CA2432094A1 - Double layer acoustic liner and a fluid pressurizing device and method utilizing same - Google Patents
Double layer acoustic liner and a fluid pressurizing device and method utilizing same Download PDFInfo
- Publication number
- CA2432094A1 CA2432094A1 CA002432094A CA2432094A CA2432094A1 CA 2432094 A1 CA2432094 A1 CA 2432094A1 CA 002432094 A CA002432094 A CA 002432094A CA 2432094 A CA2432094 A CA 2432094A CA 2432094 A1 CA2432094 A1 CA 2432094A1
- Authority
- CA
- Canada
- Prior art keywords
- liner
- series
- openings
- cells
- resonators
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
- F04D29/4213—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/663—Sound attenuation
- F04D29/665—Sound attenuation by means of resonance chambers or interference
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/51—Inlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/52—Outlet
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
This invention relates to a double layer acoustic liner (28) for attenuation noise and consisting of a plurality of cells (34) formed in a plate (32) in a manner to form an array of resonators, and a fluid processing device and method incorporating same.
Claims (35)
1. A noise attenuation assembly comprising a first one-piece, unitary, acoustic liner comprising a unitary plate, and a plurality of cells formed in the plate in a manner to form an array of resonators to attenuate acoustic energy; and a second one-piece, unitary, acoustic liner disposed in an abutting relationship to the first liner, the second liner comprising a unitary plate, and a plurality of cells formed in the plate in a manner to form an array of resonators to attenuate acoustic energy.
2. The assembly of claim 1 wherein the cells of the second liner are aligned with the cells of the first liner so that a series of resonators are formed in the lateral direction.
3. The assembly of claim 1 wherein the resonators are either Helmholtz resonators or quarter-wave resonators.
4. The assembly of claim 1 wherein the cells of each liner are in the form of a first series of openings extending from one surface of the plate, and a second series of openings extending from the opposite surface of the plate
5. The assembly of claim 4 where a plurality of openings of the second series of openings extend to one of each of the first series of openings.
6. The assembly of claim 4 wherein each opening of the first series of openings is larger than each opening of the second series of openings.
7. The assembly of claim 4 wherein the surface of the first liner through which the first series of opening extends abuts the surface of the second liner through which the second series of cells extend.
8. The assembly of claim 4 wherein the first and second series of openings are uniformly dispersed in their respective plates.
9. The assembly of claim 4 wherein the number and size of the openings are constructed and arranged to tune their corresponding liner to attenuate the dominant noise component of acoustic energy associated with the assembly.
10. A fluid pressurizing device comprising a casing defining an inlet, and an outlet;
an impeller mounted in the casing and having a plurality of flow passages extending therethrough, the impeller adapted to rotate to flow fluid from the inlet, through the passages, and to the outlet for discharge from the casing; a one-piece, unitary, acoustic liner disposed in the casing, the liner comprising a unitary plate, and a plurality of cells formed in the plate in a manner to form an array of resonators to attenuate acoustic energy generated by the device; and an additional one-piece, unitary, acoustic liner disposed in the casing; the additional liner comprising a unitary plate, and a plurality of cells formed in the plate in a manner to form an array of resonators to attenuate acoustic energy generated by the device.
an impeller mounted in the casing and having a plurality of flow passages extending therethrough, the impeller adapted to rotate to flow fluid from the inlet, through the passages, and to the outlet for discharge from the casing; a one-piece, unitary, acoustic liner disposed in the casing, the liner comprising a unitary plate, and a plurality of cells formed in the plate in a manner to form an array of resonators to attenuate acoustic energy generated by the device; and an additional one-piece, unitary, acoustic liner disposed in the casing; the additional liner comprising a unitary plate, and a plurality of cells formed in the plate in a manner to form an array of resonators to attenuate acoustic energy generated by the device.
11. The device of claim 10 wherein the resonators are either Helmholtz resonators or quarter-wave resonators.
12. The device of claim 10 wherein the liners are disposed in an abutting relationship in the casing.
13. The device of claim 12 wherein the cells of the additional liner are aligned with the cells of the first-mentioned liner.
14. The device of claim 10 wherein the cells of each liner are in the form of a first series of openings extending from one surface of the plate, and a second series of openings extending from the opposite surface of the plate.
15. The device of claim 14 wherein a plurality of openings of each second series of openings extend to one of each of the corresponding first series of openings.
16. The device of claim 14 wherein each opening of the first series of openings is larger than each opening of the second series of openings.
17. The device of claim 14 wherein the surface of the first-mentioned liner through which the first series of opening extends abuts the surface of the additional liner through which the second series of cells extend.
18. The device of claim 14 wherein the first and second series of openings of each liner are uniformly dispersed in their corresponding plate.
19. The device of claim 14 wherein the number and size of the openings of each liner are constructed and arranged to attenuate the dominant noise component of the acoustic energy.
20. The device of claim 10 wherein the first-mentioned liner is attached to a wall defining a portion of the chamber and the additional liner abuts the first-mentioned liner.
21. The device of claim 20 further comprising at least one-piece, unitary, acoustic liner disposed in the casing and attached to a wall defining a portion of the chamber and extending opposite the first-mentioned wall, the last-mentioned liner comprising a unitary plate, and a plurality of cells formed in the plate in a manner to form an array of resonators to attenuate acoustic energy generated by the device.
22. The device of claim 10 wherein the casing further comprises a diffuser area in fluid flow communication with the impeller passages and the outlet, and wherein the first-mentioned liner is attached to a wall defining a portion of the diffuser area, and the additional liner abuts the first-mentioned liner.
23. The device of claim 10 further comprising an inlet conduit connected to the inlet for supplying fluid to the inlet, and further comprising a liner attached to the inlet conduit and comprising a unitary curved shell, and a plurality of cells formed in the shell in a manner to form an array of resonators to attenuate additional acoustic energy generated by the device.
24. The device of claim 23 further comprising a liner extending around the liner attached to the inlet conduit and comprising a unitary curved shell, and a plurality of cells formed in the shell in a manner to form an array of resonators to attenuate additional acoustic energy generated by the device.
25. A fluid pressurizing device comprising a casing defining an inlet and an outlet; an impeller mounted in the chamber and adapted to rotate to flow fluid from the inlet and to the outlet for discharge from the casing; a conduit connected to the inlet for supplying fluid to the inlet; a one-piece, unitary, acoustic liner attached to the conduit, the liner comprising a curved shell, and a plurality of cells formed in the shell in a manner to form an array of resonators to attenuate acoustic energy generated by the device; and an additional one-piece, unitary, acoustic liner extending around the first-mentioned conduit in an abutting relationship thereto, the additional comprising a curved shell, and a plurality of cells formed in the shell in a manner to form an array of resonators to attenuate acoustic energy generated by the device.
26. The device of claim 25 wherein the cells of the additional liner are aligned with the cells of the first-mentioned liner.
27. The device of claim 25 wherein the cells of each liner are the form of a first series of openings extending from one surface of the plate, and a second series of openings extending from the opposite surface of the plate.
28. The device of claim 27 wherein a plurality of openings of the second series of openings extend to one of each of the first series of openings of each liner.
29. The device of claim 27 wherein each opening of the first series of openings is larger than each opening of the second series of openings of each liner.
30. The device of claim 27 wherein the surface of the first-mentioned liner through which the first series of opening extends abuts the surface of the additional liner through which the second series of cells extend.
31. The device of claim 27 wherein the first and second series of openings of liner are uniformly dispersed in their corresponding plate.
32. The device of claim 27 wherein the number and size of the openings are constructed and arranged to attenuate the dominant noise component of the acoustic energy.
33. The device of claim 25 wherein the first-mentioned liner is attached to the inner wall of the conduit and the second-mentioned liner abuts the first-mentioned liner.
34. A noise attenuation method for a fluid pressurizing device in which an impeller rotates to flow fluid through a casing; comprising a one-piece, unitary, acoustic liner disposed in the casing and having a plurality of cells forming an array of resonators;
providing an additional a one-piece, unitary, acoustic liner disposed in the casing and having a plurality of cells forming an array of resonators, and tuning the resonators to the impeller blade passing frequency to increase the noise reduction.
providing an additional a one-piece, unitary, acoustic liner disposed in the casing and having a plurality of cells forming an array of resonators, and tuning the resonators to the impeller blade passing frequency to increase the noise reduction.
35. The method of claim 34 wherein the step of tuning comprises varying the number, size and/or volume of the cells.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/745,862 | 2000-12-21 | ||
US09/745,862 US6550574B2 (en) | 2000-12-21 | 2000-12-21 | Acoustic liner and a fluid pressurizing device and method utilizing same |
US09/929,193 US6601672B2 (en) | 2000-12-21 | 2001-08-14 | Double layer acoustic liner and a fluid pressurizing device and method utilizing same |
US09/929,193 | 2001-08-14 | ||
PCT/US2001/047515 WO2002052110A1 (en) | 2000-12-21 | 2001-11-08 | Double layer acoustic liner and a fluid pressurizing device and method utilizing same |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2432094A1 true CA2432094A1 (en) | 2002-07-04 |
CA2432094C CA2432094C (en) | 2010-07-27 |
Family
ID=27114526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2432094A Expired - Lifetime CA2432094C (en) | 2000-12-21 | 2001-11-08 | Double layer acoustic liner and a fluid pressurizing device and method utilizing same |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1356169B1 (en) |
JP (1) | JP4088155B2 (en) |
CN (1) | CN1318710C (en) |
CA (1) | CA2432094C (en) |
DE (2) | DE60120769T2 (en) |
WO (1) | WO2002052110A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8409846B2 (en) | 1997-09-23 | 2013-04-02 | The United States Of America As Represented By The Department Of Veteran Affairs | Compositions, methods and devices for maintaining an organ |
US6918740B2 (en) * | 2003-01-28 | 2005-07-19 | Dresser-Rand Company | Gas compression apparatus and method with noise attenuation |
US8304181B2 (en) | 2004-10-07 | 2012-11-06 | Transmedics, Inc. | Method for ex-vivo organ care and for using lactate as an indication of donor organ status |
US9301519B2 (en) | 2004-10-07 | 2016-04-05 | Transmedics, Inc. | Systems and methods for ex-vivo organ care |
US12010987B2 (en) | 2004-10-07 | 2024-06-18 | Transmedics, Inc. | Systems and methods for ex-vivo organ care and for using lactate as an indication of donor organ status |
NZ761002A (en) | 2004-10-07 | 2021-07-30 | Transmedics Inc | Systems and methods for ex- vivo organ care |
ATE494480T1 (en) * | 2005-02-23 | 2011-01-15 | Cummins Turbo Tech Ltd | COMPRESSOR |
US9078428B2 (en) | 2005-06-28 | 2015-07-14 | Transmedics, Inc. | Systems, methods, compositions and solutions for perfusing an organ |
CA2649703C (en) | 2006-04-19 | 2019-01-08 | Transmedics, Inc. | Systems and methods for ex vivo organ care |
US9457179B2 (en) | 2007-03-20 | 2016-10-04 | Transmedics, Inc. | Systems for monitoring and applying electrical currents in an organ perfusion system |
DE102007019884A1 (en) | 2007-04-27 | 2008-11-06 | Bayerische Motoren Werke Aktiengesellschaft | Compressor for an exhaust gas turbocharger |
DE102007028742A1 (en) * | 2007-06-21 | 2008-12-24 | Daimler Ag | Air supplier, in particular for an air supply system of fuel cells |
US9462802B2 (en) | 2008-01-31 | 2016-10-11 | Transmedics, Inc. | Systems and methods for ex vivo lung care |
GB2468153A (en) * | 2009-02-27 | 2010-09-01 | Dyson Technology Ltd | A silencing arrangement |
CN102102663A (en) * | 2009-12-22 | 2011-06-22 | 沈阳申元气体压缩机厂 | Pulsation attenuators |
DE102011005025A1 (en) | 2011-03-03 | 2012-09-06 | Siemens Aktiengesellschaft | Resonator silencer for a radial flow machine, in particular for a centrifugal compressor |
CN106342788B (en) | 2011-04-14 | 2020-03-17 | 特兰斯迈迪茨公司 | Organ care solution for ex vivo machine perfusion of donor lungs |
WO2012145141A1 (en) | 2011-04-20 | 2012-10-26 | Dresser-Rand Company | Multi-degree of freedom resonator array |
CN103498818A (en) * | 2013-09-06 | 2014-01-08 | 乐金空调(山东)有限公司 | Silencer of centrifugal compressor |
AU2014326945B2 (en) * | 2013-09-24 | 2017-09-14 | Hector L. Mendez Martinez | Underwater noise abatement panel and resonator structure |
DK3151663T3 (en) | 2014-06-02 | 2020-11-30 | Transmedics Inc | EX VIVO ORGAN CARE SYSTEM |
AU2015361996B2 (en) | 2014-12-12 | 2019-09-26 | Transmedics, Inc. | Apparatus and method for organ perfusion |
JP6934005B2 (en) | 2015-09-09 | 2021-09-08 | トランスメディクス,インコーポレイテッド | Aortic Cannula for Exobibo Organ Management System |
EP4238417A3 (en) | 2016-05-30 | 2023-12-06 | Tevosol, Inc. | Apparatus and method for ex vivo lung ventilation with a varying exterior pressure |
JP7213684B2 (en) * | 2018-12-28 | 2023-01-27 | 三菱重工業株式会社 | centrifugal compressor |
US20200340497A1 (en) * | 2019-04-26 | 2020-10-29 | Garrett Transportation I Inc. | Turbocharger having adjustable-trim centrifugal compressor including air inlet wall having cavities for suppression of noise and flow fluctuations |
US20230093314A1 (en) * | 2021-09-17 | 2023-03-23 | Carrier Corporation | Passive flow reversal reduction in compressor assembly |
CN115076129B (en) * | 2022-06-23 | 2023-04-07 | 西安交通大学 | Centrifuge diffuser with self-adaptive noise reduction function |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1783276A (en) * | 1929-02-21 | 1930-12-02 | Howard R Bliss | Sound-controlling ventilating device |
US1972563A (en) * | 1933-01-31 | 1934-09-04 | Irvin Richard | Acoustic construction |
US2225398A (en) * | 1939-09-13 | 1940-12-17 | Clyde M Hamblin | Construction of ventilating fans |
DE2521416A1 (en) * | 1975-05-14 | 1976-11-25 | Costa Silard Dipl I Vasiljevic | SILENT AXIAL FAN |
US4100993A (en) * | 1976-04-15 | 1978-07-18 | United Technologies Corporation | Acoustic liner |
US4135603A (en) * | 1976-08-19 | 1979-01-23 | United Technologies Corporation | Sound suppressor liners |
US4504188A (en) * | 1979-02-23 | 1985-03-12 | Carrier Corporation | Pressure variation absorber |
US4421455A (en) * | 1981-12-22 | 1983-12-20 | The Garrett Corporation | Duct lining |
US4627794A (en) * | 1982-12-28 | 1986-12-09 | Silva Ethan A | Fluid pressure intensifier |
US5025888A (en) * | 1989-06-26 | 1991-06-25 | Grumman Aerospace Corporation | Acoustic liner |
CN2074689U (en) * | 1990-09-15 | 1991-04-10 | 武汉市热喷涂厂 | Liquid pressure increasing shaping device for concave and convex heat exchanging plate |
DE4219249C2 (en) * | 1992-06-12 | 1994-03-31 | Kuehnle Kopp Kausch Ag | Radial compressor, especially a turbocharger |
US5249919A (en) * | 1992-12-22 | 1993-10-05 | Carrier Corporation | Method of mounting silencer in centrifugal compressor collector |
CN2327739Y (en) * | 1998-02-08 | 1999-07-07 | 蒋遂安 | Acoustic silencer |
-
2001
- 2001-11-08 CN CNB01822797XA patent/CN1318710C/en not_active Expired - Lifetime
- 2001-11-08 WO PCT/US2001/047515 patent/WO2002052110A1/en active IP Right Grant
- 2001-11-08 DE DE60120769T patent/DE60120769T2/en not_active Expired - Lifetime
- 2001-11-08 DE DE01996188T patent/DE01996188T1/en active Pending
- 2001-11-08 EP EP01996188A patent/EP1356169B1/en not_active Expired - Lifetime
- 2001-11-08 CA CA2432094A patent/CA2432094C/en not_active Expired - Lifetime
- 2001-11-08 JP JP2002553576A patent/JP4088155B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP4088155B2 (en) | 2008-05-21 |
CN1489662A (en) | 2004-04-14 |
JP2004525290A (en) | 2004-08-19 |
CN1318710C (en) | 2007-05-30 |
DE60120769T2 (en) | 2007-05-24 |
EP1356169A4 (en) | 2004-10-13 |
WO2002052110A1 (en) | 2002-07-04 |
EP1356169A1 (en) | 2003-10-29 |
EP1356169B1 (en) | 2006-06-14 |
CA2432094C (en) | 2010-07-27 |
DE60120769D1 (en) | 2006-07-27 |
DE01996188T1 (en) | 2005-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2432094A1 (en) | Double layer acoustic liner and a fluid pressurizing device and method utilizing same | |
CA2432219C (en) | Acoustic liner and a fluid pressurizing device and method utilizing same | |
AU2002317526B2 (en) | Gas compression apparatus and method with noise attenuation | |
EP1851444B1 (en) | Compressor | |
EP1443217B1 (en) | Gas compression apparatus and method with noise attenuation | |
US4108276A (en) | Vent silencer | |
US7604467B2 (en) | Supercharger with housing internal noise attenuation | |
CN113785113B (en) | Integration of fan vibration dampers in engine housings | |
US6497557B2 (en) | Sliding vane pump | |
TWI518245B (en) | Dry vacuum pump apparatus, exhaust unit, and silencer | |
WO2024193367A1 (en) | Compressor and air conditioner | |
JPH0861039A (en) | Muffler of motor compressor for cooling device | |
EP0768465B1 (en) | Gas compressor | |
JP2003278675A (en) | Improved roots type rotary machine | |
US4932851A (en) | Noise reduction of rotary compressor by proper location of discharge port | |
CN215058192U (en) | Exhaust silencing assembly, compressor and air conditioner | |
KR20150144214A (en) | Reactive low static pressure silencer | |
US20210318023A1 (en) | Noise suppression apparatus for an air handling unit | |
CN117128169A (en) | compressor | |
KR20040085959A (en) | structure for noise reduction of engine room in heavy equipment vehicles | |
KR20050048157A (en) | Nose reducing apparatus of engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |