CA2452494A1 - Rapid response power conversion device - Google Patents
Rapid response power conversion device Download PDFInfo
- Publication number
- CA2452494A1 CA2452494A1 CA002452494A CA2452494A CA2452494A1 CA 2452494 A1 CA2452494 A1 CA 2452494A1 CA 002452494 A CA002452494 A CA 002452494A CA 2452494 A CA2452494 A CA 2452494A CA 2452494 A1 CA2452494 A1 CA 2452494A1
- Authority
- CA
- Canada
- Prior art keywords
- chamber
- piston
- combustion
- energy
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/28—Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
- F02B75/285—Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders comprising a free auxiliary piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B11/00—Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/28—Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/025—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/027—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Paper (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Earth Drilling (AREA)
Abstract
An apparatus and method for extracting energy from an internal combustion engine. The internal combustion engine including a chamber (120) having a primary piston (130) and a secondary piston (140) with a combustion portion of the chamber situated adjacently between the primary and secondary pistons. T he secondary piston includes a substantially lesser mass than that of the prima ry piston. The chamber includes at least one fluid port (112) for supplying fue l to the combustion portion and an out-take port (122) for releasing combustiv e exhaust. With this arrangement, the secondary piston is configured to draw a portion of energy from the combustion process. Such portion of energy is provided with a rapid response to an energy transferring portion (146) interconnected to the secondary piston.
Description
RAPID RESPONSE POWER CONVERSION DEVICE
SPECIFICATION
BACKGROUND OF THE INVENTION
1. Field of the Invention.
The present invention relates generally to internal combustion engines. More specifically, the present invention relates to an apparatus and method of extracting energy from combustion in an internal combustion engine.
SPECIFICATION
BACKGROUND OF THE INVENTION
1. Field of the Invention.
The present invention relates generally to internal combustion engines. More specifically, the present invention relates to an apparatus and method of extracting energy from combustion in an internal combustion engine.
2. Related Art.
Primary power sources that directly convert fuel into usable energy have been used for many years in a variety of applications including motor vehicles, electric generators, hydraulic pumps, etc. Perhaps the best known example of a primary power source is the internal combustion engine, which converts fossil fuel into rotational power.
Internal combustion engines are used by almost all motorized vehicles and many other energetically autonomous devices such as lawn mowers, chain saws, and emergency electric generators.
Converting fossil fuels into usable energy is also accomplished in large electricity plants, which supply electric power to power grids accessed by thousands of individual users. While primary power sources have been successfully used to perform these functions, they have not been successfully used independently in many applications because of their relatively slow response characteristics. This limitation is particularly problematic in powering robotic devices and similar systems which utilize a feedback loop which makes real time adjustments in movements of the mechanical structure. Typically, the power source in such a system must be able to generate power output which quickly applies corrective signals to power output as necessary to maintain proper operation of the mechanical device.
The response speed of a power source within a mechanical system, sometimes referred to as bandwidth, is an indication of how quickly the energy produced by the source can be accessed by an application. An example of a rapid response power system is a hydraulic power system. In a hydraulic system, energy from any number of sources can be used to pressurize hydraulic fluid and store the pressurized fluid in an accumulator. The energy contained in the pressurized fluid can be accessed almost instantaneously by opening a valve in the system and releasing the fluid to perform some kind of work, such as extending or retracting a hydraulic actuator. The response time of this type of hydraulic system is very rapid, on the order of a few milliseconds or less.
An example of a relatively slow response power supply system is an internal combustion engine. The accelerator on a vehicle equipped with an internal combustion engine controls the rotational speed of the engine, measured in rotations per minute ("rpms") When power is desired the accelerator is activated and the engine increases its rotational speed accordingly. But the engine cannot reach the desired change in a very rapid fashion due to inertial forces internal to the engine and the nature of the combustion process. If the maximum rotational output of an engine is 7000 rpms, then the time it takes for the engine to go from 0 to 7000 rpms is a measure of the response time of the engine, which can be a few seconds or more. Moreover, if it is attempted to operate the engine repeatedly in a rapid cycle from 0 to 7000 rpms and back to 0 rpms, the response time of the engine slows even further as the engine attempts to respond to the cyclic signal. In contrast, a hydraulic cylinder can be actuated in a matter of milliseconds or less, and can be operated in a rapid cycle without compromising its fast response time.
For this reason, many applications utilizing slow response mechanisms require the energy produced by a primary power source be stored in another, more rapid response energy system which holds energy in reserve so that the energy can be accessed instantaneously.
One example of such an application is heavy earth moving equipment, such as backhoes and front end loaders, which utilize the hydraulic pressure system discussed above. Heavy equipment is generally powered by an internal combustion engine, usually a diesel engine, which supplies ample power for the operation of the equipment, but is incapable of meeting the energy response requirements of the various components. By storing and amplifying the power from the internal combustion engine in the hydraulic system, the heavy equipment is capable of producing great force with very accurate control. However, this versatility comes at a cost. In order for a system to be energetically autonomous and be capable of precise control, more components must be added to the system, increasing weight and cost of operation of the system.
Another example of a rapid response power supply is an electrical supply grid or electric storage device such as a battery. The power available in the power supply grid or battery can be accessed as quickly as a switch can be opened or closed. A
myriad of motors and other applications have been developed to utilize such electric power sources. Stationary applications that can be connected to the power grid can utilize direct electrical input from the generating source. However,~in order to use electric power in a system without tethering the system to the power grid, the system must be configured to use energy storage devices such as batteries, which can be very large and heavy. As modern technology moves into miniaturization of devices, the extra weight and volume of the power source and its attendant conversion hardware are becoming major hurdles against meaningful progress.
The complications inherent in using a primary power source to power a rapid response source become increasing problematic in applications such as robotics. In order for a robot to accurately mimic human movements, the robot must be capable of making precise, controlled, and timely movements. This level of control requires a rapid response system such as the hydraulic or electric systems discussed above. Because these rapid response systems require power from some primary power source, the robot must either be part of a larger system that supplies power to the rapid response system or the robot must be directly fitted with heavy primary power sources or electric storage devices. Ideally, however, robots and other applications should have minimal weight, and should be energetically autonomous, not tethered to a power source with hydraulic or electric supply lines. To date, however, technology has struggled to realize this combination of rapid response, minimal weight, effective control, and autonomy of operation.
SUMMARY OF THE INVENTION
The present invention relates to an apparatus and method for extracting a portion of energy from the energy created during combustion in an internal combustion engine. The present invention is directed to extracting a portion of energy during an optimal time period of combustion and providing superior bandwidth characteristics to the engine.
The present invention includes a chamber having a primary piston, a rapid response component and a controller operably interconnected to the chamber. The chamber also includes at least one fluid port for supplying fluid thereto and an out-take port. The primary piston in combination with the fluid port is configured to provide a variable pressure to the chamber and at least partially facilitate combustion to create energy in a combustion portion of the chamber. The primary piston is configured to reciprocate in the chamber. The controller is configured to control the combustion in the chamber. The rapid response component is in fluid communication with the chamber so that the rapid response component is situated adjacent the combustion portion of the chamber. According to the present invention, the rapid response component is configured to draw a portion of the energy from the combustion in the chamber.
One aspect of the present invention provides that the portion of energy drawn from the combustion by the rapid response component is drawn from a proximate instant of the combustion and prior to the primary piston being positioned at a median between a top dead center position and a bottom dead center position in the chamber. Furthermore, the rapid response component draws at least 90% of the portion of the energy from the chamber'within 45 degrees of the primary piston descending from the top dead center position.
As such, a majority of the portion of energy extracted by the rapid response component is completed relatively long before the primary piston completes a reciprocation cycle.
The rapid response component includes a secondary piston having an energy receiving portion. The secondary piston is interconnected to an energy transferring portion, wherein the energy receiving portion of the secondary piston is configured to draw the portion of the energy from the combustion and transfer such energy to the energy transfernng portion of the rapid response component. At the energy transferring portion, the portion of energy extracted from the combustion is converted to any one of hydraulic energy, pneumatic energy, electric energy and mechanical energy.
Another aspect of the present invention provides that as the linear movement of the primary piston between the top and dead center positions is always substantially constant, the linear movement of the secondary piston is variable in length. Such variable length is determined by at least a load to which the portion of the energy is acting upon. Furthermore, the effective inertia of the primary piston is greater than the effective inertia of the secondary piston by a ratio of at least 5:1. Such ratio is the case at least during the time in which the portion of energy is being extracted to the secondary piston.
The controller is configured to control combustion in the chamber. In particular, depending on the load and/or requirements of the IC engine, the controller is configured to control and select particular cycles for initiating combustion out of the substantially continuously, repeating cycles of the primary piston reciprocating in the chamber. As such, the controller is configured to control the energy extracted by the secondary piston to provide an impulse modulation and/or amplitude modulation of energy. As such, the ability to select particular cycles and, thus, the ability to rapidly provide energy and terminate the energy from cycle to cycle provides superior bandwidth than the bandwidth provided from the primary piston.
In one embodiment, the chamber primarily includes a single compartment housing both the primary piston and the rapid response component. The rapid response component includes a secondary piston, wherein the secondary piston and primary piston face each other with the combustion portion in the chamber therebetween.
In a second embodiment, the chamber includes a first compartment and a second compartment with a divider portion dividing the compartments and an aperture defined in the divider portion and extending between the first and second compartments. With this arrangement, the fluid is compressed by the primary piston from the first compartment to the second compartment through the aperture, wherein the controller ignites the compressed fluid in the second compartment. In the second embodiment, the combustion is at least partially isolated from the primary piston.
In a third embodiment, the present invention is directed to a rapid response component associated with a non-combustion system. In this system, a reactive member, such as a catalyst, is positioned in the chamber. The reactive member is positioned in the chamber and configured to receive a fluid, such a monopropellant or hydrogen peroxide, to produce a non-combustive reaction which provides energy and a variable pressure to the chamber for reciprocating the primary piston. The controller is configured to control the non-combustive reaction by controlling the fluid entering the chamber. The rapid response component is situated adjacent a portion of the chamber having the non-combustive reaction so that the rapid response component is configured to draw and extract a portion of the energy for the non-combustive reaction.
Other features and advantages of the present invention will become apparent to those of ordinary skill in the art through consideration of the ensuing description, the accompanying drawings, and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates is a schematic side view of a rapid response energy extracting system, depicting a chamber having a primary piston and a secondary piston, according to a first embodiment of the present invention;
FIG. 2 illustrates a block diagram associated with various partial schematic side views, depicting various forms of energy transfer through an energy transfer portion of the rapid response energy extracting system, according to the first embodiment of the present invention;
FIG. 3 illustrates a partial schematic side view of the rapid response energy extracting system, depicting a chamber having multiple compartments, according to a second embodiment of the present invention;
FIG. 4 illustrates a graphical representation of physical response characteristics of the primary piston with respect to the secondary piston in terms of time, temperature and displacement of the primary and secondary pistons, according to the present invention;
FIG. 5 illustrates a graphical representation of the physical response characteristics of the primary piston with respect to the secondary piston, depicting impulse modulation of the secondary piston, according to the present invention;
FIG. 6 illustrates a graphical representation of the physical response characteristics of the secondary piston, depicting a combination of impulse and amplitude modulation of the secondary piston, according to the present invention;
FIG. 7 illustrates a partial schematic side view of the rapid response energy extracting system, depicting the primary and secondary pistons in terms of linear displacement, according to the present invention;
FIG. 7A illustrates a graphical representation of the linear displacement of the secondary piston with respect to heavier and lighter loads, according to the present invention;
FIG. 8 illustrates a partial schematic side view of the rapid response energy extracting system, depicting a non-combustion system, according to a third embodiment of the present invention; and FIG. 9 illustrates an elevation view of a representative use of the present invention, as used in a wearable exoskeleton frame.
DETAILED DESCRIPTION
For the purposes of promoting an understanding of the principles of the present invention, reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and fizrther modifications of the inventive features illustrated herein, and any additional applications of the principles of the invention as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Referring first to FIG. 1, a simplified schematic view of a rapid response energy extracting system 100 is illustrated. Such a system 100 may partially include a typical internal combustion ("IC") engine, such as a four stroke spark ignition IC
engine. Other types of engines may also be utilized with the present invention, such as compression ignition IC engines, two stroke IC engines, non-combustion engines or any other suitable engine. For purposes of simplicity, rapid response energy extracting system 100 is illustrated here in conjunction with a typical four stroke spark ignition IC engine, wherein a single chamber 110 is depicted with the present invention.
The chamber 110 is defined by chamber walls 105 and includes one or more intake ports 112 for receiving a fuel 114 and an oxidizer such as air or oxygen, separately or as a mixture, and an out-take port 122 for releasing combustive exhaust gasses 124.
Each of the intake port 112 and the out-take port 122 includes a valve (not shown), which are each configured to open and close at specified times to allow fuel 114 and exhaust 124 to enter and exit the chamber 110, respectively. The chamber 110 includes a primary piston 130, a secondary piston 140 and a combustion portion 120 therebetween. The primary piston 130 is interconnected to a piston rod 132, which in turn is interconnected to a crank shaft 134. The primary piston 130 is sized and configured to move linearly within the chamber 110 for converting linear movement 138 from the primary piston 130 to the crank shaft 134 into rotational energy 136. Such rotational energy 136 may be used to power a wide range of external applications, such as any type of application that typically utilizes an IC combustion engine.
The linear movement 138 of the primary piston 130 talces place between a top dead center ("TDC") position and a bottom dead center ("BDC") position. The TDC
position occurs when the piston 130 has moved to its location furthest from the crank shaft 134 and the BDC position occurs when the primary piston 130 has moved to its location closest to the crank shaft 134. The linear movement of the primary piston 130 between the TDC
position and the BDC position may be generated by cyclic combustion in the combustion portion 120 of the chamber 110. Primary piston 130 may also move linearly within chamber 110 by other suitable means, such as an electric motor using energy from a battery.
A four stroke cycle of an IC engine begins with the piston 130 located at TDC.
As the piston 130 moves toward BDC, a fuel 114 and oxidizer or combustible mixture is introduced into the chamber 110 through intake port 112, which may include one or more openings and may also be a variable opening for varying the flow and amount of fuel 114 into the chamber 110. Once the fuel 114 enters the chamber 110, the intake port 112 is closed and the piston 130 returns toward TDC, compressing the combustible mixture and/or fuel 114 in the chamber 110. An ignition source 116, controlled by a controller 11 S, supplies a spark at which point the compressed fuel combusts and drives the piston 130 back to BDC. The controller 115 may also be configured to control the valves (not shown) at the intake port 112 and the out-take port 122 to control the rate by which fuel 114 may feed the chamber 110. As the piston 130 returns again toward TDC, combustive exhaust gases 124 are forced through out-take port 122. The out-take port 122 is then closed, and intake port 112 is opened, and the four stroke cycle may begin again. In this manner, a series of combustion cycles powers the crank shaft 134, which provides rotational energy 136 to an external application.
According to the present invention, chamber 110 also includes a secondary piston 140 having a secondary piston rod 142 extending therefrom. The secondary piston 140 includes a face, or energy receiving end 144, and the secondary piston rod 142 is coupled to an energy transferring portion 146. The energy receiving end 144 may be positioned in chamber 110 to face primary piston 130 so that the longitudinal movement of the primary piston 130 and the secondary piston 140 corresponds with a longitudinal axis of chamber 110. In an inactive position, the energy receiving end 144 of the secondary piston 140 may be biased in a substantially sealing, retracted position against a lip or some other suitable sealing means, biased by a spring or by another suitable biasing force, such as a pressure reservoir, so that the secondary piston 140 is biasingly positioned prior to introducing fuel into the combustion chamber 110 or prior to combustion during cyclic combustion of the system 100.
One important aspect of the present invention is that the secondary piston 140 includes a substantially lower inertia than that of the primary piston 130.
Such a substantially lower inertia positioned adjacent the combustion portion 120 of the chamber 110 facilitates a rapid response to combustion, which provides linear movement 148 of the secondary piston 140 along the longitudinal axis of the chamber 110. Because the inertia of the secondary piston 140 is much lower than the inertia of the primary piston 130, the secondary piston 140 can efficiently extract a large fraction of the energy created by the combustion before it is otherwise lost to inefficiencies inherent in IC engines. With this arrangement, the energy receiving end 144 of the secondary piston 140 is sized, positioned and configured to react to combustion in the chamber 110 so as to provide linear movement 148 to the energy receiving end 144 to then act upon the energy transferring portion 146 of the system 100.
Referring now to FIG. 2, the energy transferring portion 146 may include and/or may be coupled with any number of energy conversion devices. In particular, the energy transferring portion 146 is configured to transfer the linear movement of the secondary piston 140 to any one of hydraulic energy, pneumatic energy, electric energy and/or mechanical energy. Transferring linear motion into such various types of energy is well known in the art.
For example, in a hydraulic system 160, linear motion via the secondary piston rod 142 transferred to a hydraulic piston 164 in a hydraulic chamber 162 may provide hydraulic pressure and flow 168, as well known in the art. Similarly, in a pneumatic system 170, the secondary piston rod 142 may provide linear motion to a pneumatic piston 174 in a pneumatic chamber 172 to provide output energy in the form of pneumatic pressure and gas flow 178.
Other systems may include an electrical system 180 and a mechanical system 190. As well known in the art, in an electrical system 180, the linear motion of secondary piston rod 142 may be interconnected to an armature with a coil wrapped therearound, wherein the armature reciprocates in the coil to generate an electrical energy output 188.
Furthermore, in the mechanical system, linear motion from secondary piston rod 142 may be transferred to rotational energy 198 with a pawl 192 pushing on a crank shaft 194 to provide rotational energy 198. Additionally, the secondary piston rod 142 may be directly interconnected to the crank shaft 194 to provide the rotational energy 198. Other methods of converting energy will be apparent to those skilled in the art. For example, rotational electric generators, gear driven systems, and belt driven systems can be utilized by the energy transferring portion 146 the present invention.
Referring now to FIG. 3, there is illustrated a second embodiment of the rapid response energy extracting system 200. The second embodiment is similar to the first embodiment, except the chamber 210 defines a first compartment 254 and a second compartment 256 with a divider portion 250 disposed therebetween. The divider portion 250 defines an aperture 252 therein, which aperture 252 extends between the first compartment 254 and the second compartment 256. With this arrangement, the primary piston 230 is positioned in the first compartment 254 and the secondary piston 240 is positioned in the second comparhnent 256. The intake port 212 allows fuel 214 and/or combustible mixture to enter the first compartment 254. The fuel 214 and/or combustible mixture are pushed through the aperture 252 from the first compartment 254 into the second compartment 256 via the primary piston 230. The fuel 214 and/or combustible mixture is compressed at a combustion portion 220 of the chamber 210, which is directly adjacent the secondary piston 240. An ignition source 216 then fires the fuel for combustion, wherein the secondary piston 240 moves linearly, as indicated by arrow 248, with a rapid response to the combustion. The combustive exhaust 224 then exits through the out-take port 222. It should be noted that the first compartment 254 and second compartment 256 may be remote from each other, wherein the first and second compartments 254 and 256 may be in fluid communication with each other via a tube.
In the second embodiment, the primary piston 230 may reciprocate via combustion or an electric power source to push the fuel 214 from the first compartment to the second compartment of chamber 210. By having a divider portion 250, the combustion at the combustion portion 220 of the chamber 210 can be at least partially, or even totally, isolated from the primary piston 230. Depending on the requirements of the system 200, the controller 215 may be configured to open or close aperture 252 at varying degrees to isolate combustion from the primary piston 230. As such, in the instance of total isolation, a maximum amount of energy to the secondary piston 240 may be transferred by a rapid response to combustion. It is also contemplated that the primary piston 230 in the first compartment 254 may include a positive displacement compressor and/or an aerodynamic compressor, such as a centrifugal compressor.
Referring now to FIGS. 1 and 4, a graphical diagram of the physical response characteristics of the secondary piston 140 with respect to the primary piston 130 is illustrated. Line 330 represents the linear movement 138 of the primary piston 130, reciprocating between the TDC 350 and the BDC 352 positions thereof. Line 330 illustrates one complete cycle, for a four cycle IC engine, in which the primary piston 130 travels between the TDC 3S0 and the BDC 352 positions twice, with one combustion event occurring immediately after the primary piston 130 reaches TDC the first time.
Line 340 illustrates the linear displacement of the secondary piston 140. As indicated, the secondary 5 piston 140 reaches substantially full displacement within at least 45 degrees, and even up to 30 degrees, of the primary piston 140 descending from TDC 350, wherein the secondary piston 140 completes one cycle much more rapidly than does the primary piston 130.
Turning now to line 360, a relative indication of the temperature rise and fall in the chamber 110 due to combustion and heat loss, respectively, with respect to the linear 10 positions of the primary piston 130 and the secondary piston 140 is shown.
Immediately after ignition of the fuel 114 andlor combustible mixture, when the primary piston 130 is proximate the TDC 350 position, combustion facilitates a dramatic increase in temperature.
As well known, IC engines are designed to convert the thermal energy created by combustion into linear movement of the primary piston, which is in turn converted into rotational energy in the drive shaft. However, much of the thermal energy created in conventional internal combustion engines is lost due to heat escaping into the engine walls surrounding the combustion chamber and in exhaust gases. Even the most efficient internal combustion engines rarely reach efficiency rates of more than 35%. Consequently, more than half of the energy available from the combusted fuel is lost in the form of heat through the walls and piston via conduction and radiation, as well as heat released through the exhaust.
The heat rise and heat loss illustrated by the rising and dropping line 360, representing combustion, depicts the time during which energy is available in the form of thermal energy and the time in which the primary piston 130 should be extracting the thermal energy. Time t2 indicates the time period during which a majority of the thermal energy is available for conversion by the primary piston. Time t1 indicates the time period during which the primary piston 130 is moving from the TDC 350 to BDC 352 positions. It is during the period t1 that the primary piston 130 should be converting energy from the combustion process. As indicated by the difference between the two time periods t1 and t2, most of the thermal energy from the combustion escapes prior to the primary piston 130 reaching a median 354 of its travel between the TDC 350 to BDC 352 positions.
However, according to the present invention, the secondary piston 140 substantially completes its useful energy extraction cycle before the expiration of time period t2. In particular, as indicated by line 340, at least 90% of the energy extracted by the secondary piston 140 is extracted within at least 45 degrees, and even at least 30 degrees, of the primary piston 140 descending from the TDC 350 position. Because the secondary piston 140 moves much more rapidly than does the primary piston 130, it can convert a much greater percentage of the thermal energy into linear motion before the thermal energy is lost to the heat sink formed by the walls, primary piston, and other components of the IC
engine.
Additionally, because the secondary piston 140 acts independently of the primary piston 130 and because the secondary piston 140 has a substantially lower inertia than the primary piston 130, the secondary piston 140 reacts to combustion with a very short response time without being inhibited by the primary piston 130.
For example, an IC engine having operating characteristics running at 3000 revolutions per minute, t1 would be approximately 10 milliseconds, or 0.010 seconds, and t2 would be approximately 3 milliseconds. Because the secondary piston 140 can be operated independently of the primary piston 130, the secondary piston 140 can be operated with a response time of approximately 3 milliseconds or potentially even at a shorter response time.
In other words, the secondary piston 140 can both begin and stop extracting energy from the combustion cycles of the system 100 within at least a 3 millisecond time period. Higher cycle rate can be achieved by operating the primary piston 130 at a higher speed (i.e., higher number of rpms).
Turning to FIGS. l and 5, physical response characteristics, such as impulse modulation and superior bandwidth provided by the secondary piston 140 with respect to the primary piston 130, is illustrated. In particular, line 430 depicts the primary piston 130 reciprocating repeatedly or substantially continuously with a substantially fixed displacement between the TDC and BDC positions. As the primary piston 130 continuously reciprocates, the controller 115 is configured to control combustion at selective cycles of reciprocation of the primary piston 130. The reciprocation cycles of the primary piston 130 in which combustion is selected are illustrated in corresponding lines 440. Line 440 indicates a portion of energy extracted by the secondary piston 140 from the selected cycles of the primary piston 130 where the controller 115 controls or initiates combustion (i.e., amplitude modulation, impulse modulation, and frequency modulation). The flat portion 442 of line 440 corresponds to the absence of combustion, showing no displacement and energy extraction from the secondary piston 140.
As shown, the primary piston 130 continuously reciprocates in the chamber 110, wherein the controller 115 selectively controls particular reciprocating cycles in which combustion occurs. As such, the cycles selected for combustion to facilitate the extraction of a portion of the combustion energy may include each reciprocation cycle of the primary piston or, as indicated, an impulse modulation. Such an impulse modulation provides thermal energy extracted over one or more selected cycles of the primary piston 130 as well as one or more sequence of selected cycles where no energy is extracted.
As can be readily recognized by one of ordinary skill in the art, the impulse modulation illustrates that the rate by which energy may be extracted and then stopped from extracting energy is extremely rapid. Such ability to extract energy and then rapidly stop extracting, and then again rapidly extract energy at selected cycles of the primary piston 130 provides a favorable bandwidth far superior to the bandwidth of the energy extraction and conversion of the primary piston 130. Thus, energy may be provided and stopped with a rapid response and with favorable bandwidth by the controller 115 controlling the combustion at selected cycles and the secondary piston 140 reacting to the combustion, as indicated by line 440. Furthermore, referencing FIGS. 1 and 6, the controller 115 may control the fuel 114 and combustion at selected cycles of the primary piston 130 so that the secondary piston 140 extracts a portion of the combustion energy to provide amplitude modulation and, further, impulse amplitude modulation 540. Further, a person of ordinary skill in the art will readily recognize that the controller 115 may control the fuel 114 and combustion at selected cycles so as to provide frequency modulation and even frequency, impulse modulation, or, even frequency, amplitude modulation.
Turning to FIG. 7, there is illustrated relative linear movement with respect to the primary piston 630 and the secondary piston each in chamber 610. In particular, the linear movement 638 of the primary piston 630 in chamber 610 is substantially constant with a displacement D 1. On the other hand, the linear movement 648 of the secondary piston may be variable in length referenced as displacement D2. Such variable length of displacement D2 of the secondary piston may change with respect to a load 650 of which the energy extracted by the secondary piston is acting upon. Other factors that effect the displacement D2 of the secondary piston 640 relate to inertia of the mass of secondary piston 640 and its piston rod 642. As previously set forth, the effective inertia of the primary piston 630, an crank assembly is greater than the effective inertia of the secondary piston 640 by a ratio of at least 5: l, and even at least 10:1, at least' during the time period when a portion of energy is extracted from combustion by the secondary piston 640. Since the inertia of the secondary piston 640 is less than the inertia of the primary piston 630, the secondary piston 640 is able to react with a rapid response. In this manner, the displacement D2 of the secondary piston 640 is variable in length, in which the displacement D2 naturally matches and corresponds with at least the load 650 to which the extracted energy is acting upon as well as with respect to the combustion force acting on the secondary piston 640 at combustion. D2' and D2"
represent a variety of lengths which form a continuum of values, corresponding to a continuous transmission system. This is illustrated in FIG. 7A, wherein D2' corresponds to a heavier load, and D2" relates to a lighter load, thereby eliminating the need for a separate transmission device as is typically required for an IC engine.
Referencing FIG. 8, the rapid response energy extracting system 700 may be provided in a non-combustion engine, according to a third embodiment of the present invention. The system 700 includes a chamber 710 with a primary piston 730 and a secondary piston 740.
Instead of internal combustion provided by fuel and oxygen, a fluid 714, such as a monopropellant or hydrogen peroxide, may enter through an intake port 712 of the chamber 710. The fluid 714 may pass through or over a reaction member 720, such as a catalyst or heat-exchanger. Such a catalyst may include silver, silver alloy, and/or a silver/ceramic material. As the fluid 714 passes over the reaction member 720, a rapid non-combustive reaction results, which may include rapid decomposition of the fluid 714 and/or vaporization of the fluid 714. As in the IC engine, such rapid non-combustive reaction causes a rapid response from the secondary piston 740 for extracting a portion of energy from the rapid non-combustive reaction. In this system, the primary piston 740 may reciprocate and function similar to the primary piston in the IC engine or, alternatively, the primary piston 730 may simply act as a means for pumping fluid in and out of the chamber 710.
While the preceding discussion focused on the characteristics of four stroke internal combustion engines as primary power sources, the present invention is not restricted to use with an internal combustion engine. The present invention can be utilized with any primary power source that delivers variable pulsating pressure. For example, two-stroke internal combustion engines, diesel engines, Stirling engines, external combustion engines and heat engines can all be used as primary power sources for the rapid response power conversion device. The above described present invention may be used to provide energetic autonomy to power sources used in robotics. Robots could be powered by self contained fuel consumption devices which are not tethered to any primary power source.
Because the present invention allows for direct conversion of fuel into rapid response energy, any intermediate storage device such as a large hydraulic accumulator or electric battery would no longer be necessary, eliminating large weight additions to the robot without sacrificing the speed with which the robot could access power.
For example, the present invention could be used to provide energetic autonomy to power sources used in robotics. Robots could be powered by self contained fuel consumption devices which are not tethered to any primary power source.
Because the present invention allows for direct conversion of fuel into rapid response energy, any intermediate storage device such as a hydraulic accumulator or electric battery would no longer be necessary, eliminating large weight additions to the robot without sacrificing the speed with which the robot could access power.
In addition to providing a lightweight, energetically autonomous rapid response power source for use in robotics, the present invention could be used in much the same way to assist human movement. Shown generally at 800 in FIG. 9 is a wearable exoskeletal frame for use by a human. A central control unit 802 can serve as a fuel storage device, power generation center and/or a signal generation/processing center. Shown at 804, attached at 808 to the joints of the exoskeleton 809 is an actuator 806. The cylinder (not shown) within the actuator can be extended or retracted to adjust the relative position of the upper and lower leg segments, 816 and 818, respectively, of the exoskeletal frame. The actuator 806 can be driven by a rapid response power conversion device 810. The rapid response power conversion device can be a small internal combustion engine supplied by fuel from fuel line 812 and controlled by an input/output signal line 814. The system can be configured such that an actuator and a power conversion device are located at each joint of the exoskeletal frame and are controlled by signals from the master control unit 802.
Alternately, the system could be configured such that one or more master power conversion devices are located in the central control unit 802 for selectively supplying power to actuators located at each joint of the exoskeleton. Sensors (not shown) could be attached to various points of the exoskeleton to monitor movement and provide feedback. Also, safety devices such as power interrupts (not shown) can be included to protect the safety of the personnel wearing the exoskeletal frame.
The wearable exoskeletal frame could be used in many applications. In one embodiment, the frame could be configured to assist military personnel in difficult or dangerous tasks. The energetically autonomous rapid response power conversion device can allow conventional primary power sources to be used to enhance the strength, stamina and speed of personnel without requiring that the personnel be tethered to a primary power source. The wearable frame could reduce the number of personnel required in dangerous or hazardous tasks and reduce the physical stress experienced by personnel when executing such tasks. The wearable frame could also be configured for application-specific tasks which might involve exposure to radiation, gas, chemical or biological agents.
The wearable frame could also be used to aid physically impaired individuals in executing otherwise impossible tasks such as sitting, standing or walking. The rapid response power conversion device could serve as a power amplifier, amplifying small motions and forces into controlled, large motions and forces. By strategically placing sensors and control devices in various locations on the frame, individuals who are only capable of applying very small amounts of force could control the motion of the frame. Because the rapid response power conversion device is energetically autonomous, physically impaired individuals could be given freedom of movement without being tethered to a power source. The rapid response power conversion device would also be capable of producing the small, discrete movements 5 necessary to imitate human movement. Safety devices such as power interrupts could be built into the system to prevent unintentional movement of the frame and any damage to the individual wearing the frame.
In addition to the previous applications, the present invention can be used in any number of applications that require rapid response power without tethering the application to 10 a primary power source. Examples can include power driven wheelchairs, golf carts, automobiles, skateboards, scooters, ultra-light aircraft, and other motorized vehicles, and generally any application which leverages mechanical energy and which would benefit by energetic autonomy.
It is to be understood that the above-described arrangements are only illustrative of 15 the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended claims are intended to cover such modifications and arrangements. Thus, while the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made, without departing from the principles and concepts of the invention as set forth above.
Primary power sources that directly convert fuel into usable energy have been used for many years in a variety of applications including motor vehicles, electric generators, hydraulic pumps, etc. Perhaps the best known example of a primary power source is the internal combustion engine, which converts fossil fuel into rotational power.
Internal combustion engines are used by almost all motorized vehicles and many other energetically autonomous devices such as lawn mowers, chain saws, and emergency electric generators.
Converting fossil fuels into usable energy is also accomplished in large electricity plants, which supply electric power to power grids accessed by thousands of individual users. While primary power sources have been successfully used to perform these functions, they have not been successfully used independently in many applications because of their relatively slow response characteristics. This limitation is particularly problematic in powering robotic devices and similar systems which utilize a feedback loop which makes real time adjustments in movements of the mechanical structure. Typically, the power source in such a system must be able to generate power output which quickly applies corrective signals to power output as necessary to maintain proper operation of the mechanical device.
The response speed of a power source within a mechanical system, sometimes referred to as bandwidth, is an indication of how quickly the energy produced by the source can be accessed by an application. An example of a rapid response power system is a hydraulic power system. In a hydraulic system, energy from any number of sources can be used to pressurize hydraulic fluid and store the pressurized fluid in an accumulator. The energy contained in the pressurized fluid can be accessed almost instantaneously by opening a valve in the system and releasing the fluid to perform some kind of work, such as extending or retracting a hydraulic actuator. The response time of this type of hydraulic system is very rapid, on the order of a few milliseconds or less.
An example of a relatively slow response power supply system is an internal combustion engine. The accelerator on a vehicle equipped with an internal combustion engine controls the rotational speed of the engine, measured in rotations per minute ("rpms") When power is desired the accelerator is activated and the engine increases its rotational speed accordingly. But the engine cannot reach the desired change in a very rapid fashion due to inertial forces internal to the engine and the nature of the combustion process. If the maximum rotational output of an engine is 7000 rpms, then the time it takes for the engine to go from 0 to 7000 rpms is a measure of the response time of the engine, which can be a few seconds or more. Moreover, if it is attempted to operate the engine repeatedly in a rapid cycle from 0 to 7000 rpms and back to 0 rpms, the response time of the engine slows even further as the engine attempts to respond to the cyclic signal. In contrast, a hydraulic cylinder can be actuated in a matter of milliseconds or less, and can be operated in a rapid cycle without compromising its fast response time.
For this reason, many applications utilizing slow response mechanisms require the energy produced by a primary power source be stored in another, more rapid response energy system which holds energy in reserve so that the energy can be accessed instantaneously.
One example of such an application is heavy earth moving equipment, such as backhoes and front end loaders, which utilize the hydraulic pressure system discussed above. Heavy equipment is generally powered by an internal combustion engine, usually a diesel engine, which supplies ample power for the operation of the equipment, but is incapable of meeting the energy response requirements of the various components. By storing and amplifying the power from the internal combustion engine in the hydraulic system, the heavy equipment is capable of producing great force with very accurate control. However, this versatility comes at a cost. In order for a system to be energetically autonomous and be capable of precise control, more components must be added to the system, increasing weight and cost of operation of the system.
Another example of a rapid response power supply is an electrical supply grid or electric storage device such as a battery. The power available in the power supply grid or battery can be accessed as quickly as a switch can be opened or closed. A
myriad of motors and other applications have been developed to utilize such electric power sources. Stationary applications that can be connected to the power grid can utilize direct electrical input from the generating source. However,~in order to use electric power in a system without tethering the system to the power grid, the system must be configured to use energy storage devices such as batteries, which can be very large and heavy. As modern technology moves into miniaturization of devices, the extra weight and volume of the power source and its attendant conversion hardware are becoming major hurdles against meaningful progress.
The complications inherent in using a primary power source to power a rapid response source become increasing problematic in applications such as robotics. In order for a robot to accurately mimic human movements, the robot must be capable of making precise, controlled, and timely movements. This level of control requires a rapid response system such as the hydraulic or electric systems discussed above. Because these rapid response systems require power from some primary power source, the robot must either be part of a larger system that supplies power to the rapid response system or the robot must be directly fitted with heavy primary power sources or electric storage devices. Ideally, however, robots and other applications should have minimal weight, and should be energetically autonomous, not tethered to a power source with hydraulic or electric supply lines. To date, however, technology has struggled to realize this combination of rapid response, minimal weight, effective control, and autonomy of operation.
SUMMARY OF THE INVENTION
The present invention relates to an apparatus and method for extracting a portion of energy from the energy created during combustion in an internal combustion engine. The present invention is directed to extracting a portion of energy during an optimal time period of combustion and providing superior bandwidth characteristics to the engine.
The present invention includes a chamber having a primary piston, a rapid response component and a controller operably interconnected to the chamber. The chamber also includes at least one fluid port for supplying fluid thereto and an out-take port. The primary piston in combination with the fluid port is configured to provide a variable pressure to the chamber and at least partially facilitate combustion to create energy in a combustion portion of the chamber. The primary piston is configured to reciprocate in the chamber. The controller is configured to control the combustion in the chamber. The rapid response component is in fluid communication with the chamber so that the rapid response component is situated adjacent the combustion portion of the chamber. According to the present invention, the rapid response component is configured to draw a portion of the energy from the combustion in the chamber.
One aspect of the present invention provides that the portion of energy drawn from the combustion by the rapid response component is drawn from a proximate instant of the combustion and prior to the primary piston being positioned at a median between a top dead center position and a bottom dead center position in the chamber. Furthermore, the rapid response component draws at least 90% of the portion of the energy from the chamber'within 45 degrees of the primary piston descending from the top dead center position.
As such, a majority of the portion of energy extracted by the rapid response component is completed relatively long before the primary piston completes a reciprocation cycle.
The rapid response component includes a secondary piston having an energy receiving portion. The secondary piston is interconnected to an energy transferring portion, wherein the energy receiving portion of the secondary piston is configured to draw the portion of the energy from the combustion and transfer such energy to the energy transfernng portion of the rapid response component. At the energy transferring portion, the portion of energy extracted from the combustion is converted to any one of hydraulic energy, pneumatic energy, electric energy and mechanical energy.
Another aspect of the present invention provides that as the linear movement of the primary piston between the top and dead center positions is always substantially constant, the linear movement of the secondary piston is variable in length. Such variable length is determined by at least a load to which the portion of the energy is acting upon. Furthermore, the effective inertia of the primary piston is greater than the effective inertia of the secondary piston by a ratio of at least 5:1. Such ratio is the case at least during the time in which the portion of energy is being extracted to the secondary piston.
The controller is configured to control combustion in the chamber. In particular, depending on the load and/or requirements of the IC engine, the controller is configured to control and select particular cycles for initiating combustion out of the substantially continuously, repeating cycles of the primary piston reciprocating in the chamber. As such, the controller is configured to control the energy extracted by the secondary piston to provide an impulse modulation and/or amplitude modulation of energy. As such, the ability to select particular cycles and, thus, the ability to rapidly provide energy and terminate the energy from cycle to cycle provides superior bandwidth than the bandwidth provided from the primary piston.
In one embodiment, the chamber primarily includes a single compartment housing both the primary piston and the rapid response component. The rapid response component includes a secondary piston, wherein the secondary piston and primary piston face each other with the combustion portion in the chamber therebetween.
In a second embodiment, the chamber includes a first compartment and a second compartment with a divider portion dividing the compartments and an aperture defined in the divider portion and extending between the first and second compartments. With this arrangement, the fluid is compressed by the primary piston from the first compartment to the second compartment through the aperture, wherein the controller ignites the compressed fluid in the second compartment. In the second embodiment, the combustion is at least partially isolated from the primary piston.
In a third embodiment, the present invention is directed to a rapid response component associated with a non-combustion system. In this system, a reactive member, such as a catalyst, is positioned in the chamber. The reactive member is positioned in the chamber and configured to receive a fluid, such a monopropellant or hydrogen peroxide, to produce a non-combustive reaction which provides energy and a variable pressure to the chamber for reciprocating the primary piston. The controller is configured to control the non-combustive reaction by controlling the fluid entering the chamber. The rapid response component is situated adjacent a portion of the chamber having the non-combustive reaction so that the rapid response component is configured to draw and extract a portion of the energy for the non-combustive reaction.
Other features and advantages of the present invention will become apparent to those of ordinary skill in the art through consideration of the ensuing description, the accompanying drawings, and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates is a schematic side view of a rapid response energy extracting system, depicting a chamber having a primary piston and a secondary piston, according to a first embodiment of the present invention;
FIG. 2 illustrates a block diagram associated with various partial schematic side views, depicting various forms of energy transfer through an energy transfer portion of the rapid response energy extracting system, according to the first embodiment of the present invention;
FIG. 3 illustrates a partial schematic side view of the rapid response energy extracting system, depicting a chamber having multiple compartments, according to a second embodiment of the present invention;
FIG. 4 illustrates a graphical representation of physical response characteristics of the primary piston with respect to the secondary piston in terms of time, temperature and displacement of the primary and secondary pistons, according to the present invention;
FIG. 5 illustrates a graphical representation of the physical response characteristics of the primary piston with respect to the secondary piston, depicting impulse modulation of the secondary piston, according to the present invention;
FIG. 6 illustrates a graphical representation of the physical response characteristics of the secondary piston, depicting a combination of impulse and amplitude modulation of the secondary piston, according to the present invention;
FIG. 7 illustrates a partial schematic side view of the rapid response energy extracting system, depicting the primary and secondary pistons in terms of linear displacement, according to the present invention;
FIG. 7A illustrates a graphical representation of the linear displacement of the secondary piston with respect to heavier and lighter loads, according to the present invention;
FIG. 8 illustrates a partial schematic side view of the rapid response energy extracting system, depicting a non-combustion system, according to a third embodiment of the present invention; and FIG. 9 illustrates an elevation view of a representative use of the present invention, as used in a wearable exoskeleton frame.
DETAILED DESCRIPTION
For the purposes of promoting an understanding of the principles of the present invention, reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and fizrther modifications of the inventive features illustrated herein, and any additional applications of the principles of the invention as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Referring first to FIG. 1, a simplified schematic view of a rapid response energy extracting system 100 is illustrated. Such a system 100 may partially include a typical internal combustion ("IC") engine, such as a four stroke spark ignition IC
engine. Other types of engines may also be utilized with the present invention, such as compression ignition IC engines, two stroke IC engines, non-combustion engines or any other suitable engine. For purposes of simplicity, rapid response energy extracting system 100 is illustrated here in conjunction with a typical four stroke spark ignition IC engine, wherein a single chamber 110 is depicted with the present invention.
The chamber 110 is defined by chamber walls 105 and includes one or more intake ports 112 for receiving a fuel 114 and an oxidizer such as air or oxygen, separately or as a mixture, and an out-take port 122 for releasing combustive exhaust gasses 124.
Each of the intake port 112 and the out-take port 122 includes a valve (not shown), which are each configured to open and close at specified times to allow fuel 114 and exhaust 124 to enter and exit the chamber 110, respectively. The chamber 110 includes a primary piston 130, a secondary piston 140 and a combustion portion 120 therebetween. The primary piston 130 is interconnected to a piston rod 132, which in turn is interconnected to a crank shaft 134. The primary piston 130 is sized and configured to move linearly within the chamber 110 for converting linear movement 138 from the primary piston 130 to the crank shaft 134 into rotational energy 136. Such rotational energy 136 may be used to power a wide range of external applications, such as any type of application that typically utilizes an IC combustion engine.
The linear movement 138 of the primary piston 130 talces place between a top dead center ("TDC") position and a bottom dead center ("BDC") position. The TDC
position occurs when the piston 130 has moved to its location furthest from the crank shaft 134 and the BDC position occurs when the primary piston 130 has moved to its location closest to the crank shaft 134. The linear movement of the primary piston 130 between the TDC
position and the BDC position may be generated by cyclic combustion in the combustion portion 120 of the chamber 110. Primary piston 130 may also move linearly within chamber 110 by other suitable means, such as an electric motor using energy from a battery.
A four stroke cycle of an IC engine begins with the piston 130 located at TDC.
As the piston 130 moves toward BDC, a fuel 114 and oxidizer or combustible mixture is introduced into the chamber 110 through intake port 112, which may include one or more openings and may also be a variable opening for varying the flow and amount of fuel 114 into the chamber 110. Once the fuel 114 enters the chamber 110, the intake port 112 is closed and the piston 130 returns toward TDC, compressing the combustible mixture and/or fuel 114 in the chamber 110. An ignition source 116, controlled by a controller 11 S, supplies a spark at which point the compressed fuel combusts and drives the piston 130 back to BDC. The controller 115 may also be configured to control the valves (not shown) at the intake port 112 and the out-take port 122 to control the rate by which fuel 114 may feed the chamber 110. As the piston 130 returns again toward TDC, combustive exhaust gases 124 are forced through out-take port 122. The out-take port 122 is then closed, and intake port 112 is opened, and the four stroke cycle may begin again. In this manner, a series of combustion cycles powers the crank shaft 134, which provides rotational energy 136 to an external application.
According to the present invention, chamber 110 also includes a secondary piston 140 having a secondary piston rod 142 extending therefrom. The secondary piston 140 includes a face, or energy receiving end 144, and the secondary piston rod 142 is coupled to an energy transferring portion 146. The energy receiving end 144 may be positioned in chamber 110 to face primary piston 130 so that the longitudinal movement of the primary piston 130 and the secondary piston 140 corresponds with a longitudinal axis of chamber 110. In an inactive position, the energy receiving end 144 of the secondary piston 140 may be biased in a substantially sealing, retracted position against a lip or some other suitable sealing means, biased by a spring or by another suitable biasing force, such as a pressure reservoir, so that the secondary piston 140 is biasingly positioned prior to introducing fuel into the combustion chamber 110 or prior to combustion during cyclic combustion of the system 100.
One important aspect of the present invention is that the secondary piston 140 includes a substantially lower inertia than that of the primary piston 130.
Such a substantially lower inertia positioned adjacent the combustion portion 120 of the chamber 110 facilitates a rapid response to combustion, which provides linear movement 148 of the secondary piston 140 along the longitudinal axis of the chamber 110. Because the inertia of the secondary piston 140 is much lower than the inertia of the primary piston 130, the secondary piston 140 can efficiently extract a large fraction of the energy created by the combustion before it is otherwise lost to inefficiencies inherent in IC engines. With this arrangement, the energy receiving end 144 of the secondary piston 140 is sized, positioned and configured to react to combustion in the chamber 110 so as to provide linear movement 148 to the energy receiving end 144 to then act upon the energy transferring portion 146 of the system 100.
Referring now to FIG. 2, the energy transferring portion 146 may include and/or may be coupled with any number of energy conversion devices. In particular, the energy transferring portion 146 is configured to transfer the linear movement of the secondary piston 140 to any one of hydraulic energy, pneumatic energy, electric energy and/or mechanical energy. Transferring linear motion into such various types of energy is well known in the art.
For example, in a hydraulic system 160, linear motion via the secondary piston rod 142 transferred to a hydraulic piston 164 in a hydraulic chamber 162 may provide hydraulic pressure and flow 168, as well known in the art. Similarly, in a pneumatic system 170, the secondary piston rod 142 may provide linear motion to a pneumatic piston 174 in a pneumatic chamber 172 to provide output energy in the form of pneumatic pressure and gas flow 178.
Other systems may include an electrical system 180 and a mechanical system 190. As well known in the art, in an electrical system 180, the linear motion of secondary piston rod 142 may be interconnected to an armature with a coil wrapped therearound, wherein the armature reciprocates in the coil to generate an electrical energy output 188.
Furthermore, in the mechanical system, linear motion from secondary piston rod 142 may be transferred to rotational energy 198 with a pawl 192 pushing on a crank shaft 194 to provide rotational energy 198. Additionally, the secondary piston rod 142 may be directly interconnected to the crank shaft 194 to provide the rotational energy 198. Other methods of converting energy will be apparent to those skilled in the art. For example, rotational electric generators, gear driven systems, and belt driven systems can be utilized by the energy transferring portion 146 the present invention.
Referring now to FIG. 3, there is illustrated a second embodiment of the rapid response energy extracting system 200. The second embodiment is similar to the first embodiment, except the chamber 210 defines a first compartment 254 and a second compartment 256 with a divider portion 250 disposed therebetween. The divider portion 250 defines an aperture 252 therein, which aperture 252 extends between the first compartment 254 and the second compartment 256. With this arrangement, the primary piston 230 is positioned in the first compartment 254 and the secondary piston 240 is positioned in the second comparhnent 256. The intake port 212 allows fuel 214 and/or combustible mixture to enter the first compartment 254. The fuel 214 and/or combustible mixture are pushed through the aperture 252 from the first compartment 254 into the second compartment 256 via the primary piston 230. The fuel 214 and/or combustible mixture is compressed at a combustion portion 220 of the chamber 210, which is directly adjacent the secondary piston 240. An ignition source 216 then fires the fuel for combustion, wherein the secondary piston 240 moves linearly, as indicated by arrow 248, with a rapid response to the combustion. The combustive exhaust 224 then exits through the out-take port 222. It should be noted that the first compartment 254 and second compartment 256 may be remote from each other, wherein the first and second compartments 254 and 256 may be in fluid communication with each other via a tube.
In the second embodiment, the primary piston 230 may reciprocate via combustion or an electric power source to push the fuel 214 from the first compartment to the second compartment of chamber 210. By having a divider portion 250, the combustion at the combustion portion 220 of the chamber 210 can be at least partially, or even totally, isolated from the primary piston 230. Depending on the requirements of the system 200, the controller 215 may be configured to open or close aperture 252 at varying degrees to isolate combustion from the primary piston 230. As such, in the instance of total isolation, a maximum amount of energy to the secondary piston 240 may be transferred by a rapid response to combustion. It is also contemplated that the primary piston 230 in the first compartment 254 may include a positive displacement compressor and/or an aerodynamic compressor, such as a centrifugal compressor.
Referring now to FIGS. 1 and 4, a graphical diagram of the physical response characteristics of the secondary piston 140 with respect to the primary piston 130 is illustrated. Line 330 represents the linear movement 138 of the primary piston 130, reciprocating between the TDC 350 and the BDC 352 positions thereof. Line 330 illustrates one complete cycle, for a four cycle IC engine, in which the primary piston 130 travels between the TDC 3S0 and the BDC 352 positions twice, with one combustion event occurring immediately after the primary piston 130 reaches TDC the first time.
Line 340 illustrates the linear displacement of the secondary piston 140. As indicated, the secondary 5 piston 140 reaches substantially full displacement within at least 45 degrees, and even up to 30 degrees, of the primary piston 140 descending from TDC 350, wherein the secondary piston 140 completes one cycle much more rapidly than does the primary piston 130.
Turning now to line 360, a relative indication of the temperature rise and fall in the chamber 110 due to combustion and heat loss, respectively, with respect to the linear 10 positions of the primary piston 130 and the secondary piston 140 is shown.
Immediately after ignition of the fuel 114 andlor combustible mixture, when the primary piston 130 is proximate the TDC 350 position, combustion facilitates a dramatic increase in temperature.
As well known, IC engines are designed to convert the thermal energy created by combustion into linear movement of the primary piston, which is in turn converted into rotational energy in the drive shaft. However, much of the thermal energy created in conventional internal combustion engines is lost due to heat escaping into the engine walls surrounding the combustion chamber and in exhaust gases. Even the most efficient internal combustion engines rarely reach efficiency rates of more than 35%. Consequently, more than half of the energy available from the combusted fuel is lost in the form of heat through the walls and piston via conduction and radiation, as well as heat released through the exhaust.
The heat rise and heat loss illustrated by the rising and dropping line 360, representing combustion, depicts the time during which energy is available in the form of thermal energy and the time in which the primary piston 130 should be extracting the thermal energy. Time t2 indicates the time period during which a majority of the thermal energy is available for conversion by the primary piston. Time t1 indicates the time period during which the primary piston 130 is moving from the TDC 350 to BDC 352 positions. It is during the period t1 that the primary piston 130 should be converting energy from the combustion process. As indicated by the difference between the two time periods t1 and t2, most of the thermal energy from the combustion escapes prior to the primary piston 130 reaching a median 354 of its travel between the TDC 350 to BDC 352 positions.
However, according to the present invention, the secondary piston 140 substantially completes its useful energy extraction cycle before the expiration of time period t2. In particular, as indicated by line 340, at least 90% of the energy extracted by the secondary piston 140 is extracted within at least 45 degrees, and even at least 30 degrees, of the primary piston 140 descending from the TDC 350 position. Because the secondary piston 140 moves much more rapidly than does the primary piston 130, it can convert a much greater percentage of the thermal energy into linear motion before the thermal energy is lost to the heat sink formed by the walls, primary piston, and other components of the IC
engine.
Additionally, because the secondary piston 140 acts independently of the primary piston 130 and because the secondary piston 140 has a substantially lower inertia than the primary piston 130, the secondary piston 140 reacts to combustion with a very short response time without being inhibited by the primary piston 130.
For example, an IC engine having operating characteristics running at 3000 revolutions per minute, t1 would be approximately 10 milliseconds, or 0.010 seconds, and t2 would be approximately 3 milliseconds. Because the secondary piston 140 can be operated independently of the primary piston 130, the secondary piston 140 can be operated with a response time of approximately 3 milliseconds or potentially even at a shorter response time.
In other words, the secondary piston 140 can both begin and stop extracting energy from the combustion cycles of the system 100 within at least a 3 millisecond time period. Higher cycle rate can be achieved by operating the primary piston 130 at a higher speed (i.e., higher number of rpms).
Turning to FIGS. l and 5, physical response characteristics, such as impulse modulation and superior bandwidth provided by the secondary piston 140 with respect to the primary piston 130, is illustrated. In particular, line 430 depicts the primary piston 130 reciprocating repeatedly or substantially continuously with a substantially fixed displacement between the TDC and BDC positions. As the primary piston 130 continuously reciprocates, the controller 115 is configured to control combustion at selective cycles of reciprocation of the primary piston 130. The reciprocation cycles of the primary piston 130 in which combustion is selected are illustrated in corresponding lines 440. Line 440 indicates a portion of energy extracted by the secondary piston 140 from the selected cycles of the primary piston 130 where the controller 115 controls or initiates combustion (i.e., amplitude modulation, impulse modulation, and frequency modulation). The flat portion 442 of line 440 corresponds to the absence of combustion, showing no displacement and energy extraction from the secondary piston 140.
As shown, the primary piston 130 continuously reciprocates in the chamber 110, wherein the controller 115 selectively controls particular reciprocating cycles in which combustion occurs. As such, the cycles selected for combustion to facilitate the extraction of a portion of the combustion energy may include each reciprocation cycle of the primary piston or, as indicated, an impulse modulation. Such an impulse modulation provides thermal energy extracted over one or more selected cycles of the primary piston 130 as well as one or more sequence of selected cycles where no energy is extracted.
As can be readily recognized by one of ordinary skill in the art, the impulse modulation illustrates that the rate by which energy may be extracted and then stopped from extracting energy is extremely rapid. Such ability to extract energy and then rapidly stop extracting, and then again rapidly extract energy at selected cycles of the primary piston 130 provides a favorable bandwidth far superior to the bandwidth of the energy extraction and conversion of the primary piston 130. Thus, energy may be provided and stopped with a rapid response and with favorable bandwidth by the controller 115 controlling the combustion at selected cycles and the secondary piston 140 reacting to the combustion, as indicated by line 440. Furthermore, referencing FIGS. 1 and 6, the controller 115 may control the fuel 114 and combustion at selected cycles of the primary piston 130 so that the secondary piston 140 extracts a portion of the combustion energy to provide amplitude modulation and, further, impulse amplitude modulation 540. Further, a person of ordinary skill in the art will readily recognize that the controller 115 may control the fuel 114 and combustion at selected cycles so as to provide frequency modulation and even frequency, impulse modulation, or, even frequency, amplitude modulation.
Turning to FIG. 7, there is illustrated relative linear movement with respect to the primary piston 630 and the secondary piston each in chamber 610. In particular, the linear movement 638 of the primary piston 630 in chamber 610 is substantially constant with a displacement D 1. On the other hand, the linear movement 648 of the secondary piston may be variable in length referenced as displacement D2. Such variable length of displacement D2 of the secondary piston may change with respect to a load 650 of which the energy extracted by the secondary piston is acting upon. Other factors that effect the displacement D2 of the secondary piston 640 relate to inertia of the mass of secondary piston 640 and its piston rod 642. As previously set forth, the effective inertia of the primary piston 630, an crank assembly is greater than the effective inertia of the secondary piston 640 by a ratio of at least 5: l, and even at least 10:1, at least' during the time period when a portion of energy is extracted from combustion by the secondary piston 640. Since the inertia of the secondary piston 640 is less than the inertia of the primary piston 630, the secondary piston 640 is able to react with a rapid response. In this manner, the displacement D2 of the secondary piston 640 is variable in length, in which the displacement D2 naturally matches and corresponds with at least the load 650 to which the extracted energy is acting upon as well as with respect to the combustion force acting on the secondary piston 640 at combustion. D2' and D2"
represent a variety of lengths which form a continuum of values, corresponding to a continuous transmission system. This is illustrated in FIG. 7A, wherein D2' corresponds to a heavier load, and D2" relates to a lighter load, thereby eliminating the need for a separate transmission device as is typically required for an IC engine.
Referencing FIG. 8, the rapid response energy extracting system 700 may be provided in a non-combustion engine, according to a third embodiment of the present invention. The system 700 includes a chamber 710 with a primary piston 730 and a secondary piston 740.
Instead of internal combustion provided by fuel and oxygen, a fluid 714, such as a monopropellant or hydrogen peroxide, may enter through an intake port 712 of the chamber 710. The fluid 714 may pass through or over a reaction member 720, such as a catalyst or heat-exchanger. Such a catalyst may include silver, silver alloy, and/or a silver/ceramic material. As the fluid 714 passes over the reaction member 720, a rapid non-combustive reaction results, which may include rapid decomposition of the fluid 714 and/or vaporization of the fluid 714. As in the IC engine, such rapid non-combustive reaction causes a rapid response from the secondary piston 740 for extracting a portion of energy from the rapid non-combustive reaction. In this system, the primary piston 740 may reciprocate and function similar to the primary piston in the IC engine or, alternatively, the primary piston 730 may simply act as a means for pumping fluid in and out of the chamber 710.
While the preceding discussion focused on the characteristics of four stroke internal combustion engines as primary power sources, the present invention is not restricted to use with an internal combustion engine. The present invention can be utilized with any primary power source that delivers variable pulsating pressure. For example, two-stroke internal combustion engines, diesel engines, Stirling engines, external combustion engines and heat engines can all be used as primary power sources for the rapid response power conversion device. The above described present invention may be used to provide energetic autonomy to power sources used in robotics. Robots could be powered by self contained fuel consumption devices which are not tethered to any primary power source.
Because the present invention allows for direct conversion of fuel into rapid response energy, any intermediate storage device such as a large hydraulic accumulator or electric battery would no longer be necessary, eliminating large weight additions to the robot without sacrificing the speed with which the robot could access power.
For example, the present invention could be used to provide energetic autonomy to power sources used in robotics. Robots could be powered by self contained fuel consumption devices which are not tethered to any primary power source.
Because the present invention allows for direct conversion of fuel into rapid response energy, any intermediate storage device such as a hydraulic accumulator or electric battery would no longer be necessary, eliminating large weight additions to the robot without sacrificing the speed with which the robot could access power.
In addition to providing a lightweight, energetically autonomous rapid response power source for use in robotics, the present invention could be used in much the same way to assist human movement. Shown generally at 800 in FIG. 9 is a wearable exoskeletal frame for use by a human. A central control unit 802 can serve as a fuel storage device, power generation center and/or a signal generation/processing center. Shown at 804, attached at 808 to the joints of the exoskeleton 809 is an actuator 806. The cylinder (not shown) within the actuator can be extended or retracted to adjust the relative position of the upper and lower leg segments, 816 and 818, respectively, of the exoskeletal frame. The actuator 806 can be driven by a rapid response power conversion device 810. The rapid response power conversion device can be a small internal combustion engine supplied by fuel from fuel line 812 and controlled by an input/output signal line 814. The system can be configured such that an actuator and a power conversion device are located at each joint of the exoskeletal frame and are controlled by signals from the master control unit 802.
Alternately, the system could be configured such that one or more master power conversion devices are located in the central control unit 802 for selectively supplying power to actuators located at each joint of the exoskeleton. Sensors (not shown) could be attached to various points of the exoskeleton to monitor movement and provide feedback. Also, safety devices such as power interrupts (not shown) can be included to protect the safety of the personnel wearing the exoskeletal frame.
The wearable exoskeletal frame could be used in many applications. In one embodiment, the frame could be configured to assist military personnel in difficult or dangerous tasks. The energetically autonomous rapid response power conversion device can allow conventional primary power sources to be used to enhance the strength, stamina and speed of personnel without requiring that the personnel be tethered to a primary power source. The wearable frame could reduce the number of personnel required in dangerous or hazardous tasks and reduce the physical stress experienced by personnel when executing such tasks. The wearable frame could also be configured for application-specific tasks which might involve exposure to radiation, gas, chemical or biological agents.
The wearable frame could also be used to aid physically impaired individuals in executing otherwise impossible tasks such as sitting, standing or walking. The rapid response power conversion device could serve as a power amplifier, amplifying small motions and forces into controlled, large motions and forces. By strategically placing sensors and control devices in various locations on the frame, individuals who are only capable of applying very small amounts of force could control the motion of the frame. Because the rapid response power conversion device is energetically autonomous, physically impaired individuals could be given freedom of movement without being tethered to a power source. The rapid response power conversion device would also be capable of producing the small, discrete movements 5 necessary to imitate human movement. Safety devices such as power interrupts could be built into the system to prevent unintentional movement of the frame and any damage to the individual wearing the frame.
In addition to the previous applications, the present invention can be used in any number of applications that require rapid response power without tethering the application to 10 a primary power source. Examples can include power driven wheelchairs, golf carts, automobiles, skateboards, scooters, ultra-light aircraft, and other motorized vehicles, and generally any application which leverages mechanical energy and which would benefit by energetic autonomy.
It is to be understood that the above-described arrangements are only illustrative of 15 the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended claims are intended to cover such modifications and arrangements. Thus, while the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made, without departing from the principles and concepts of the invention as set forth above.
Claims (52)
1. An internal combustion (IC) engine comprising:
a chamber having a piston, at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure to said chamber, said piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
a controller for controlling said combustion in said chamber; and a rapid response component in fluid communication with said chamber, said rapid response component situated adjacent said combustion portion of said chamber, said rapid response component configured to draw a portion of said energy from said combustion in said chamber.
a chamber having a piston, at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure to said chamber, said piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
a controller for controlling said combustion in said chamber; and a rapid response component in fluid communication with said chamber, said rapid response component situated adjacent said combustion portion of said chamber, said rapid response component configured to draw a portion of said energy from said combustion in said chamber.
2. The IC engine of claim 1, wherein said rapid response component comprises a secondary piston disposed in said chamber, said secondary piston comprising an energy receiving portion and an energy transferring portion, said energy receiving portion configured to draw said portion of said energy from said combustion in said chamber.
3. The IC engine of claim 2, wherein said energy transferring portion is configured to transfer said portion of said energy from said combustion to at least one form of energy selected from the group consisting of hydraulic energy, pneumatic energy, electric energy and mechanical energy.
4. The IC engine of claim 2, further comprising a secondary energy conversion system operatively coupled to said energy transferring portion of said secondary piston, said secondary energy conversion system being selected from the group consisting of a hydraulic system, a pneumatic system, an electric generator system and a mechanical system.
5. The IC engine of claim 1, wherein said controller comprises a spark ignition source configured to at least partially facilitate said combustion in said chamber.
6. The IC engine of claim 1, wherein said controller comprises a fuel controller for combining a fuel with an oxidizer to at least partially facilitate said combustion in said chamber.
7. The IC engine of claim 6, wherein said oxidizer is selected from the group consisting of pure oxygen and air.
8. The IC engine of claim 1, wherein said controller includes structure for releasing a fuel into compressed oxidizer fluid to at least partially facilitate said combustion in said chamber.
9. The IC engine of claim 1, wherein said chamber is configured to operate in combination with an engine selected from the group consisting of a spark ignition IC engine and a compression ignition IC engine.
10. The IC engine of claim 1, wherein said rapid response component is configured to provide greater bandwidth than direct bandwidth supplied directly by the piston of said IC
engine.
engine.
11. The IC engine of claim 1, wherein said rapid response component is configured to draw said portion of said energy from said chamber during a time period from a proximate instant of said combustion and prior to said piston reciprocating to a position at a median between a top dead center position and a bottom dead center position.
12. The IC engine of claim 2, wherein said chamber houses at least one of said piston and said secondary piston.
13. The IC engine of claim 2, wherein said chamber comprises a first compartment and a second compartment with a divider portion therebetween, said first compartment including said piston and said second compartment including said secondary piston, said divider portion defining an aperture therein extending between said first compartment and said second compartment.
14. The IC engine of claim 13, wherein said fluid is compressed at least partially into said second compartment by said piston, wherein said controller comprises a spark ignition source configured to at least partially facilitate said combustion in said second compartment.
15. The IC engine of claim 1, wherein said piston is configured to substantially continuously reciprocate in said chamber.
16. The IC engine of claim 15, wherein said controller is configured to initiate said combustion at selected cycles of one or more cycles, wherein said selected cycles are non-continuous compared to that of said piston substantially continuously reciprocating in said chamber.
17. An internal combustion engine comprising:
a chamber having a piston, at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure and temperature to said chamber, said piston configured to reciprocate in said chamber between a top dead center position and a bottom dead center position, each reciprocation of said piston defining a cycle, said piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
a controller for controlling said combustion in said chamber; and a rapid response component in fluid communication with said chamber, said rapid response component configured to draw a portion of said energy from said chamber during a time period from a proximate instant of said combustion and prior to said piston being positioned at a median between said top dead center position and said bottom dead center position.
a chamber having a piston, at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure and temperature to said chamber, said piston configured to reciprocate in said chamber between a top dead center position and a bottom dead center position, each reciprocation of said piston defining a cycle, said piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
a controller for controlling said combustion in said chamber; and a rapid response component in fluid communication with said chamber, said rapid response component configured to draw a portion of said energy from said chamber during a time period from a proximate instant of said combustion and prior to said piston being positioned at a median between said top dead center position and said bottom dead center position.
18. The IC engine of claim 17, wherein said proximate instant of said combustion is immediately prior to combustion.
19. The IC engine of claim 17, wherein said proximate instant of said combustion is immediately subsequent to combustion.
20. The IC engine of claim 17, wherein said rapid response component draws a majority of said portion of said energy from said chamber within 45 degrees of said piston descending from said top dead center position.
21. The IC engine of claim 17, wherein said rapid response component draws at least 90%
of said portion of said energy from said chamber within 45 degrees of said piston descending from said top dead center position.
of said portion of said energy from said chamber within 45 degrees of said piston descending from said top dead center position.
22. The IC engine of claim 17, wherein said rapid response component is coupled to a load selected from the group consisting of a hydraulic system, a pneumatic system, an electric generator system and a mechanical system.
23. The IC engine of claim 17, wherein said rapid response component is configured to convert energy from said combustion to another form of energy selected from the group consisting of hydraulic energy, pneumatic energy, electric energy and mechanical energy.
24. The IC engine of claim 17, wherein said piston is configured to substantially continuously reciprocate in said chamber.
25. The IC engine of claim 24, wherein said controller is configured to initiate said combustion at selected cycles of one or more cycles, wherein said selected cycles are non-continuous compared to that of said piston substantially continuously reciprocating in said chamber.
26. The IC engine of claim 17, wherein said controller is configured to control activation of said rapid response component.
27. An internal combustion engine comprising:
a chamber having a piston, at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure and temperature to said chamber, said piston configured to substantially continuously reciprocate in said chamber between a top dead center position and a bottom dead center position, each reciprocation of said piston defining a cycle, said reciprocating piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
a controller for controlling said combustion in said chamber, said controller configured to provide said combustion to said chamber at selected cycles of one or more cycles of said reciprocating piston, wherein said selected cycles are non-continuous compared to that of said piston substantially continuously reciprocating in said chamber; and a rapid response component in fluid communication with said chamber, said rapid response component situated adjacent said combustion portion of said chamber, said rapid response component drawing a portion of said energy from said combustion in said chamber controlled by said controller.
a chamber having a piston, at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure and temperature to said chamber, said piston configured to substantially continuously reciprocate in said chamber between a top dead center position and a bottom dead center position, each reciprocation of said piston defining a cycle, said reciprocating piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
a controller for controlling said combustion in said chamber, said controller configured to provide said combustion to said chamber at selected cycles of one or more cycles of said reciprocating piston, wherein said selected cycles are non-continuous compared to that of said piston substantially continuously reciprocating in said chamber; and a rapid response component in fluid communication with said chamber, said rapid response component situated adjacent said combustion portion of said chamber, said rapid response component drawing a portion of said energy from said combustion in said chamber controlled by said controller.
28. ~The IC engine of claim 27, wherein said controller is configured to control a response of said rapid response component.
29. ~The IC engine of claim 27, wherein said portion of said energy comprises additional energy than that of said energy drawn from said piston.
30. ~The IC engine of claim 27, wherein said controller is configured to activate said rapid response component.
31. ~The IC engine of claim 27, wherein said controller controlling said combustion in said chamber at said selected cycles initiates said portion of said energy to be transferred to an additional energy system selected from the group consisting of an hydraulic system, a pneumatic system, an electric generator system and a mechanical system.
32. ~The IC engine of claim 27, wherein said rapid response component is activated by said combustion at said selected cycles to provide rapid response power controlled by said controller.
33. ~The IC engine of claim 27, wherein said portion of said energy drawn from said combustion provides rapid response power corresponding to said combustion of said selected cycles, wherein said rapid response power is provided during a combustion cycle of said piston and said rapid response power is rapidly eliminated during a non-combustion cycle.
34. ~The IC engine of claim 33, wherein said rapid response power is provided to a load selected from at least one of the group consisting of a hydraulic system, a pneumatic system, an electric generator system and a mechanical system, each system of which responds rapidly with respect to said selected cycles of combustion.
35. ~An internal combustion (IC) engine comprising:~
a chamber having a piston, at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure to said chamber, said piston configured to reciprocate in said chamber continuously between a top dead center position and a bottom dead center position with a substantially fixed displacement, said piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
a controller for controlling said combustion in said chamber; and a rapid response component having a secondary piston in fluid communication with said chamber, said rapid response component situated adjacent said combustion portion of said chamber to draw a portion of said energy from said combustion, said secondary piston configured to displace at variable lengths based at least in part by a load coupled to said secondary piston.
a chamber having a piston, at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure to said chamber, said piston configured to reciprocate in said chamber continuously between a top dead center position and a bottom dead center position with a substantially fixed displacement, said piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
a controller for controlling said combustion in said chamber; and a rapid response component having a secondary piston in fluid communication with said chamber, said rapid response component situated adjacent said combustion portion of said chamber to draw a portion of said energy from said combustion, said secondary piston configured to displace at variable lengths based at least in part by a load coupled to said secondary piston.
36. ~The IC engine of claim 35, wherein said piston includes a first mass and said secondary piston includes a second mass, wherein a first effective inertia of said first mass is greater than a second effective inertia of said second mass by a ratio of at least 5:1 at least during said portion of said energy being transferred to said rapid response component.
37. ~The IC engine of claim 35, wherein said rapid response component draws at least a majority of said portion of said energy from said chamber within 45 degrees of said piston descending from said top dead center position.
38. ~The IC engine of claim 35, wherein said rapid response component draws at least 90%
of said portion of said energy from said chamber within 45 degrees of said piston descending from said top dead center position.
of said portion of said energy from said chamber within 45 degrees of said piston descending from said top dead center position.
39. ~The IC engine of claim 35, wherein said piston includes a first mass and said secondary piston includes a second mass, wherein a first effective inertia of said first mass is greater than a second effective inertia of said second mass.
40 ~The IC engine of claim 35, further comprising a continuous transmission system configured to provide said variable lengths of said secondary piston, variable at least in part as a function of said load.
41. ~A non-combustion system for extracting energy comprising:
a chamber having a piston configured to reciprocate therein, at least one fluid port coupled to said chamber for supplying a fluid thereto and an out-take port, said chamber including a reactive member for making contact with said fluid to provide a non-combustive reaction, said non-combustive reaction providing energy and a variable pressure to said chamber for reciprocating said piston;
a controller for controlling said non-combustive reaction in said chamber; and a rapid response component in fluid communication with said chamber, said rapid response component situated adjacent a portion of said chamber having said non-combustive reaction, said rapid response component configured to draw a portion of said energy from said non-combustive reaction in said chamber.
a chamber having a piston configured to reciprocate therein, at least one fluid port coupled to said chamber for supplying a fluid thereto and an out-take port, said chamber including a reactive member for making contact with said fluid to provide a non-combustive reaction, said non-combustive reaction providing energy and a variable pressure to said chamber for reciprocating said piston;
a controller for controlling said non-combustive reaction in said chamber; and a rapid response component in fluid communication with said chamber, said rapid response component situated adjacent a portion of said chamber having said non-combustive reaction, said rapid response component configured to draw a portion of said energy from said non-combustive reaction in said chamber.
42. ~The system of claim 41, wherein said fluid comprises a monopropellant.
43. ~The system of claim 42, wherein said monopropellant comprises hydrogen peroxide.
44. ~The system of claim 41, wherein said reaction member comprises at least one of a catalyst and a heat-exchanger.
45. ~The system of claim 41, wherein said non-combustive reaction comprises a rapid decomposition of said fluid.
46. ~The system of claim 41, wherein said non-combustive reaction comprises vaporization of said fluid.
47. ~The system of claim 41, wherein said non-combustive reaction comprises rapid gas expansion.
23~
23~
48. ~A method for extracting additional energy from an IC engine, the method comprising:
providing a chamber having a piston, a at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure to said chamber, said piston configured to reciprocate in said chamber between a top dead center position and a bottom dead center position, each reciprocation of said piston defining a cycle, said piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
providing a rapid response component;
positioning said rapid response component to be in fluid communication with said chamber and adjacent said combustion portion of said chamber; and controlling said combustion in said chamber with a controller interconnected to said chamber.
providing a chamber having a piston, a at least one fluid port coupled to said chamber for supplying fluid thereto and an out-take port, said piston and said at least one fluid port configured to provide a variable pressure to said chamber, said piston configured to reciprocate in said chamber between a top dead center position and a bottom dead center position, each reciprocation of said piston defining a cycle, said piston and said fluid configured to at least partially facilitate combustion to provide energy from said combustion in a combustion portion of said chamber;
providing a rapid response component;
positioning said rapid response component to be in fluid communication with said chamber and adjacent said combustion portion of said chamber; and controlling said combustion in said chamber with a controller interconnected to said chamber.
49. ~The method of claim 48, further comprising configuring said rapid response component to draw a portion of said energy from said combustion in said chamber from a proximate instant of said combustion and prior to said piston being positioned at a median between said top dead center position and said bottom dead center position.
50. ~The method of claim 49, wherein said configuring comprises configuring said rapid response component to draw a majority of said portion of said energy from said chamber within 45 degrees of said piston descending from said top dead center position.
51. ~The method of claim 50, wherein said configuring comprises configuring said rapid response component to draw at least 90% of said portion of said energy from said chamber within 45 degrees of said piston descending from said top dead center position.
52. ~The method of claim 48, wherein said controlling comprises controlling said controller to provide said combustion to said chamber at selected cycles of one or more cycles of said piston such that said selected cycles are non-continuous compared to that of said piston continuously reciprocating in said chamber.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30305301P | 2001-07-05 | 2001-07-05 | |
US60/303,053 | 2001-07-05 | ||
PCT/US2002/021123 WO2003004876A1 (en) | 2001-07-05 | 2002-07-05 | Rapid response power conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2452494A1 true CA2452494A1 (en) | 2003-01-16 |
Family
ID=23170338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002452494A Abandoned CA2452494A1 (en) | 2001-07-05 | 2002-07-05 | Rapid response power conversion device |
Country Status (7)
Country | Link |
---|---|
US (2) | US6957631B2 (en) |
EP (1) | EP1402182B1 (en) |
CN (1) | CN1294355C (en) |
AT (1) | ATE326632T1 (en) |
CA (1) | CA2452494A1 (en) |
DE (1) | DE60211517T2 (en) |
WO (1) | WO2003004876A1 (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6938588B2 (en) * | 1999-11-12 | 2005-09-06 | Sarcos Investments, Lc | Controllable combustion method and device |
CA2452494A1 (en) * | 2001-07-05 | 2003-01-16 | Sarcos Investments Lc | Rapid response power conversion device |
WO2005024205A1 (en) * | 2003-09-10 | 2005-03-17 | William Cahill | Improvements to internal combustion engines |
US7363887B2 (en) * | 2004-12-02 | 2008-04-29 | Raytheon Sarcos, Llc | Dynamic mass transfer rapid response power conversion system |
US8849457B2 (en) | 2006-07-17 | 2014-09-30 | Raytheon Company | Contact displacement actuator system |
EP2145089A2 (en) * | 2007-04-05 | 2010-01-20 | Raytheon Sarcos, LLC | Rapid-fire rapid-response power conversion system |
US7856714B2 (en) * | 2007-10-10 | 2010-12-28 | The Invention Science Fund I, Llc | Method of retrofitting an engine |
US7622814B2 (en) * | 2007-10-04 | 2009-11-24 | Searete Llc | Electromagnetic engine |
US7950356B2 (en) * | 2007-10-09 | 2011-05-31 | The Invention Science Fund I, Llc | Opposed piston electromagnetic engine |
CA2716808C (en) * | 2008-02-28 | 2017-10-31 | Douglas K. Furr | High efficiency internal explosion engine |
EP2612007A4 (en) * | 2010-08-24 | 2015-05-06 | Jesper Soberg | Free-piston engine with linear power generator |
US9789603B2 (en) | 2011-04-29 | 2017-10-17 | Sarcos Lc | Teleoperated robotic system |
US20130145530A1 (en) * | 2011-12-09 | 2013-06-13 | Manu Mitra | Iron man suit |
US11836706B2 (en) | 2012-04-16 | 2023-12-05 | Sticky.Io, Inc. | Systems and methods for facilitating a transaction using a virtual card on a mobile device |
US9616580B2 (en) | 2012-05-14 | 2017-04-11 | Sarcos Lc | End effector for a robotic arm |
US10766133B2 (en) | 2014-05-06 | 2020-09-08 | Sarcos Lc | Legged robotic device utilizing modifiable linkage mechanism |
CN104879212A (en) * | 2015-04-30 | 2015-09-02 | 刘洪保 | Double-piton four-stroke internal combustion engine |
US9964030B1 (en) | 2016-09-09 | 2018-05-08 | Nolton C. Johnson, Jr. | Tethered piston engine |
US10919161B2 (en) | 2016-11-11 | 2021-02-16 | Sarcos Corp. | Clutched joint modules for a robotic system |
US10821614B2 (en) | 2016-11-11 | 2020-11-03 | Sarcos Corp. | Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly |
US10828767B2 (en) | 2016-11-11 | 2020-11-10 | Sarcos Corp. | Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements |
US10765537B2 (en) | 2016-11-11 | 2020-09-08 | Sarcos Corp. | Tunable actuator joint modules having energy recovering quasi-passive elastic actuators for use within a robotic system |
US10843330B2 (en) | 2017-12-07 | 2020-11-24 | Sarcos Corp. | Resistance-based joint constraint for a master robotic system |
US11331809B2 (en) | 2017-12-18 | 2022-05-17 | Sarcos Corp. | Dynamically controlled robotic stiffening element |
GB2571516A (en) * | 2018-01-31 | 2019-09-04 | Mckenzie Dale | Device for generating electrical energy |
WO2020092735A1 (en) * | 2018-10-31 | 2020-05-07 | Pinnacle Engines, Inc. | Hybrid opposed-piston internal combustion engine |
US10906191B2 (en) | 2018-12-31 | 2021-02-02 | Sarcos Corp. | Hybrid robotic end effector |
US11351675B2 (en) | 2018-12-31 | 2022-06-07 | Sarcos Corp. | Robotic end-effector having dynamic stiffening elements for conforming object interaction |
US11241801B2 (en) | 2018-12-31 | 2022-02-08 | Sarcos Corp. | Robotic end effector with dorsally supported actuation mechanism |
CA3159739C (en) * | 2019-12-02 | 2022-10-25 | James Hastings WILKIE | Plasma compression driver |
US11833676B2 (en) | 2020-12-07 | 2023-12-05 | Sarcos Corp. | Combining sensor output data to prevent unsafe operation of an exoskeleton |
US11794345B2 (en) | 2020-12-31 | 2023-10-24 | Sarcos Corp. | Unified robotic vehicle systems and methods of control |
US11826907B1 (en) | 2022-08-17 | 2023-11-28 | Sarcos Corp. | Robotic joint system with length adapter |
US11717956B1 (en) | 2022-08-29 | 2023-08-08 | Sarcos Corp. | Robotic joint system with integrated safety |
US11924023B1 (en) | 2022-11-17 | 2024-03-05 | Sarcos Corp. | Systems and methods for redundant network communication in a robot |
US11897132B1 (en) | 2022-11-17 | 2024-02-13 | Sarcos Corp. | Systems and methods for redundant network communication in a robot |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US179782A (en) * | 1876-07-11 | Improvement in gas-engines | ||
FR527395A (en) | 1913-12-08 | 1921-10-25 | Vincent Groom | Furnace applicable to the firing of combustible agglomerates of all kinds |
US1711906A (en) * | 1928-02-29 | 1929-05-07 | Walter B Sands | Two-cycle internal-combustion engine |
US2816416A (en) * | 1955-03-21 | 1957-12-17 | Louis O French | Two cycle internal combustion engine |
US3234395A (en) | 1962-02-01 | 1966-02-08 | Richard M Colgate | Free piston electrical generator |
US3170406A (en) * | 1962-11-28 | 1965-02-23 | Raymond A Robertson | Free piston engine |
US3274946A (en) * | 1964-04-13 | 1966-09-27 | Edward E Simmons | Pump |
DE1914717A1 (en) * | 1969-03-22 | 1970-10-15 | Krupp Gmbh | Opposite piston machine, especially opposed piston engine |
BE786418A (en) | 1972-07-18 | 1972-11-16 | Dutry Jean E | INTERNAL COMBUSTION ENGINE. |
US3918851A (en) * | 1972-11-10 | 1975-11-11 | William Maurice Bar Fitzgerald | High velocity shaft seal |
AU497643B2 (en) * | 1975-06-23 | 1978-12-21 | F Kaye | Internal combustion engine |
US4167922A (en) | 1977-08-26 | 1979-09-18 | Doundoulakis George J | Internal ballistic engine |
US4306680A (en) * | 1980-05-12 | 1981-12-22 | General Motors Corporation | Compression operated injector |
US4599983A (en) * | 1981-11-09 | 1986-07-15 | Kabushiki Kaisha Komatsu Seisakusho | Method and apparatus for injecting fuel for a diesel engine |
US4554943A (en) * | 1983-12-02 | 1985-11-26 | Fisher Controls International, Inc. | Single disc rotary valve |
DE3410491A1 (en) | 1984-03-22 | 1985-09-26 | Johann 3200 Alfeld Konetzny | Internal combustion engine |
US4907549A (en) * | 1988-04-30 | 1990-03-13 | Fuji Jukogyo Kabushiki Kaisha | Scavenging system for a two-stroke-cycle engine |
US5109810A (en) | 1990-09-24 | 1992-05-05 | Christenson Howard W | Two cycle internal combustion hydrocycle engine |
US5261797A (en) * | 1992-02-04 | 1993-11-16 | Christenson Howard W | Internal combustion engine/fluid pump combination |
DK137493D0 (en) | 1993-12-08 | 1993-12-08 | Danfoss As | HYDRAULIC STAMP ENGINE |
FI94456C (en) | 1993-12-28 | 1995-09-11 | Sampower Oy | Multi-piston hydraulic pump for free piston engine |
MX9708006A (en) * | 1995-04-20 | 1998-02-28 | Split Cycle Tech | Free piston engine. |
US5894730A (en) | 1997-08-13 | 1999-04-20 | Mitchell; Herman R. | Internal combustion hydraulic motor and method of operation |
US6230671B1 (en) * | 1998-11-02 | 2001-05-15 | Raymond C. Achterberg | Variable compression and asymmetrical stroke internal combustion engine |
GB9913661D0 (en) * | 1999-06-11 | 1999-08-11 | Lotus Car | Cyclically operated fluid displacement machine |
US6244226B1 (en) | 1999-08-06 | 2001-06-12 | Caterpillar Inc. | Free piston internal combustion engine with rotating piston |
CA2452494A1 (en) * | 2001-07-05 | 2003-01-16 | Sarcos Investments Lc | Rapid response power conversion device |
-
2002
- 2002-07-05 CA CA002452494A patent/CA2452494A1/en not_active Abandoned
- 2002-07-05 AT AT02752159T patent/ATE326632T1/en not_active IP Right Cessation
- 2002-07-05 US US10/190,336 patent/US6957631B2/en not_active Expired - Fee Related
- 2002-07-05 CN CNB028156722A patent/CN1294355C/en not_active Expired - Fee Related
- 2002-07-05 DE DE60211517T patent/DE60211517T2/en not_active Expired - Lifetime
- 2002-07-05 EP EP02752159A patent/EP1402182B1/en not_active Expired - Lifetime
- 2002-07-05 WO PCT/US2002/021123 patent/WO2003004876A1/en active IP Right Grant
-
2005
- 2005-10-25 US US11/259,365 patent/US7210430B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20030005896A1 (en) | 2003-01-09 |
US7210430B2 (en) | 2007-05-01 |
EP1402182A1 (en) | 2004-03-31 |
EP1402182B1 (en) | 2006-05-17 |
DE60211517D1 (en) | 2006-06-22 |
CN1294355C (en) | 2007-01-10 |
CN1541305A (en) | 2004-10-27 |
US6957631B2 (en) | 2005-10-25 |
DE60211517T2 (en) | 2007-05-03 |
EP1402182A4 (en) | 2004-11-03 |
WO2003004876A1 (en) | 2003-01-16 |
ATE326632T1 (en) | 2006-06-15 |
US20060070590A1 (en) | 2006-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6957631B2 (en) | Rapid response power conversion device | |
EP1488087B1 (en) | Controllable combustion method and device | |
US9200625B2 (en) | Regenerative hydraulic pump | |
US20080251050A1 (en) | Rapid-fire rapid-response power conversion system | |
US20130333368A1 (en) | System and method for the production of compressed fluids | |
EP1241340B1 (en) | Stirling engine | |
US20050284427A1 (en) | Free piston compressor | |
US7066116B2 (en) | Valve system for a rapid response power conversion device | |
Raade et al. | Analysis and design of a novel hydraulic power source for mobile robots | |
US9498354B2 (en) | Actuation system for a joint | |
AU2002354780A1 (en) | Rapid response power conversion device | |
US7363887B2 (en) | Dynamic mass transfer rapid response power conversion system | |
Gogola et al. | Monopropellant powered actuators for use in autonomous human-scaled robotics | |
US10724372B1 (en) | Reciprocating piston engine | |
Kumar et al. | Design and control of a free-liquid-piston engine compressor for compact robot power | |
Barth et al. | Dynamic characteristics of a free piston compressor | |
McGee et al. | Theoretical analysis and experimental verification of a monopropellant driven free piston hydraulic pump | |
Raade et al. | Timothy G. McGee | |
US20060156727A1 (en) | Method and apparatus for phase change driven actuator | |
Bélanger Desbiens et al. | Experimental Characterization of a Meso-Scale Combustion Driven Actuator Designed for High Efficiency | |
Riofrio et al. | Experimental Operation and Characterization of a Free Piston Compressor | |
JP2005153856A (en) | Floating moving device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |