing or causing cooling to a suitable temperature to initiate crystallization, using suitable modes of cooling ranging from very fast to very slow cooling rates during crystallization, effecting a suitable pressure, using seeding crystals, re-crystallization, filtering, washing (e.g. in the crystallising solvent) and/or drying (e.g. under reduced pressure and/or at elevated temperature).
Crystalline forms may also be obtained by heating or melting a form obtained followed by gradual or fast cooling; in this manner one polymorph or one crystalline form may be converted to another.
For more detailed example, the invention concerns the salts (including their solvates and hydrates whether mixed or not) of the invention in partially crystalline form (such as e.g. from about 5 to 20 % crystalline) as well as in substantially crystalline form (such as e.g. greater than any of about 20, 30, 40, 50, 60, 70, 80, 90 or 95%
crystalline).
The presence of crystal forms and degree (%) of crystallinity may be determined by the skilled person using X-ray powder diffraction (XRPD). Other techniques, such as solid state NMR, FT-IR, Raman spectroscopy, differential scanning calorimetry (DSC) and microcalorimetry, may also be used.
The crystalline forms and polymorphs of the salts of the present invention may be characterized by their melting points (obtained e.g. by DSC method) or by their respective x-ray powder diffraction spectra data or pattern comprising major peaks (e.g. with a relative intensity of greater than or equal about 10%, 20% or 25%
or the like), as shown in the examples hereinafter. Such as for example, a crystalline form of the hydrochloride salt of this invention has the X-ray powder diffraction pattern essentially as defined in Table 10 and/or essentially as defined in Figure 9.
Crystalline forms and polymorphs may be prepared by crystallization of a compound of this invention. Various crystallization techniques may be used to form and isolate crystalline compounds and polymorphs, such as e.g. any of those crystalline forming procedures descibed herein, such as, for example, crystallization or precipitation from a suitable solvent or solvent mixtures, stirring of a suspension (phase equilibration), slurrying, solvent evaporation, allowing or causing cooling to a suitable temperature to initiate crystallization, using suitable modes of cooling ranging from very fast to very slow cooling rates during crystallization, effecting a suitable pressure, using seeding crystals, re-crystallization, filtering, washing (e.g. in the crystallising solvent) and/or drying (e.g. under reduced pressure and/or at elevated temperature).
Crystalline forms may also be obtained by heating or melting a form obtained followed by gradual or fast cooling; in this manner one polymorph or one crystalline form may be converted to another.
-10-In a further aspect, the present invention relates to salts of the invention (including their solvates, hydrates, polymorphs, crystalline and amorphous forms) in substantially pure form (e.g. substantially devoid of impurities and/or other forms), for example, in a degree of purity of about > 80%, > 85%, > 90%, > 95%, > 98%, or > 99% of the respective form.
In another aspect, the present invention relates to salts of the invention (including their solvates, hydrates, polymorphs, crystalline and amorphous forms) in substantially pure form, that means, for example, that the respective form includes less than 20%, less than 10%, less than 5%, less than 3% or less than 1 % by weight of any impurities or other physical forms.
The present invention further relates to a salt as described herein for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus.
The present invention further relates to the use of a salt as described herein for the manufacture of a pharmaceutical composition for treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus.
The present invention further relates to a pharmaceutical composition for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus, said pharmaceutical composition comprising a salt as described herein and optionally one or more pharmaceutically acceptable carriers and/or diluents.
The present invention further relates to a fixed or non-fixed combination including a kit-of-parts for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus, said combination comprising a salt as described herein and optionally one or more other active substances, e.g. any of those mentioned herein.
The present invention further relates to the use of a salt as described herein in combination with one or more other active substances, such as e.g. any of those mentioned herein, for the manufacture of a pharmaceutical composition for treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus.
In another aspect, the present invention relates to salts of the invention (including their solvates, hydrates, polymorphs, crystalline and amorphous forms) in substantially pure form, that means, for example, that the respective form includes less than 20%, less than 10%, less than 5%, less than 3% or less than 1 % by weight of any impurities or other physical forms.
The present invention further relates to a salt as described herein for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus.
The present invention further relates to the use of a salt as described herein for the manufacture of a pharmaceutical composition for treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus.
The present invention further relates to a pharmaceutical composition for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus, said pharmaceutical composition comprising a salt as described herein and optionally one or more pharmaceutically acceptable carriers and/or diluents.
The present invention further relates to a fixed or non-fixed combination including a kit-of-parts for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus, said combination comprising a salt as described herein and optionally one or more other active substances, e.g. any of those mentioned herein.
The present invention further relates to the use of a salt as described herein in combination with one or more other active substances, such as e.g. any of those mentioned herein, for the manufacture of a pharmaceutical composition for treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus.
-11-The present invention further relates to a pharmaceutical composition for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus, said pharmaceutical composition comprising a salt as described herein and optionally one or more other active substances, such as e.g. any of those mentioned herein.
The present invention further relates to a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus, said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a salt as described herein, optionally separately, sequentially, simultaneously, concurrently or chronologically staggered with an effective amount of one or more other active substances, such as e.g. any of those mentioned herein.
Further, the salts as described herein may be useful in one or more of the following methods - for preventing, slowing progression of, delaying, or treating a metabolic disorder;
- for improving glycemic control and/or for reducing of fasting plasma glucose, of postprandial plasma glucose and/or of glycosylated hemoglobin HbA1 c;
- for preventing, slowing, delaying or reversing progression from impaired glucose tolerance, insulin resistance and/or from metabolic syndrome to type 2 diabetes mellitus;
- for preventing, slowing progression of, delaying or treating of a condition or disorder selected from the group consisting of complications of diabetes mellitus;
- for reducing the weight or preventing an increase of the weight or facilitating a reduction of the weight;
- for preventing or treating the degeneration of pancreatic beta cells and/or for improving and/or restoring the functionality of pancreatic beta cells and/or stimulating and/or restoring the functionality of pancreatic insulin secretion; and/or - for maintaining and/or improving the insulin sensitivity and/or for treating or preventing hyperinsulinemia and/or insulin resistance.
Examples of such metabolic diseases or disorders amenable by the therapy of this invention may include, without being restricted to, Type 1 diabetes, Type 2 diabetes, inadequate glucose tolerance, insulin resistance, hyperglycemia, hyperlipidemia, hypercholesterolemia, dyslipidemia, metabolic syndrome X, obesity, hypertension, chronic systemic inflammation, retinopathy, neuropathy, nephropathy, atherosclerosis, endothelial dysfunction and osteoporosis.
The present invention further relates to a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus, said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a salt as described herein, optionally separately, sequentially, simultaneously, concurrently or chronologically staggered with an effective amount of one or more other active substances, such as e.g. any of those mentioned herein.
Further, the salts as described herein may be useful in one or more of the following methods - for preventing, slowing progression of, delaying, or treating a metabolic disorder;
- for improving glycemic control and/or for reducing of fasting plasma glucose, of postprandial plasma glucose and/or of glycosylated hemoglobin HbA1 c;
- for preventing, slowing, delaying or reversing progression from impaired glucose tolerance, insulin resistance and/or from metabolic syndrome to type 2 diabetes mellitus;
- for preventing, slowing progression of, delaying or treating of a condition or disorder selected from the group consisting of complications of diabetes mellitus;
- for reducing the weight or preventing an increase of the weight or facilitating a reduction of the weight;
- for preventing or treating the degeneration of pancreatic beta cells and/or for improving and/or restoring the functionality of pancreatic beta cells and/or stimulating and/or restoring the functionality of pancreatic insulin secretion; and/or - for maintaining and/or improving the insulin sensitivity and/or for treating or preventing hyperinsulinemia and/or insulin resistance.
Examples of such metabolic diseases or disorders amenable by the therapy of this invention may include, without being restricted to, Type 1 diabetes, Type 2 diabetes, inadequate glucose tolerance, insulin resistance, hyperglycemia, hyperlipidemia, hypercholesterolemia, dyslipidemia, metabolic syndrome X, obesity, hypertension, chronic systemic inflammation, retinopathy, neuropathy, nephropathy, atherosclerosis, endothelial dysfunction and osteoporosis.
-12-The compound 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine (compare WO 2004/018468, example 2(142)), which is also known as BI 1356, has the formula:
O
NN N
N
iN O N N
The methods of synthesis for 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine are known to the skilled person.
Advantageously, 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine can be prepared using synthetic methods as described in the literature. Thus, for example, it can be obtained as described in WO
2002/068420, WO 2004/018468 or WO 2006/048427, the disclosures of which are incorporated herein.
For pharmaceutical application in warm-blooded vertebrates, particularly humans, usually dosage levels from 0.001 to 100 mg/kg body weight, preferably at 0.1-mg/kg, in each case 1 to 4 times a day, of active ingredient may be used. For this purpose, the compounds, optionally combined with other active substances, may be incorporated together with one or more inert conventional carriers and/or diluents, e.g.
with corn starch, lactose, glucose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethylcelIulose or fatty substances such as hard fat or suitable mixtures thereof into conventional galenic preparations such as plain or coated tablets, capsules, powders, suspensions or suppositories.
Usual liquid or solid carrier materials are not only inorganic, but also organic carrier materials. Thus, for example, lactose, corn starch or derivatives thereof, talc, stearic acid or its salts may be used as carrier materials for tablets, coated tablets, dragees and hard gelatine capsules. Typical carrier materials for soft gelatine capsules are, for example, vegetable oils, waxes, fats and semi-solid and liquid polyols (depending on
O
NN N
N
iN O N N
The methods of synthesis for 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine are known to the skilled person.
Advantageously, 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine can be prepared using synthetic methods as described in the literature. Thus, for example, it can be obtained as described in WO
2002/068420, WO 2004/018468 or WO 2006/048427, the disclosures of which are incorporated herein.
For pharmaceutical application in warm-blooded vertebrates, particularly humans, usually dosage levels from 0.001 to 100 mg/kg body weight, preferably at 0.1-mg/kg, in each case 1 to 4 times a day, of active ingredient may be used. For this purpose, the compounds, optionally combined with other active substances, may be incorporated together with one or more inert conventional carriers and/or diluents, e.g.
with corn starch, lactose, glucose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethylcelIulose or fatty substances such as hard fat or suitable mixtures thereof into conventional galenic preparations such as plain or coated tablets, capsules, powders, suspensions or suppositories.
Usual liquid or solid carrier materials are not only inorganic, but also organic carrier materials. Thus, for example, lactose, corn starch or derivatives thereof, talc, stearic acid or its salts may be used as carrier materials for tablets, coated tablets, dragees and hard gelatine capsules. Typical carrier materials for soft gelatine capsules are, for example, vegetable oils, waxes, fats and semi-solid and liquid polyols (depending on
-13-the nature of the active ingredient no carriers are, however, required in the case of soft gelatine capsules). Typical carrier materials for the production of solutions and syrups are, for example, water, polyols, sucrose, invert sugar and the like. Typical carrier materials for injection solutions are, for example, water, alcohols, polyols, glycerol and vegetable oils. Typical carrier materials for suppositories are, for example, natural or hardened oils, waxes, fats and semi-liquid or liquid polyols.
The pharmaceutical compositions according to this invention comprising the salts as defined herein are thus prepared by the skilled person using pharmaceutically acceptable formulation excipients as described in the art, such as e.g. those mentioned hereinabove and hereinbelow, of a type appropriate, e.g. to the desired formulation and to the desired mode of administration. The content of the active compound(s) is advantageously being from 0.1 to 95 wt% (weight percent of the final dosage form), particularly from 1 to 60 wt%. By means of the appropriate selection of the excipients, it is possible to obtain a pharmaceutical administration form adapted to the active ingredient(s) and/or to the desired onset and/or duration of action. Examples of such excipients include, without being restricted to, excipients commonly used for solid pharmaceutical forms (e.g. tablets), such as e.g. diluents, fillers, binders, carriers, lubricants, disintegrants, flow promoters, glidants and/or coating agents, excipients commonly used for liquid oral forms (e.g. syrups or elixirs), such as e.g. gel formers, wetting agents, antifoams, colorants, adsorbent agents, thickeners, flavorings and/or sweeteners, excipients commonly used for injection solutions or infusions, such as e.g.
dispersants, emulsifiers, preservatives, solubilizers, buffer substances and/or isotonic adjusting substances, and other accessory excipients, such as e.g. stabilizers and/or solvents.
An embodiment of this invention refers to dosage forms for oral administration of the compounds of the invention. Tablets, coated tablets, dragees, pills, cachets, capsules, caplets, granules, solutions, emulsions and suspensions are e.g. suitable for oral administration. Solid oral dosage forms, such as e.g. capsules, tablets, pills, powders or granules, are hereby particularly concerned.
If desired, these formulations may also be adapted so as to represent, for example, an enteric form, an immediate release form, a delayed release form, a repeated dose release form, a prolonged release form or a sustained release form. Said forms can be obtained, for example, by coating tablets, by matrix techniques, by dividing tablets (e.g.
The pharmaceutical compositions according to this invention comprising the salts as defined herein are thus prepared by the skilled person using pharmaceutically acceptable formulation excipients as described in the art, such as e.g. those mentioned hereinabove and hereinbelow, of a type appropriate, e.g. to the desired formulation and to the desired mode of administration. The content of the active compound(s) is advantageously being from 0.1 to 95 wt% (weight percent of the final dosage form), particularly from 1 to 60 wt%. By means of the appropriate selection of the excipients, it is possible to obtain a pharmaceutical administration form adapted to the active ingredient(s) and/or to the desired onset and/or duration of action. Examples of such excipients include, without being restricted to, excipients commonly used for solid pharmaceutical forms (e.g. tablets), such as e.g. diluents, fillers, binders, carriers, lubricants, disintegrants, flow promoters, glidants and/or coating agents, excipients commonly used for liquid oral forms (e.g. syrups or elixirs), such as e.g. gel formers, wetting agents, antifoams, colorants, adsorbent agents, thickeners, flavorings and/or sweeteners, excipients commonly used for injection solutions or infusions, such as e.g.
dispersants, emulsifiers, preservatives, solubilizers, buffer substances and/or isotonic adjusting substances, and other accessory excipients, such as e.g. stabilizers and/or solvents.
An embodiment of this invention refers to dosage forms for oral administration of the compounds of the invention. Tablets, coated tablets, dragees, pills, cachets, capsules, caplets, granules, solutions, emulsions and suspensions are e.g. suitable for oral administration. Solid oral dosage forms, such as e.g. capsules, tablets, pills, powders or granules, are hereby particularly concerned.
If desired, these formulations may also be adapted so as to represent, for example, an enteric form, an immediate release form, a delayed release form, a repeated dose release form, a prolonged release form or a sustained release form. Said forms can be obtained, for example, by coating tablets, by matrix techniques, by dividing tablets (e.g.
-14-their cores and/or coatings) into several compartments which may be separated by layers disintegrating under different conditions (e.g. pH conditions) or by coupling the compound of the invention to a biodegradable polymer.
In a certain embodiment, a compound of the invention is preferably in the form of a tablet. Such a tablet typically comprises the active ingredient(s) with one or more diluents, fillers and/or carriers, and, optionally, one or more binders, one or more lubricants, one or more disintegrants, and/or one or more glidants, as well as, if desired, a film overcoat.
Such a tablet may be obtained, for example, by mixing the active substance(s) with known excipients, for example which can be selected from those mentioned herein.
Coated tablets may be prepared by coating of cores (which may be produced analogously to the tablets) with substances normally used for tablet coatings (e.g. film-forming agents, plasticizers, glidants and/or pigments).
The tablet (including its core and coating) may also comprise several layers (e.g.
mono-, bi- or trilayer), e.g. to achieve delayed release or to prevent incompatibilities.
Usually, in general as diluents/fillers one or more of mannitol, lactose, sucrose, maltodextrin, sorbitol, xylitol, powdered cellulose, microcrystalline cellulose, carboxymethylcellulose, carboxyethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, methylhydroxyethylcellulose, starch, sodium starch glycolate, pregelatinized starch, a calcium phosphate, a metal carbonate, a metal oxide or a metal aluminosilicate may come into consideration.
Usually, in general as binders one or more of polyvinylpyrrolidone, copovidone, hydroxypropylcellulose, hydroxypropylmethylcellulose, crosslinked poly(acrylic acid), gum arabic, gum acacia, gum tragacanath, lecithin, casein, polyvinyl alcohol, gelatin, kaolin, cellulose, methylcellulose, hydroxymethylcellulose, carboxymethylcellulose, carboxymethylcellulose calcium, carboxymethylcellulose sodium, hyd roxypropylcellu lose, hydroxypropylmethylcellulose phthalate, hyd roxyethylcellu lose, methylhydroxyethylcellulose, silicified microcrystalline cellulose, starch, maltodextrin, dextrins, microcrystalline cellulose or sorbitol may come into consideration.
In a certain embodiment, a compound of the invention is preferably in the form of a tablet. Such a tablet typically comprises the active ingredient(s) with one or more diluents, fillers and/or carriers, and, optionally, one or more binders, one or more lubricants, one or more disintegrants, and/or one or more glidants, as well as, if desired, a film overcoat.
Such a tablet may be obtained, for example, by mixing the active substance(s) with known excipients, for example which can be selected from those mentioned herein.
Coated tablets may be prepared by coating of cores (which may be produced analogously to the tablets) with substances normally used for tablet coatings (e.g. film-forming agents, plasticizers, glidants and/or pigments).
The tablet (including its core and coating) may also comprise several layers (e.g.
mono-, bi- or trilayer), e.g. to achieve delayed release or to prevent incompatibilities.
Usually, in general as diluents/fillers one or more of mannitol, lactose, sucrose, maltodextrin, sorbitol, xylitol, powdered cellulose, microcrystalline cellulose, carboxymethylcellulose, carboxyethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, methylhydroxyethylcellulose, starch, sodium starch glycolate, pregelatinized starch, a calcium phosphate, a metal carbonate, a metal oxide or a metal aluminosilicate may come into consideration.
Usually, in general as binders one or more of polyvinylpyrrolidone, copovidone, hydroxypropylcellulose, hydroxypropylmethylcellulose, crosslinked poly(acrylic acid), gum arabic, gum acacia, gum tragacanath, lecithin, casein, polyvinyl alcohol, gelatin, kaolin, cellulose, methylcellulose, hydroxymethylcellulose, carboxymethylcellulose, carboxymethylcellulose calcium, carboxymethylcellulose sodium, hyd roxypropylcellu lose, hydroxypropylmethylcellulose phthalate, hyd roxyethylcellu lose, methylhydroxyethylcellulose, silicified microcrystalline cellulose, starch, maltodextrin, dextrins, microcrystalline cellulose or sorbitol may come into consideration.
-15-Usually, in general as disintegrants one or more of croscarmellose sodium, carmellose calcium, crospovidone, alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floe, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate, a metal carbonate, sodium bicarbonate, calcium citrate or calcium phosphate may come into consideration.
Usually, in general as lubricants one or more of stearic acid, metallic stearate, sodium stearyl fumarate, fatty acid, fatty alcohol, fatty acid ester, glyceryl behenate, mineral oil, vegetable oil, paraffin, leucine, silica, silicic acid, talc, propylene glycol fatty acid ester, polyethylene glycol, polypropylene glycol, polyalkylene glycol or sodium chloride may come into consideration.
If desired, direct compression or granulation of the mixtures and/or components may be considered, which may be accomplished by conventional granulation techniques known to one of skill in the art. For example, dry granulation techniques include, but are not limited to, compression of the mixed powder under high pressure, either by roller compaction or "slugging" in a heavy-duty tablet press. Wet granulation techniques include, but are not limited to, high shear granulation, single-pot processing, top-spray granulation, bottom-spray granulation, fluidized spray granulation, extrusion/spheronization, and rotor granulation.
Examples of suitable diluents for compounds of this invention may include cellulose powder, calcium hydrogen phosphate, erythritol, low substituted hydroxypropyl cellulose, mannitol, pregelatinized starch or xylitol.
Examples of suitable lubricants for compounds of this invention may include talc, polyethyleneglycol, calcium behenate, calcium stearate, hydrogenated castor oil or magnesium stearate.
Examples of suitable binders for compounds of this invention may include copovidone (copolymerisates of vinylpyrrolidon with other vinylderivates), hydroxypropyl methylcellulose (HPMC), hydroxypropylcellu lose (HPC), polyvinylpyrrolidon (povidone), pregelatinized starch, or low-substituted hydroxypropylcellu lose (L-HPC).
Usually, in general as lubricants one or more of stearic acid, metallic stearate, sodium stearyl fumarate, fatty acid, fatty alcohol, fatty acid ester, glyceryl behenate, mineral oil, vegetable oil, paraffin, leucine, silica, silicic acid, talc, propylene glycol fatty acid ester, polyethylene glycol, polypropylene glycol, polyalkylene glycol or sodium chloride may come into consideration.
If desired, direct compression or granulation of the mixtures and/or components may be considered, which may be accomplished by conventional granulation techniques known to one of skill in the art. For example, dry granulation techniques include, but are not limited to, compression of the mixed powder under high pressure, either by roller compaction or "slugging" in a heavy-duty tablet press. Wet granulation techniques include, but are not limited to, high shear granulation, single-pot processing, top-spray granulation, bottom-spray granulation, fluidized spray granulation, extrusion/spheronization, and rotor granulation.
Examples of suitable diluents for compounds of this invention may include cellulose powder, calcium hydrogen phosphate, erythritol, low substituted hydroxypropyl cellulose, mannitol, pregelatinized starch or xylitol.
Examples of suitable lubricants for compounds of this invention may include talc, polyethyleneglycol, calcium behenate, calcium stearate, hydrogenated castor oil or magnesium stearate.
Examples of suitable binders for compounds of this invention may include copovidone (copolymerisates of vinylpyrrolidon with other vinylderivates), hydroxypropyl methylcellulose (HPMC), hydroxypropylcellu lose (HPC), polyvinylpyrrolidon (povidone), pregelatinized starch, or low-substituted hydroxypropylcellu lose (L-HPC).
-16-Examples of suitable disintegrants for compounds of this invention may include corn starch or crospovidone.
Suitable methods of preparing pharmaceutical formulations of the compounds of this invention may be = direct tabletting of the active substance in powder mixtures with suitable tabletting excipients;
= granulation with suitable excipients and subsequent mixing with suitable excipients and subsequent tabletting as well as film coating; or = packing of powder mixtures or granules into capsules.
Suitable granulation methods may be = wet granulation in the intensive mixer followed by fluidised bed drying;
= one-pot granulation;
= fluidised bed granulation; or = dry granulation (e.g. by roller compaction) with suitable excipients and subsequent tabletting or packing into capsules.
Particular formulations and their preparation are described in the patent application WO
2007/128724, the contents of which are incorporated herein in their entirety for all purposes.
Within the present invention, the dosage typically required when administered intravenously is 0.1 mg to 10 mg, preferably 0.25 mg to 5 mg, and when administered orally is 0.5 mg to 100 mg, preferably 2.5 mg to 50 mg or 0.5 mg to 10 mg, more preferably 2.5 mg to 10 mg or 1 mg to 5 mg, in each case 1 to 4 times a day, of active ingredient. Thus, e.g. the dosage of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1 -yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine when administered orally is 0.5 mg to 10 mg per patient per day, preferably 2.5 mg to 10 mg or 1 mg to 5 mg per patient per day.
A dosage form prepared with a pharmaceutical composition comprising a salt as mentioned herein contain the active ingredient in a dosage range of 0.1-100 mg. Thus, e.g. particular dosage strengths of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine are 0.5 mg, 1 mg, 2.5 mg, 5 mg and mg.
Suitable methods of preparing pharmaceutical formulations of the compounds of this invention may be = direct tabletting of the active substance in powder mixtures with suitable tabletting excipients;
= granulation with suitable excipients and subsequent mixing with suitable excipients and subsequent tabletting as well as film coating; or = packing of powder mixtures or granules into capsules.
Suitable granulation methods may be = wet granulation in the intensive mixer followed by fluidised bed drying;
= one-pot granulation;
= fluidised bed granulation; or = dry granulation (e.g. by roller compaction) with suitable excipients and subsequent tabletting or packing into capsules.
Particular formulations and their preparation are described in the patent application WO
2007/128724, the contents of which are incorporated herein in their entirety for all purposes.
Within the present invention, the dosage typically required when administered intravenously is 0.1 mg to 10 mg, preferably 0.25 mg to 5 mg, and when administered orally is 0.5 mg to 100 mg, preferably 2.5 mg to 50 mg or 0.5 mg to 10 mg, more preferably 2.5 mg to 10 mg or 1 mg to 5 mg, in each case 1 to 4 times a day, of active ingredient. Thus, e.g. the dosage of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1 -yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine when administered orally is 0.5 mg to 10 mg per patient per day, preferably 2.5 mg to 10 mg or 1 mg to 5 mg per patient per day.
A dosage form prepared with a pharmaceutical composition comprising a salt as mentioned herein contain the active ingredient in a dosage range of 0.1-100 mg. Thus, e.g. particular dosage strengths of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine are 0.5 mg, 1 mg, 2.5 mg, 5 mg and mg.
-17-A special embodiment of this invention refers to those orally administered DPP-inhibitors which are therapeutically efficacious at low dose levels, e.g. at dose levels <
100 mg or < 70 mg per patient per day, preferably < 50 mg, more preferably <
30 mg or < 20 mg, even more preferably from 1 mg to 10 mg, particularly from 1 mg to 5 mg (more particularly 5 mg) of active ingredient, per patient per day, preferentially, administered orally once-daily, more preferentially, at any time of day, administered with or without food.
For details on dosage forms, formulations and administration of active substances, particularly of those indicated herein, reference is made to respective scientific literature and/ or published patent documents, particularly to those cited herein.
As different metabolic functional disorders often occur simultaneously, it is quite often indicated to combine a number of different active principles with one another.
Thus, depending on the functional disorders diagnosed, improved treatment outcomes may be obtained if a DPP-4 inhibitor is combined with active substances customary for the respective disorders, such as e.g. one or more active substances selected from among the other antidiabetic substances, especially active substances that lower the blood sugar level or the lipid level in the blood, raise the HDL level in the blood, lower blood pressure or are indicated in the treatment of atherosclerosis or obesity.
The compounds of this invention - besides their use in mono-therapy - may also be used in conjunction with other active substances, by means of which improved treatment results can be obtained. Such a combined treatment may be given as a free combination of the substances or in the form of a fixed combination, for example in a tablet or capsule. Pharmaceutical formulations of the combination partner needed for this may either be obtained commercially as pharmaceutical compositions or may be formulated by the skilled man using conventional methods. The active substances which may be obtained commercially as pharmaceutical compositions are described in numerous places in the prior art, for example in the list of drugs that appears annually, the "Rote Liste " of the federal association of the pharmaceutical industry, or in the annually updated compilation of manufacturers' information on prescription drugs known as the "Physicians' Desk Reference".
100 mg or < 70 mg per patient per day, preferably < 50 mg, more preferably <
30 mg or < 20 mg, even more preferably from 1 mg to 10 mg, particularly from 1 mg to 5 mg (more particularly 5 mg) of active ingredient, per patient per day, preferentially, administered orally once-daily, more preferentially, at any time of day, administered with or without food.
For details on dosage forms, formulations and administration of active substances, particularly of those indicated herein, reference is made to respective scientific literature and/ or published patent documents, particularly to those cited herein.
As different metabolic functional disorders often occur simultaneously, it is quite often indicated to combine a number of different active principles with one another.
Thus, depending on the functional disorders diagnosed, improved treatment outcomes may be obtained if a DPP-4 inhibitor is combined with active substances customary for the respective disorders, such as e.g. one or more active substances selected from among the other antidiabetic substances, especially active substances that lower the blood sugar level or the lipid level in the blood, raise the HDL level in the blood, lower blood pressure or are indicated in the treatment of atherosclerosis or obesity.
The compounds of this invention - besides their use in mono-therapy - may also be used in conjunction with other active substances, by means of which improved treatment results can be obtained. Such a combined treatment may be given as a free combination of the substances or in the form of a fixed combination, for example in a tablet or capsule. Pharmaceutical formulations of the combination partner needed for this may either be obtained commercially as pharmaceutical compositions or may be formulated by the skilled man using conventional methods. The active substances which may be obtained commercially as pharmaceutical compositions are described in numerous places in the prior art, for example in the list of drugs that appears annually, the "Rote Liste " of the federal association of the pharmaceutical industry, or in the annually updated compilation of manufacturers' information on prescription drugs known as the "Physicians' Desk Reference".
-18-Examples of antidiabetic combination partners are metformin; sulphonylureas such as glibenclamide, tolbutamide, glimepiride, glipizide, gliquidon, glibornuride and gliclazide;
nateglinide; repaglinide; thiazolidinediones such as rosiglitazone and pioglitazone;
PPAR gamma modulators such as metaglidases; PPAR-gamma agonists such as GI
262570; PPAR-gamma antagonists; PPAR-gamma/alpha modulators such as tesaglitazar, muraglitazar and KRP297; PPAR-gamma/alpha/delta modulators; AMPK-activators such as AICAR; acetyl-CoA carboxylase (ACC1 and ACC2) inhibitors;
diacylglycerol-acetyltransferase (DGAT) inhibitors; pancreatic beta cell GCRP
agonists such as SMT3-receptor-agonists and GPR119; 11R-HSD-inhibitors; FGF19 agonists or analogues; alpha-glucosidase blockers such as acarbose, voglibose and miglitol;
alpha2-antagonists; insulin and insulin analogues such as human insulin, insulin lispro, insulin glusilin, r-DNA-insulinaspart, NPH insulin, insulin detemir, insulin zinc suspension and insulin glargin; Gastric inhibitory Peptide (GIP); pramlintide;
amylin or GLP-1 and GLP-1 analogues such as Exendin-4; SGLT2-inhibitors such as KGT-1251;
inhibitors of protein tyrosine-phosphatase; inhibitors of glucose-6-phosphatase;
fructose-1,6-bisphosphatase modulators; glycogen phosphorylase modulators;
glucagon receptor antagonists; phosphoenolpyruvatecarboxykinase (PEPCK) inhibitors; pyruvate dehydrogenasekinase (PDK) inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, US 5093330, WO 2004/005281, and WO 2006/041976);
glucokinase/regulatory protein modulators incl. glucokinase activators;
glycogen synthase kinase inhibitors; inhibitors of the SH2-domain-containing inositol 5-phosphatase type 2 (SHIP2) ; IKK inhibitors such as high-dose salicylate ;
inhibitors ; protein kinase C-theta inhibitors; beta 3 agonists such as ritobegron, YM
178, solabegron, talibegron, N-5984, GRC-1087, rafabegron, FMP825;
aldosereductase inhibitors such as AS 3201, zenarestat, fidarestat, epalrestat, ranirestat, NZ-314, CP-744809, and CT-112; SGLT-1 or SGLT-2 inhibitors; KV 1.3 channel inhibitors; GPR40 modulators; SCD-1 inhibitors; CCR-2 antagonists; and other DPP IV inhibitors.
Metformin is usually given in doses varying from about 500 mg to 2000 mg up to mg per day using various dosing regimens from about 100 mg to 500 mg or 200 mg to 850 mg (1-3 times a day), or about 300 mg to 1000 mg once or twice a day, or delayed-release metformin in doses of about 100 mg to 1000 mg or preferably 500 mg to 1000 mg once or twice a day or about 500 mg to 2000 mg once a day.
Particular
nateglinide; repaglinide; thiazolidinediones such as rosiglitazone and pioglitazone;
PPAR gamma modulators such as metaglidases; PPAR-gamma agonists such as GI
262570; PPAR-gamma antagonists; PPAR-gamma/alpha modulators such as tesaglitazar, muraglitazar and KRP297; PPAR-gamma/alpha/delta modulators; AMPK-activators such as AICAR; acetyl-CoA carboxylase (ACC1 and ACC2) inhibitors;
diacylglycerol-acetyltransferase (DGAT) inhibitors; pancreatic beta cell GCRP
agonists such as SMT3-receptor-agonists and GPR119; 11R-HSD-inhibitors; FGF19 agonists or analogues; alpha-glucosidase blockers such as acarbose, voglibose and miglitol;
alpha2-antagonists; insulin and insulin analogues such as human insulin, insulin lispro, insulin glusilin, r-DNA-insulinaspart, NPH insulin, insulin detemir, insulin zinc suspension and insulin glargin; Gastric inhibitory Peptide (GIP); pramlintide;
amylin or GLP-1 and GLP-1 analogues such as Exendin-4; SGLT2-inhibitors such as KGT-1251;
inhibitors of protein tyrosine-phosphatase; inhibitors of glucose-6-phosphatase;
fructose-1,6-bisphosphatase modulators; glycogen phosphorylase modulators;
glucagon receptor antagonists; phosphoenolpyruvatecarboxykinase (PEPCK) inhibitors; pyruvate dehydrogenasekinase (PDK) inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, US 5093330, WO 2004/005281, and WO 2006/041976);
glucokinase/regulatory protein modulators incl. glucokinase activators;
glycogen synthase kinase inhibitors; inhibitors of the SH2-domain-containing inositol 5-phosphatase type 2 (SHIP2) ; IKK inhibitors such as high-dose salicylate ;
inhibitors ; protein kinase C-theta inhibitors; beta 3 agonists such as ritobegron, YM
178, solabegron, talibegron, N-5984, GRC-1087, rafabegron, FMP825;
aldosereductase inhibitors such as AS 3201, zenarestat, fidarestat, epalrestat, ranirestat, NZ-314, CP-744809, and CT-112; SGLT-1 or SGLT-2 inhibitors; KV 1.3 channel inhibitors; GPR40 modulators; SCD-1 inhibitors; CCR-2 antagonists; and other DPP IV inhibitors.
Metformin is usually given in doses varying from about 500 mg to 2000 mg up to mg per day using various dosing regimens from about 100 mg to 500 mg or 200 mg to 850 mg (1-3 times a day), or about 300 mg to 1000 mg once or twice a day, or delayed-release metformin in doses of about 100 mg to 1000 mg or preferably 500 mg to 1000 mg once or twice a day or about 500 mg to 2000 mg once a day.
Particular
-19-dosage strengths may be 250, 500, 625, 750, 850 and 1000 mg of metformin hydrochloride.
A dosage of pioglitazone is usually of about 1-10 mg, 15 mg, 30 mg, or 45 mg once a day, e.g. used as pioglitazone hydrochloride.
Glibenclamide (glyburide) is usually given in doses from 2.5 to 20 mg once (or twice) a day (typical dosage strengths are 1.25, 2.5 and 5 mg), or micronized glibenclamide in doses from 0.75 to 12 mg once a day (typical dosage strengths are 1.5, 3, 4.5 and 6 mg).
Glipizide is usually given in doses from 2.5 to 40 mg once (or twice) a day (typical dosage strengths are 5 and 10 mg), or extended-release glibenclamide in doses from 5 to 20 mg once a day (typical dosage strengths are 2.5, 5 and 10 mg).
Glimepiride is usually given in doses from 1 to 8 mg once a day (typical dosage strengths are 1, 2 and 4 mg).
A dual combination of glibenclamide/metformin is usually given in doses from 1.25/250 once daily to 10/1000 mg twice daily.
A dual combination of glipizide/metformin is usually given in doses from 2.5/250 to 10/1000 mg twice daily.
A dual combination of glimepiride/metformin is usually given in doses from 1/250 to 4/1000 mg twice daily.
A dual combination of rosiglitazone/glimepiride is usually given in doses from 4/1 once or twice daily to 4/2 mg twice daily.
A dual combination of pioglitazone/glimepiride is usually given in doses from 30/2 to 30/4 mg once daily.
A dual combination of rosiglitazone/metformin is usually given in doses from 1/500 to 4/1000 mg twice daily.
A dual combination of pioglitazone/metformin is usually given in doses from once or twice daily to 15/850 mg thrice daily.
The non-sulphonylurea insulin secretagogue nateglinide is usually given in doses from 60 to 120 mg with meals; repaglinide is usually given in doses from 0.5 to 4 mg with meals.
A dosage of pioglitazone is usually of about 1-10 mg, 15 mg, 30 mg, or 45 mg once a day, e.g. used as pioglitazone hydrochloride.
Glibenclamide (glyburide) is usually given in doses from 2.5 to 20 mg once (or twice) a day (typical dosage strengths are 1.25, 2.5 and 5 mg), or micronized glibenclamide in doses from 0.75 to 12 mg once a day (typical dosage strengths are 1.5, 3, 4.5 and 6 mg).
Glipizide is usually given in doses from 2.5 to 40 mg once (or twice) a day (typical dosage strengths are 5 and 10 mg), or extended-release glibenclamide in doses from 5 to 20 mg once a day (typical dosage strengths are 2.5, 5 and 10 mg).
Glimepiride is usually given in doses from 1 to 8 mg once a day (typical dosage strengths are 1, 2 and 4 mg).
A dual combination of glibenclamide/metformin is usually given in doses from 1.25/250 once daily to 10/1000 mg twice daily.
A dual combination of glipizide/metformin is usually given in doses from 2.5/250 to 10/1000 mg twice daily.
A dual combination of glimepiride/metformin is usually given in doses from 1/250 to 4/1000 mg twice daily.
A dual combination of rosiglitazone/glimepiride is usually given in doses from 4/1 once or twice daily to 4/2 mg twice daily.
A dual combination of pioglitazone/glimepiride is usually given in doses from 30/2 to 30/4 mg once daily.
A dual combination of rosiglitazone/metformin is usually given in doses from 1/500 to 4/1000 mg twice daily.
A dual combination of pioglitazone/metformin is usually given in doses from once or twice daily to 15/850 mg thrice daily.
The non-sulphonylurea insulin secretagogue nateglinide is usually given in doses from 60 to 120 mg with meals; repaglinide is usually given in doses from 0.5 to 4 mg with meals.
-20-Acarbose is usually given in doses from 25 to 100 mg with meals. Miglitol is usually given in doses from 25 to 100 mg with meals.
Examples of combination partners that lower the lipid level in the blood are HMG-CoA-reductase inhibitors such as simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin and rosuvastatin; fibrates such as bezafibrate, fenofibrate, clofibrate, gemfibrozil, etofibrate and etofyllinclofibrate; nicotinic acid and the derivatives thereof such as acipimox; PPAR-alpha agonists; PPAR-delta agonists; inhibitors of acyl-coenzyme A:cholesterolacyltransferase (ACAT; EC 2.3.1.26) such as avasimibe;
cholesterol resorption inhibitors such as ezetimib; substances that bind to bile acid, such as cholestyramine, colestipol and colesevelam; inhibitors of bile acid transport;
HDL modulating active substances such as D4F, reverse D4F, LXR modulating active substances and FXR modulating active substances; CETP inhibitors such as torcetrapib, JTT-705 or compound 12 from WO 2007/005572; LDL receptor modulators; and ApoB100 antisense RNA.
A dosage of atorvastatin is usually from 1 mg to 40 mg or 10 mg to 80 mg once a day Examples of combination partners that lower blood pressure are beta-blockers such as atenolol, bisoprolol, celiprolol, metoprolol and carvedilol; diuretics such as hydrochlorothiazide, chlortalidon, xipamide, furosemide, piretanide, torasemide, spironolactone, eplerenone, amiloride and triamterene; calcium channel blockers such as amlodipine, nifedipine, nitrendipine, nisoldipine, nicardipine, felodipine, lacidipine, lercanipidine, manidipine, isradipine, nilvadipine, verapamil, gallopamil and diltiazem;
ACE inhibitors such as ramipril, lisinopril, cilazapril, quinapril, captopril, enalapril, benazepril, perindopril, fosinopril and trandolapril; as well as angiotensin II receptor blockers (ARBs) such as telmisartan, candesartan, valsartan, losartan, irbesartan, olmesartan and eprosartan.
A dosage of telmisartan is usually from 20 mg to 320 mg or 40 mg to 160 mg per day.
Examples of combination partners which increase the HDL level in the blood are Cholesteryl Ester Transfer Protein (CETP) inhibitors; inhibitors of endothelial lipase;
regulators of ABC1; LXRalpha antagonists; LXRbeta agonists; PPAR-delta agonists;
Examples of combination partners that lower the lipid level in the blood are HMG-CoA-reductase inhibitors such as simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin and rosuvastatin; fibrates such as bezafibrate, fenofibrate, clofibrate, gemfibrozil, etofibrate and etofyllinclofibrate; nicotinic acid and the derivatives thereof such as acipimox; PPAR-alpha agonists; PPAR-delta agonists; inhibitors of acyl-coenzyme A:cholesterolacyltransferase (ACAT; EC 2.3.1.26) such as avasimibe;
cholesterol resorption inhibitors such as ezetimib; substances that bind to bile acid, such as cholestyramine, colestipol and colesevelam; inhibitors of bile acid transport;
HDL modulating active substances such as D4F, reverse D4F, LXR modulating active substances and FXR modulating active substances; CETP inhibitors such as torcetrapib, JTT-705 or compound 12 from WO 2007/005572; LDL receptor modulators; and ApoB100 antisense RNA.
A dosage of atorvastatin is usually from 1 mg to 40 mg or 10 mg to 80 mg once a day Examples of combination partners that lower blood pressure are beta-blockers such as atenolol, bisoprolol, celiprolol, metoprolol and carvedilol; diuretics such as hydrochlorothiazide, chlortalidon, xipamide, furosemide, piretanide, torasemide, spironolactone, eplerenone, amiloride and triamterene; calcium channel blockers such as amlodipine, nifedipine, nitrendipine, nisoldipine, nicardipine, felodipine, lacidipine, lercanipidine, manidipine, isradipine, nilvadipine, verapamil, gallopamil and diltiazem;
ACE inhibitors such as ramipril, lisinopril, cilazapril, quinapril, captopril, enalapril, benazepril, perindopril, fosinopril and trandolapril; as well as angiotensin II receptor blockers (ARBs) such as telmisartan, candesartan, valsartan, losartan, irbesartan, olmesartan and eprosartan.
A dosage of telmisartan is usually from 20 mg to 320 mg or 40 mg to 160 mg per day.
Examples of combination partners which increase the HDL level in the blood are Cholesteryl Ester Transfer Protein (CETP) inhibitors; inhibitors of endothelial lipase;
regulators of ABC1; LXRalpha antagonists; LXRbeta agonists; PPAR-delta agonists;
-21 -LXRalpha/beta regulators, and substances that increase the expression and/or plasma concentration of apolipoprotein A-I.
Examples of combination partners for the treatment of obesity are sibutramine;
tetrahydrolipstatin (orlistat); alizyme; dexfenfluramine; axokine; cannabinoid receptor 1 antagonists such as the CB1 antagonist rimonobant; MCH-1 receptor antagonists;
receptor agonists; NPY5 as well as NPY2 antagonists; beta3-AR agonists such as SB-418790 and AD-9677; 5HT2c receptor agonists such as APD 356; myostatin inhibitors;
Acrp30 and adiponectin; steroyl CoA desaturase (SCD1) inhibitors; fatty acid synthase (FAS) inhibitors; CCK receptor agonists; Ghrelin receptor modulators; Pyy 3-36; orexin receptor antagonists; and tesofensine.
Examples of combination partners for the treatment of atherosclerosis are phospholipase A2 inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, US 5093330, WO 2004/005281, and WO 2006/041976); oxLDL antibodies and oxLDL vaccines;
apoA-1 Milano; ASA; and VCAM-1 inhibitors.
It is to be understood that the other active substances mentioned herein as combination partners of the salts of this invention also comprise their pharmaceutically acceptable salts as well as hydrates, solvates and polymorphic forms thereof.
The present invention is not to be limited in scope by the specific embodiments described herein. Various modifications of the invention in addition to those described herein may become apparent to those skilled in the art from the present disclosure.
Such modifications are intended to fall within the scope of the appended claims.
For avoidance of any doubt, the disclosure of each of the documents and patent applications cited herein is specifically incorporated herein by reference in its entirety.
Further embodiments, features and advantages of the present invention may become apparent from the following examples. The following examples serve to illustrate, by way of example, the principles of the invention without restricting it.
Examples of combination partners for the treatment of obesity are sibutramine;
tetrahydrolipstatin (orlistat); alizyme; dexfenfluramine; axokine; cannabinoid receptor 1 antagonists such as the CB1 antagonist rimonobant; MCH-1 receptor antagonists;
receptor agonists; NPY5 as well as NPY2 antagonists; beta3-AR agonists such as SB-418790 and AD-9677; 5HT2c receptor agonists such as APD 356; myostatin inhibitors;
Acrp30 and adiponectin; steroyl CoA desaturase (SCD1) inhibitors; fatty acid synthase (FAS) inhibitors; CCK receptor agonists; Ghrelin receptor modulators; Pyy 3-36; orexin receptor antagonists; and tesofensine.
Examples of combination partners for the treatment of atherosclerosis are phospholipase A2 inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, US 5093330, WO 2004/005281, and WO 2006/041976); oxLDL antibodies and oxLDL vaccines;
apoA-1 Milano; ASA; and VCAM-1 inhibitors.
It is to be understood that the other active substances mentioned herein as combination partners of the salts of this invention also comprise their pharmaceutically acceptable salts as well as hydrates, solvates and polymorphic forms thereof.
The present invention is not to be limited in scope by the specific embodiments described herein. Various modifications of the invention in addition to those described herein may become apparent to those skilled in the art from the present disclosure.
Such modifications are intended to fall within the scope of the appended claims.
For avoidance of any doubt, the disclosure of each of the documents and patent applications cited herein is specifically incorporated herein by reference in its entirety.
Further embodiments, features and advantages of the present invention may become apparent from the following examples. The following examples serve to illustrate, by way of example, the principles of the invention without restricting it.
-22-Examples Synthesis/Preparation 0.5 g of the free base of BI 1356 are suspended at room temperature in 4 ml of EtOH.
The suspension is heated under reflux until a clear solution is obtained which typically is obtained after a few minutes. 1 mol equivalent of the respective acid (see Table 1), either dissolved in EtOH or water is added to the hot solution of BI 1356.
Afterwards heating is removed and the solution is slowly cooled down and stored over night at room temperature. In case precipitation is observed, the obtained crystals are removed by filtering and afterwards dried over night at ambient conditions. In case no precipitation was observed the solution is evaporated partially (by approx. 50 %) and than stored for another night in the refrigerator (4 C). Precipitated crystals are also removed by filtering and afterwards dried over night at ambient conditions.
The obtained crystals are analysed by polarized light microscopy, X-ray powder diffraction and thermal analysis.
Used equipment for X-ray powder diffraction measurements:
STOE Stadi P X-ray powder diffractometer with a position sensitive detector working in transmission mode with a curved Germanium (111) primary monochromator; used wavelength: CuKc,, mit J~ = 1.540598 A; power settings of X-ray tube: 40 kV, 40 mA;
2 O-range: 3 - 40 For indexing of the X-ray powder patterns where single crystal structure data is available the program TREOR was used which is part of the STOE Stadi P
software package. Tables 2 - 13 show the characteristic X-ray peaks including normalised intensities up to 30 in 2 O. The respective XRPD - diagrams are shown in Figures 1 -12 in the appendix.
Used equipment for thermoanalysis:
A DSC 822 from Fa. Mettler Toldeo was used. The following standard parameters were applied: heating rate: 10 K/min; crucible type: pin-holed aluminium crucible;
atmosphere: N2, 80 ml/min flow rate; typical weight-in quantities: 3 -10 mg.
The suspension is heated under reflux until a clear solution is obtained which typically is obtained after a few minutes. 1 mol equivalent of the respective acid (see Table 1), either dissolved in EtOH or water is added to the hot solution of BI 1356.
Afterwards heating is removed and the solution is slowly cooled down and stored over night at room temperature. In case precipitation is observed, the obtained crystals are removed by filtering and afterwards dried over night at ambient conditions. In case no precipitation was observed the solution is evaporated partially (by approx. 50 %) and than stored for another night in the refrigerator (4 C). Precipitated crystals are also removed by filtering and afterwards dried over night at ambient conditions.
The obtained crystals are analysed by polarized light microscopy, X-ray powder diffraction and thermal analysis.
Used equipment for X-ray powder diffraction measurements:
STOE Stadi P X-ray powder diffractometer with a position sensitive detector working in transmission mode with a curved Germanium (111) primary monochromator; used wavelength: CuKc,, mit J~ = 1.540598 A; power settings of X-ray tube: 40 kV, 40 mA;
2 O-range: 3 - 40 For indexing of the X-ray powder patterns where single crystal structure data is available the program TREOR was used which is part of the STOE Stadi P
software package. Tables 2 - 13 show the characteristic X-ray peaks including normalised intensities up to 30 in 2 O. The respective XRPD - diagrams are shown in Figures 1 -12 in the appendix.
Used equipment for thermoanalysis:
A DSC 822 from Fa. Mettler Toldeo was used. The following standard parameters were applied: heating rate: 10 K/min; crucible type: pin-holed aluminium crucible;
atmosphere: N2, 80 ml/min flow rate; typical weight-in quantities: 3 -10 mg.
-23-A TGA/SDTA 851 from Mettler Toledo coupled with a Nicolet FT-IR 4700 spectrometer was used (for analysis of volatile material). The following standard parameters were applied: heating rate: 10 K/min; crucible type: open aluminium oxide crucible;
atmosphere: N2, 20 ml/min flow rate; typical weight-in quantities: 15 - 25 mg.
The melting point (= Tfus) measured by DSC is given in Table 1.
Table 1: Salt formation of BI 1356 salt form stoichiometry thermal analysis XRPD-data (used acid) base:c.i. (m.p.) besylate 1:1 Tfus: ca. 175 C see Tab. 2 (benzenesulfonic acid) & Fig. 1 bromide 1:1 Tfus: ca. 175 C see Tab. 3 (hydrobromic acid) & Fig. 2 benzoate 1:1 Tfus: ca. 155 C see Tab. 4 (benzoic acid) & Fig. 3 esylate 1:1 Tfus: ca. 190 C see Tab. 5 (ethanesulfonic acid) & Fig. 4 fumarate 1:1 Tfus: ca. 225 C see Tab. 6 (fumaric acid) & Fig. 5 mesylate 1:1 Tfus: ca. 160 C see Tab. 7 (methanesulfonic acid) & Fig. 6 salicylate 1:1 Tfus: ca. 165 C see Tab. 8 (salicylic acid) & Fig. 7 tosylate 1:1 Tfus : ca. 160 C see Tab. 9 (p-toluenesulfonic acid) & Fig. 8 chloride 1:1 Tfus: ca. 175 C see Tab. 10 (hydrochloric acid) & Fig. 9 glyoclate 1:1 Tfus: ca. 165 C see Tab. 11 (glycolic acid) & Fig. 10 malonate 1:1 Tfus: ca. 100 C see Tab. 12 (malonic acid) & Fig. 11 gentisate 1:1 Tfus: ca. 170 C see Tab. 13 (2,5-dihydroxybenzoic acid) & Fig. 12
atmosphere: N2, 20 ml/min flow rate; typical weight-in quantities: 15 - 25 mg.
The melting point (= Tfus) measured by DSC is given in Table 1.
Table 1: Salt formation of BI 1356 salt form stoichiometry thermal analysis XRPD-data (used acid) base:c.i. (m.p.) besylate 1:1 Tfus: ca. 175 C see Tab. 2 (benzenesulfonic acid) & Fig. 1 bromide 1:1 Tfus: ca. 175 C see Tab. 3 (hydrobromic acid) & Fig. 2 benzoate 1:1 Tfus: ca. 155 C see Tab. 4 (benzoic acid) & Fig. 3 esylate 1:1 Tfus: ca. 190 C see Tab. 5 (ethanesulfonic acid) & Fig. 4 fumarate 1:1 Tfus: ca. 225 C see Tab. 6 (fumaric acid) & Fig. 5 mesylate 1:1 Tfus: ca. 160 C see Tab. 7 (methanesulfonic acid) & Fig. 6 salicylate 1:1 Tfus: ca. 165 C see Tab. 8 (salicylic acid) & Fig. 7 tosylate 1:1 Tfus : ca. 160 C see Tab. 9 (p-toluenesulfonic acid) & Fig. 8 chloride 1:1 Tfus: ca. 175 C see Tab. 10 (hydrochloric acid) & Fig. 9 glyoclate 1:1 Tfus: ca. 165 C see Tab. 11 (glycolic acid) & Fig. 10 malonate 1:1 Tfus: ca. 100 C see Tab. 12 (malonic acid) & Fig. 11 gentisate 1:1 Tfus: ca. 170 C see Tab. 13 (2,5-dihydroxybenzoic acid) & Fig. 12
-24-Table 2: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the besylate salt of BI 1356 20 dhkl I/1o [0] [A]
3,95 22,37 41 7,35 12,02 12 7,86 11,24 37 9,73 9,09 67 10,95 8,07 15 11,95 7,40 100 13,18 6,71 14 14,71 6,02 16 15,12 5,85 46 15,49 5,71 50 17,38 5,10 16 18,25 4,86 26 19,01 4,66 81 19,95 4,45 19 21,49 4,13 27 22,59 3,93 52 23,15 3,84 25 24,16 3,68 16
3,95 22,37 41 7,35 12,02 12 7,86 11,24 37 9,73 9,09 67 10,95 8,07 15 11,95 7,40 100 13,18 6,71 14 14,71 6,02 16 15,12 5,85 46 15,49 5,71 50 17,38 5,10 16 18,25 4,86 26 19,01 4,66 81 19,95 4,45 19 21,49 4,13 27 22,59 3,93 52 23,15 3,84 25 24,16 3,68 16
25,71 3,46 22
26,60 3,35 14
27,32 3,26 15
28,44 3,14 6
29,60 3,02 6 Table 3: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the bromide salt of BI 1356 20 dhkl I/1o [0] [A]
4,14 21,31 29 8,31 10,63 36 9,53 9,27 100 10,43 8,48 31 11,62 7,61 49 11,83 7,47 32 12,58 7,03 58 13,31 6,64 9 14,45 6,13 24 15,03 5,89 42 15,67 5,65 23 16,66 5,32 41 17,23 5,14 34 19,17 4,63 41 19,57 4,53 23 19,80 4,48 88 20,84 4,26 27 21,43 4,14 20 21,82 4,07 83 22,19 4,00 56 22,75 3,91 48 23,57 3,77 33 23,84 3,73 27 24,10 3,69 19 24,67 3,61 17 25,32 3,51 84 27,51 3,24 23 27,78 3,21 29 29,17 3,06 26 Table 4: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the benzoate salt of BI 1356 20 dhkl I/1o [0] [A]
3,91 22,56 88 7,82 11,30 6 9,75 9,06 100 10,84 8,16 11 11,38 7,77 19 11,76 7,52 59 12,26 7,22 22 13,04 6,78 6 14,76 6,00 11 15,29 5,79 12 15,94 5,56 25 16,35 5,42 25 16,95 5,23 28 18,17 4,88 25 18,86 4,70 71 19,28 4,60 7 19,60 4,53 8 20,32 4,37 12 21,49 4,13 19 21,76 4,08 11 22,07 4,02 6 22,40 3,97 23 23,23 3,83 8 23,76 3,74 47 24,34 3,65 10 24,64 3,61 21 25,22 3,53 3 25,90 3,44 15 26,07 3,42 13 26,85 3,32 6 27,43 3,25 14 28,02 3,18 5 28,52 3,13 10 28,87 3,09 4 29,84 2,99 8 Table 5: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the esylate salt of BI 1356 20 dhkl I/1o [0] [A]
4,06 21,75 46 8,12 10,87 30 9,70 9,11 100 10,74 8,23 24 11,51 7,68 40 11,83 7,48 69 12,35 7,16 10 12,59 7,03 8 14,52 6,09 17 15,17 5,83 46 16,07 5,51 15 16,32 5,43 44 16,79 5,28 26 18,15 4,88 18 18,47 4,80 23 18,78 4,72 21 19,56 4,53 60 20,37 4,36 23 21,45 4,14 32 21,64 4,10 28 22,41 3,96 53 23,35 3,81 10 24,19 3,68 9 24,76 3,59 24 24,98 3,56 25 25,30 3,52 8 25,99 3,43 5 26,83 3,32 17 27,08 3,29 12 28,10 3,17 10 29,32 3,04 5 Table 6: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the fumarate salt of BI 1356 20 dhkl I/1o [0] [A]
4,23 20,86 36 6,06 14,58 15 8,24 10,72 100 9,92 8,91 34 10,82 8,17 21 11,69 7,56 28 12,26 7,22 70 12,43 7,12 39 12,89 6,86 43 13,70 6,46 36 13,87 6,38 15 14,50 6,10 13 15,19 5,83 17 15,98 5,54 39 16,67 5,31 25 18,75 4,73 37 20,16 4,40 13 20,30 4,37 20 20,58 4,31 32 20,93 4,24 24 21,25 4,18 20 21,93 4,05 40 22,57 3,94 24 23,47 3,79 21 23,71 3,75 30 24,09 3,69 28 24,42 3,64 46 25,04 3,55 22 25,67 3,47 19 25,90 3,44 7 26,62 3,35 14 26,94 3,31 16 27,22 3,27 25 27,50 3,24 25 29,19 3,06 7 Table 7: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the mesylate salt of BI 1356 20 dhkl I/1o [0] [A]
4,15 21,29 71 8,29 10,66 83 9,59 9,22 93 10,59 8,35 12 11,56 7,65 66 11,80 7,49 70 12,42 7,12 39
4,14 21,31 29 8,31 10,63 36 9,53 9,27 100 10,43 8,48 31 11,62 7,61 49 11,83 7,47 32 12,58 7,03 58 13,31 6,64 9 14,45 6,13 24 15,03 5,89 42 15,67 5,65 23 16,66 5,32 41 17,23 5,14 34 19,17 4,63 41 19,57 4,53 23 19,80 4,48 88 20,84 4,26 27 21,43 4,14 20 21,82 4,07 83 22,19 4,00 56 22,75 3,91 48 23,57 3,77 33 23,84 3,73 27 24,10 3,69 19 24,67 3,61 17 25,32 3,51 84 27,51 3,24 23 27,78 3,21 29 29,17 3,06 26 Table 4: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the benzoate salt of BI 1356 20 dhkl I/1o [0] [A]
3,91 22,56 88 7,82 11,30 6 9,75 9,06 100 10,84 8,16 11 11,38 7,77 19 11,76 7,52 59 12,26 7,22 22 13,04 6,78 6 14,76 6,00 11 15,29 5,79 12 15,94 5,56 25 16,35 5,42 25 16,95 5,23 28 18,17 4,88 25 18,86 4,70 71 19,28 4,60 7 19,60 4,53 8 20,32 4,37 12 21,49 4,13 19 21,76 4,08 11 22,07 4,02 6 22,40 3,97 23 23,23 3,83 8 23,76 3,74 47 24,34 3,65 10 24,64 3,61 21 25,22 3,53 3 25,90 3,44 15 26,07 3,42 13 26,85 3,32 6 27,43 3,25 14 28,02 3,18 5 28,52 3,13 10 28,87 3,09 4 29,84 2,99 8 Table 5: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the esylate salt of BI 1356 20 dhkl I/1o [0] [A]
4,06 21,75 46 8,12 10,87 30 9,70 9,11 100 10,74 8,23 24 11,51 7,68 40 11,83 7,48 69 12,35 7,16 10 12,59 7,03 8 14,52 6,09 17 15,17 5,83 46 16,07 5,51 15 16,32 5,43 44 16,79 5,28 26 18,15 4,88 18 18,47 4,80 23 18,78 4,72 21 19,56 4,53 60 20,37 4,36 23 21,45 4,14 32 21,64 4,10 28 22,41 3,96 53 23,35 3,81 10 24,19 3,68 9 24,76 3,59 24 24,98 3,56 25 25,30 3,52 8 25,99 3,43 5 26,83 3,32 17 27,08 3,29 12 28,10 3,17 10 29,32 3,04 5 Table 6: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the fumarate salt of BI 1356 20 dhkl I/1o [0] [A]
4,23 20,86 36 6,06 14,58 15 8,24 10,72 100 9,92 8,91 34 10,82 8,17 21 11,69 7,56 28 12,26 7,22 70 12,43 7,12 39 12,89 6,86 43 13,70 6,46 36 13,87 6,38 15 14,50 6,10 13 15,19 5,83 17 15,98 5,54 39 16,67 5,31 25 18,75 4,73 37 20,16 4,40 13 20,30 4,37 20 20,58 4,31 32 20,93 4,24 24 21,25 4,18 20 21,93 4,05 40 22,57 3,94 24 23,47 3,79 21 23,71 3,75 30 24,09 3,69 28 24,42 3,64 46 25,04 3,55 22 25,67 3,47 19 25,90 3,44 7 26,62 3,35 14 26,94 3,31 16 27,22 3,27 25 27,50 3,24 25 29,19 3,06 7 Table 7: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the mesylate salt of BI 1356 20 dhkl I/1o [0] [A]
4,15 21,29 71 8,29 10,66 83 9,59 9,22 93 10,59 8,35 12 11,56 7,65 66 11,80 7,49 70 12,42 7,12 39
-30-12,57 7,03 56 14,45 6,12 17 14,91 5,94 25 15,16 5,84 31 15,40 5,75 72 16,05 5,52 26 16,47 5,38 80 17,03 5,20 35 17,32 5,12 19 18,02 4,92 15 18,38 4,82 15 18,83 4,71 27 19,58 4,53 98 19,87 4,46 27 20,14 4,41 14 20,61 4,31 46 21,61 4,11 75 22,15 4,01 20 22,51 3,95 100 23,38 3,80 22 23,72 3,75 15 23,96 3,71 20 24,16 3,68 14 25,02 3,56 93 25,29 3,52 25 26,60 3,35 27 27,01 3,30 17 27,60 3,23 16 28,15 3,17 20 29,20 3,06 11
-31-Table 8: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of salicylate salt of BI 1356 20 dhkl I/1o [0] [A]
3,91 22,61 100 7,79 11,33 6 9,85 8,97 69 11,15 7,93 12 11,74 7,53 59 12,12 7,30 12 12,86 6,88 7 14,77 5,99 8 15,08 5,87 11 15,32 5,78 14 15,69 5,64 23 15,98 5,54 12 16,42 5,39 16 17,05 5,20 10 18,27 4,85 20 18,74 4,73 23 18,92 4,69 34 19,95 4,45 18 20,32 4,37 7 21,41 4,15 12 21,96 4,04 9 22,46 3,96 8 23,10 3,85 8 23,52 3,78 62 24,34 3,65 11 25,16 3,54 6 25,87 3,44 9 26,69 3,34 7 27,50 3,24 10
3,91 22,61 100 7,79 11,33 6 9,85 8,97 69 11,15 7,93 12 11,74 7,53 59 12,12 7,30 12 12,86 6,88 7 14,77 5,99 8 15,08 5,87 11 15,32 5,78 14 15,69 5,64 23 15,98 5,54 12 16,42 5,39 16 17,05 5,20 10 18,27 4,85 20 18,74 4,73 23 18,92 4,69 34 19,95 4,45 18 20,32 4,37 7 21,41 4,15 12 21,96 4,04 9 22,46 3,96 8 23,10 3,85 8 23,52 3,78 62 24,34 3,65 11 25,16 3,54 6 25,87 3,44 9 26,69 3,34 7 27,50 3,24 10
-32-28,85 3,09 4 29,69 3,01 3 30,28 2,95 10 Table 9: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of tosylate salt of BI 1356 20 dhkl I/1o [0] [A]
3,79 23,32 25 7,58 11,66 10 7,74 11,42 14 10,05 8,79 18 11,20 7,89 27 11,96 7,39 100 12,42 7,12 33 12,79 6,92 16 13,34 6,63 7 14,34 6,17 39 15,47 5,72 16 15,99 5,54 23 16,46 5,38 13 17,55 5,05 8 18,47 4,80 12 18,85 4,70 20 20,05 4,42 50 21,22 4,18 43 21,61 4,11 19 22,14 4,01 59 22,79 3,90 10 23,42 3,80 10 24,03 3,70 29 24,55 3,62 24
3,79 23,32 25 7,58 11,66 10 7,74 11,42 14 10,05 8,79 18 11,20 7,89 27 11,96 7,39 100 12,42 7,12 33 12,79 6,92 16 13,34 6,63 7 14,34 6,17 39 15,47 5,72 16 15,99 5,54 23 16,46 5,38 13 17,55 5,05 8 18,47 4,80 12 18,85 4,70 20 20,05 4,42 50 21,22 4,18 43 21,61 4,11 19 22,14 4,01 59 22,79 3,90 10 23,42 3,80 10 24,03 3,70 29 24,55 3,62 24
-33-26,62 3,35 16 27,62 3,23 15 Table 10: Indexed X-ray diffraction peaks (up to 30 2 0) including normalised intensities of the tetrahydrate of the hydrochloride of Indexing 2 Oobs 2 20 dhkl Ino Ocalc [0] [A] h k I [0]
4,52 19,55 43 0 0 1 0,002 9,86 8,97 100 2 0 0 -0,002 10,56 8,37 7 -2 0 1 0,001 11,60 7,62 70 0 1 1 0,011 11,77 7,52 64 1 1 0 0,005 12,49 7,08 92 -1 1 1 0,006 12,72 6,95 13 1 1 1 -0,005 13,83 6,40 58 2 0 2 -0,007 15,04 5,89 56 -2 1 1 0,005 15,43 5,74 41 2 1 1 -0,006 16,78 5,28 6 -2 1 2 -0,009 17,50 5,06 42 2 1 2 -0,006 18,28 4,85 6 1 1 3 0,028 19,08 4,65 47 3 1 1 -0,008 19,47 4,56 17 -3 0 3 0,036 20,00 4,44 27 -3 1 2 0,029 20,61 4,31 8 4 0 1 -0,002 20,90 4,25 16 3 1 2 0,017 21,44 4,14 29 0 2 0 -0,003 22,01 4,04 49 1 2 0 -0,003 22,37 3,97 96 4 0 2 0,013 22,78 3,90 16 -2 1 4 -0,002 23,44 3,79 35 3 1 3 -0,010
4,52 19,55 43 0 0 1 0,002 9,86 8,97 100 2 0 0 -0,002 10,56 8,37 7 -2 0 1 0,001 11,60 7,62 70 0 1 1 0,011 11,77 7,52 64 1 1 0 0,005 12,49 7,08 92 -1 1 1 0,006 12,72 6,95 13 1 1 1 -0,005 13,83 6,40 58 2 0 2 -0,007 15,04 5,89 56 -2 1 1 0,005 15,43 5,74 41 2 1 1 -0,006 16,78 5,28 6 -2 1 2 -0,009 17,50 5,06 42 2 1 2 -0,006 18,28 4,85 6 1 1 3 0,028 19,08 4,65 47 3 1 1 -0,008 19,47 4,56 17 -3 0 3 0,036 20,00 4,44 27 -3 1 2 0,029 20,61 4,31 8 4 0 1 -0,002 20,90 4,25 16 3 1 2 0,017 21,44 4,14 29 0 2 0 -0,003 22,01 4,04 49 1 2 0 -0,003 22,37 3,97 96 4 0 2 0,013 22,78 3,90 16 -2 1 4 -0,002 23,44 3,79 35 3 1 3 -0,010
-34-23,95 3,71 12 -2 2 1 -0,010 24,22 3,67 10 2 2 1 < 0,001 24,82 3,58 61 5 0 0 0,017 25,12 3,54 78 -2 2 2 0,004 25,64 3,47 27 2 2 2 0,033 26,13 3,41 7 1 2 3 0,004 26,38 3,38 18 -3 0 5 0,040 27,38 3,25 20 -3 2 2 0,001 27,75 3,21 25 5 1 1 < 0,001 28,47 3,13 22 -1 2 4 0,036 29,14 3,06 16 5 1 2 -0,006 29,49 3,03 20 -4 2 1 0,008 Indexing is possible with a monoclinic cell, space group P21, with the following lattice parameters: a = 17,974(4) A, b = 8,282(3) A, c = 19,607(6), R = 93,9(2) , V = 2912(2) A3. All 35 peaks can be indexed with a figure of merit of 42,1 Table 11: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of glycolate salt of BI 1356 2 0 dhkl I/1o [0] [A]
3,16 27,94 18 5,54 15,95 4 6,35 13,90 100 8,41 10,51 31 9,55 9,25 15 11,05 8,00 5 11,48 7,70 26 13,88 6,37 13 15,94 5,56 14 17,81 4,98 2 18,11 4,90 2
3,16 27,94 18 5,54 15,95 4 6,35 13,90 100 8,41 10,51 31 9,55 9,25 15 11,05 8,00 5 11,48 7,70 26 13,88 6,37 13 15,94 5,56 14 17,81 4,98 2 18,11 4,90 2
-35-18,96 4,68 4 19,45 4,56 4 19,95 4,45 10 21,01 4,22 29 21,97 4,04 3 22,67 3,92 26 23,12 3,84 14 24,01 3,70 2 24,63 3,61 2 25,27 3,52 7 26,49 3,36 8 26,88 3,31 13 27,65 3,22 7 28,75 3,10 1 29,44 3,03 2 30,21 2,96 1 Table 12: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of malonate salt of BI 1356 20 dhkl I/1o [0] [A]
4,14 21,34 62 7,96 11,10 11 8,30 10,65 40 9,67 9,14 51 10,14 8,72 5 10,39 8,50 10 11,48 7,70 39 11,76 7,52 35 11,97 7,39 15 12,52 7,06 100 13,54 6,53 5
4,14 21,34 62 7,96 11,10 11 8,30 10,65 40 9,67 9,14 51 10,14 8,72 5 10,39 8,50 10 11,48 7,70 39 11,76 7,52 35 11,97 7,39 15 12,52 7,06 100 13,54 6,53 5
-36-14,45 6,12 11 14,97 5,91 19 15,10 5,86 16 15,52 5,71 35 16,07 5,51 4 16,50 5,37 54 17,01 5,21 14 17,28 5,13 19 18,07 4,91 17 18,44 4,81 31 18,67 4,75 13 18,95 4,68 11 19,32 4,59 20 19,70 4,50 60 19,98 4,44 13 20,55 4,32 23 20,86 4,25 14 21,50 4,13 33 21,73 4,09 38 22,37 3,97 33 22,75 3,91 71 23,51 3,78 31 24,00 3,70 21 25,19 3,53 57 25,89 3,44 10 26,45 3,37 8 26,87 3,32 17 27,53 3,24 16 28,14 3,17 13 28,75 3,10 4 29,22 3,05 11 29,46 3,03 11
-37-Table 13: X-ray diffraction peaks (up to 30 2 0) including normalised intensities of gentisate salt of BI 1356 20 dhkl I/1o [0] [A]
4,06 21,73 100 9,69 9,12 90 10,83 8,16 11 11,30 7,83 75 11,72 7,55 85 13,15 6,73 12 14,34 6,17 20 14,70 6,02 31 15,14 5,85 21 15,70 5,64 11 16,15 5,48 35 16,50 5,37 8 16,89 5,24 15 18,02 4,92 7 18,71 4,74 6 19,08 4,65 25 19,41 4,57 64 21,15 4,20 23 21,37 4,16 18 21,80 4,07 11 22,33 3,98 7 22,72 3,91 10 23,21 3,83 26 23,85 3,73 81 24,20 3,67 30 24,51 3,63 16 24,92 3,57 18 25,79 3,45 18 25,99 3,43 13
4,06 21,73 100 9,69 9,12 90 10,83 8,16 11 11,30 7,83 75 11,72 7,55 85 13,15 6,73 12 14,34 6,17 20 14,70 6,02 31 15,14 5,85 21 15,70 5,64 11 16,15 5,48 35 16,50 5,37 8 16,89 5,24 15 18,02 4,92 7 18,71 4,74 6 19,08 4,65 25 19,41 4,57 64 21,15 4,20 23 21,37 4,16 18 21,80 4,07 11 22,33 3,98 7 22,72 3,91 10 23,21 3,83 26 23,85 3,73 81 24,20 3,67 30 24,51 3,63 16 24,92 3,57 18 25,79 3,45 18 25,99 3,43 13
-38-26,27 3,39 9 26,81 3,32 8 27,32 3,26 9 27,84 3,20 5 28,62 3,12 5 29,27 3,05 8 29,61 3,01 8 29,96 2,98 9
Claims (15)
1. A salt of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine and a pharmaceutically acceptable acid in a 1:1 stoichiometry.
2. An acid addition salt of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine with an acid selected from hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, acetic acid, 2,2-dichloroacetic acid, adipic acid, ascorbic acid (D- or L-form thereof, especially the L-form thereof), aspartic acid (D- or L-form thereof, especially the L-form thereof), benzenesulfonic acid, benzoic acid, 4-acetamido-benzoic acid, camphoric acid ((+)- or (-)-form thereof, especially the (+)-form thereof), camphor-10-sulfonic acid ((+)- or (-)-form thereof, especially the (+)-form thereof), capric acid (decanoic acid), caproic acid (hexanoic acid), caprylic acid (octanoic acid), carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxy-ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid (D- or L-form thereof, especially the D-form thereof), gluconic acid (D- or L-form thereof, especially the D-form thereof); glucuronic acid (D- or L-form thereof, especially the D-form thereof), glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid (D- or L-form thereof), lactobionic acid, lauric acid, maleic acid, malic acid (D- or L-form thereof), malonic acid, mandelic acid (D- or L-form thereof), methanesulfonic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid (embonic acid), propionic acid, pyroglutamic acid (D- or L-form thereof, especially the L-form thereof), salicyclic acid, 4-aminosalicyclic acid, sebacic acid, stearic acid, succinic acid, tartaric acid (D- or L-form thereof), thiocyanic acid, toluenesulfonic acid (especially the p-isomer thereof) and undecylenic acid, or its solvates, hydrates or mixtures thereof.
3. A salt according to claim 1 or 2, which is selected from the group consisting of a besylate salt, a hydrobromide salt, a benzoate salt, an esylate salt, a fumarate salt, a mesylate salt, a salicylate salt, a tosylate salt, a hydrochloride salt, a glycolate salt, a malonate salt and a gentisate salt, or organic solvates, hydrates or mixed hydrates/organic solvates thereof, or in any case a crystal form thereof.
4. A salt according to any one of claims 1 to 3, in the form of a solvate.
5. A salt according to any one of claims 1 to 4, in the form of an organic solvate, such as e.g. in form of an ethanolate.
6. A salt according to any one of claims 1 to 4, in the form of a hydrate.
7. A salt according to any one of claims 1 to 6, in the form of a mixed hydrate/organic solvate, such as e.g. in form of a mixed hydrate/ethanolate.
8. A compound according to any one of claims 1 to 7, in crystalline, partially crystalline, amorphous or polymorphous form.
9. A pharmaceutical composition comprising a compound according to any one of claims 1 to 8, optionally together with one or more pharmaceutically acceptable carriers and/or diluents.
10. The pharmaceutical composition according to claim 9, further comprising one or more other active substances.
11. A pharmaceutical composition made by mixing a compound according to any one of claims 1 to 8, and one or more pharmaceutically acceptable excipients, and, optionally, one or more other active substances.
12. A method for treating and/or preventing a disease, disorder or condition mediated by the enzyme DPP-4, particularly type 2 diabetes mellitus, comprising administering to a subject in need thereof, a therapeutically effective amount of a compound according to any one of claims 1 to 8, optionally in combination with one or more other therapeutically active agents.
13. A process for preparing an acid addition salt according to any one of claims 1 to 8 comprising one or more of the following i.) forming a solution comprising 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine and the acid, ii.) inducing crystallization of the salt, and iii.) recovering the crystalline 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine salt.
14. An organic solution, such as e.g. an alcoholic solution, of a salt according to any one of claims 1 to 8, said solution optionally further comprising water.
15. The solution as indicated in claim 13 or 14, wherein the solvent is ethanol, optionally with water.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08172785 | 2008-12-23 | ||
EP08172785.1 | 2008-12-23 | ||
PCT/EP2009/067772 WO2010072776A1 (en) | 2008-12-23 | 2009-12-22 | Salt forms of organic compound |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2745037A1 true CA2745037A1 (en) | 2010-07-01 |
CA2745037C CA2745037C (en) | 2020-06-23 |
Family
ID=42044748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2745037A Active CA2745037C (en) | 2008-12-23 | 2009-12-22 | Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8(3-(r)-amino-piperidin-1-yl)-xanthine |
Country Status (16)
Country | Link |
---|---|
US (2) | US8865729B2 (en) |
EP (1) | EP2382216A1 (en) |
JP (2) | JP2012512848A (en) |
KR (1) | KR20110103968A (en) |
CN (2) | CN107011345A (en) |
AR (1) | AR074879A1 (en) |
AU (1) | AU2009331471B2 (en) |
BR (1) | BRPI0923121A2 (en) |
CA (1) | CA2745037C (en) |
CL (1) | CL2011001182A1 (en) |
EA (1) | EA022310B1 (en) |
IL (1) | IL212604A0 (en) |
MX (1) | MX2011006713A (en) |
NZ (1) | NZ592924A (en) |
TW (1) | TWI508965B (en) |
WO (1) | WO2010072776A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8551957B2 (en) | 2007-08-16 | 2013-10-08 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivate |
US9555001B2 (en) | 2012-03-07 | 2017-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition and uses thereof |
US20180185291A1 (en) | 2011-03-07 | 2018-07-05 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions |
US10406172B2 (en) | 2009-02-13 | 2019-09-10 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7407955B2 (en) | 2002-08-21 | 2008-08-05 | Boehringer Ingelheim Pharma Gmbh & Co., Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
US7501426B2 (en) | 2004-02-18 | 2009-03-10 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions |
DE102004054054A1 (en) | 2004-11-05 | 2006-05-11 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines |
DE102005035891A1 (en) | 2005-07-30 | 2007-02-08 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8- (3-amino-piperidin-1-yl) -xanthines, their preparation and their use as pharmaceuticals |
EP1852108A1 (en) | 2006-05-04 | 2007-11-07 | Boehringer Ingelheim Pharma GmbH & Co.KG | DPP IV inhibitor formulations |
WO2007128721A1 (en) | 2006-05-04 | 2007-11-15 | Boehringer Ingelheim Internationalgmbh | Polymorphs |
PE20110235A1 (en) | 2006-05-04 | 2011-04-14 | Boehringer Ingelheim Int | PHARMACEUTICAL COMBINATIONS INCLUDING LINAGLIPTIN AND METMORPHINE |
PE20091730A1 (en) | 2008-04-03 | 2009-12-10 | Boehringer Ingelheim Int | FORMULATIONS INVOLVING A DPP4 INHIBITOR |
EP2146210A1 (en) | 2008-04-07 | 2010-01-20 | Arena Pharmaceuticals, Inc. | Methods of using A G protein-coupled receptor to identify peptide YY (PYY) secretagogues and compounds useful in the treatment of conditions modulated by PYY |
UY32030A (en) | 2008-08-06 | 2010-03-26 | Boehringer Ingelheim Int | "TREATMENT FOR DIABETES IN INAPPROPRIATE PATIENTS FOR THERAPY WITH METFORMIN" |
KR20200118243A (en) | 2008-08-06 | 2020-10-14 | 베링거 인겔하임 인터내셔날 게엠베하 | Treatment for diabetes in patients inappropriate for metformin therapy |
US8513264B2 (en) | 2008-09-10 | 2013-08-20 | Boehringer Ingelheim International Gmbh | Combination therapy for the treatment of diabetes and related conditions |
US20200155558A1 (en) | 2018-11-20 | 2020-05-21 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug |
TWI508965B (en) | 2008-12-23 | 2015-11-21 | Boehringer Ingelheim Int | Salt forms of organic compound |
AR074990A1 (en) | 2009-01-07 | 2011-03-02 | Boehringer Ingelheim Int | TREATMENT OF DIABETES IN PATIENTS WITH AN INAPPROPRIATE GLUCEMIC CONTROL THROUGH METFORMIN THERAPY |
EP2504002B1 (en) | 2009-11-27 | 2019-10-09 | Boehringer Ingelheim International GmbH | Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin |
EP2562176B1 (en) | 2010-04-22 | 2018-08-15 | Nihon University | Medicinal agent and beverage/food for preventing cerebral dysfunction and improving same |
US9186392B2 (en) | 2010-05-05 | 2015-11-17 | Boehringer Ingelheim International Gmbh | Combination therapy |
MX2012014247A (en) | 2010-06-24 | 2013-01-18 | Boehringer Ingelheim Int | Diabetes therapy. |
EP2407469A1 (en) * | 2010-07-13 | 2012-01-18 | Chemo Ibérica, S.A. | Salt of sitagliptin |
AR083878A1 (en) | 2010-11-15 | 2013-03-27 | Boehringer Ingelheim Int | VASOPROTECTORA AND CARDIOPROTECTORA ANTIDIABETIC THERAPY, LINAGLIPTINA, TREATMENT METHOD |
SI2707368T1 (en) | 2011-05-10 | 2016-04-29 | Sandoz Ag | Polymorph of linagliptin benzoate |
ES2934843T3 (en) | 2011-07-15 | 2023-02-27 | Boehringer Ingelheim Int | Substituted dimeric quinazoline derivative, its preparation and its use in pharmaceutical compositions for the treatment of type I and II diabetes |
US20130123282A1 (en) * | 2011-11-16 | 2013-05-16 | Leonid Metsger | Solid state forms of linagliptin |
US9056112B2 (en) | 2011-12-28 | 2015-06-16 | Dr. Reddy's Laboratories Limited | Process for preparation of pure linagliptin |
JP6224084B2 (en) | 2012-05-14 | 2017-11-01 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Xanthine derivatives as DPP-4 inhibitors for the treatment of glomerular epithelial cell related disorders and / or nephrotic syndrome |
WO2013174767A1 (en) | 2012-05-24 | 2013-11-28 | Boehringer Ingelheim International Gmbh | A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference |
EP2882424B1 (en) | 2012-08-13 | 2017-12-13 | Sandoz AG | Stable pharmaceutical composition containing 8-[(3r)-3-amino-1-piperidinyl]-7-(2-butyn-1-yl)-3,7-dihydro-3-methyl-1-[(4-methyl-2-quinazolinyl)methyl]-1h-purine-2,6-dione or a pharmaceutically acceptable salt thereof |
US9353114B2 (en) | 2012-08-17 | 2016-05-31 | Glenmark Pharmaceuticals Limited | Process for the preparation of dipeptidylpeptidase inhibitors |
WO2014083554A1 (en) | 2012-11-30 | 2014-06-05 | Ranbaxy Laboratories Limited | Stable amorphous form of linagliptin |
US11813275B2 (en) | 2013-04-05 | 2023-11-14 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US20140303098A1 (en) | 2013-04-05 | 2014-10-09 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US20140303097A1 (en) | 2013-04-05 | 2014-10-09 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
HUE058731T2 (en) | 2013-04-18 | 2022-09-28 | Boehringer Ingelheim Int | Pharmaceutical composition, methods for treating and uses thereof |
WO2015128453A1 (en) | 2014-02-28 | 2015-09-03 | Boehringer Ingelheim International Gmbh | Medical use of a dpp-4 inhibitor |
CN105712995B (en) * | 2014-12-05 | 2017-11-03 | 浙江京新药业股份有限公司 | A kind of Li Gelieting purification process |
RU2704251C2 (en) * | 2015-03-27 | 2019-10-25 | Цзянсу Хэнжуй Медсин Ко., Лтд. | P-toluenesulphonate for mek kinase inhibitor and crystalline form thereof, and method for production thereof |
WO2016186844A1 (en) * | 2015-05-15 | 2016-11-24 | Mayo Foundation For Medical Education And Research | Methods and materials for treating peripheral artery disease |
KR102442536B1 (en) * | 2015-09-17 | 2022-09-13 | 한미정밀화학주식회사 | Crystalline form of linagliptin and preparation method thereof |
WO2017060398A1 (en) | 2015-10-09 | 2017-04-13 | Hexal Ag | Pharmaceutical composition containing 8-[(3r)-3-amino-1-piperidinyl]-7-(2-butyn-1-yl)-3,7-dihydro-3-methyl-1-[4-methyl-2-quinazolinyl)methyl]-1h-purine-2,6-dione or a pharmaceutically acceptable salt thereof |
WO2017142002A1 (en) * | 2016-02-17 | 2017-08-24 | 大正製薬株式会社 | Crystal forms of free c-4"-substituted macrolide compound and salt thereof, and production methods therefor |
CN107216340B (en) * | 2016-03-22 | 2021-05-04 | 中国科学院上海药物研究所 | Salt form of DPPIV inhibitor and preparation method thereof |
CN107216339B (en) * | 2016-03-22 | 2021-05-04 | 中国科学院上海药物研究所 | Polymorphism of DPPIV inhibitor maleate and preparation method thereof |
CA3022202A1 (en) | 2016-06-10 | 2017-12-14 | Boehringer Ingelheim International Gmbh | Combinations of linagliptin and metformin |
CN106543180B (en) * | 2016-10-28 | 2018-03-30 | 南京正大天晴制药有限公司 | Benzoic acid Li Gelieting crystal formations and preparation method thereof |
KR102561697B1 (en) | 2016-11-29 | 2023-07-28 | 피티씨 테라퓨틱스 엠피, 인크. | Polymorphs of sepiapterin and salts thereof |
WO2019020993A1 (en) * | 2017-07-24 | 2019-01-31 | Achieve Pharma Uk Limited | Cytisine salts |
WO2019046849A1 (en) | 2017-09-01 | 2019-03-07 | Censa Pharmaceuticals Inc. | Pharmaceutical compositions comprising sepiapterin and uses thereof |
KR102208009B1 (en) | 2018-04-26 | 2021-01-28 | 주식회사 경보제약 | Preparation methode of 5-phenyl pentyl hexahydro cyclopentafuran compounds and cycloheptanoate compounds |
IT201800005383A1 (en) | 2018-05-15 | 2019-11-15 | INTERMEDIATES AND PROCESSES FOR THE PREPARATION OF LINAGLIPTIN AND ITS SALTS | |
MX2020012978A (en) * | 2018-05-30 | 2021-04-28 | Ptc Therapeutics Mp Inc | Pharmaceutically acceptable salts of sepiapterin. |
CN113292511B (en) * | 2021-06-01 | 2022-11-25 | 天津大学 | Epalrestat-metformin salt ethanol water double solvate, preparation method and application |
Family Cites Families (361)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2056046A (en) | 1933-05-19 | 1936-09-29 | Rhone Poulenc Sa | Manufacture of bases derived from benz-dioxane |
US2375138A (en) | 1942-05-01 | 1945-05-01 | American Cyanamid Co | Alkamine esters of aryloxymethyl benzoic acid |
US2629736A (en) | 1951-02-24 | 1953-02-24 | Searle & Co | Basically substituted n-alkyl derivatives of alpha, beta, beta-triarylpropionamides |
US2730544A (en) | 1952-07-23 | 1956-01-10 | Sahyun Lab | Alkylaminoalkyl esters of hydroxycyclohexylbenzoic acid |
US2750387A (en) | 1953-11-25 | 1956-06-12 | Searle & Co | Basically substituted derivatives of diarylaminobenzamides |
DE1211359B (en) | 1955-11-29 | 1966-02-24 | Oreal | Oxidant-free cold dye for human hair |
US2928833A (en) | 1959-03-03 | 1960-03-15 | S E Massengill Company | Theophylline derivatives |
US3174901A (en) | 1963-01-31 | 1965-03-23 | Jan Marcel Didier Aron Samuel | Process for the oral treatment of diabetes |
US3454635A (en) | 1965-07-27 | 1969-07-08 | Hoechst Ag | Benzenesulfonyl-ureas and process for their manufacture |
DE1914999A1 (en) | 1968-04-04 | 1969-11-06 | Ciba Geigy | New guanylhydrazones and processes for their preparation |
ES385302A1 (en) | 1970-10-22 | 1973-04-16 | Miquel S A Lab | Procedure for the obtaining of trisused derivatives of etilendiamine. (Machine-translation by Google Translate, not legally binding) |
DE2205815A1 (en) | 1972-02-08 | 1973-08-16 | Hoechst Ag | N-(oxazolin-2-yl)-piperazine - with antitussive activity |
JPS5512435B2 (en) | 1972-07-01 | 1980-04-02 | ||
US4005208A (en) | 1975-05-16 | 1977-01-25 | Smithkline Corporation | N-Heterocyclic-9-xanthenylamines |
US4061753A (en) | 1976-02-06 | 1977-12-06 | Interx Research Corporation | Treating psoriasis with transient pro-drug forms of xanthine derivatives |
DE2758025A1 (en) | 1977-12-24 | 1979-07-12 | Bayer Ag | Tri:hydroxy-piperidine derivs. - useful as glucosidase inhibitors for treating diabetes etc. and as animal feed additives |
NO154918C (en) | 1977-08-27 | 1987-01-14 | Bayer Ag | ANALOGUE PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE DERIVATIVES OF 3,4,5-TRIHYDROXYPIPERIDINE. |
DE2929596A1 (en) | 1979-07-21 | 1981-02-05 | Hoechst Ag | METHOD FOR PRODUCING OXOALKYL XANTHINES |
GB2084580B (en) | 1980-10-01 | 1984-07-04 | Glaxo Group Ltd | Aminoalkyl furan derivative |
US4382091A (en) | 1981-04-30 | 1983-05-03 | Syntex (U.S.A.) Inc. | Stabilization of 1-substituted imidazole derivatives in talc |
FR2558162B1 (en) | 1984-01-17 | 1986-04-25 | Adir | NOVEL XANTHINE DERIVATIVES, PROCESSES FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
FI79107C (en) | 1984-06-25 | 1989-11-10 | Orion Yhtymae Oy | Process for the preparation of stable form of prazosin hydrochloride. |
AR240698A1 (en) | 1985-01-19 | 1990-09-28 | Takeda Chemical Industries Ltd | Process for the preparation of 5-(4-(2-(5-ethyl-2-pyridil)-ethoxy)benzyl)-2,4-thiazolodinedione and their salts |
US5258380A (en) | 1985-06-24 | 1993-11-02 | Janssen Pharmaceutica N.V. | (4-piperidinylmethyl and -hetero)purines |
GB8515934D0 (en) | 1985-06-24 | 1985-07-24 | Janssen Pharmaceutica Nv | (4-piperidinomethyl and-hetero)purines |
DE3688827T2 (en) | 1985-10-25 | 1994-03-31 | Beecham Group Plc | Piperidine derivative, its manufacture and its use as a medicine. |
US5433959A (en) | 1986-02-13 | 1995-07-18 | Takeda Chemical Industries, Ltd. | Stabilized pharmaceutical composition |
ATE72244T1 (en) | 1986-03-21 | 1992-02-15 | Heumann Pharma Gmbh & Co | CRYSTALLINE ANHYDROUS SIGMA FORM OF 2-(4-(2FUROYL-(2-PIPERAZINE)-1-YL>-4-AMINO-6,7-DIMETHOXYQUINAZOLINE HYDROCHLORIDE AND PROCESS FOR THEIR PREPARATION. |
AU619444B2 (en) | 1986-06-02 | 1992-01-30 | Nippon Chemiphar Co. Ltd. | 2-(2-aminobenzylsulfinyl)- benzimidazole derivatives |
US4968672A (en) | 1987-01-02 | 1990-11-06 | The United States Of America As Represented By The Department Of Health And Human Services | Adenosine receptor prodrugs |
US4743450A (en) | 1987-02-24 | 1988-05-10 | Warner-Lambert Company | Stabilized compositions |
US5093330A (en) | 1987-06-15 | 1992-03-03 | Ciba-Geigy Corporation | Staurosporine derivatives substituted at methylamino nitrogen |
JPS6440433A (en) | 1987-08-05 | 1989-02-10 | Green Cross Corp | Aqueous liquid composition of thrombin |
US5329025A (en) | 1988-09-21 | 1994-07-12 | G. D. Searle & Co. | 3-azido compound |
DE3926119A1 (en) | 1989-08-08 | 1991-02-14 | Bayer Ag | 3-AMINO-5-AMINOCARBONYL-1,2,4-TRIAZOLE DERIVATIVES |
US5234897A (en) | 1989-03-15 | 1993-08-10 | Bayer Aktiengesellschaft | Herbicidal 3-amino-5-aminocarbonyl-1,2,4-triazoles |
GB8906792D0 (en) | 1989-03-23 | 1989-05-10 | Beecham Wuelfing Gmbh & Co Kg | Treatment and compounds |
DE3916430A1 (en) | 1989-05-20 | 1990-11-22 | Bayer Ag | METHOD FOR PRODUCING 3-AMINO-5-AMINOCARBONYL-1,2,4-TRIAZOLE DERIVATIVES |
US5332744A (en) | 1989-05-30 | 1994-07-26 | Merck & Co., Inc. | Substituted imidazo-fused 6-membered heterocycles as angiotensin II antagonists |
IL94390A (en) | 1989-05-30 | 1996-03-31 | Merck & Co Inc | Di-substituted imidazo fused 6-membered nitrogen-containing heterocycles and pharmaceutical compositions containing them |
US5223499A (en) | 1989-05-30 | 1993-06-29 | Merck & Co., Inc. | 6-amino substituted imidazo[4,5-bipyridines as angiotensin II antagonists |
FI94339C (en) | 1989-07-21 | 1995-08-25 | Warner Lambert Co | Process for the preparation of pharmaceutically acceptable [R- (R *, R *)] - 2- (4-fluorophenyl) -, - dihydroxy-5- (1-methylethyl) -3-phenyl-4 - [(phenylamino) carbonyl] -1H- for the preparation of pyrrole-1-heptanoic acid and its pharmaceutically acceptable salts |
HU208115B (en) | 1989-10-03 | 1993-08-30 | Biochemie Gmbh | New process for producting pleuromutilin derivatives |
FR2654935B1 (en) | 1989-11-28 | 1994-07-01 | Lvmh Rech | USE OF XANTHINES, WHICH MAY BE INCORPORATED IN LIPOSOMES, TO PROMOTE PIGMENTATION OF THE SKIN OR HAIR. |
DE122007000050I1 (en) | 1990-02-19 | 2007-11-08 | Novartis Ag | acyl compounds |
KR930000861B1 (en) | 1990-02-27 | 1993-02-08 | 한미약품공업 주식회사 | Omeprazole rectal composition |
DK0475482T3 (en) | 1990-09-13 | 1995-04-03 | Akzo Nobel Nv | Stabilized solid chemical agents |
GB9020959D0 (en) | 1990-09-26 | 1990-11-07 | Beecham Group Plc | Novel compounds |
US5084460A (en) | 1990-12-24 | 1992-01-28 | A. H. Robins Company, Incorporated | Methods of therapeutic treatment with N-(3-ouinuclidinyl)-2-hydroxybenzamides and thiobenzamides |
US5602127A (en) | 1991-02-06 | 1997-02-11 | Karl Thomae Gmbh | (Alkanesultam-1-yl)-benzimidazol-1-yl)-1yl)-methyl-biphenyls useful as angiotensin-II antagonists |
US5614519A (en) | 1991-02-06 | 1997-03-25 | Karl Thomae Gmbh | (1-(2,3 or 4-N-morpholinoalkyl)-imidazol-4-yl)-benizimidazol-1-yl-methyl]-biphenyls useful as angiotensin-II antagonists |
US5594003A (en) | 1991-02-06 | 1997-01-14 | Dr. Karl Thomae Gmbh | Tetrahydroimidazo[1,2-a]pyridin-2-yl-(benzimidazol-1-yl)-methyl-biphenyls useful as angiotensin-II antagonists |
GB9109862D0 (en) | 1991-05-08 | 1991-07-03 | Beecham Lab Sa | Pharmaceutical formulations |
DE4124150A1 (en) | 1991-07-20 | 1993-01-21 | Bayer Ag | SUBSTITUTED TRIAZOLES |
TW225528B (en) | 1992-04-03 | 1994-06-21 | Ciba Geigy Ag | |
US5300298A (en) | 1992-05-06 | 1994-04-05 | The Pennsylvania Research Corporation | Methods of treating obesity with purine related compounds |
GB9215633D0 (en) | 1992-07-23 | 1992-09-09 | Smithkline Beecham Plc | Novel treatment |
EP0581552B1 (en) | 1992-07-31 | 1998-04-22 | Shionogi & Co., Ltd. | Triazolylthiomethylthio cephalosporin hyrochloride, its crystalline hydrate and the production of the same |
TW252044B (en) | 1992-08-10 | 1995-07-21 | Boehringer Ingelheim Kg | |
DE4242459A1 (en) | 1992-12-16 | 1994-06-23 | Merck Patent Gmbh | imidazopyridines |
FR2707641B1 (en) | 1993-07-16 | 1995-08-25 | Fournier Ind & Sante | Compounds of imidazol-5-carboxamide, their process for preparing their intermediates and their use in therapy. |
DE4339868A1 (en) | 1993-11-23 | 1995-05-24 | Merck Patent Gmbh | imidazopyridazines |
DE4404183A1 (en) | 1994-02-10 | 1995-08-17 | Merck Patent Gmbh | 4-amino-1-piperidylbenzoylguanidine |
US5545745A (en) | 1994-05-23 | 1996-08-13 | Sepracor, Inc. | Enantioselective preparation of optically pure albuterol |
CO4410190A1 (en) | 1994-09-19 | 1997-01-09 | Lilly Co Eli | 3- [4- (2-AMINOETOXI) -BENZOIL] -2-ARIL-6-HYDROXYBENZO [b] CRYSTALLINE THIOPHEN |
ATE248153T1 (en) | 1994-10-12 | 2003-09-15 | Euro Celtique Sa | NEW BENZOXAZOLES |
GB9501178D0 (en) | 1995-01-20 | 1995-03-08 | Wellcome Found | Guanine derivative |
US5821366A (en) | 1995-05-19 | 1998-10-13 | Chiroscience Limited | Xanthines and their therapeutic use |
DE19543478A1 (en) | 1995-11-22 | 1997-05-28 | Bayer Ag | Crystalline hydrochloride of {(R) - (-) - 2N- [4- (1,1-dioxido-3-oxo-2,3-dihydrobenzisothiazol-2-yl) -buytl] aminomethyl} -chroman |
FR2742751B1 (en) | 1995-12-22 | 1998-01-30 | Rhone Poulenc Rorer Sa | NOVEL TAXOIDS, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
ES2174132T3 (en) | 1995-12-26 | 2002-11-01 | Alteon Inc | N-ACIL-A, OMP-ALQUIL-HIDRAZINO-CARBOXIMIDAMIDAS. |
DE122010000020I1 (en) | 1996-04-25 | 2010-07-08 | Prosidion Ltd | Method for lowering the blood glucose level in mammals |
AU1153097A (en) | 1996-06-07 | 1998-01-05 | Eisai Co. Ltd. | Stable polymorphs of donepezil (1-benzyl-4-{(5,6-dimethoxy-1-indanon)-2-yl}methylpiperidine ) hydrochloride and process for production |
US5965555A (en) | 1996-06-07 | 1999-10-12 | Hoechst Aktiengesellschaft | Xanthine compounds having terminally animated alkynol side chains |
US5958951A (en) | 1996-06-14 | 1999-09-28 | Novo Nordiskials | Modified form of the R(-)-N-(4,4-di(3-methylthien-2-yl)but-3-enyl)-nipecotic acid hydrochloride |
US5753635A (en) | 1996-08-16 | 1998-05-19 | Berlex Laboratories, Inc. | Purine derivatives and their use as anti-coagulants |
HU226167B1 (en) | 1996-09-23 | 2008-05-28 | Lilly Co Eli | Olanzapine dihydrate d, its manufacturing and pharmaceutical compositions containing the same |
WO1998018770A1 (en) | 1996-10-28 | 1998-05-07 | Novo Nordisk A/S | A process for the preparation of (-)-3,4-trans-diarylchromans |
GB9623859D0 (en) | 1996-11-15 | 1997-01-08 | Chiroscience Ltd | Novel compounds |
PT948358E (en) | 1996-12-24 | 2004-10-29 | Biogen Idec Inc | LIQUID AND STABLE INTERFERENCE FORMULATIONS |
CO4950519A1 (en) | 1997-02-13 | 2000-09-01 | Novartis Ag | PHTHALAZINES, PHARMACEUTICAL PREPARATIONS THAT UNDERSTAND THEM AND THE PROCESS FOR THEIR PREPARATION |
US6011049A (en) | 1997-02-19 | 2000-01-04 | Warner-Lambert Company | Combinations for diabetes |
SI0991407T2 (en) | 1997-03-13 | 2005-10-31 | Hexal Ag | Stabilization of acid sensitive benzimidazols with amino/cyclodextrin combinations |
US5972332A (en) | 1997-04-16 | 1999-10-26 | The Regents Of The University Of Michigan | Wound treatment with keratinocytes on a solid support enclosed in a porous material |
ZA984697B (en) | 1997-06-13 | 1999-12-01 | Lilly Co Eli | Stable insulin formulations. |
TR200001603T2 (en) | 1997-12-05 | 2000-10-23 | Astrazeneca Uk Limited | New compounds |
JPH11193270A (en) | 1997-12-26 | 1999-07-21 | Koei Chem Co Ltd | Production of optically active 1-methyl-3-piperidinemethanol |
USRE39112E1 (en) | 1998-01-05 | 2006-05-30 | Eisai Co., Ltd. | Purine derivatives and adenosine A2 receptor antagonists serving as preventives/remedies for diabetes |
NZ506959A (en) | 1998-03-31 | 2002-02-01 | Nissan Chemical Ind Ltd | 3/2-hydrochloride of 4-chloro-5-[3-(4-benzylpiperazin-1-yl)carbonylmethoxy-4-methoxy benzylamino]-3(2H)-pyridazone |
EP0950658A1 (en) | 1998-04-13 | 1999-10-20 | Takeda Chemical Industries, Ltd. | 2-Pipirazinone-1-acetic acid dihydrochloride derivative used to inhibit platelet aggregation |
US6207207B1 (en) | 1998-05-01 | 2001-03-27 | Mars, Incorporated | Coated confectionery having a crispy starch based center and method of preparation |
DE19823831A1 (en) | 1998-05-28 | 1999-12-02 | Probiodrug Ges Fuer Arzneim | New pharmaceutical use of isoleucyl thiazolidide and its salts |
DE19828114A1 (en) | 1998-06-24 | 2000-01-27 | Probiodrug Ges Fuer Arzneim | Produgs of unstable inhibitors of dipeptidyl peptidase IV |
CO5150173A1 (en) | 1998-12-10 | 2002-04-29 | Novartis Ag | COMPOUNDS N- (REPLACED GLYCLE) -2-DIPEPTIDYL-IV PEPTIDASE INHIBITING CYANOPIRROLIDINS (DPP-IV) WHICH ARE EFFECTIVE IN THE TREATMENT OF CONDITIONS MEDIATED BY DPP-IV INHIBITION |
IT1312018B1 (en) | 1999-03-19 | 2002-04-04 | Fassi Aldo | IMPROVED PROCEDURE FOR THE PRODUCTION OF NON HYGROSCOPICIDAL SALTS OF L (-) - CARNITINE. |
US6545002B1 (en) | 1999-06-01 | 2003-04-08 | University Of Virginia Patent Foundation | Substituted 8-phenylxanthines useful as antagonists of A2B adenosine receptors |
CN1166645C (en) | 1999-06-21 | 2004-09-15 | 贝林格尔英格海姆法玛两合公司 | Bicyclic heterocycles, medicaments contg. these compounds, their use and methods for prodn. thereof |
ES2166270B1 (en) | 1999-07-27 | 2003-04-01 | Almirall Prodesfarma Sa | DERIVATIVES OF 8-PHENYL-6,9-DIHIDRO- (1,2,4,) TRIAZOLO (3,4-I) PURIN-5-ONA. |
US6515117B2 (en) | 1999-10-12 | 2003-02-04 | Bristol-Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
GB9928330D0 (en) | 1999-11-30 | 2000-01-26 | Ferring Bv | Novel antidiabetic agents |
NZ519984A (en) * | 2000-01-07 | 2004-03-26 | Transform Pharmaceuticals Inc | High-throughput formation, identification, and analysis of diverse solid-forms |
US6362172B2 (en) | 2000-01-20 | 2002-03-26 | Bristol-Myers Squibb Company | Water soluble prodrugs of azole compounds |
EP1741446B1 (en) | 2000-01-21 | 2008-02-06 | Novartis AG | Combinations comprising dipeptidylpeptidase-IV inhibitors and antidiabetic agents |
JP4621326B2 (en) | 2000-02-01 | 2011-01-26 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Teprenone stabilized composition |
EP1196390A2 (en) | 2000-02-05 | 2002-04-17 | Vertex Pharmaceuticals Incorporated | Pyrazole compositions useful as inhibitors of erk |
EP1132389A1 (en) | 2000-03-06 | 2001-09-12 | Vernalis Research Limited | New aza-indolyl derivatives for the treatment of obesity |
US6395767B2 (en) | 2000-03-10 | 2002-05-28 | Bristol-Myers Squibb Company | Cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV and method |
GB0006133D0 (en) | 2000-03-14 | 2000-05-03 | Smithkline Beecham Plc | Novel pharmaceutical |
JP2001278812A (en) | 2000-03-27 | 2001-10-10 | Kyoto Pharmaceutical Industries Ltd | Disintegrant for tablet and tablet using the same |
US6500804B2 (en) | 2000-03-31 | 2002-12-31 | Probiodrug Ag | Method for the improvement of islet signaling in diabetes mellitus and for its prevention |
GB0008694D0 (en) | 2000-04-07 | 2000-05-31 | Novartis Ag | Organic compounds |
WO2001096301A1 (en) | 2000-06-14 | 2001-12-20 | Toray Industries, Inc. | Processes for producing racemic piperidine derivative and for producing optically active piperidine derivative |
US7078397B2 (en) | 2000-06-19 | 2006-07-18 | Smithkline Beecham Corporation | Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus |
GB0014969D0 (en) | 2000-06-19 | 2000-08-09 | Smithkline Beecham Plc | Novel method of treatment |
EP1301187B1 (en) | 2000-07-04 | 2005-07-06 | Novo Nordisk A/S | Purine-2,6-diones which are inhibitors of the enzyme dipeptidyl peptidase iv (dpp-iv) |
CN1186322C (en) | 2000-08-10 | 2005-01-26 | 三菱制药株式会社 | Proline derivatives and use thereof as drugs |
US6821978B2 (en) | 2000-09-19 | 2004-11-23 | Schering Corporation | Xanthine phosphodiesterase V inhibitors |
US20060034922A1 (en) | 2000-11-03 | 2006-02-16 | Andrx Labs, Llc | Controlled release metformin compositions |
CA2433090A1 (en) | 2000-12-27 | 2002-07-04 | Kyowa Hakko Kogyo Co., Ltd. | Dipeptidyl peptidase iv inhibitor |
FR2819254B1 (en) | 2001-01-08 | 2003-04-18 | Fournier Lab Sa | NOVEL N- (PHENYLSULFONYL) GLYCINE COMPOUNDS, PROCESS FOR THEIR PREPARATION AND THEIR USE FOR OBTAINING PHARMACEUTICAL COMPOSITIONS |
DE10117803A1 (en) | 2001-04-10 | 2002-10-24 | Boehringer Ingelheim Pharma | New 8-substituted-xanthine derivatives, useful e.g. for treating diabetes and arthritis, act by inhibiting dipeptidylpeptidase-IV |
DE10109021A1 (en) | 2001-02-24 | 2002-09-05 | Boehringer Ingelheim Pharma | New 8-substituted-xanthine derivatives, useful e.g. for treating diabetes and arthritis, act by inhibiting dipeptidylpeptidase-IV |
CZ301487B6 (en) | 2001-02-24 | 2010-03-17 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Xanthine derivatives, process of their preparation and use as a medicament |
US6936590B2 (en) | 2001-03-13 | 2005-08-30 | Bristol Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
US6693094B2 (en) | 2001-03-22 | 2004-02-17 | Chrono Rx Llc | Biguanide and sulfonylurea formulations for the prevention and treatment of insulin resistance and type 2 diabetes mellitus |
JP2002348279A (en) | 2001-05-25 | 2002-12-04 | Nippon Kayaku Co Ltd | Production method for optically active pyridylketone derivatives and optically active pyridylketone derivatives |
DE10130371A1 (en) | 2001-06-23 | 2003-01-02 | Boehringer Ingelheim Pharma | New drug compositions based on anticholinergics, corticosteroids and betamimetics |
CN1990469A (en) | 2001-06-27 | 2007-07-04 | 史密丝克莱恩比彻姆公司 | Pyrrolidines as dipeptidyl peptidase inhibitors |
WO2003004496A1 (en) | 2001-07-03 | 2003-01-16 | Novo Nordisk A/S | Dpp-iv-inhibiting purine derivatives for the treatment of diabetes |
US6869947B2 (en) | 2001-07-03 | 2005-03-22 | Novo Nordisk A/S | Heterocyclic compounds that are inhibitors of the enzyme DPP-IV |
UA74912C2 (en) | 2001-07-06 | 2006-02-15 | Merck & Co Inc | Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes |
US7638522B2 (en) | 2001-08-13 | 2009-12-29 | Janssen Pharmaceutica N.V. | Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino] benzonitrile |
JP2005509603A (en) | 2001-09-19 | 2005-04-14 | ノボ ノルディスク アクティーゼルスカブ | Heterocyclic compounds that are inhibitors of the DPP-IV enzyme |
WO2003034944A1 (en) | 2001-10-15 | 2003-05-01 | Hemoteq Gmbh | Coating of stents for preventing restenosis |
DE10151296A1 (en) | 2001-10-17 | 2003-04-30 | Boehringer Ingelheim Pharma | Keratinocytes useful as a biologically active substance in the treatment of wounds |
US6861440B2 (en) | 2001-10-26 | 2005-03-01 | Hoffmann-La Roche Inc. | DPP IV inhibitors |
US20030083354A1 (en) | 2001-10-26 | 2003-05-01 | Pediamed Pharmaceuticals, Inc. | Phenylephrine tannate and pyrilamine tannate salts in pharmaceutical compositions |
CA2363053C (en) | 2001-11-09 | 2011-01-25 | Bernard Charles Sherman | Clopidogrel bisulfate tablet formulation |
WO2003053929A1 (en) | 2001-12-21 | 2003-07-03 | Toray Fine Chemicals Co., Ltd. | Process for production of optically active cis-piperidine derivatives |
US6727261B2 (en) | 2001-12-27 | 2004-04-27 | Hoffman-La Roche Inc. | Pyrido[2,1-A]Isoquinoline derivatives |
EP1496877B1 (en) | 2002-01-11 | 2008-10-01 | Novo Nordisk A/S | Method and composition for treatment of diabetes, hypertension, chronic heart failure and fluid retentive states |
EP1333033A1 (en) | 2002-01-30 | 2003-08-06 | Boehringer Ingelheim Pharma GmbH & Co.KG | FAP-activated anti-tumor compounds |
PL373914A1 (en) | 2002-02-01 | 2005-09-19 | Pfizer Products Inc. | Immediate release dosage forms containing solid drug dispersions |
US7610153B2 (en) | 2002-02-13 | 2009-10-27 | Virginia Commonwealth University | Multi-drug titration and evaluation |
DE60304911D1 (en) | 2002-02-25 | 2006-06-08 | Eisai Co Ltd | Xanthine derivatives as DPP-IV inhibitors |
JP4298212B2 (en) | 2002-03-29 | 2009-07-15 | 大日本印刷株式会社 | Method for producing high melting point type epinastine hydrochloride |
JP2003300977A (en) | 2002-04-10 | 2003-10-21 | Sumitomo Pharmaceut Co Ltd | Xanthine derivative |
WO2003088900A2 (en) | 2002-04-16 | 2003-10-30 | Merck & Co., Inc. | Solid forms of salts with tyrosine kinase activity |
CA2484306A1 (en) | 2002-04-26 | 2003-11-06 | Katsumi Maezono | Prophylactic and therapeutic agent of diabetes mellitus |
WO2003094909A2 (en) | 2002-05-09 | 2003-11-20 | Enos Pharmaceuticals, Inc. | Methods and compositions for the treatment and prevention of intermittent claudication or alzheimer's disease |
GB0212412D0 (en) | 2002-05-29 | 2002-07-10 | Novartis Ag | Combination of organic compounds |
ES2270047T3 (en) | 2002-05-31 | 2007-04-01 | Schering Corporation | PROCESS TO PREPARE INHIBITORS OF THE PHANTOSPHODESTERASE V OF XANTINA AND ITS PRECURSORS. |
JP3675813B2 (en) | 2002-06-06 | 2005-07-27 | エーザイ株式会社 | New condensed imidazole derivatives |
FR2840897B1 (en) | 2002-06-14 | 2004-09-10 | Fournier Lab Sa | NOVEL ARYLSULFONAMIDE DERIVATIVES AND THEIR USE IN THERAPEUTICS |
US20040002615A1 (en) | 2002-06-28 | 2004-01-01 | Allen David Robert | Preparation of chiral amino-nitriles |
GB0215676D0 (en) | 2002-07-05 | 2002-08-14 | Novartis Ag | Organic compounds |
US20040023981A1 (en) | 2002-07-24 | 2004-02-05 | Yu Ren | Salt forms with tyrosine kinase activity |
TW200409746A (en) | 2002-07-26 | 2004-06-16 | Theravance Inc | Crystalline β2 adrenergic receptor agonist |
TW200404796A (en) | 2002-08-19 | 2004-04-01 | Ono Pharmaceutical Co | Nitrogen-containing compound |
EP3424926A1 (en) * | 2002-08-21 | 2019-01-09 | Boehringer Ingelheim Pharma GmbH & Co. KG | 8-[3-amino-piperidin-1-yl]-xanthins, their production and utilisation as medicine |
DE10238243A1 (en) | 2002-08-21 | 2004-03-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New 8-(3-amino-piperidin-1-yl)-xanthine derivatives are dipeptidylpeptidase-IV inhibitors useful for, e.g. treating diabetes mellitus, arthritis or obesity |
US7407955B2 (en) | 2002-08-21 | 2008-08-05 | Boehringer Ingelheim Pharma Gmbh & Co., Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
DE10238470A1 (en) | 2002-08-22 | 2004-03-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New xanthine derivatives, their production and their use as medicines |
DE10238477A1 (en) | 2002-08-22 | 2004-03-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New purine derivatives, their production and their use as medicines |
US7569574B2 (en) | 2002-08-22 | 2009-08-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Purine derivatives, the preparation thereof and their use as pharmaceutical compositions |
US7495005B2 (en) | 2002-08-22 | 2009-02-24 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Xanthine derivatives, their preparation and their use in pharmaceutical compositions |
DE10238724A1 (en) | 2002-08-23 | 2004-03-04 | Bayer Ag | New 6-alkyl-1,5-dihydro-4H-pyrazolo-(3,4-d)-pyrimidin-4-ones useful as selective phosphodiesterase 9A inhibitors for improving attention, concentration, learning and/or memory performance |
DE10238723A1 (en) | 2002-08-23 | 2004-03-11 | Bayer Ag | Phenyl substituted pyrazolyprimidines |
EP1537880A4 (en) | 2002-09-11 | 2009-07-01 | Takeda Pharmaceutical | Sustained release preparation |
MXPA05002899A (en) | 2002-09-16 | 2005-05-27 | Wyeth Corp | Delayed release formulations for oral administration of a polypeptide therapeutic agent and methods of using same. |
US20060094722A1 (en) | 2002-09-26 | 2006-05-04 | Eisai Co., Ltd. | Combination drug |
AU2003269850A1 (en) | 2002-10-08 | 2004-05-04 | Novo Nordisk A/S | Hemisuccinate salts of heterocyclic dpp-iv inhibitors |
US20040122048A1 (en) | 2002-10-11 | 2004-06-24 | Wyeth Holdings Corporation | Stabilized pharmaceutical composition containing basic excipients |
US6861526B2 (en) | 2002-10-16 | 2005-03-01 | Pfizer Inc. | Process for the preparation of (S,S)-cis-2-benzhydryl-3-benzylaminoquinuclidine |
JP2004161749A (en) | 2002-10-24 | 2004-06-10 | Toray Fine Chemicals Co Ltd | Method for producing optically active, nitrogen-containing compound |
AU2003280680A1 (en) | 2002-11-01 | 2004-06-18 | Sumitomo Pharmaceuticals Co., Ltd. | Xanthine compound |
DE10251927A1 (en) | 2002-11-08 | 2004-05-19 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New 1,7,8-trisubstituted xanthine derivatives, are dipeptidylpeptidase-IV inhibitors useful e.g. for treating diabetes mellitus type I or II, arthritis or obesity |
US7482337B2 (en) | 2002-11-08 | 2009-01-27 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions |
DE10254304A1 (en) | 2002-11-21 | 2004-06-03 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New xanthine derivatives, their production and their use as medicines |
UY28103A1 (en) | 2002-12-03 | 2004-06-30 | Boehringer Ingelheim Pharma | NEW IMIDAZO-PIRIDINONAS REPLACED, ITS PREPARATION AND ITS EMPLOYMENT AS MEDICATIONS |
US7109192B2 (en) | 2002-12-03 | 2006-09-19 | Boehringer Ingelheim Pharma Gmbh & Co Kg | Substituted imidazo-pyridinones and imidazo-pyridazinones, the preparation thereof and their use as pharmaceutical compositions |
DE60322944D1 (en) | 2002-12-10 | 2008-09-25 | Novartis Ag | COMBINATIONS OF A DPP-IV INHIBITOR AND A PPAR-ALPHA AGONIST |
DE10351663A1 (en) | 2002-12-20 | 2004-07-01 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Stable, accurately dosable inhalable powder medicament for treating asthma or chronic obstructive pulmonary disease, containing tiotropium, specific form of salmeterol xinafoate and auxiliary |
US20040152720A1 (en) | 2002-12-20 | 2004-08-05 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Powdered medicaments containing a tiotropium salt and salmeterol xinafoate |
DE602004019761D1 (en) | 2003-01-08 | 2009-04-16 | Novartis Vaccines & Diagnostic | STABILIZED AQUEOUS COMPOSITIONS WITH TISSUE FACTOR INHIBITOR (TFPI) OR TISSUE FACTOR INHIBITOR VERSION |
KR101078098B1 (en) | 2003-01-14 | 2011-10-28 | 아레나 파마슈티칼스, 인크. | - 123-Trisubstituted Aryl and Heteroaryl Derivatives as Modulators of Metabolism and the Prophylaxis and Treatment of Disorders Related Thereto such as Diabetes and Hyperglycemia |
DE10335027A1 (en) | 2003-07-31 | 2005-02-17 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Use of telmisartan and simvastatin for treatment or prophylaxis of cardiovascular, cardiopulmonary and renal diseases e.g. hypertension combined with hyperlipidemia or atherosclerosis |
PE20040950A1 (en) | 2003-02-14 | 2005-01-01 | Theravance Inc | BIPHENYL DERIVATIVES AS AGONISTS OF ß2-ADRENERGIC RECEPTORS AND AS ANTAGONISTS OF MUSCARINAL RECEPTORS |
JP2004250336A (en) | 2003-02-18 | 2004-09-09 | Kao Corp | Method for producing coated tablet and sugar-coated tablet |
US7135575B2 (en) | 2003-03-03 | 2006-11-14 | Array Biopharma, Inc. | P38 inhibitors and methods of use thereof |
CA2515289A1 (en) | 2003-03-12 | 2004-09-23 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Weak base salts |
NZ541516A (en) | 2003-03-18 | 2008-05-30 | Novartis Ag | Compositions comprising fatty acids and amino acids |
US20040220186A1 (en) | 2003-04-30 | 2004-11-04 | Pfizer Inc. | PDE9 inhibitors for treating type 2 diabetes,metabolic syndrome, and cardiovascular disease |
JPWO2004096806A1 (en) | 2003-04-30 | 2006-07-13 | 大日本住友製薬株式会社 | Condensed imidazole derivatives |
TW200510277A (en) | 2003-05-27 | 2005-03-16 | Theravance Inc | Crystalline form of β2-adrenergic receptor agonist |
AU2003902828A0 (en) | 2003-06-05 | 2003-06-26 | Fujisawa Pharmaceutical Co., Ltd. | Dpp-iv inhibitor |
DE10327439A1 (en) | 2003-06-18 | 2005-01-05 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel imidazopyridazinone and imidazopyridone derivatives, their production and their use as pharmaceuticals |
US7566707B2 (en) | 2003-06-18 | 2009-07-28 | Boehringer Ingelheim International Gmbh | Imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions |
SI1638970T1 (en) | 2003-06-20 | 2011-03-31 | Hoffmann La Roche | Pyrid (2, 1-a) - isoquinoline derivatives as dpp-iv inhibitors |
JP4445504B2 (en) | 2003-06-20 | 2010-04-07 | エフ.ホフマン−ラ ロシュ アーゲー | Hexahydropyridoisoquinoline as a DPP-IV inhibitor |
JO2625B1 (en) | 2003-06-24 | 2011-11-01 | ميرك شارب اند دوم كوربوريشن | Phosphoric acid salt of a dipeptidyl peptidase-IV inhibitor |
AR045047A1 (en) | 2003-07-11 | 2005-10-12 | Arena Pharm Inc | ARILO AND HETEROARILO DERIVATIVES TRISUSTITUIDOS AS MODULATORS OF METABOLISM AND PROFILAXIS AND TREATMENT OF DISORDERS RELATED TO THEMSELVES |
EP2287166A3 (en) | 2003-07-14 | 2011-06-22 | Arena Pharmaceuticals, Inc. | Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto |
ATE457166T1 (en) | 2003-07-24 | 2010-02-15 | Wockhardt Ltd | ORAL COMPOSITIONS FOR TREATING DIABETES |
US6995183B2 (en) | 2003-08-01 | 2006-02-07 | Bristol Myers Squibb Company | Adamantylglycine-based inhibitors of dipeptidyl peptidase IV and methods |
CA2534649A1 (en) | 2003-08-01 | 2005-02-10 | Genelabs Technologies, Inc. | Bicyclic imidazol derivatives against flaviviridae |
CN1964714B (en) | 2003-08-29 | 2011-09-28 | Hdac默克研究有限责任公司 | Use of suberoylanilide hydroxamic acid and gemcitabine in preparing medicine for treating cancer |
EP1699777B1 (en) | 2003-09-08 | 2012-12-12 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US20070072810A1 (en) | 2003-10-03 | 2007-03-29 | Takeda Pharmaceutical Company, Limited | Agent for treating diabetes |
EP2839832A3 (en) | 2003-11-17 | 2015-06-24 | Novartis AG | Use of dipeptidyl peptidase IV inhibitors |
DE10355304A1 (en) | 2003-11-27 | 2005-06-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel 8- (piperazin-1-yl) and 8 - ([1,4] diazepan-1-yl) xanthines, their preparation and their use as pharmaceuticals |
JPWO2005053695A1 (en) | 2003-12-04 | 2007-12-06 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Agents for preventing or treating multiple sclerosis |
US7217711B2 (en) | 2003-12-17 | 2007-05-15 | Boehringer Ingelheim International Gmbh | Piperazin-1-yl and 2-([1,4]diazepan-1-yl)-imidazo[4,5-d]-pyridazin-4-ones, the preparation thereof and their use as pharmaceutical compositions |
DE10359098A1 (en) | 2003-12-17 | 2005-07-28 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel 2- (piperazin-1-yl) and 2 - ([1,4] diazepan-1-yl) imidazo [4,5-d] pyridazin-4-ones, their preparation and their use as pharmaceuticals |
EP1723136B1 (en) | 2003-12-18 | 2011-03-09 | Tibotec Pharmaceuticals | Piperidine-amino-benzimidazole derivatives as inhibitors of respiratory syncytial virus replication |
DE10360835A1 (en) | 2003-12-23 | 2005-07-21 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New bicyclic imidazole derivatives are dipeptidylpeptidase-IV inhibitors useful to treat e.g. arthritis, obesity, allograft transplantation and calcitonin-induced osteoporosis |
CA2549955A1 (en) | 2003-12-24 | 2005-07-07 | Prosidion Limited | Heterocyclic derivatives as gpcr receptor agonists |
US7501426B2 (en) | 2004-02-18 | 2009-03-10 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions |
CN102199151A (en) | 2004-02-18 | 2011-09-28 | 贝林格尔.英格海姆国际有限公司 | 8-[3-amino-piperidin-1-yl]-xanthine, the production thereof and the use |
DE102004019540A1 (en) | 2004-04-22 | 2005-11-10 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Composition, useful for treatment of e.g. inflammatory and obstructive respiratory complaint, sinus rhythm in heart in atrioventricular block and circulatory shock, comprises 6-hydroxy-4H-benzo1,4oxazin-3-one derivatives and other actives |
DE102004009039A1 (en) | 2004-02-23 | 2005-09-08 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8- [3-Amino-piperidin-1-yl] xanthines, their preparation and use as pharmaceuticals |
EP1593671A1 (en) | 2004-03-05 | 2005-11-09 | Graffinity Pharmaceuticals AG | DPP-IV inhibitors |
US7393847B2 (en) | 2004-03-13 | 2008-07-01 | Boehringer Ingleheim International Gmbh | Imidazopyridazinediones, their preparation and their use as pharmaceutical compositions |
MXPA06010571A (en) | 2004-03-15 | 2007-02-16 | Takeda Pharmaceutical | Dipeptidyl peptidase inhibitors. |
JP4181605B2 (en) | 2004-03-16 | 2008-11-19 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Glucopyranosyl-substituted phenyl derivatives, pharmaceuticals containing the compounds, and uses and production methods thereof |
EP1577306A1 (en) | 2004-03-17 | 2005-09-21 | Boehringer Ingelheim Pharma GmbH & Co.KG | novel benzoxazinone derivatives as slow-acting betamimetics and use thereof in treatment of respiratory tract diseases |
WO2005097798A1 (en) | 2004-04-10 | 2005-10-20 | Boehringer Ingelheim International Gmbh | Novel 2-amino-imidazo[4,5-d]pyridazin-4-ones and 2-amino-imidazo[4,5-c]pyridin-4-ones, production and use thereof as medicaments |
US7179809B2 (en) | 2004-04-10 | 2007-02-20 | Boehringer Ingelheim International Gmbh | 2-Amino-imidazo[4,5-d]pyridazin-4-ones, their preparation and their use as pharmaceutical compositions |
US20050239778A1 (en) | 2004-04-22 | 2005-10-27 | Boehringer Ingelheim International Gmbh | Novel medicament combinations for the treatment of respiratory diseases |
US20050244502A1 (en) | 2004-04-28 | 2005-11-03 | Mathias Neil R | Composition for enhancing absorption of a drug and method |
US7439370B2 (en) | 2004-05-10 | 2008-10-21 | Boehringer Ingelheim International Gmbh | Imidazole derivatives, their preparation and their use as intermediates for the preparation of pharmaceutical compositions and pesticides |
EP1753748B1 (en) | 2004-05-12 | 2009-07-29 | Pfizer Products Inc. | Proline derivatives and their use as dipeptidyl peptidase iv inhibitors |
DE102004024454A1 (en) | 2004-05-14 | 2005-12-08 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel enantiomerically pure beta agonists, process for their preparation and their use as pharmaceuticals |
PE20060315A1 (en) | 2004-05-24 | 2006-05-15 | Irm Llc | THIAZOLE COMPOUNDS AS PPAR MODULATORS |
TWI354569B (en) | 2004-05-28 | 2011-12-21 | Bristol Myers Squibb Co | Coated tablet formulation and method |
AU2005249232B2 (en) | 2004-06-01 | 2010-08-05 | Ares Trading S.A. | Method of stabilizing proteins |
US7935723B2 (en) | 2004-06-04 | 2011-05-03 | Novartis Pharma Ag | Use of organic compounds |
WO2005120576A2 (en) | 2004-06-09 | 2005-12-22 | Yasoo Health | Composition and method for improving pancreatic islet cell survival |
DE102004030502A1 (en) | 2004-06-24 | 2006-01-12 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel imidazoles and triazoles, their preparation and use as medicines |
EP1768664A1 (en) | 2004-07-14 | 2007-04-04 | Novartis AG | Combination of dpp-iv inhibitors and compounds modulating 5-ht3 and/or 5-ht4 receptors |
JP2006045156A (en) | 2004-08-06 | 2006-02-16 | Sumitomo Pharmaceut Co Ltd | Condensed pyrazole derivative |
TW200613275A (en) | 2004-08-24 | 2006-05-01 | Recordati Ireland Ltd | Lercanidipine salts |
EP1782832A4 (en) | 2004-08-26 | 2009-08-26 | Takeda Pharmaceutical | Remedy for diabetes |
DE102004043944A1 (en) | 2004-09-11 | 2006-03-30 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Novel 8- (3-amino-piperidin-1-yl) -7- (but-2-ynyl) -xanthines, their preparation and their use as pharmaceuticals |
DE102004044221A1 (en) | 2004-09-14 | 2006-03-16 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New 3-methyl-7-butynyl xanthines, their preparation and their use as pharmaceuticals |
CN1759834B (en) | 2004-09-17 | 2010-06-23 | 中国医学科学院医药生物技术研究所 | Application of berberine or associated with Simvastatin in preparing product for preventing or curing disease or symptom related to blood fat |
CA2580461A1 (en) | 2004-09-23 | 2006-04-06 | Amgen Inc. | Substituted sulfonamidopropionamides and methods of use |
JP2008515905A (en) | 2004-10-08 | 2008-05-15 | ノバルティス アクチエンゲゼルシャフト | Combination of organic compounds |
AP2007003973A0 (en) | 2004-10-12 | 2007-07-30 | Glenmark Pharmaceuticals Sa | Novel dideptidyl peptidase IV inhibitors, pharmaceutical compositions containing them, and proces for their preparation |
RU2007119320A (en) | 2004-10-25 | 2008-11-27 | Новартис АГ (CH) | COMBINATION OF DPP-IV INHIBITOR, PPAR ANTI-DIABETIC AGENT, AND METFORMIN |
DE102005013967A1 (en) | 2004-11-05 | 2006-10-05 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New imidazole or pyrimidine derivatives are bradykinin B1 antagonists used for treating e.g. pain, stroke, peptic ulcers and other inflammatory disorders |
DE102004054054A1 (en) | 2004-11-05 | 2006-05-11 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines |
AU2005320134B2 (en) | 2004-12-24 | 2011-04-28 | Dainippon Sumitomo Pharma Co., Ltd. | Bicyclic pyrrole derivatives |
KR100760430B1 (en) | 2004-12-31 | 2007-10-04 | 한미약품 주식회사 | Controlled release complex formulation for oral administration of medicine for diabetes and method for the preparation thereof |
MY148521A (en) | 2005-01-10 | 2013-04-30 | Arena Pharm Inc | Substituted pyridinyl and pyrimidinyl derivatives as modulators of metabolism and the treatment of disorders related thereto |
DOP2006000008A (en) | 2005-01-10 | 2006-08-31 | Arena Pharm Inc | COMBINED THERAPY FOR THE TREATMENT OF DIABETES AND RELATED AFFECTIONS AND FOR THE TREATMENT OF AFFECTIONS THAT IMPROVE THROUGH AN INCREASE IN THE BLOOD CONCENTRATION OF GLP-1 |
AP2007004234A0 (en) | 2005-04-22 | 2007-12-31 | Alantos Pharm Holding | Dipeptidyl peptidase-IV inhibitors |
WO2006127207A1 (en) | 2005-05-25 | 2006-11-30 | Wyeth | Methods of synthesizing substituted 3-cyanoquinolines and intermediates thereof |
GT200600218A (en) | 2005-06-10 | 2007-03-28 | FORMULATION AND PROCESS OF DIRECT COMPRESSION | |
AU2006260477B2 (en) | 2005-06-20 | 2012-02-23 | Decode Genetics Ehf. | Genetic variants in the TCF7L2 gene as diagnostic markers for risk of type 2 diabetes mellitus |
WO2007005572A1 (en) | 2005-07-01 | 2007-01-11 | Merck & Co., Inc. | Process for synthesizing a cetp inhibitor |
WO2007007173A2 (en) | 2005-07-08 | 2007-01-18 | Pfizer Limited | Human anti-madcam antibodies |
UY29694A1 (en) | 2005-07-28 | 2007-02-28 | Boehringer Ingelheim Int | METHODS TO PREVENT AND TREAT METABOLIC AND NEW DISORDERS DERIVED FROM PIRAZOL-O-GLUCOSIDO |
DE102005035891A1 (en) | 2005-07-30 | 2007-02-08 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8- (3-amino-piperidin-1-yl) -xanthines, their preparation and their use as pharmaceuticals |
CN101232873A (en) | 2005-08-11 | 2008-07-30 | 霍夫曼-拉罗奇有限公司 | Pharmaceutical composition comprising a dpp-iv inhibitor |
EP1760076A1 (en) | 2005-09-02 | 2007-03-07 | Ferring B.V. | FAP Inhibitors |
RS52110B2 (en) | 2005-09-14 | 2018-05-31 | Takeda Pharmaceuticals Co | Dipeptidyl peptidase inhibitors for treating diabetes |
EP1931654B1 (en) | 2005-09-16 | 2009-04-22 | Arena Pharmaceuticals, Inc. | Modulators of metabolism and the treatment of disorders related thereto |
KR101368525B1 (en) | 2005-09-20 | 2014-03-06 | 노파르티스 아게 | Use of a dpp-iv inhibitor to reduce hypoglycemic events |
JOP20180109A1 (en) | 2005-09-29 | 2019-01-30 | Novartis Ag | New Formulation |
JP2009515005A (en) * | 2005-11-04 | 2009-04-09 | エルエス ケーブル リミテッド | Method for producing magnesium hydroxide polymer hybrid particles |
CN101365432B (en) | 2005-12-16 | 2011-06-22 | 默沙东公司 | Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with metformin |
WO2007071738A1 (en) | 2005-12-23 | 2007-06-28 | Novartis Ag | Condensed heterocyclic compounds useful as dpp-iv inhibitors |
GB0526291D0 (en) | 2005-12-23 | 2006-02-01 | Prosidion Ltd | Therapeutic method |
JP2009522374A (en) | 2006-01-06 | 2009-06-11 | ノバルティス アクチエンゲゼルシャフト | Use of vildagliptin for the treatment of diabetes |
EA200801773A1 (en) | 2006-02-15 | 2009-02-27 | Бёрингер Ингельхайм Интернациональ Гмбх | GLUCOPIRANOSE-SUBSTITUTED DERIVATIVES OF BENZONITRILE, PHARMACEUTICAL COMPOSITIONS CONTAINING SUCH CONNECTIONS, THEIR APPLICATION AND METHOD OF THEIR PREPARATION |
WO2007099345A1 (en) | 2006-03-02 | 2007-09-07 | Betagenon Ab | Medical use of bmp-2 and/ or bmp-4 |
PE20071221A1 (en) | 2006-04-11 | 2007-12-14 | Arena Pharm Inc | GPR119 RECEPTOR AGONISTS IN METHODS TO INCREASE BONE MASS AND TO TREAT OSTEOPOROSIS AND OTHER CONDITIONS CHARACTERIZED BY LOW BONE MASS, AND COMBINED THERAPY RELATED TO THESE AGONISTS |
US8455435B2 (en) | 2006-04-19 | 2013-06-04 | Ludwig-Maximilians-Universitat Munchen | Remedies for ischemia |
EP1852108A1 (en) | 2006-05-04 | 2007-11-07 | Boehringer Ingelheim Pharma GmbH & Co.KG | DPP IV inhibitor formulations |
PE20110235A1 (en) | 2006-05-04 | 2011-04-14 | Boehringer Ingelheim Int | PHARMACEUTICAL COMBINATIONS INCLUDING LINAGLIPTIN AND METMORPHINE |
WO2007128721A1 (en) | 2006-05-04 | 2007-11-15 | Boehringer Ingelheim Internationalgmbh | Polymorphs |
DK2020996T3 (en) | 2006-05-16 | 2012-02-27 | Gilead Sciences Inc | Methods and compositions for the treatment of haematological diseases |
KR20070111099A (en) | 2006-05-16 | 2007-11-21 | 영진약품공업주식회사 | Novel crystalline form of sitagliptin hydrochloride |
US20080064717A1 (en) | 2006-05-19 | 2008-03-13 | Rajesh Iyengar | Inhibitors of diacylglycerol O-acyltransferase type 1 enzyme |
WO2007149797A2 (en) | 2006-06-19 | 2007-12-27 | Novartis Ag | Use of organic compounds |
WO2007148185A2 (en) | 2006-06-21 | 2007-12-27 | Pfizer Products Inc. | Substituted 3 -amino- pyrrolidino-4 -lactams as dpp inhibitors |
AT503443B1 (en) | 2006-06-23 | 2007-10-15 | Leopold Franzens Uni Innsbruck | Preparation of an ice surface, useful for ice rink, and ice sports cars and trains, comprises freezing water in which an inorganic substance e.g. ammonia, alkali hydroxide, hydrogen halide, nitric acid and sulfuric acid, is added |
TW200811140A (en) | 2006-07-06 | 2008-03-01 | Arena Pharm Inc | Modulators of metabolism and the treatment of disorders related thereto |
TW200811147A (en) | 2006-07-06 | 2008-03-01 | Arena Pharm Inc | Modulators of metabolism and the treatment of disorders related thereto |
EP2057160A1 (en) | 2006-08-08 | 2009-05-13 | Boehringer Ingelheim International GmbH | Pyrrolo [3, 2 -d]pyrimidines as dpp-iv inhibitors for the treatment of diabetes mellitus |
WO2008020011A1 (en) | 2006-08-15 | 2008-02-21 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted cyclopropylbenzene derivatives, pharmaceutical compositions containing such compounds, their use as sglt inhibitors and process for their manufacture |
AU2007285827A1 (en) | 2006-08-17 | 2008-02-21 | Wellstat Therapeutics Corporation | Combination treatment for metabolic disorders |
DE102006042586B4 (en) | 2006-09-11 | 2014-01-16 | Betanie B.V. International Trading | Process for the microparticulate loading of high polymer carbohydrates with hydrophobic active fluids |
US7956201B2 (en) | 2006-11-06 | 2011-06-07 | Hoffman-La Roche Inc. | Process for the preparation of (S)-4-fluoromethyl-dihydro-furan-2-one |
AR063569A1 (en) | 2006-11-06 | 2009-02-04 | Boehringer Ingelheim Int | DERIVATIVES OF BENZIL- BENZONITRILE SUBSTITUTED WITH GLUCOPYRANOSIL MEDICINES CONTAINING COMPOUNDS OF THIS TYPE ITS USE OR PROCEDURE FOR MANUFACTURING |
CL2007003227A1 (en) | 2006-11-09 | 2008-07-04 | Boehringer Ingelheim Int | PHARMACEUTICAL COMPOSITION THAT INCLUDES A BENEFIT DERIVATIVE REPLACED WITH GLUCOPIRANOSIL IN COMBINATION WITH ONE OR MORE THERAPEUTIC AGENTS; AND USE FOR THE TREATMENT OF MELLITUS DIABETES, OBESITY AND HYPERGLUCEMIA BETWEEN OTHERS. |
KR20090097184A (en) | 2006-12-06 | 2009-09-15 | 스미스클라인 비참 코포레이션 | Chemical compounds and uses |
US7638541B2 (en) | 2006-12-28 | 2009-12-29 | Metabolex Inc. | 5-ethyl-2-{4-[4-(4-tetrazol-1-yl-phenoxymethyl)-thiazol-2-yl]-piperidin-1-yl}-pyrimidine |
CL2008000017A1 (en) | 2007-01-04 | 2008-08-01 | Prosidion Ltd | COMPOUNDS DERIVED FROM NITROGEN AND OXYGEN HETEROCICLES, GPCR AGONISTS; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH COMPOUND; AND USE OF THE COMPOUND FOR THE TREATMENT OF OBESITY, DIABETES, METABOLIC SYNDROME, HYPERLIPIDEMIA, TOLERANCE |
CL2008000133A1 (en) | 2007-01-19 | 2008-05-23 | Boehringer Ingelheim Int | PHARMACEUTICAL COMPOSITION THAT INCLUDES A COMPOUND DERIVED FROM PIRAZOL-O-GLUCOSIDE COMBINED WITH AT LEAST A SECOND THERAPEUTIC AGENT; AND USE OF THE COMPOSITION FOR THE TREATMENT OF MELLITUS DIABETES, CATARATS, NEUROPATHY, MYOCARDIAL INFARTS, AND |
TW200836774A (en) | 2007-02-01 | 2008-09-16 | Takeda Pharmaceutical | Solid preparation |
CN101646420B (en) | 2007-02-01 | 2012-11-07 | 武田药品工业株式会社 | Solid preparation comprising alogliptin and pioglitazone |
CA2681092A1 (en) | 2007-03-15 | 2008-09-18 | Nectid, Inc. | Anti-diabetic combinations comprising a slow release biguanide composition and an immediate release dipeptidyl peptidase iv inhibitor composition |
CN101652147B (en) | 2007-04-03 | 2013-07-24 | 田边三菱制药株式会社 | Combined use of dipeptidyl peptidase IV inhibitor compound and sweetener |
US9050123B2 (en) | 2007-04-16 | 2015-06-09 | Smith & Nephew, Inc. | Powered surgical system |
PE20090696A1 (en) | 2007-04-20 | 2009-06-20 | Bristol Myers Squibb Co | CRYSTALLINE FORMS OF SAXAGLIPTIN AND PROCESSES FOR PREPARING THEM |
WO2008137435A1 (en) | 2007-05-04 | 2008-11-13 | Bristol-Myers Squibb Company | [6,6] and [6,7]-bicyclic gpr119 g protein-coupled receptor agonists |
ES2398478T5 (en) | 2007-07-09 | 2016-02-25 | Symrise Ag | Stable soluble salts of phenylbenzimidazolsulfonic acid from pH 6.0 to less than 6.8 |
JP5479318B2 (en) | 2007-07-19 | 2014-04-23 | 武田薬品工業株式会社 | Solid formulation containing alogliptin and metformin hydrochloride |
PE20090597A1 (en) | 2007-08-16 | 2009-06-06 | Boehringer Ingelheim Int | PHARMACEUTICAL COMPOSITION INCLUDING A DERIVATIVE OF PIRAZOL-O-GLUCOSIDE |
CL2008002427A1 (en) | 2007-08-16 | 2009-09-11 | Boehringer Ingelheim Int | Pharmaceutical composition comprising 1-chloro-4- (bd-glucopyranos-1-yl) -2- [4 - ((s) -tetrahydrofuran-3-yloxy) benzyl] -benzene combined with 1 - [(4-methylquinazolin- 2-yl) methyl] -3-methyl-7- (2-butyn-1-yl) -8- (3- (r) -aminopiperidin-1-yl) xanthine; and its use to treat type 2 diabetes mellitus. |
PE20090603A1 (en) | 2007-08-16 | 2009-06-11 | Boehringer Ingelheim Int | PHARMACEUTICAL COMPOSITION INCLUDING A SGLT2 INHIBITOR AND A DPP IV INHIBITOR |
UY31290A1 (en) | 2007-08-16 | 2009-03-31 | PHARMACEUTICAL COMPOSITION THAT INCLUDES A DERIVATIVE OF PIRAZOL-O-GLUCOSIDO | |
ES2733348T3 (en) | 2007-08-17 | 2019-11-28 | Boehringer Ingelheim Int | Purine derivatives for use in the treatment of diseases related to FAP |
CN107412742B (en) | 2007-11-16 | 2022-03-15 | 诺沃—诺迪斯克有限公司 | Pharmaceutical composition comprising a GLP-1 peptide or exendin-4 peptide and a basal insulin peptide |
CN101234105A (en) | 2008-01-09 | 2008-08-06 | 北京润德康医药技术有限公司 | Pharmaceutical composition containing diabetosan and vildagliptin and preparation thereof |
US20090186086A1 (en) | 2008-01-17 | 2009-07-23 | Par Pharmaceutical, Inc. | Solid multilayer oral dosage forms |
TW200936136A (en) | 2008-01-28 | 2009-09-01 | Sanofi Aventis | Tetrahydroquinoxaline urea derivatives, their preparation and their therapeutic application |
WO2009099734A1 (en) | 2008-02-05 | 2009-08-13 | Merck & Co., Inc. | Pharmaceutical compositions of a combination of metformin and a dipeptidyl peptidase-iv inhibitor |
EP2251326A4 (en) | 2008-03-05 | 2011-08-31 | Takeda Pharmaceutical | Heterocyclic compound |
US8551524B2 (en) | 2008-03-14 | 2013-10-08 | Iycus, Llc | Anti-diabetic combinations |
MX2010010562A (en) | 2008-03-31 | 2010-12-07 | Metabolex Inc | Oxymethylene aryl compounds and uses thereof. |
PE20091730A1 (en) | 2008-04-03 | 2009-12-10 | Boehringer Ingelheim Int | FORMULATIONS INVOLVING A DPP4 INHIBITOR |
PE20100156A1 (en) | 2008-06-03 | 2010-02-23 | Boehringer Ingelheim Int | NAFLD TREATMENT |
UY32030A (en) | 2008-08-06 | 2010-03-26 | Boehringer Ingelheim Int | "TREATMENT FOR DIABETES IN INAPPROPRIATE PATIENTS FOR THERAPY WITH METFORMIN" |
KR101791403B1 (en) | 2008-08-15 | 2017-10-30 | 베링거 인겔하임 인터내셔날 게엠베하 | Purin derivatives for use in the treatment of FAB-related diseases |
JP2010053576A (en) | 2008-08-27 | 2010-03-11 | Sumitomo Forestry Co Ltd | Mat for paving |
US8513264B2 (en) | 2008-09-10 | 2013-08-20 | Boehringer Ingelheim International Gmbh | Combination therapy for the treatment of diabetes and related conditions |
UY32177A (en) | 2008-10-16 | 2010-05-31 | Boehringer Ingelheim Int | TREATMENT OF DIABETES IN PATIENTS WITH INSUFFICIENT GLUCEMIC CONTROL TO WEIGHT THERAPY WITH DRUG, ORAL OR NOT, ANTIDIABÉTICO |
WO2010045656A2 (en) | 2008-10-17 | 2010-04-22 | Nectid, Inc. | Novel sglt2 inhibitor dosage forms |
TWI508965B (en) | 2008-12-23 | 2015-11-21 | Boehringer Ingelheim Int | Salt forms of organic compound |
AR074990A1 (en) | 2009-01-07 | 2011-03-02 | Boehringer Ingelheim Int | TREATMENT OF DIABETES IN PATIENTS WITH AN INAPPROPRIATE GLUCEMIC CONTROL THROUGH METFORMIN THERAPY |
TWI466672B (en) | 2009-01-29 | 2015-01-01 | Boehringer Ingelheim Int | Treatment for diabetes in paediatric patients |
UY32427A (en) | 2009-02-13 | 2010-09-30 | Boheringer Ingelheim Internat Gmbh | PHARMACEUTICAL COMPOSITION, PHARMACEUTICAL FORM, PROCEDURE FOR PREPARATION, METHODS OF TREATMENT AND USES OF THE SAME |
JP5685550B2 (en) | 2009-02-13 | 2015-03-18 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Pharmaceutical composition comprising SGLT2 inhibitor, DPP-IV inhibitor, and optionally antidiabetic agent, and use thereof |
JP2012517977A (en) | 2009-02-13 | 2012-08-09 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | An anti-diabetic drug comprising a DPP-4 inhibitor (linagliptin) optionally in combination with other anti-diabetic drugs |
TW201031661A (en) | 2009-02-17 | 2010-09-01 | Targacept Inc | Fused benzazepines as neuronal nicotinic acetylcholine receptor ligands |
JP2012520868A (en) | 2009-03-20 | 2012-09-10 | ファイザー・インク | 3-Oxa-7-azabicyclo [3.3.1] nonane |
US8815292B2 (en) | 2009-04-27 | 2014-08-26 | Revalesio Corporation | Compositions and methods for treating insulin resistance and diabetes mellitus |
WO2010147768A1 (en) | 2009-06-15 | 2010-12-23 | Merck Sharp & Dohme Corp. | Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with pioglitazone |
RU2563819C2 (en) | 2009-07-21 | 2015-09-20 | Керикс Байофармасьютикалз, Инк. | Drug forms of iron (iii) citrate |
MX370429B (en) | 2009-10-02 | 2019-12-13 | Boehringer Ingelheim Int Gmbh Star | Pharmaceutical compositions comprising bi-1356 and metformin. |
UY32919A (en) | 2009-10-02 | 2011-04-29 | Boehringer Ingelheim Int | Pharmaceutical composition, pharmaceutical dosage form, procedure for its preparation, methods for its treatment and its uses |
EP2504002B1 (en) | 2009-11-27 | 2019-10-09 | Boehringer Ingelheim International GmbH | Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin |
JP2010070576A (en) | 2009-12-28 | 2010-04-02 | Sato Pharmaceutical Co Ltd | Rapidly soluble tablet |
WO2011113947A1 (en) | 2010-03-18 | 2011-09-22 | Boehringer Ingelheim International Gmbh | Combination of a gpr119 agonist and the dpp-iv inhibitor linagliptin for use in the treatment of diabetes and related conditions |
EA201201509A1 (en) | 2010-05-05 | 2013-04-30 | Бёрингер Ингельхайм Интернациональ Гмбх | PHARMACEUTICAL COMPOSITIONS CONTAINING PIOGLITAZONE AND LINAGLIPTIN |
US9186392B2 (en) | 2010-05-05 | 2015-11-17 | Boehringer Ingelheim International Gmbh | Combination therapy |
MX2012014247A (en) | 2010-06-24 | 2013-01-18 | Boehringer Ingelheim Int | Diabetes therapy. |
KR20130137624A (en) | 2010-09-03 | 2013-12-17 | 브리스톨-마이어스 스큅 컴퍼니 | Drug formulations using water soluble antioxidants |
AR083878A1 (en) | 2010-11-15 | 2013-03-27 | Boehringer Ingelheim Int | VASOPROTECTORA AND CARDIOPROTECTORA ANTIDIABETIC THERAPY, LINAGLIPTINA, TREATMENT METHOD |
EP2670397B1 (en) | 2011-02-01 | 2020-05-13 | Bristol-Myers Squibb Company | Pharmaceutical formulations including an amine compound |
UY33937A (en) | 2011-03-07 | 2012-09-28 | Boehringer Ingelheim Int | PHARMACEUTICAL COMPOSITIONS CONTAINING DPP-4 AND / OR SGLT-2 AND METFORMIN INHIBITORS |
SI2707368T1 (en) | 2011-05-10 | 2016-04-29 | Sandoz Ag | Polymorph of linagliptin benzoate |
ES2934843T3 (en) | 2011-07-15 | 2023-02-27 | Boehringer Ingelheim Int | Substituted dimeric quinazoline derivative, its preparation and its use in pharmaceutical compositions for the treatment of type I and II diabetes |
US20130172244A1 (en) | 2011-12-29 | 2013-07-04 | Thomas Klein | Subcutaneous therapeutic use of dpp-4 inhibitor |
CN104040060B (en) | 2012-01-04 | 2017-05-17 | 宝洁公司 | Active containing fibrous structures with multiple regions |
US9555001B2 (en) | 2012-03-07 | 2017-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition and uses thereof |
JP6224084B2 (en) | 2012-05-14 | 2017-11-01 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Xanthine derivatives as DPP-4 inhibitors for the treatment of glomerular epithelial cell related disorders and / or nephrotic syndrome |
WO2013174768A1 (en) | 2012-05-24 | 2013-11-28 | Boehringer Ingelheim International Gmbh | A xanthine derivative as dpp -4 inhibitor for use in the treatment of autoimmune diabetes, particularly lada |
-
2009
- 2009-12-22 TW TW098144273A patent/TWI508965B/en active
- 2009-12-22 MX MX2011006713A patent/MX2011006713A/en active IP Right Grant
- 2009-12-22 EA EA201100969A patent/EA022310B1/en not_active IP Right Cessation
- 2009-12-22 AU AU2009331471A patent/AU2009331471B2/en active Active
- 2009-12-22 CN CN201611019522.1A patent/CN107011345A/en active Pending
- 2009-12-22 CA CA2745037A patent/CA2745037C/en active Active
- 2009-12-22 NZ NZ592924A patent/NZ592924A/en unknown
- 2009-12-22 US US13/140,853 patent/US8865729B2/en active Active
- 2009-12-22 CN CN2009801510973A patent/CN102256976A/en active Pending
- 2009-12-22 JP JP2011541513A patent/JP2012512848A/en active Pending
- 2009-12-22 WO PCT/EP2009/067772 patent/WO2010072776A1/en active Application Filing
- 2009-12-22 KR KR1020117014365A patent/KR20110103968A/en not_active Application Discontinuation
- 2009-12-22 EP EP09804128A patent/EP2382216A1/en not_active Withdrawn
- 2009-12-22 BR BRPI0923121-8A patent/BRPI0923121A2/en not_active Application Discontinuation
- 2009-12-23 AR ARP090105078A patent/AR074879A1/en unknown
-
2011
- 2011-05-01 IL IL212604A patent/IL212604A0/en unknown
- 2011-05-20 CL CL2011001182A patent/CL2011001182A1/en unknown
-
2014
- 2014-04-18 JP JP2014086403A patent/JP6169524B2/en active Active
- 2014-05-09 US US14/273,753 patent/US9212183B2/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8551957B2 (en) | 2007-08-16 | 2013-10-08 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivate |
US10406172B2 (en) | 2009-02-13 | 2019-09-10 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US12115179B2 (en) | 2009-02-13 | 2024-10-15 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US20180185291A1 (en) | 2011-03-07 | 2018-07-05 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions |
US10596120B2 (en) | 2011-03-07 | 2020-03-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions |
US11564886B2 (en) | 2011-03-07 | 2023-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions |
US9555001B2 (en) | 2012-03-07 | 2017-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
AU2009331471A1 (en) | 2010-07-01 |
WO2010072776A1 (en) | 2010-07-01 |
MX2011006713A (en) | 2011-07-13 |
US8865729B2 (en) | 2014-10-21 |
KR20110103968A (en) | 2011-09-21 |
IL212604A0 (en) | 2011-07-31 |
JP2014167007A (en) | 2014-09-11 |
AU2009331471B2 (en) | 2015-09-03 |
AR074879A1 (en) | 2011-02-16 |
US9212183B2 (en) | 2015-12-15 |
CA2745037C (en) | 2020-06-23 |
EP2382216A1 (en) | 2011-11-02 |
NZ592924A (en) | 2014-05-30 |
CN102256976A (en) | 2011-11-23 |
EA022310B1 (en) | 2015-12-30 |
TWI508965B (en) | 2015-11-21 |
BRPI0923121A2 (en) | 2015-08-11 |
JP2012512848A (en) | 2012-06-07 |
JP6169524B2 (en) | 2017-07-26 |
US20120129874A1 (en) | 2012-05-24 |
EA201100969A1 (en) | 2012-01-30 |
TW201033208A (en) | 2010-09-16 |
CL2011001182A1 (en) | 2011-09-30 |
CN107011345A (en) | 2017-08-04 |
US20140303194A1 (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9212183B2 (en) | Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine | |
KR101985384B1 (en) | Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions | |
TWI393720B (en) | 8-(3-amino-piperidin-1-yl)-xanthines, their preparation and their use as pharmacon | |
RU2652121C2 (en) | Multicomponent crystalline system comprising nilotinib and selected co-crystal formers | |
US20170027945A1 (en) | Novel Compounds | |
CN111432811B (en) | Polymorphs of trimebutine maleate and methods of use thereof | |
WO2024226537A1 (en) | Amorphous obicetrapib and sglt2 inhibitor combination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20141209 |