CA2537035C - Improved wave energy converter (wec) device and system - Google Patents
Improved wave energy converter (wec) device and system Download PDFInfo
- Publication number
- CA2537035C CA2537035C CA2537035A CA2537035A CA2537035C CA 2537035 C CA2537035 C CA 2537035C CA 2537035 A CA2537035 A CA 2537035A CA 2537035 A CA2537035 A CA 2537035A CA 2537035 C CA2537035 C CA 2537035C
- Authority
- CA
- Canada
- Prior art keywords
- float
- spar
- water
- floats
- relative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 230000033001 locomotion Effects 0.000 claims abstract description 40
- 230000004044 response Effects 0.000 claims description 14
- 230000010355 oscillation Effects 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- 230000000284 resting effect Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 238000004873 anchoring Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000025508 response to water Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/16—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
- F03B13/20—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/16—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
- F03B13/18—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
- F03B13/1845—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/706—Application in combination with an electrical generator
- F05B2220/7066—Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/706—Application in combination with an electrical generator
- F05B2220/7068—Application in combination with an electrical generator equipped with permanent magnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/915—Mounting on supporting structures or systems on a stationary structure which is vertically adjustable
- F05B2240/9151—Mounting on supporting structures or systems on a stationary structure which is vertically adjustable telescopically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/30—Arrangement of components
- F05B2250/31—Arrangement of components according to the direction of their main axis or their axis of rotation
- F05B2250/311—Arrangement of components according to the direction of their main axis or their axis of rotation the axes being in line
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
A wave energy converter system comprises two floats; a first being generally flat and heaving up and down in phase with passing surface waves on a body of water, and the second being elongated and heaving up and down out of phase with the passing waves. Preferably the first float is annular with a central vertical opening therethrough, and the elongated float, with a weighted bottom end, extends vertically through the central opening of the first float. The two floats thus move out of phase with one another, thus providing a relatively large relative motion between the two floats giving rise to highly efficient energy conversion. Each float serves as a ~ground~ for the other;
thus avoiding the need for anchoring the floats to the floor of the body of water.
thus avoiding the need for anchoring the floats to the floor of the body of water.
Description
IMPROVED WAVE ENERGY CONVERTER (WEC) DEVICE AND SYSTEM
BACKGROUND OF THE INVENTION
This invention relates to the conversion of energy present in surface waves on large bodies of water to useful energy.
In related United States Patent No. 6,772,592, filed February 4, 2003, there is disclosed a surface wave energy conversion system comprising two separate, but interacting components, each for capturing energy from surface waves.
A first of the system components comprises a float on the water surface which bobs up and down in response to passing waves. Such bobbing motion tends to be in phase with the passing waves, i.e., the float rises in response to a passing cresting wave.
The second component of the system comprises a submerged member dependent from the float and including a compressible fluid responsive to water pressure variations. In response to an overpassing cresting surface wave and an increase in water pressure, the compressible fluid is compressed resulting in a decreased volume and corresponding decreased buoyancy of the second component. Thus, the second component tends to sink relative to the float in out-of-phase relation with the passing waves.
Of significance is that the two components tend to move in opposite directions in response to the same passing wave. Thus, by interconnecting an energy transducer, e.g., a linear electrical generator, between the two components, energy generation is obtained.
SUMMARY OF THE INVENTION
A wave energy converter comprises two floats, a first of which is configured to rise and fall generally in phase with passing surface waves on a body of water, and the second of which is configured to rise and fall generally out of phase with passing waves.
In one embodiment, the float comprises an annular member having a central opening, and the second float comprises an elongated spar disposed within the central opening for vertical out-of-phase movements relative to the first float; the wall of the central opening serving as a bearing for the moving spar.
An energy converter, e.g., a linear electrical generator, is connected between the two floats for converting relative movements therebetween into useful energy. Significantly, because energy is obtained from relative movements between the floats, neither needs to be anchored to the floor of the body of water.
According to one aspect of the present invention, there is provided apparatus for capturing energy from surface waves on a body of water comprising first and second floats, each having, when the apparatus is deployed in a body of water, an intercept with the water surface, a power take-off element connected between said floats for converting relative movements therebetween into useful energy, and wherein said first float generally extends horizontally along the water surface and is configured to rise and fall in in-phase relation with passing surface waves, and said second float extends generally vertically above and below the first float and is configured to rise and fall in out-of-phase relation with said passing waves, and wherein said first and second floats have configuration values g/Z which are greater and less than w2, respectively, where: g = acceleration due to gravity; Z = the effective depths of the floats; and c,J = the angular frequency of the passing waves; and where: Z (effective depth) = VD/As, where: VD is the volume of the water displaced by the float including hydrodynamic added mass;
and AS is the waterplane area of the float.
According to another aspect of the present invention, there is provided an apparatus for capturing energy from waves on a body of water comprising an elongated spar having positive buoyancy and having top and bottom ends, said bottom end being anchored to the floor of the water body by a gimbal joint allowing tilting of the spar away from a vertical axis, and said top end extending to and beyond the water body surface, a circular float disposed around the spar upper end for vertical movements relative to the spar in response to passing surface waves on said water body, and a power take-off device interconnected between said float and said spar for converting relative movements between said float and said spar into useful energy.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings are schematic and not to scale.
FIGURE 1 is a vertical section of a system according to the 2a invention deployed in a body of water;
FIGURE 2 is a horizontal section taken along line 2-2 of Fig.
1;
FIGURE 3 is a view in perspective showing a variation of a mooring arrangement shown in Fig. 1;
FIGURE 4 is a view similar to Fig. 1 but showing a variation of the mechanical configuration of the system;
FIGURE 5 is an enlarged view in section showing electrical elements of a linear electrical generator in one of the floats;
FIGURES 6 and 7 show a series of graphs illustrating the phase relationships among the system components shown in Fig. 1 and surface waves driving the system;
FIGURE 8 shows a single float system;
FIGURES 9-14 show modified spar floats useable according to the present invention;
FIGURES 15A-C illustrate, partially by comparison with a spar similar to the one shown in Fig. 1, further variations of spar floats useable according to the present invention; and FIGURE 16 is a view in elevation of an inflatable system, shown in fully inflated configuration; while FIGURE 17 shows the same system shown in Fig 16 in deflated condition.
DETAILED DESCRIPTION OF THE INVENTION
One embodiment according to the present invention is illustrated in Figs. 1 and 2. Therein, two floats 100 and 200 are shown; the float 100 being generally "flat", in the sense of having a relatively large horizontal surface area with a relatively small submerged depth; and the float 200 having a relatively small horizontal surface and a relatively large submerged depth. By "horizontal surface" is meant that plane of a float lying in the plane of the mean level surface of the water. Hereinafter, such ;.horizontal surfaces are referred to as "waterplane areas".
.The float 100 has an annular shape, including a rim 102 enclosing a central opening 104. The float 200 is elongated and extends through the central opening of the float 100.
The physical characteristics of the two floats are selected such that they move generally out of phase with one another in response to passing waves.
Fig. 1 also shows, schematically, a mooring arrangement for the dual float system. Thus, separate buoys 600 are provided fixedly anchored in place. The buoys 600 are loosely connected, by flexible cables, to the float 100 which is thus free to bob up and down while being moored in place. Fig. 3 shows an alternative arrangement with a loose fitting collar 201 slidably disposed on the float 200. The collar 201 is anchored by one or more cables.
It can be shown that whether a float heaves in-phase or out-of-phase with a passing surface wave is dependent on whether the float displaces a small or large volume of water relative to the float's waterplane area. In the case of in-phase motion, the float displaces a relatively small volume of water for a given waterplane area, and may be described as a low-inertia float. Conversely, for the case of out-of-phase motion, the float displaces a relatively large volume of water for a given waterplane area, and may be described as a high-inertia float. It can be shown that the properties of a float relative to a surface wave of angular frequency w are such that the float displays in-phase or out-of-phase behavior depending on the relative values of g/Z which are greater or less, respectively, than w2, where:
w is the angular frequency of the passing surface waves;
g is the acceleration due to gravity; and Z is the "effective depth" of the float where:
Z = VD/AS (1) where:
VD L.s the volume of water displaced by the float including hydrodynamic added mass effects; and AS is the waterplane area of the float.
Thus, for the float 100, moving in phase with the passing waves:
g/Z > w2 (2) or Z < g/w2 > VD/AS (3) The expression g/w2 is known as the "resonance depth", i.e., a body with an effective depth (Z) equal to the resonance depth will have a natural period of oscillation equal to the frequency of the surface waves.
Floats, such as the float 100 shown in Fig. 1, having effective depths less than the resonance depth tend to bob up and down in phase with the passing waves.
Conversely, floats having effective depths, Z, greater than the resonance depth tend to bob up and down out of phase with the waves.
For floats having an effective depth close to the resonance depth, the phase relationships between the floats and the waves can be variable, depending upon various damping effects such as viscous damping. Accordingly, for definite in and out of phase movements of the floats relative to the waves and to one another, the effective depths, Z, of the floats are designed to be either greater or less than the resonance depth. As noted, the effective depth, Z, is equal to the displacement of a float divided by its waterplane area As. For a given volume, related to the desired power generation of the system, the principal design variable is the area As. From Equation (3), with a given VD, a float will move in phase with the surface waves provided AS is sufficiently large.
Conversely, a float will tend to move out of phase with the surface waves provided AS is sufficiently small.
In Fig. 1, the float 100 has a large AS relative to the volume of water displaced (VD) by the float; whereas the float 200 has a small AS relative to its VD.
The buoyancy or "heave" force on a vertically oriented cylindrical float is a function of the water pressure at the bottom of the float multiplied by the float bottom area. When a cresting wave passes a relatively shallow float, the momentarily increased depth of the float gives rise to an increased water pressure at the float bottom and hence an increased force. Due to the low inertia of the float, the float tends to respond immediately to the force, and thus tends to move in phase with the passing wave.
The same forcing mechanism applies with an elongated spar except that the increased inertia of the spar causes the spar to tend to be out of phase with the passing wave. (It is known, for a sinusoidally forced high-mass system with negligible position-dependent restoring forces, that the motion of the system tends to be out of phase with the forcing on said system.) A further factor influencing the movement of a float is that the amount of water pressure increase at the bottom of the float in response to a passing wave crest decreases with increasing depth of the float. Because vertical movements of the floats in response to passing waves are in response to water pressure variations at the bottom of the floats, reductions in such water pressure variations reduce the forces applied to the floats. This reduction of water pressure variation or heave force with depth is known, and for an upright floating spar, the manner in which the heave force on the spar varies with depth is given by the equation:
as = cosh[K(d-D)]/cosh(Kd) (4) where:
K is the wavenumber, defined as 27t/?, where 2 is the distance between wave crests (i.e. the wavelength) d is the depth of the body of water; and D is the draft or submerged length of the spar relative to the mean water level.
The factor 6 is based on pressure due to surface waves propagating in the absence of any impediment (i.e. the float) and hence is closely related to the known "Froude-Krylov" force. Specifically, 6 is the ratio of the Froude-Krylov force for a given floating body to the Froude-Krylov force integrated along the underside of the waterplane area of that body.
In deep water, d >>D, the reduction of water pressure variation defined in Equation 4 may be expressed as:
o = exp (-KD) . (5) This a factor affects both the shallow and elongated floats, and preferably the 6 of each float is as large as possible.
Accordingly, in some embodiments of the invention, each has as short an effective depth as possible within the constraint of Equation 3. Another practical constraint is that the shallow float should have an effective depth not less than the typical wave amplitude to assure hydrodynamic interaction between the shallow float and the wave.
In one embodiment, the shallow float, which tends to move in phase with the wave elevation, has an effective depth Z that is substantially less than the resonance depth. The spar, which tends to move out of phase with the wave elevation, has an effective depth Z that is not much larger than the resonance depth.
In connection with typical power take-off devices which function most efficiently at higher speeds, it is beneficial to make the effective depth Z of the elongated spar as close to the resonance depth as possible so as to increase its oscillation amplitude.
This increase in oscillation amplitude leads to more efficient conversion of energy by the power take-off device.
By way of example of a system according to this invention, and in reliance upon Equation (2) for the float 100 (and the inverse of Equation (2) for the spar, i.e., g/Z < w 2), assume that the system is intended for use where the surface waves have a dominant wave period of T=8 seconds (2=100m, k=.063, w = 2n/T, so W2 = 0.62 sec-2). Consequently, g/Z for the float 100 must be greater than 0.62 sec-2, and g/Z for the spar must be less than 0.62 sec-2. Taking 9.81 m/s2 as the acceleration due to gravity, the float 100 must have an effective depth Z less than 15.9 in, and the spar 200 must have an effective depth greater than 15.9 m.
Further by way of example, assuming a circular float 100, for ease of mooring (as explained hereafter), and dominant surface waves of 100 meters wavelength, the float outer diameter is 2 meters and has a central opening of 1.2 meters. The waterplane area of the float 100 is thus approximately 2 square meters. For stability, the float 100 is ballasted to have 1/2 of its height below water. Thus, with a total height of 3.0 meters, the float submergence depth is 1.5m.
The force tending to lift the float is a function of the area of the float which, in the above example, is approximately 2 square meters.
The spar float 200, in this example, is a cylinder having an outer diameter of 1.15 meters, hence a waterplane area of approximately 1.0 square meters. The height of the float is 20 meters and the float is ballasted to have a submerged depth of 17 meters. The effective depth, Z, of the float is thus approximately 17 meters.
The a factor for the shallow float (assuming deployment in deep water) is exp(-kZ)=exp(-0.063*1.5)=0.91. The a factor for the elongated spar is exp(-kZ)=exp(-0.063*17)=0.35.
Due to the higher a factor for the shallow float, which corresponds to increased wave forcing pressure, the waterplane area of the shallow float is, in one embodiment, larger than the waterplane area of the elongated spar. In one embodiment, the ratio of the waterplane area of the shallow float to that of the elongated spar is not too large, or the mass of the elongated spar will be inadequate for it to react against the power take-off device disposed between the two components.
How the two floats are configured to obtain the desired relationships is a matter of choice to the designer. A feature of the present invention, however, is the particular relationship between the two floats 100 and 200. Thus, by disposing the float 200 within the central opening 104 of the float 100, the movements of the two floats relative to one another are constrained, with the float 100 serving as a bearing for the float 200. To further control the relative movements between the two floats, a collar 106 can be added to the float 100 as shown in Fig. 1. Also, for biasing the spar 200 to remain in upright position, the lower portion of the float is preferably weighted, i.e., by a weight 202 shown in Fig. 1.
In Fig. 4, the bearing function of the floats is reversed.
The elongated float 200A encompasses the flat float 100A and provides a bearing surface for the float 100A.
Energy is converted by virtue of relative movements between the two floats and a suitable energy converter, e.g., a hydraulic pump 110 shown in Fig. 1, connected between the two floats. While relative vertical movements are required, uncontrolled angular rotation of the two floats relative to one another is preferably restricted to avoid the need for complicated interconnections to and between the floats. To this end, the cross-sections of the inter-fitting float parts are preferably non-circular. For example, as shown in Fig. 2, the shape of the central opening 104 through the float 100C and the corresponding cross-sectional shape of the float 200C are rectilinear.
In Fig. 2, the float is shown of circular outer shape. This provides the advantage that no particular orientation of the float is required with respect to the passing waves. A limitation on the diameter of the float, however, is that it be relatively small in comparison with the wavelength of the passing waves, e.g., not more than 10% of such wavelength. This is to avoid "cancellation"
effects, i.e., when the float is simultaneously exposed to both lifting and falling forces. For example, if the float diameter were equal to a surface wave wavelength, the net heave force on the float would be zero.
One means for increasing the size of the float 100 while avoiding cancellation effects is to enlarge the float in a direction perpendicular to the direction of advance of the waves.
This requires, however, that the proper orientation of the float be maintained relative to the wave direction.
The two floats 100 and 200 acquire kinetic energy as they bob up and down in response to the passing waves. One means for extracting energy from the moving floats is to interconnect each float to a separate energy converter, e.g., a hydraulic pump, connected between a respective float and a stationary ground point, e.g., the ocean bed. An advantage of the dual float system of the present invention, however, is that each float can serve as a ground point for the other, with neither float rigidly interconnected to the ocean bed. This is particularly advantageous in deep water situations.
Thus, as shown in Fig. 1, for example, an energy converter, e.g., a hydraulic pump 110, can be interconnected between the two floats with the relative vertical motions of the two floats being used to pump the pump 110 for pressurizing a hydraulic fluid therein. The fact that the two floats are constrained to move in preselected paths relative to one another greatly simplifies the mounting and interconnecting of an energy converter on and between the two floats.
In one embodiment, electrically conductive members comprising elements of an electrical generator are provided on the surfaces of the two floats which slide past one another, i.e., conductive elements 112 (Fig. 5) are provided on the inner surface 114 of the rim 102 of the float 100, and conductive elements 212 (Fig. 11) are provided on the outer surface 214 of that length of the float 200 which slides within the float central opening 104. The relatively movable conductive members can be configured to comprise a linear electrical generator.
As described, the two floats tend to move in opposite vertical directions in response to passing surface waves. This is illustrated in Fig. 6 where, in graph A, vertical movements of the two floats are plotted against time.
In graph B, vertical movements of passing surface waves are plotted against the same time scale as used in Graph A. In Graph A, the vertical movements of the float 100 are shown by the curve 120 and those of the float 200 by the curve 220. Curve 120 for the float 200 is in phase with the surface waves, while curve 220 for the float 200 is 1800 out of phase with the waves. Curve 150 plots the relative movements or separation between the two floats 100 and 200.
The movements illustrated by curves 120 and 220 for the two floats 100 and 200 are those for freely moving floats. In actual use, the two floats 100 and 200 are interconnected by an energy converter, and the effect of such interconnection, and energy removal from the floats, is shown in Graph C in Fig. 7. Because of the interconnection between the two floats, through the energy converter, the two floats are no longer 1800 out of phase with one another.
As noted, the float 100 serves as a bearing for the spar float 200 in the embodiment shown in Fig. 1, and vice versa in the Fig. 4 embodiment. The illustrated mechanical interaction between the two floats, for maintaining them in desired physical relationships even in a heaving water surface, is so advantageous that such mechanical relationship is retained in a system illustrated in Fig. 8. As shown, only one float, e.g., the float 100, is free for vertical;
movements, while the other float, the spar 200, is fixedly anchored to the ocean floor by means of a known type of gimbal joint 700 allowing tilting of the spar but no vertical movements. Thus, only the float 100 moves in response to the passing waves for capturing energy from the waves While the spar 200 shown in Fig. 8 is vertically stationary, it is an effective means for mooring the float in place while allowing free vertical movements of the float. Additionally, it is generally known that protection of a floating object against storm damage can be obtained by submerging the object. By constraining the vertical movements of the float along the anchored spar 200, protective flooding of ballast tanks in the float 100 can cause it to sink in a controlled manner downwardly along the spar and in fixed location. Upon blowing of the ballast tanks, the float 100 rises to its previous position.
Other features and structural variations of the invention are shown in Figs. 9-15.
In Fig. 9, a spar 200B is shown having a heavy weight 220 at the bottom end 222 and a plurality of air-filled cells 224 at the top end 226. The arrangement illustrated is effective for maintaining the spar in vertical orientation.
In Fig. 10, a spar 2000 is shown with an indented region 240 for receipt, as previously mentioned, of a series of conductive elements 212 (Fig. 11) forming, in connection with conductive elements on the inside surface 115 (Fig. 5) of the annular float 100, a known type of linear generator.
In Figs. 12 and 12A, a spar 200D comprises a plurality of telescoping concentric pipes 250 for greater ease of storage and transportation. When in use, the adjoining sections are locked together.
In Fig. 13, a spar 200E comprises a plurality of hollow annular members 254 vertically stacked in fixed angular relation along a central column 256.
In Fig. 14, a mass - spring system 270 is disposed within a spar 200F. The system includes a weight 272 mounted between two springs 274 and a selectively movable mechanism 276 for allowing or preventing vertical movements of the weight. The effect of this internal degree of freedom of the spar is to increase the lowest natural oscillation frequency of the spar, providing a means for the designer of the WEC apparatus to tune the device for greater energy conversion efficiency. For example, for an embodiment of the present invention intended for deployment in a region where dominant waves have a range of wave periods, it may be advantageous to design an elongated spar to a length which leads to optimal energy conversion for the longer wavelengths. In the presence of long period waves, the mass-spring system 270 is locked against movement, and thus the system is tuned. In the presence of shorter period waves, the mass-spring system is allowed to oscillate, causing the spar to resonate at a frequency closer to that of the shorter period waves, leading to improved energy capture.
In Figs 15A, 15B, and 15C, three possible configurations of spars are shown. Fig 15A shows a spar 200 similar to the spar 200 shown in Fig. 1 and of a certain waterplane area and a certain effective depth Z. The spar 200 comprises a single cylinder of uniform diameter. In Figure 15B a spar 2000 is shown in a dual-cylindrical configuration, i.e. the spar 2000 is comprised of an upper cylinder 280 which has a diameter greater than the diameter of a lower cylinder 281. The spar 2000 shown in Fig. 15B is configured such that its waterplane area is equal to that of the spar 200 shown in Fig. 15A. The lower cylinder 218 of the spar 200G is configured such that the total volume of water displaced by the spar 2000 is equal to the volume of water displaced by the spar 200 shown in Figure 15A. Because the spars 200 and 200G have equivalent waterplane areas and displace equivalent volumes of water, they have substantially equivalent effective depths. The advantage to the embodiment of the spar 200G is that its a factor is greater than the u factor for spar 200. The increase in a factor comes about because the lower surface of the upper cylinder 280, in comparison with the lower surface of the spar 200, interacts with a portion of pressure field closer to the surface of the water, hence experiences larger variations in pressure with passing waves. This leads to larger forces for improved power conversion efficiency.
In the spar 200H shown in Fig. 15C, the lower cylinder 281 (Fig. 15B) of the spar 200G is replaced with a dense cable or chain 282, the length of which substantially exceeds the distance from the bottom of the spar 200H to the floor 283 of the body of water.
The cable 282 can have multiple floats 285 attached along its length, the purpose of which is to assure that the volume of the cable 282 plus the volume of the floats 285 equals the volume of the lower cylinder 281 of the spar 200G.
The advantage to the Fig. 15C embodiment is that the lower end of the chain or cable can be fixed to an anchor 284 on the floor 283, thus providing a means for mooring the spar. In one embodiment, a lower length 286 of the cable 282 rests on the floor 283, which cable length varies as the spar heaves with passing waves. Preferably, the density of the cable lower length 286 is significantly less than that of the remainder of the cable such that variations in the hanging length of the cable with vertical movements of the spar do not substantially change the buoyancy characteristics of the spar 200H.
Fig. 16 shows a float 100 -- spar 200 system similar to that shown in Fig. 1 except for the materials used. Thus, both the float and the spar are made from impervious, stretchable materials, and the structural shapes shown in Fig. 16 are obtained by filling structures shown in Fig.17 with water and pressurized air. The float and spar are closed, hollow members formed from commercially available materials used, for example, in inflatable rafts, e.g., PVC coated rubber tubing. In the empty condition shown in Fig. 17, the spar is folded along horizontal pleats, accordion style, and pouring water into the spar causes it to expand. The desired final weight and buoyancy of the spar is tuned by the quantity of air pumped into the spar.
A weight is fixedly contained in the spar lower end.
The float shown in Fig. 17 is likewise caused to expand into the size shown in fig. 16 by adding water and pressurized air.
When deployed, the system functions as does the system shown in Fig. 1.
BACKGROUND OF THE INVENTION
This invention relates to the conversion of energy present in surface waves on large bodies of water to useful energy.
In related United States Patent No. 6,772,592, filed February 4, 2003, there is disclosed a surface wave energy conversion system comprising two separate, but interacting components, each for capturing energy from surface waves.
A first of the system components comprises a float on the water surface which bobs up and down in response to passing waves. Such bobbing motion tends to be in phase with the passing waves, i.e., the float rises in response to a passing cresting wave.
The second component of the system comprises a submerged member dependent from the float and including a compressible fluid responsive to water pressure variations. In response to an overpassing cresting surface wave and an increase in water pressure, the compressible fluid is compressed resulting in a decreased volume and corresponding decreased buoyancy of the second component. Thus, the second component tends to sink relative to the float in out-of-phase relation with the passing waves.
Of significance is that the two components tend to move in opposite directions in response to the same passing wave. Thus, by interconnecting an energy transducer, e.g., a linear electrical generator, between the two components, energy generation is obtained.
SUMMARY OF THE INVENTION
A wave energy converter comprises two floats, a first of which is configured to rise and fall generally in phase with passing surface waves on a body of water, and the second of which is configured to rise and fall generally out of phase with passing waves.
In one embodiment, the float comprises an annular member having a central opening, and the second float comprises an elongated spar disposed within the central opening for vertical out-of-phase movements relative to the first float; the wall of the central opening serving as a bearing for the moving spar.
An energy converter, e.g., a linear electrical generator, is connected between the two floats for converting relative movements therebetween into useful energy. Significantly, because energy is obtained from relative movements between the floats, neither needs to be anchored to the floor of the body of water.
According to one aspect of the present invention, there is provided apparatus for capturing energy from surface waves on a body of water comprising first and second floats, each having, when the apparatus is deployed in a body of water, an intercept with the water surface, a power take-off element connected between said floats for converting relative movements therebetween into useful energy, and wherein said first float generally extends horizontally along the water surface and is configured to rise and fall in in-phase relation with passing surface waves, and said second float extends generally vertically above and below the first float and is configured to rise and fall in out-of-phase relation with said passing waves, and wherein said first and second floats have configuration values g/Z which are greater and less than w2, respectively, where: g = acceleration due to gravity; Z = the effective depths of the floats; and c,J = the angular frequency of the passing waves; and where: Z (effective depth) = VD/As, where: VD is the volume of the water displaced by the float including hydrodynamic added mass;
and AS is the waterplane area of the float.
According to another aspect of the present invention, there is provided an apparatus for capturing energy from waves on a body of water comprising an elongated spar having positive buoyancy and having top and bottom ends, said bottom end being anchored to the floor of the water body by a gimbal joint allowing tilting of the spar away from a vertical axis, and said top end extending to and beyond the water body surface, a circular float disposed around the spar upper end for vertical movements relative to the spar in response to passing surface waves on said water body, and a power take-off device interconnected between said float and said spar for converting relative movements between said float and said spar into useful energy.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings are schematic and not to scale.
FIGURE 1 is a vertical section of a system according to the 2a invention deployed in a body of water;
FIGURE 2 is a horizontal section taken along line 2-2 of Fig.
1;
FIGURE 3 is a view in perspective showing a variation of a mooring arrangement shown in Fig. 1;
FIGURE 4 is a view similar to Fig. 1 but showing a variation of the mechanical configuration of the system;
FIGURE 5 is an enlarged view in section showing electrical elements of a linear electrical generator in one of the floats;
FIGURES 6 and 7 show a series of graphs illustrating the phase relationships among the system components shown in Fig. 1 and surface waves driving the system;
FIGURE 8 shows a single float system;
FIGURES 9-14 show modified spar floats useable according to the present invention;
FIGURES 15A-C illustrate, partially by comparison with a spar similar to the one shown in Fig. 1, further variations of spar floats useable according to the present invention; and FIGURE 16 is a view in elevation of an inflatable system, shown in fully inflated configuration; while FIGURE 17 shows the same system shown in Fig 16 in deflated condition.
DETAILED DESCRIPTION OF THE INVENTION
One embodiment according to the present invention is illustrated in Figs. 1 and 2. Therein, two floats 100 and 200 are shown; the float 100 being generally "flat", in the sense of having a relatively large horizontal surface area with a relatively small submerged depth; and the float 200 having a relatively small horizontal surface and a relatively large submerged depth. By "horizontal surface" is meant that plane of a float lying in the plane of the mean level surface of the water. Hereinafter, such ;.horizontal surfaces are referred to as "waterplane areas".
.The float 100 has an annular shape, including a rim 102 enclosing a central opening 104. The float 200 is elongated and extends through the central opening of the float 100.
The physical characteristics of the two floats are selected such that they move generally out of phase with one another in response to passing waves.
Fig. 1 also shows, schematically, a mooring arrangement for the dual float system. Thus, separate buoys 600 are provided fixedly anchored in place. The buoys 600 are loosely connected, by flexible cables, to the float 100 which is thus free to bob up and down while being moored in place. Fig. 3 shows an alternative arrangement with a loose fitting collar 201 slidably disposed on the float 200. The collar 201 is anchored by one or more cables.
It can be shown that whether a float heaves in-phase or out-of-phase with a passing surface wave is dependent on whether the float displaces a small or large volume of water relative to the float's waterplane area. In the case of in-phase motion, the float displaces a relatively small volume of water for a given waterplane area, and may be described as a low-inertia float. Conversely, for the case of out-of-phase motion, the float displaces a relatively large volume of water for a given waterplane area, and may be described as a high-inertia float. It can be shown that the properties of a float relative to a surface wave of angular frequency w are such that the float displays in-phase or out-of-phase behavior depending on the relative values of g/Z which are greater or less, respectively, than w2, where:
w is the angular frequency of the passing surface waves;
g is the acceleration due to gravity; and Z is the "effective depth" of the float where:
Z = VD/AS (1) where:
VD L.s the volume of water displaced by the float including hydrodynamic added mass effects; and AS is the waterplane area of the float.
Thus, for the float 100, moving in phase with the passing waves:
g/Z > w2 (2) or Z < g/w2 > VD/AS (3) The expression g/w2 is known as the "resonance depth", i.e., a body with an effective depth (Z) equal to the resonance depth will have a natural period of oscillation equal to the frequency of the surface waves.
Floats, such as the float 100 shown in Fig. 1, having effective depths less than the resonance depth tend to bob up and down in phase with the passing waves.
Conversely, floats having effective depths, Z, greater than the resonance depth tend to bob up and down out of phase with the waves.
For floats having an effective depth close to the resonance depth, the phase relationships between the floats and the waves can be variable, depending upon various damping effects such as viscous damping. Accordingly, for definite in and out of phase movements of the floats relative to the waves and to one another, the effective depths, Z, of the floats are designed to be either greater or less than the resonance depth. As noted, the effective depth, Z, is equal to the displacement of a float divided by its waterplane area As. For a given volume, related to the desired power generation of the system, the principal design variable is the area As. From Equation (3), with a given VD, a float will move in phase with the surface waves provided AS is sufficiently large.
Conversely, a float will tend to move out of phase with the surface waves provided AS is sufficiently small.
In Fig. 1, the float 100 has a large AS relative to the volume of water displaced (VD) by the float; whereas the float 200 has a small AS relative to its VD.
The buoyancy or "heave" force on a vertically oriented cylindrical float is a function of the water pressure at the bottom of the float multiplied by the float bottom area. When a cresting wave passes a relatively shallow float, the momentarily increased depth of the float gives rise to an increased water pressure at the float bottom and hence an increased force. Due to the low inertia of the float, the float tends to respond immediately to the force, and thus tends to move in phase with the passing wave.
The same forcing mechanism applies with an elongated spar except that the increased inertia of the spar causes the spar to tend to be out of phase with the passing wave. (It is known, for a sinusoidally forced high-mass system with negligible position-dependent restoring forces, that the motion of the system tends to be out of phase with the forcing on said system.) A further factor influencing the movement of a float is that the amount of water pressure increase at the bottom of the float in response to a passing wave crest decreases with increasing depth of the float. Because vertical movements of the floats in response to passing waves are in response to water pressure variations at the bottom of the floats, reductions in such water pressure variations reduce the forces applied to the floats. This reduction of water pressure variation or heave force with depth is known, and for an upright floating spar, the manner in which the heave force on the spar varies with depth is given by the equation:
as = cosh[K(d-D)]/cosh(Kd) (4) where:
K is the wavenumber, defined as 27t/?, where 2 is the distance between wave crests (i.e. the wavelength) d is the depth of the body of water; and D is the draft or submerged length of the spar relative to the mean water level.
The factor 6 is based on pressure due to surface waves propagating in the absence of any impediment (i.e. the float) and hence is closely related to the known "Froude-Krylov" force. Specifically, 6 is the ratio of the Froude-Krylov force for a given floating body to the Froude-Krylov force integrated along the underside of the waterplane area of that body.
In deep water, d >>D, the reduction of water pressure variation defined in Equation 4 may be expressed as:
o = exp (-KD) . (5) This a factor affects both the shallow and elongated floats, and preferably the 6 of each float is as large as possible.
Accordingly, in some embodiments of the invention, each has as short an effective depth as possible within the constraint of Equation 3. Another practical constraint is that the shallow float should have an effective depth not less than the typical wave amplitude to assure hydrodynamic interaction between the shallow float and the wave.
In one embodiment, the shallow float, which tends to move in phase with the wave elevation, has an effective depth Z that is substantially less than the resonance depth. The spar, which tends to move out of phase with the wave elevation, has an effective depth Z that is not much larger than the resonance depth.
In connection with typical power take-off devices which function most efficiently at higher speeds, it is beneficial to make the effective depth Z of the elongated spar as close to the resonance depth as possible so as to increase its oscillation amplitude.
This increase in oscillation amplitude leads to more efficient conversion of energy by the power take-off device.
By way of example of a system according to this invention, and in reliance upon Equation (2) for the float 100 (and the inverse of Equation (2) for the spar, i.e., g/Z < w 2), assume that the system is intended for use where the surface waves have a dominant wave period of T=8 seconds (2=100m, k=.063, w = 2n/T, so W2 = 0.62 sec-2). Consequently, g/Z for the float 100 must be greater than 0.62 sec-2, and g/Z for the spar must be less than 0.62 sec-2. Taking 9.81 m/s2 as the acceleration due to gravity, the float 100 must have an effective depth Z less than 15.9 in, and the spar 200 must have an effective depth greater than 15.9 m.
Further by way of example, assuming a circular float 100, for ease of mooring (as explained hereafter), and dominant surface waves of 100 meters wavelength, the float outer diameter is 2 meters and has a central opening of 1.2 meters. The waterplane area of the float 100 is thus approximately 2 square meters. For stability, the float 100 is ballasted to have 1/2 of its height below water. Thus, with a total height of 3.0 meters, the float submergence depth is 1.5m.
The force tending to lift the float is a function of the area of the float which, in the above example, is approximately 2 square meters.
The spar float 200, in this example, is a cylinder having an outer diameter of 1.15 meters, hence a waterplane area of approximately 1.0 square meters. The height of the float is 20 meters and the float is ballasted to have a submerged depth of 17 meters. The effective depth, Z, of the float is thus approximately 17 meters.
The a factor for the shallow float (assuming deployment in deep water) is exp(-kZ)=exp(-0.063*1.5)=0.91. The a factor for the elongated spar is exp(-kZ)=exp(-0.063*17)=0.35.
Due to the higher a factor for the shallow float, which corresponds to increased wave forcing pressure, the waterplane area of the shallow float is, in one embodiment, larger than the waterplane area of the elongated spar. In one embodiment, the ratio of the waterplane area of the shallow float to that of the elongated spar is not too large, or the mass of the elongated spar will be inadequate for it to react against the power take-off device disposed between the two components.
How the two floats are configured to obtain the desired relationships is a matter of choice to the designer. A feature of the present invention, however, is the particular relationship between the two floats 100 and 200. Thus, by disposing the float 200 within the central opening 104 of the float 100, the movements of the two floats relative to one another are constrained, with the float 100 serving as a bearing for the float 200. To further control the relative movements between the two floats, a collar 106 can be added to the float 100 as shown in Fig. 1. Also, for biasing the spar 200 to remain in upright position, the lower portion of the float is preferably weighted, i.e., by a weight 202 shown in Fig. 1.
In Fig. 4, the bearing function of the floats is reversed.
The elongated float 200A encompasses the flat float 100A and provides a bearing surface for the float 100A.
Energy is converted by virtue of relative movements between the two floats and a suitable energy converter, e.g., a hydraulic pump 110 shown in Fig. 1, connected between the two floats. While relative vertical movements are required, uncontrolled angular rotation of the two floats relative to one another is preferably restricted to avoid the need for complicated interconnections to and between the floats. To this end, the cross-sections of the inter-fitting float parts are preferably non-circular. For example, as shown in Fig. 2, the shape of the central opening 104 through the float 100C and the corresponding cross-sectional shape of the float 200C are rectilinear.
In Fig. 2, the float is shown of circular outer shape. This provides the advantage that no particular orientation of the float is required with respect to the passing waves. A limitation on the diameter of the float, however, is that it be relatively small in comparison with the wavelength of the passing waves, e.g., not more than 10% of such wavelength. This is to avoid "cancellation"
effects, i.e., when the float is simultaneously exposed to both lifting and falling forces. For example, if the float diameter were equal to a surface wave wavelength, the net heave force on the float would be zero.
One means for increasing the size of the float 100 while avoiding cancellation effects is to enlarge the float in a direction perpendicular to the direction of advance of the waves.
This requires, however, that the proper orientation of the float be maintained relative to the wave direction.
The two floats 100 and 200 acquire kinetic energy as they bob up and down in response to the passing waves. One means for extracting energy from the moving floats is to interconnect each float to a separate energy converter, e.g., a hydraulic pump, connected between a respective float and a stationary ground point, e.g., the ocean bed. An advantage of the dual float system of the present invention, however, is that each float can serve as a ground point for the other, with neither float rigidly interconnected to the ocean bed. This is particularly advantageous in deep water situations.
Thus, as shown in Fig. 1, for example, an energy converter, e.g., a hydraulic pump 110, can be interconnected between the two floats with the relative vertical motions of the two floats being used to pump the pump 110 for pressurizing a hydraulic fluid therein. The fact that the two floats are constrained to move in preselected paths relative to one another greatly simplifies the mounting and interconnecting of an energy converter on and between the two floats.
In one embodiment, electrically conductive members comprising elements of an electrical generator are provided on the surfaces of the two floats which slide past one another, i.e., conductive elements 112 (Fig. 5) are provided on the inner surface 114 of the rim 102 of the float 100, and conductive elements 212 (Fig. 11) are provided on the outer surface 214 of that length of the float 200 which slides within the float central opening 104. The relatively movable conductive members can be configured to comprise a linear electrical generator.
As described, the two floats tend to move in opposite vertical directions in response to passing surface waves. This is illustrated in Fig. 6 where, in graph A, vertical movements of the two floats are plotted against time.
In graph B, vertical movements of passing surface waves are plotted against the same time scale as used in Graph A. In Graph A, the vertical movements of the float 100 are shown by the curve 120 and those of the float 200 by the curve 220. Curve 120 for the float 200 is in phase with the surface waves, while curve 220 for the float 200 is 1800 out of phase with the waves. Curve 150 plots the relative movements or separation between the two floats 100 and 200.
The movements illustrated by curves 120 and 220 for the two floats 100 and 200 are those for freely moving floats. In actual use, the two floats 100 and 200 are interconnected by an energy converter, and the effect of such interconnection, and energy removal from the floats, is shown in Graph C in Fig. 7. Because of the interconnection between the two floats, through the energy converter, the two floats are no longer 1800 out of phase with one another.
As noted, the float 100 serves as a bearing for the spar float 200 in the embodiment shown in Fig. 1, and vice versa in the Fig. 4 embodiment. The illustrated mechanical interaction between the two floats, for maintaining them in desired physical relationships even in a heaving water surface, is so advantageous that such mechanical relationship is retained in a system illustrated in Fig. 8. As shown, only one float, e.g., the float 100, is free for vertical;
movements, while the other float, the spar 200, is fixedly anchored to the ocean floor by means of a known type of gimbal joint 700 allowing tilting of the spar but no vertical movements. Thus, only the float 100 moves in response to the passing waves for capturing energy from the waves While the spar 200 shown in Fig. 8 is vertically stationary, it is an effective means for mooring the float in place while allowing free vertical movements of the float. Additionally, it is generally known that protection of a floating object against storm damage can be obtained by submerging the object. By constraining the vertical movements of the float along the anchored spar 200, protective flooding of ballast tanks in the float 100 can cause it to sink in a controlled manner downwardly along the spar and in fixed location. Upon blowing of the ballast tanks, the float 100 rises to its previous position.
Other features and structural variations of the invention are shown in Figs. 9-15.
In Fig. 9, a spar 200B is shown having a heavy weight 220 at the bottom end 222 and a plurality of air-filled cells 224 at the top end 226. The arrangement illustrated is effective for maintaining the spar in vertical orientation.
In Fig. 10, a spar 2000 is shown with an indented region 240 for receipt, as previously mentioned, of a series of conductive elements 212 (Fig. 11) forming, in connection with conductive elements on the inside surface 115 (Fig. 5) of the annular float 100, a known type of linear generator.
In Figs. 12 and 12A, a spar 200D comprises a plurality of telescoping concentric pipes 250 for greater ease of storage and transportation. When in use, the adjoining sections are locked together.
In Fig. 13, a spar 200E comprises a plurality of hollow annular members 254 vertically stacked in fixed angular relation along a central column 256.
In Fig. 14, a mass - spring system 270 is disposed within a spar 200F. The system includes a weight 272 mounted between two springs 274 and a selectively movable mechanism 276 for allowing or preventing vertical movements of the weight. The effect of this internal degree of freedom of the spar is to increase the lowest natural oscillation frequency of the spar, providing a means for the designer of the WEC apparatus to tune the device for greater energy conversion efficiency. For example, for an embodiment of the present invention intended for deployment in a region where dominant waves have a range of wave periods, it may be advantageous to design an elongated spar to a length which leads to optimal energy conversion for the longer wavelengths. In the presence of long period waves, the mass-spring system 270 is locked against movement, and thus the system is tuned. In the presence of shorter period waves, the mass-spring system is allowed to oscillate, causing the spar to resonate at a frequency closer to that of the shorter period waves, leading to improved energy capture.
In Figs 15A, 15B, and 15C, three possible configurations of spars are shown. Fig 15A shows a spar 200 similar to the spar 200 shown in Fig. 1 and of a certain waterplane area and a certain effective depth Z. The spar 200 comprises a single cylinder of uniform diameter. In Figure 15B a spar 2000 is shown in a dual-cylindrical configuration, i.e. the spar 2000 is comprised of an upper cylinder 280 which has a diameter greater than the diameter of a lower cylinder 281. The spar 2000 shown in Fig. 15B is configured such that its waterplane area is equal to that of the spar 200 shown in Fig. 15A. The lower cylinder 218 of the spar 200G is configured such that the total volume of water displaced by the spar 2000 is equal to the volume of water displaced by the spar 200 shown in Figure 15A. Because the spars 200 and 200G have equivalent waterplane areas and displace equivalent volumes of water, they have substantially equivalent effective depths. The advantage to the embodiment of the spar 200G is that its a factor is greater than the u factor for spar 200. The increase in a factor comes about because the lower surface of the upper cylinder 280, in comparison with the lower surface of the spar 200, interacts with a portion of pressure field closer to the surface of the water, hence experiences larger variations in pressure with passing waves. This leads to larger forces for improved power conversion efficiency.
In the spar 200H shown in Fig. 15C, the lower cylinder 281 (Fig. 15B) of the spar 200G is replaced with a dense cable or chain 282, the length of which substantially exceeds the distance from the bottom of the spar 200H to the floor 283 of the body of water.
The cable 282 can have multiple floats 285 attached along its length, the purpose of which is to assure that the volume of the cable 282 plus the volume of the floats 285 equals the volume of the lower cylinder 281 of the spar 200G.
The advantage to the Fig. 15C embodiment is that the lower end of the chain or cable can be fixed to an anchor 284 on the floor 283, thus providing a means for mooring the spar. In one embodiment, a lower length 286 of the cable 282 rests on the floor 283, which cable length varies as the spar heaves with passing waves. Preferably, the density of the cable lower length 286 is significantly less than that of the remainder of the cable such that variations in the hanging length of the cable with vertical movements of the spar do not substantially change the buoyancy characteristics of the spar 200H.
Fig. 16 shows a float 100 -- spar 200 system similar to that shown in Fig. 1 except for the materials used. Thus, both the float and the spar are made from impervious, stretchable materials, and the structural shapes shown in Fig. 16 are obtained by filling structures shown in Fig.17 with water and pressurized air. The float and spar are closed, hollow members formed from commercially available materials used, for example, in inflatable rafts, e.g., PVC coated rubber tubing. In the empty condition shown in Fig. 17, the spar is folded along horizontal pleats, accordion style, and pouring water into the spar causes it to expand. The desired final weight and buoyancy of the spar is tuned by the quantity of air pumped into the spar.
A weight is fixedly contained in the spar lower end.
The float shown in Fig. 17 is likewise caused to expand into the size shown in fig. 16 by adding water and pressurized air.
When deployed, the system functions as does the system shown in Fig. 1.
Claims (17)
1. Apparatus for capturing energy from surface waves on a body of water comprising first and second floats, each having, when the apparatus is deployed in a body of water, an intercept with the water surface, a power take-off element connected between said floats for converting relative movements therebetween into useful energy, and wherein said first float generally extends horizontally along the water surface and is configured to rise and fall in in-phase relation with passing surface waves, and said second float extends generally vertically above and below the first float and is configured to rise and fall in out-of-phase relation with said passing waves, and wherein said first and second floats have configuration values g/Z
which are greater and less than .omega.2, respectively, where:
g = acceleration due to gravity;
Z = the effective depths of the floats; and .omega. = the angular frequency of the passing waves; and where:
Z (effective depth) = V D/A s, where:
V D is the volume of the water displaced by the float including hydrodynamic added mass; and A s is the waterplane area of the float.
which are greater and less than .omega.2, respectively, where:
g = acceleration due to gravity;
Z = the effective depths of the floats; and .omega. = the angular frequency of the passing waves; and where:
Z (effective depth) = V D/A s, where:
V D is the volume of the water displaced by the float including hydrodynamic added mass; and A s is the waterplane area of the float.
2. Apparatus according to Claim 1 when the value of g/Z for said first float is greater than 0.63 sec 2 -2 and the value for g/Z for said second float is less than 0.63 sec -2; and the value of Z for said first float is less than 15.9 meters and the value of Z for said second float is greater than 15.9 meters.
3. Apparatus according to Claim 1 wherein said first float is configured as a circular member including an annular rim enclosing a central opening, and said second float is configured as an elongated spar.
4. Apparatus according to Claim 3 wherein said spar is disposed centrally of said circular member for vertical movements relative to said first float in response to passing surface waves.
5. Apparatus according to Claim 4 wherein said spar is in sliding contacting relationship with an inner surface of said annular rim for controlling the relative angular positions of said spar and said rim during said relative vertical movements between said spar and said circular member.
6. Apparatus according to Claim 6 wherein said sliding contacting relationship is such as to provide a fixed angular relationship between said spar and said circular member for all relative vertical positions therebetween.
7. Apparatus according to Claim 4 wherein, for all relative movements between said spar and said first float, said spar has a portion thereof extending downwardly from said float, and the apparatus including a collar slidably disposed along said spar at a position beneath said first float, said collar being anchored for mooring the apparatus.
8. Apparatus according to Claim 1 wherein said second float encloses said first float and provides a bearing surface for relative vertical movements between said first and second floats.
9. Apparatus according to Claim 4 wherein said spar has top and bottom ends, said bottom end being weighted for maintaining said spar in vertical orientation.
10. Apparatus according to Claim 9 wherein said upper end of said spar has an indented region, and including electrically conductive elements disposed along said indented region forming, in cooperation with electrically conductive elements on an inside surface of said annular rim of said first float, a linear electrical generator.
11. Apparatus according to Claim 4 wherein said spar comprises a plurality of telescoped members adapted to be deployed one inside the other during handling of said apparatus when not deployed in a body of water, and means for locking said members in extended relationship to one another for forming a rigid spar when deployed in a body of water.
12. Apparatus according to Claim 4 wherein said spar comprises a central column and a plurality of annular members each disposed around the column and all of which are stacked along the length of the column.
13. Apparatus according to Claim 4 wherein said spar includes a hollow section including a spring mounted mass and including means for selectively allowing the mass to oscillate within the spar upon vertical movements thereof or locking said mass in place for preventing oscillation thereof.
14. Apparatus according to Claim 4 wherein said spar comprises two cylindrical sections disposed end-to-end from the top to the bottom of the spar, the upper of said cylinders having a larger cross-sectional area than the lower of said cylinders.
15. Apparatus according to Claim 14 wherein said lower cylinder comprises an elongated cable stretching from said upper cylinder to the floor of the water body and being anchored to said floor.
16. Apparatus according to Claim 15 wherein said cable comprises a first length hanging from said upper cylinder and a second length resting on the water body floor, the dimensions of said first and second length varying relative to one another in response to vertical movements of said upper cylinder, and the density of said second length being less than the density of said first length for minimizing variations in the buoyancy of said spar upon changes in the relative dimensions of said first and second lengths.
17. An apparatus for capturing energy from waves on a body of water comprising an elongated spar having positive buoyancy and having top and bottom ends, said bottom end being anchored to the floor of the water body by a gimbal joint allowing tilting of the spar away from a vertical axis, and said top end extending to and beyond the water body surface, a circular float disposed around the spar upper end for vertical movements relative to the spar in response to passing surface waves on said water body, and a power take-off device interconnected between said float and said spar for converting relative movements between said float and said spar into useful energy.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2004/003519 WO2005085632A1 (en) | 2004-02-05 | 2004-02-05 | Improved wave energy converter (wec) device and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2537035A1 CA2537035A1 (en) | 2005-09-15 |
CA2537035C true CA2537035C (en) | 2011-05-24 |
Family
ID=34920913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2537035A Expired - Lifetime CA2537035C (en) | 2004-02-05 | 2004-02-05 | Improved wave energy converter (wec) device and system |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1718864A4 (en) |
JP (1) | JP4676443B2 (en) |
AU (1) | AU2004316708B2 (en) |
CA (1) | CA2537035C (en) |
NO (1) | NO20062017L (en) |
WO (1) | WO2005085632A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2006320515C1 (en) * | 2005-12-01 | 2012-03-01 | Ocean Power Technologies, Inc. | Wave energy converter utilizing internal reaction mass and spring |
EP2029890B1 (en) * | 2006-05-30 | 2016-01-27 | Triple X Energy Inc. | Wave energy converter |
NO325929B1 (en) * | 2006-05-31 | 2008-08-18 | Fobox As | Device for absorption of bulge energy |
NO325962B1 (en) * | 2006-05-31 | 2008-08-25 | Fobox As | Device for converting bulge energy |
JP5097267B2 (en) * | 2007-04-18 | 2012-12-12 | シーベイスト アクチボラグ | Wave power unit, buoy, use of wave power unit, and method of generating electrical energy |
US8587139B2 (en) * | 2008-05-30 | 2013-11-19 | Ocean Power Technologies, Inc. | Advanced wave energy converter control |
CA2725379C (en) * | 2008-11-21 | 2017-02-28 | Ocean Power Technologies, Inc. | Float for wave energy converter (wec) |
US9435317B2 (en) * | 2010-06-23 | 2016-09-06 | Wave Energy Conversion Corporation of America | System and method for renewable electrical power production using wave energy |
KR101360304B1 (en) * | 2012-08-22 | 2014-02-14 | 한국철도기술연구원 | High effiency power generator using vibration |
JP6084824B2 (en) * | 2012-11-26 | 2017-02-22 | 三井造船株式会社 | Wave power generator and control method thereof |
CN103161657A (en) * | 2013-04-01 | 2013-06-19 | 张荣江 | Hydraulic type water-surface power generating device |
KR101646162B1 (en) * | 2015-11-16 | 2016-08-05 | 정민시 | Self-Generation Device using the Force of Gravity and Buoyancy, Marine Lighting using it |
JP6728523B2 (en) * | 2016-09-29 | 2020-07-22 | 株式会社三井E&Sマシナリー | Wave power generator and method of installing wave power generator |
CN106382182B (en) * | 2016-10-14 | 2019-11-26 | 哈尔滨工程大学 | A kind of passive type of floatation type fan platform, which is inhaled wave and subtracted, shakes power generator |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631670A (en) * | 1969-09-30 | 1972-01-04 | Treadwell Corp | Device to extract power from the oscillation of the sea |
DE1961382A1 (en) * | 1969-12-06 | 1971-06-16 | Dornier System Gmbh | Generator for generating electrical energy using the acceleration forces caused by the swell |
JPS55125364A (en) * | 1979-03-22 | 1980-09-27 | Yasuhiro Manabe | Power generator with use of vertical movement of wave |
GB2261262A (en) * | 1991-11-09 | 1993-05-12 | Bahram Momeny | Wave-powered device |
US5842838A (en) * | 1996-11-04 | 1998-12-01 | Berg; John L. | Stable wave motor |
JP4128241B2 (en) * | 1996-12-03 | 2008-07-30 | 大洋プラント株式会社 | Wave power pump operating with wave energy |
NO311371B1 (en) * | 2000-03-24 | 2001-11-19 | Arvid Nesheim | Device for extracting energy from water movements |
IES20000493A2 (en) * | 2000-06-16 | 2002-02-06 | Wavebob Ltd | Wave energy converter |
-
2004
- 2004-02-05 WO PCT/US2004/003519 patent/WO2005085632A1/en active Application Filing
- 2004-02-05 CA CA2537035A patent/CA2537035C/en not_active Expired - Lifetime
- 2004-02-05 AU AU2004316708A patent/AU2004316708B2/en not_active Expired
- 2004-02-05 JP JP2006552083A patent/JP4676443B2/en not_active Expired - Fee Related
- 2004-02-05 EP EP04708655A patent/EP1718864A4/en not_active Withdrawn
-
2006
- 2006-05-05 NO NO20062017A patent/NO20062017L/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
CA2537035A1 (en) | 2005-09-15 |
AU2004316708B2 (en) | 2011-03-24 |
JP4676443B2 (en) | 2011-04-27 |
WO2005085632A1 (en) | 2005-09-15 |
AU2004316708A1 (en) | 2005-09-15 |
EP1718864A1 (en) | 2006-11-08 |
EP1718864A4 (en) | 2011-12-07 |
JP2007520661A (en) | 2007-07-26 |
NO20062017L (en) | 2006-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7140180B2 (en) | Wave energy converter (WEC) device and system | |
CA2537035C (en) | Improved wave energy converter (wec) device and system | |
AU2007322458B2 (en) | Wave energy converter | |
US7877994B2 (en) | Wave energy converter (WEC) with heave plates | |
US9309860B2 (en) | Wave energy conversion device | |
US6933623B2 (en) | Wave energy converters utilizing pressure differences | |
US7443046B2 (en) | Wave energy converter utilizing internal reaction mass and spring | |
US20140117671A1 (en) | Dynamic Tuning for Wave Energy Conversion | |
AU727860B2 (en) | System for conversion of wave energy | |
US20030184096A1 (en) | Converting ocean energy into electrical energy using bourdon tubes and cartesian divers | |
WO2007125156A1 (en) | Apparatus for recovering wave energy | |
WO1989007197A1 (en) | Wave generator | |
EP3538756B1 (en) | Submerged heaving wave energy converter | |
EP2713042A2 (en) | Dynamic tuning for wave energy conversion | |
WO2016177858A1 (en) | A wave-powered electrical energy generation device | |
EP1336051A1 (en) | Wave energy converters utilizing pressure differences | |
WO2012114070A1 (en) | Wave energy absorber | |
IE892411A1 (en) | Wave Generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKEX | Expiry |
Effective date: 20240205 |