Nothing Special   »   [go: up one dir, main page]

CA2452486A1 - Electronic control systems and methods - Google Patents

Electronic control systems and methods Download PDF

Info

Publication number
CA2452486A1
CA2452486A1 CA002452486A CA2452486A CA2452486A1 CA 2452486 A1 CA2452486 A1 CA 2452486A1 CA 002452486 A CA002452486 A CA 002452486A CA 2452486 A CA2452486 A CA 2452486A CA 2452486 A1 CA2452486 A1 CA 2452486A1
Authority
CA
Canada
Prior art keywords
power
controllably conductive
conductive device
line voltage
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002452486A
Other languages
French (fr)
Other versions
CA2452486C (en
Inventor
Richard L. Black
Benjamin Aaron Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lutron Electronics Co Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26685198&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2452486(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA2627848A priority Critical patent/CA2627848C/en
Priority to CA2628211A priority patent/CA2628211C/en
Priority to CA2628022A priority patent/CA2628022C/en
Priority to CA2627819A priority patent/CA2627819C/en
Priority to CA2628002A priority patent/CA2628002C/en
Application filed by Individual filed Critical Individual
Priority to CA2627768A priority patent/CA2627768C/en
Publication of CA2452486A1 publication Critical patent/CA2452486A1/en
Publication of CA2452486C publication Critical patent/CA2452486C/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/08Controlling by shifting phase of trigger voltage applied to gas-filled controlling tubes also in controlled semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • H03K17/6874Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor in a symmetrical configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • H05B39/048Controlling the light-intensity of the source continuously with reverse phase control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electronic Switches (AREA)
  • Dc-Dc Converters (AREA)
  • Manipulation Of Pulses (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

An apparatus in an electronic control system allows two or three wire operations. A power supply (150) can supply power to the enclosed circuitry in both two and three wire installations. Two separate zero cross detectors are used such that timing information can be collected in both two and three wire installations. Both zero cross detectors (110) are monitored and are used to automatically configure the electronic control. Over voltage circuitry senses an over voltage condition across a MOSFET which is in the off state and turns the MOSFET on so that it desirably will not reach the avalanche region. Over current circuitry senses when the current through the MOSFETs has exceeded a predetermined current threshold and then turns the MOSFETs off so they do not exceed the MOSFETs' safe operating area (SOA) curve. Latching circuitry (120) is employed to keep the protection circuitry in effect even after a fault condition has cleared. Lockout circuitry (130) is used to prevent one protection circuit from tripping after the other circuit has already tripped from a fault condition. The protection circuitry output is desirably configured such that it can bypass and override the normal turn on and turn off impedance and act virtually directly on the gates of the MOSFETs.
Preferably, the system has a high efficiency switching type power supply in parallel with a low frequency controllably conductive device.

Claims (54)

1. An electronic control system operable in a two wire mode and a three wire mode, comprising:
a detector having a hot input terminal and a neutral input terminal and generating at least one output signal, the output signal used to automatically operate the electronic control system in one of the two wire mode and the three wire mode.
2. The system of claim 1, wherein the at least one output signal comprises a hot zero cross detection signal and a neutral zero cross detection signal, and wherein the detector comprises:
a hot zero cross detector coupled to the hot input terminal to generate the hot zero cross detection signal; and a neutral zero cross detector coupled to the neutral input terminal to generate the neutral zero cross detection signal.
3. The system of claim 1, further comprising a microprocessor coupled to the detector to monitor the output signal and select one of the two wire mode and the three wire mode responsive to the output signal.
4. An electronic control system connectable to a source of electric power, operable in a two wire mode and a three wire mode, comprising a hot terminal, a dimmed hot terminal, a neutral terminal and a power supply, the power supply drawing a power supply current from the source of electric power, wherein said power supply current only flows between the hot terminal and the dimmed hot terminal when said electronic control system is operating in said two wire mode, and wherein a portion of said power supply current flows between the hot terminal and neutral terminal when said electronic control system is operating in said three wire mode.
5. The power supply of claim 4, wherein the power supply comprises a high frequency switching power supply.
6. An electronic control system connectable to a line voltage having line voltage zero crossings, comprising a controllably conductive device, said electronic control system operable to detect a line voltage zero crossing by causing said controllably conductive device to be conductive for a predetermined period of time prior to said electronic control system monitoring the line voltage for the line voltage zero crossing.
7. The system of claim 6, wherein said controllably conductive device is controlled to be conductive throughout the monitoring of the line voltage for the line voltage zero crossing.
8. The system of claim 6, wherein the electronic control system is operable in a two wire mode.
9. The system of claim 8, wherein the controllably conductive device is controlled to be non-conductive prior to said electronic control system monitoring the line voltage for the line voltage zero crossing.
10. The system of claim 6, wherein the predetermined period of time is at least about 200 µsec.
11. The system of claim 10, wherein the monitoring of the line voltage for the line voltage zero crossing begins at least about 10% of the time between two consecutive line voltage zero crossings before the line voltage zero crossing.
12. The system of claim 10, wherein the monitoring of the line voltage for the line voltage zero crossing begins at least about 1 millisecond before the line voltage zero crossing.
13. The system of claim 12, wherein the controllably conductive device is controlled to be conductive throughout the time when said electronic control system is monitoring the line voltage for the line voltage zero crossing.
14. The system of claim 6, wherein the electronic control system is operable in a three wire mode.
15. An electronic control system comprising at least one controllably conductive device driven through a high impedance path during fault-free operation of said electronic control system and through a low impedance path after a fault condition has been detected by said electronic control system.
16. The system of claim 15, further comprising an over voltage protector that senses an over voltage fault condition present on said at least one controllably conductive device and causes said at least one controllably conductive device to be conductive.
17. The system of claim 16, further comprising a latching circuit to maintain the conduction of said at least one controllably conductive device after the over voltage fault condition has been cleared.
18. The system of claim 16, further comprising an over current protector that senses an over current fault condition of said at least one controllably conductive device and causes said at least one controllably conductive device to be non-conductive.
19. The system of claim 18, further comprising a lockout circuit which prevents the over voltage protector from controlling the at least one controllably conductive device after an over current fault condition has been detected.
20. The system of claim 18, further comprising a lockout circuit which prevents the over current protector from controlling the at least one controllably conductive device after an over voltage fault condition has been detected.
21. The system of claim 15, further comprising an over current protector that senses an over current fault condition of said at least one controllably conductive device and causes said at least one controllably conductive device to be non-conductive.
22. The system of claim 21, further comprising a latching circuit to maintain the non-conduction of said at least one controllably conductive device after the over current fault condition has been cleared.
23. The system of claim 15, wherein the high impedance path comprises a first path for controlling the rate of transition from conduction to non-conduction of said at least one controllably conductive device and a second path for controlling the rate of transition from non-conduction to conduction of said at least one controllably conductive device.
24. The system of claim 23, wherein the impedances of said first and second paths are independent of each other.
25. The system of claim 15, wherein the low impedance path comprises a third path for controlling the rate of transition from conduction to non-conduction of said at least one controllably conductive device and a fourth path for controlling the rate of transition from non-conduction to conduction of said at least one controllably conductive device.
26. The system of claim 25, wherein the impedances of said third and fourth paths are independent of each other.
27. A device for controlling the amount of power delivered from a source of power to a load comprising:
a controllably conductive device connectable between said source and said load;
a control circuit for controlling said controllably conductive device, responsive to a user input signal representative of a predetermined amount of power to be delivered from said source to said load, said control circuit having a first mode of operation and a second mode of operation; and a detector circuit for detecting the presence of an additional input signal and causing said control circuit to switch from said first mode of operation to said second mode of operation when the presence of said additional input signal is detected.
28. The device of claim 27, wherein the detector circuit causes a signal derived from said additional input signal to be provided to said control circuit when the presence of said additional input signal is detected.
29. A device for controlling the amount of power delivered from a source of power to a load comprising:
a controllably conductive device connectable between said source and said load, said controllably conductive device having a conductive state and a non-conductive state;
a first control circuit for controlling said controllably conductive device in a normal mode of operation responsive to a user input signal representative of a predetermined amount of power to be delivered from said source to said load, said first control circuit causing said controllably conductive device to transition between said conductive state and said non-conductive state at a first transition rate;
a second control circuit for controlling said controllably conductive device in a fault mode of operation responsive to the detection of a fault condition, said second control circuit causing said controllably conductive device to transition between said conductive state and said non-conductive state at a second transition rate which is different from said first transition rate.
30. The device of claim 29, wherein the first transition rate is slower than the second transition rate.
31. The device of claim 29, wherein the first transition rate comprises a first turn-on rate and a first turn-off rate and the second transition rate comprises a second turn-on rate and a second turn-off rate.
32. The device of claim 31, wherein the first turn-on rate is different than the second turn-on rate.
33. The device of claim 31, wherein the first turn-off rate is different than the second turn-off rate.
34. An apparatus for controlling the amount of power delivered from a source of power to a load comprising:

a first main terminal and a second main terminal, said first main terminal connectable to said source of power and said second main terminal connectable to said load to allow current to flow from said source of power to said load;
a power supply that draws a power supply current from said source of power through said load;
a third terminal connectable to said source of power, wherein when said third terminal is energized by said source of power a portion of said power supply current flows through said third terminal instead of through said load.
35. The apparatus of claim 34, wherein said first main terminal is connectable to a hot terminal of said source of power.
36. The apparatus of claim 35, wherein said third terminal is connectable to a neutral connection of said source of power.
37. The apparatus of claim 34, further comprising a diode that steers said portion of said power supply current through said third terminal instead of through said load.
38. An apparatus for controlling the amount of power delivered from a source of AC power to a load, the AC power having a substantially sinusoidal line voltage at a predetermined line frequency with zero crossings, the apparatus comprising:
a controllably conductive device connectable between said source of AC power and said load; and a control circuit for controlling the conduction of said controllably conductive device, said control circuit responsive to an input signal representative of a predetermined amount of power to be delivered from said source of AC power to said load, said control circuit responsive to said zero crossings of said substantially sinusoidal line voltage so as to synchronize the conduction of said controllably conductive device with said substantially sinusoidal line voltage;
said control circuit enabling a first conduction time of said controllably conductive device that is a variable conduction time proportional to said predetermined amount of power to be delivered from said source of AC power to said load;
said control circuit enabling a second conduction time of said controllably conductive device that is a fixed conduction time in the same half cycle as said first conduction time, said second conduction time starting prior to the next zero crossing of said substantially sinusoidal line voltage and ending at a predetermined time with respect to said next zero crossing;
said control circuit causing said controllably conductive device to be non-conductive for a period of time between the end of said first conduction time and the beginning of said second conduction time.
39. The apparatus of claim 38, wherein the second conduction time is about 200 µsec.
40. The apparatus of claim 38, wherein the second conduction time ends at about the time of said next zero crossing.
41. A method of reducing flicker in a lamp driven by an electronic transformer in a system powered by an AC line voltage, comprising the steps of:
providing current to said electronic transformer through a series connectable dimming circuit, wherein said current flows for a user selectable first conduction time in an AC line voltage half cycle; and providing a non-overlapping second conduction time in the same half cycle of the AC
line voltage just prior to the next zero crossing of the AC line voltage.
42. The method of claim 41, wherein said second conduction time is a fixed amount of time.
43. The method of claim 41, wherein said fixed amount of time is about 200 microseconds.
44. The method of claim 41, wherein said second conduction time ends about microseconds before said next zero crossing of said AC line voltage.
45. A power controlling device for controlling the amount of power delivered from a source of power to a load comprising:
a first and a second main terminal, said first main terminal connectable to said source of power, said second main terminal connectable to said load to allow current to flow from said source of power to said load; and a power supply that draws a power supply current from said source of power and through said load, said power supply having an efficiency greater than about 50%.
46. The power controlling device of claim 45, wherein said power supply is a switching type power supply.
47. The power controlling device of claim 46, wherein said power supply is a buck converter type switching supply.
48. The power controlling device of claim 46, wherein said power supply is a flyback type switching supply.
49. The power controlling device of claim 45, further including a controllably conductive device connected to said first main terminal and said second main terminal, wherein said power supply is operable during both times of conduction and non-conduction of said controllably conductive device.
50. The power controlling device of claim 45, wherein said power supply is constrained to run only during selected times of the AC line voltage half cycle.
51. A method for supplying power to the control circuitry of a power control device including at least one controllably conductive device connectable to a load in a two wire mode, comprising the steps of:
charging a capacitor through said load to a predetermined high voltage when said controllably conductive device is in a non-conductive state; and drawing current from said capacitor using a converter having a predetermined efficiency to provide a power supply voltage for operation of said control circuitry.
52. The method of claim 51, wherein said converter is a switch mode type converter.
53. The method of claim 51, wherein said converter is a flyback type converter.
54. The method of claim 51, wherein said converter is at least about 50%
efficient.
CA002452486A 2001-07-06 2002-07-03 Electronic control systems and methods Expired - Lifetime CA2452486C (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2628211A CA2628211C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2628022A CA2628022C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627819A CA2627819C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2628002A CA2628002C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627848A CA2627848C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627768A CA2627768C (en) 2001-07-06 2002-07-03 Electronic control systems and methods

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US30350801P 2001-07-06 2001-07-06
US60/303,508 2001-07-06
US10/013,746 2001-12-10
US10/013,746 US6969959B2 (en) 2001-07-06 2001-12-10 Electronic control systems and methods
PCT/US2002/021059 WO2003005550A1 (en) 2001-07-06 2002-07-03 Electronic control systems and methods

Related Child Applications (6)

Application Number Title Priority Date Filing Date
CA2627848A Division CA2627848C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2628211A Division CA2628211C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2628022A Division CA2628022C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2628002A Division CA2628002C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627819A Division CA2627819C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627768A Division CA2627768C (en) 2001-07-06 2002-07-03 Electronic control systems and methods

Publications (2)

Publication Number Publication Date
CA2452486A1 true CA2452486A1 (en) 2003-01-16
CA2452486C CA2452486C (en) 2009-11-10

Family

ID=26685198

Family Applications (6)

Application Number Title Priority Date Filing Date
CA2628022A Expired - Lifetime CA2628022C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627768A Expired - Lifetime CA2627768C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627848A Expired - Lifetime CA2627848C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2628002A Expired - Lifetime CA2628002C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627819A Expired - Lifetime CA2627819C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA002452486A Expired - Lifetime CA2452486C (en) 2001-07-06 2002-07-03 Electronic control systems and methods

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CA2628022A Expired - Lifetime CA2628022C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627768A Expired - Lifetime CA2627768C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627848A Expired - Lifetime CA2627848C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2628002A Expired - Lifetime CA2628002C (en) 2001-07-06 2002-07-03 Electronic control systems and methods
CA2627819A Expired - Lifetime CA2627819C (en) 2001-07-06 2002-07-03 Electronic control systems and methods

Country Status (13)

Country Link
US (7) US6969959B2 (en)
EP (5) EP1413041B1 (en)
JP (7) JP4303106B2 (en)
KR (1) KR100937306B1 (en)
CN (7) CN100488016C (en)
AT (3) ATE544226T1 (en)
AU (1) AU2002346046B2 (en)
CA (6) CA2628022C (en)
ES (1) ES2371160T3 (en)
HK (1) HK1120165A1 (en)
MX (1) MXPA04000105A (en)
SG (1) SG153652A1 (en)
WO (1) WO2003005550A1 (en)

Families Citing this family (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969959B2 (en) * 2001-07-06 2005-11-29 Lutron Electronics Co., Inc. Electronic control systems and methods
US7242563B2 (en) * 2002-04-22 2007-07-10 Leviton Manufacturing Co., Inc. Reverse phase control power switching circuit with overload protection
US7091672B2 (en) 2003-06-10 2006-08-15 Lutron Electronics Co., Inc. High efficiency off-line linear power supply
NL1025613C2 (en) * 2004-03-02 2005-09-05 Pex Franciscus Antonius Maria Can be installed in a wall socket, remote controlled switch.
US20060051634A1 (en) * 2004-09-09 2006-03-09 Genesis Fueltech, Inc. Power controller for fuel cell
US8033479B2 (en) 2004-10-06 2011-10-11 Lawrence Kates Electronically-controlled register vent for zone heating and cooling
TW200627778A (en) * 2005-01-19 2006-08-01 Delta Electronics Inc A method and a system of a half-controlled silicon control rectifier
EP1842401A2 (en) * 2005-01-19 2007-10-10 Koninklijke Philips Electronics N.V. Dim control circuit dimming method and system
US7242150B2 (en) 2005-05-12 2007-07-10 Lutron Electronics Co., Inc. Dimmer having a power supply monitoring circuit
JP2008546369A (en) * 2005-06-06 2008-12-18 ルートロン エレクトロニクス カンパニー インコーポレイテッド Power supply for load control device
US7728564B2 (en) * 2005-06-06 2010-06-01 Lutron Electronics Co., Inc. Power supply for a load control device
JP4729617B2 (en) 2005-06-30 2011-07-20 ルートロン エレクトロニクス カンパニー インコーポレイテッド Dimmer with power supply controlled by microprocessor
US8892913B2 (en) 2005-06-30 2014-11-18 Lutron Electronics Co., Inc. Load control device having a low-power mode
US7851945B2 (en) * 2005-08-08 2010-12-14 Hewlett-Packard Development Company, L.P. System and method of providing power
US7336463B2 (en) * 2005-09-09 2008-02-26 Control4 Corporation Device and method for dimming service loads
US7489088B2 (en) * 2005-10-27 2009-02-10 Leviton Manufacturing Co., Ltd. Power supply for 2-line dimmer
US20070127179A1 (en) * 2005-12-05 2007-06-07 Ludjin William R Burnout protection switch
US7619365B2 (en) * 2006-04-10 2009-11-17 Lutron Electronics Co., Inc. Load control device having a variable drive circuit
KR100771780B1 (en) * 2006-04-24 2007-10-30 삼성전기주식회사 Led driving apparatus having fuction of over-voltage protection and duty control
TW200826444A (en) * 2006-07-27 2008-06-16 Koninkl Philips Electronics Nv Switch mode power supply for in-line voltage applications
IL179579A0 (en) * 2006-11-26 2007-05-15 Tritonics Technologies Ltd A device that enables plc based smart dimmers to function with no new wires
CN101257765A (en) * 2007-03-02 2008-09-03 马士科技有限公司 Stepless light modulation florescent lamp and ballast thereof
US8164273B1 (en) * 2007-04-27 2012-04-24 Harrington Richard H Light emitting diode circuits for general lighting
US8896228B2 (en) 2007-04-27 2014-11-25 Rtc Inc. Light emitting diode circuits for general lighting
US7855518B2 (en) * 2007-06-19 2010-12-21 Masco Corporation Dimming algorithms based upon light bulb type
US7804255B2 (en) * 2007-07-26 2010-09-28 Leviton Manufacturing Company, Inc. Dimming system powered by two current sources and having an operation indicator module
DE102007036438B4 (en) * 2007-08-02 2010-09-23 Abb Ag Method for controlling a universal dimmer
JP5274824B2 (en) * 2007-12-11 2013-08-28 ルネサスエレクトロニクス株式会社 Power supply control circuit
US8067926B2 (en) * 2007-12-21 2011-11-29 Lutron Electronics Co., Inc. Power supply for a load control device
CN101257757B (en) * 2008-04-08 2011-01-19 深圳和而泰智能控制股份有限公司 Fixed power limiter and lighting lamp
US7889526B2 (en) * 2008-05-02 2011-02-15 Lutron Electronics Co., Inc. Cat-ear power supply having a latch reset circuit
US8414210B2 (en) * 2008-06-23 2013-04-09 Silverbrook Research Pty Ltd Electronic pen with retractable nib and force sensor
JP5169768B2 (en) * 2008-11-25 2013-03-27 オムロン株式会社 Current load drive device
GB2467591B (en) 2009-02-09 2013-06-26 Novar Ed & S Ltd Dimmer protection
GB0902127D0 (en) * 2009-02-09 2009-03-25 Novar Ed & S Ltd Control of environmental conditioning devices
US8149591B2 (en) 2009-02-20 2012-04-03 Creston Electronics Inc. Wall box dimmer
US8866401B2 (en) * 2009-03-06 2014-10-21 Lutron Electronics Co., Inc. Multi-stage power supply for a load control device having a low-power mode
US8922133B2 (en) 2009-04-24 2014-12-30 Lutron Electronics Co., Inc. Smart electronic switch for low-power loads
US8547035B2 (en) * 2009-07-15 2013-10-01 Crestron Electronics Inc. Dimmer adaptable to either two or three active wires
US7714790B1 (en) 2009-10-27 2010-05-11 Crestron Electronics, Inc. Wall-mounted electrical device with modular antenna bezel frame
FR2952246B1 (en) * 2009-11-05 2011-12-09 Legrand France METHOD FOR PREVENTING ADVERSE EFFECTS ASSOCIATED WITH LEAKAGE IN NEUTRAL FREE ELECTRONIC SWITCHES, AND DEVICE FOR CARRYING OUT THE METHOD
FR2952765B1 (en) * 2009-11-13 2011-12-23 Legrand France PERFECT ELECTRONIC VARIATOR SWITCH
EP2502461B1 (en) 2009-11-20 2019-05-01 Lutron Electronics Company, Inc. Controllable-load circuit for use with a load control device
US9160224B2 (en) 2009-11-25 2015-10-13 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US11870334B2 (en) 2009-11-25 2024-01-09 Lutron Technology Company Llc Load control device for high-efficiency loads
US8957662B2 (en) * 2009-11-25 2015-02-17 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8729814B2 (en) 2009-11-25 2014-05-20 Lutron Electronics Co., Inc. Two-wire analog FET-based dimmer switch
US8698408B2 (en) 2009-11-25 2014-04-15 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US8664881B2 (en) 2009-11-25 2014-03-04 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US8988050B2 (en) 2009-11-25 2015-03-24 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
JP5502439B2 (en) * 2009-11-30 2014-05-28 株式会社東芝 Protective relay
USD651572S1 (en) 2010-02-01 2012-01-03 Crestron Electroncs Inc. Wall mounted button panel
USD651574S1 (en) 2010-02-01 2012-01-03 Crestron Electronics Inc. Wall mounted button panel
USD678850S1 (en) 2011-06-13 2013-03-26 Crestron Electronics Inc. Wall mounted button panel
USD651573S1 (en) 2010-02-01 2012-01-03 Crestron Electronics Inc. Wall mounted button panel
USD651578S1 (en) 2010-02-01 2012-01-03 Crestron Electronics Inc. Wall mounted button panel
USD678851S1 (en) 2011-06-14 2013-03-26 Crestron Electronics Inc. Wall mounted button panel
USD651984S1 (en) 2010-02-01 2012-01-10 Crestron Electronics Inc. Wall mounted button panel
USD651985S1 (en) 2010-02-01 2012-01-10 Crestron Electronics Inc. Wall mounted button panel with split buttons
USD651983S1 (en) 2010-02-01 2012-01-10 Creston Electronics Inc. Wall mounted button panel
USD651577S1 (en) 2010-02-01 2012-01-03 Crestron Electronics Inc. Wall mounted button panel with split buttons
USD651576S1 (en) 2010-02-01 2012-01-03 Crestron Electronics Inc. Wall mounted button panel
USD651571S1 (en) 2010-02-01 2012-01-03 Crestron Electronics Inc. Wall mounted button panel
USD651579S1 (en) 2010-02-01 2012-01-03 Crestron Electronics Inc. Wall mounted button panel
USD651575S1 (en) 2010-02-01 2012-01-03 Crestron Electronics Inc. Wall mounted button panel
USD678222S1 (en) 2011-06-10 2013-03-19 Crestron Electronics Inc. Wall mounted button panel
USD652806S1 (en) 2010-02-19 2012-01-24 Crestron Electronics Inc. Wall mounted button panel with split buttons
USD651580S1 (en) 2010-02-19 2012-01-03 Crestron Electronics Inc. Wall mounted button panel with split buttons
USD652805S1 (en) 2010-02-19 2012-01-24 Crestron Electronics Inc. Wall mounted button panel with split buttons
USD657319S1 (en) 2010-02-19 2012-04-10 Crestron Electronics Inc. Wall mounted button panel with split buttons
USD651986S1 (en) 2010-02-19 2012-01-10 Crestron Electronics Inc. Wall mounted button panel with split buttons
USD653220S1 (en) 2010-02-19 2012-01-31 Crestron Electronics Inc. Wall mounted button panel with split buttons
WO2011129209A1 (en) 2010-04-16 2011-10-20 Semiconductor Energy Laboratory Co., Ltd. Power source circuit
EP2383622B1 (en) * 2010-04-19 2013-05-29 Siemens Aktiengesellschaft Connection device for connecting field devices
US8446102B2 (en) 2010-05-24 2013-05-21 Leviton Manufacturing Co., Inc. Lighting control failsafe circuit
US8350487B2 (en) 2010-06-01 2013-01-08 Novar Ed&S Limited Switch circuit
JP5624390B2 (en) * 2010-07-08 2014-11-12 シャープ株式会社 LED lighting device
US8334663B2 (en) 2010-07-30 2012-12-18 Lutron Electronics Co., Inc. Power supply for a load control device
US8704504B2 (en) 2010-09-03 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Power supply circuit comprising detection circuit including reference voltage circuits as reference voltage generation circuits
US8918219B2 (en) 2010-11-19 2014-12-23 Google Inc. User friendly interface for control unit
US9104211B2 (en) 2010-11-19 2015-08-11 Google Inc. Temperature controller with model-based time to target calculation and display
US8510255B2 (en) 2010-09-14 2013-08-13 Nest Labs, Inc. Occupancy pattern detection, estimation and prediction
US9459018B2 (en) 2010-11-19 2016-10-04 Google Inc. Systems and methods for energy-efficient control of an energy-consuming system
WO2012092627A1 (en) 2010-12-31 2012-07-05 Nest Labs, Inc. Auto-configuring time-of-day for building control unit
US9046898B2 (en) 2011-02-24 2015-06-02 Google Inc. Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
US9268344B2 (en) 2010-11-19 2016-02-23 Google Inc. Installation of thermostat powered by rechargeable battery
US9448567B2 (en) 2010-11-19 2016-09-20 Google Inc. Power management in single circuit HVAC systems and in multiple circuit HVAC systems
US8788103B2 (en) 2011-02-24 2014-07-22 Nest Labs, Inc. Power management in energy buffered building control unit
US9092039B2 (en) 2010-11-19 2015-07-28 Google Inc. HVAC controller with user-friendly installation features with wire insertion detection
TWI416298B (en) * 2010-12-29 2013-11-21 Hon Hai Prec Ind Co Ltd Voltage regulation circuit and power adapter using the same
CN102545650B (en) * 2010-12-31 2016-12-28 澳大利亚克林普斯有限公司 Power-switching circuit
JP6062864B2 (en) 2010-12-31 2017-01-18 グーグル インコーポレイテッド Intelligent thermostat and intelligent thermostat controlled HVAC system
US8511577B2 (en) 2011-02-24 2013-08-20 Nest Labs, Inc. Thermostat with power stealing delay interval at transitions between power stealing states
US8944338B2 (en) * 2011-02-24 2015-02-03 Google Inc. Thermostat with self-configuring connections to facilitate do-it-yourself installation
US8803432B2 (en) 2011-05-10 2014-08-12 Lutron Electronics Co., Inc. Method and apparatus for determining a target light intensity from a phase-control signal
US8803436B2 (en) 2011-05-10 2014-08-12 Lutron Electronics Co., Inc. Dimmable screw-in compact fluorescent lamp having integral electronic ballast circuit
USD702195S1 (en) 2011-06-16 2014-04-08 Crestron Electronics Inc. Wall mounted button panel
JP2013065528A (en) * 2011-09-20 2013-04-11 Toshiba Lighting & Technology Corp Led lighting device and led illuminating device
CA2853033C (en) 2011-10-21 2019-07-16 Nest Labs, Inc. User-friendly, network connected learning thermostat and related systems and methods
JP5780120B2 (en) * 2011-11-02 2015-09-16 ブラザー工業株式会社 Power supply system, image forming apparatus equipped with the power supply system, and small-capacity power supply circuit
US9906153B2 (en) 2012-01-26 2018-02-27 Philips Lighting Holding B.V. Two-wire neutralless digital dimmer for leading-edge dimmable lamp driver and a method of operation thereof
US10139843B2 (en) 2012-02-22 2018-11-27 Honeywell International Inc. Wireless thermostatic controlled electric heating system
WO2013140287A1 (en) * 2012-03-20 2013-09-26 Koninklijke Philips N.V. Two-wire flyback dimmer and a method of operation thereof
US10340692B2 (en) 2012-04-19 2019-07-02 Pass & Seymour, Inc. Universal power control device
US9413160B2 (en) * 2012-04-19 2016-08-09 Freescale Semiconductor, Inc. Protection circuit and a gate driving circuitry
US9184590B2 (en) 2012-04-19 2015-11-10 Pass & Seymour, Inc. Universal power control device
US8810144B2 (en) * 2012-05-02 2014-08-19 Cree, Inc. Driver circuits for dimmable solid state lighting apparatus
JP2014002867A (en) * 2012-06-15 2014-01-09 Panasonic Corp Lighting device and illuminating fixture
US20140071573A1 (en) * 2012-09-10 2014-03-13 The Watt Stopper, Inc. Electrical Load Controller with Neutral Detection
US9046414B2 (en) 2012-09-21 2015-06-02 Google Inc. Selectable lens button for a hazard detector and method therefor
US9007222B2 (en) 2012-09-21 2015-04-14 Google Inc. Detector unit and sensing chamber therefor
US8708242B2 (en) * 2012-09-21 2014-04-29 Nest Labs, Inc. Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity
US8659302B1 (en) 2012-09-21 2014-02-25 Nest Labs, Inc. Monitoring and recoverable protection of thermostat switching circuitry
US8994540B2 (en) 2012-09-21 2015-03-31 Google Inc. Cover plate for a hazard detector having improved air flow and other characteristics
US9607786B2 (en) 2012-11-20 2017-03-28 Pass & Seymour, Inc. Electronic switching device and system
US8988008B2 (en) * 2012-12-21 2015-03-24 Silicon Laboratories Inc. Light control circuit and method
JP6056475B2 (en) 2012-12-28 2017-01-11 ブラザー工業株式会社 Power supply system and image forming apparatus equipped with the power supply system
USD707637S1 (en) 2013-01-03 2014-06-24 Crestron Electronics Inc. Wall mounted button panel with split buttons
USD702193S1 (en) 2013-01-03 2014-04-08 Crestron Electronics Inc. Wall mounted button panel with split buttons
US9271375B2 (en) 2013-02-25 2016-02-23 Leviton Manufacturing Company, Inc. System and method for occupancy sensing with enhanced functionality
US9084324B2 (en) 2013-02-26 2015-07-14 Lutron Electronics Co., Inc. Load control device having automatic setup for controlling capacitive and inductive loads
US9496691B2 (en) 2013-04-18 2016-11-15 Abl Ip Holding Llc Universal load control module
US9584119B2 (en) 2013-04-23 2017-02-28 Honeywell International Inc. Triac or bypass circuit and MOSFET power steal combination
US9264035B2 (en) 2013-04-23 2016-02-16 Honeywell International Inc. MOSFET gate driving circuit for transition softening
US9806705B2 (en) 2013-04-23 2017-10-31 Honeywell International Inc. Active triac triggering circuit
US9983244B2 (en) 2013-06-28 2018-05-29 Honeywell International Inc. Power transformation system with characterization
US11054448B2 (en) 2013-06-28 2021-07-06 Ademco Inc. Power transformation self characterization mode
US10811892B2 (en) 2013-06-28 2020-10-20 Ademco Inc. Source management for a power transformation system
JP6460592B2 (en) 2013-07-31 2019-01-30 株式会社半導体エネルギー研究所 DC-DC converter and semiconductor device
US9857091B2 (en) 2013-11-22 2018-01-02 Honeywell International Inc. Thermostat circuitry to control power usage
US9673811B2 (en) 2013-11-22 2017-06-06 Honeywell International Inc. Low power consumption AC load switches
WO2015089546A2 (en) * 2013-12-16 2015-06-25 Hendon Semiconductors Pty Ltd A phase cutting control dimmer arrangement and a method of operation thereof to minimise electro-magnetic interference (emi) noise to remain within regulatory requirements when powering a lamp
EP3095182B1 (en) 2014-01-13 2022-09-21 Lutron Technology Company LLC Two-wire load control device for low-power loads
US9791839B2 (en) 2014-03-28 2017-10-17 Google Inc. User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment
US9568201B2 (en) 2014-03-28 2017-02-14 Google Inc. Environmental control system retrofittable with multiple types of boiler-based heating systems
US9581342B2 (en) 2014-03-28 2017-02-28 Google Inc. Mounting stand for multi-sensing environmental control device
US9996096B2 (en) 2014-03-28 2018-06-12 Pass & Seymour, Inc. Power control device with calibration features
US9609462B2 (en) 2014-03-28 2017-03-28 Google Inc. Facilitating radio frequency communications among environmental control system components
US9628074B2 (en) 2014-06-19 2017-04-18 Honeywell International Inc. Bypass switch for in-line power steal
US9419602B2 (en) 2014-06-19 2016-08-16 Honeywell International Inc. Passive drive control circuit for AC current
US9683749B2 (en) 2014-07-11 2017-06-20 Honeywell International Inc. Multiple heatsink cooling system for a line voltage thermostat
GB2533290B (en) 2014-12-15 2017-10-18 Novar Ed&S Ltd Doorbell system and doorbell chime
USD772748S1 (en) 2014-12-15 2016-11-29 Novar Ed&S Limited Door chime
EP3243195A4 (en) 2015-01-06 2018-08-22 Cmoo Systems Itd. A method and apparatus for power extraction in a pre-existing ac wiring infrastructure
US9612031B2 (en) 2015-01-07 2017-04-04 Google Inc. Thermostat switching circuitry robust against anomalous HVAC control line conditions
US9396633B1 (en) 2015-06-14 2016-07-19 Google Inc. Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout
US9679454B2 (en) 2015-02-06 2017-06-13 Google Inc. Systems, methods, and devices for managing coexistence of multiple transceiver devices using control signals
US9794522B2 (en) 2015-02-06 2017-10-17 Google Inc. Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout
US9543998B2 (en) 2015-06-14 2017-01-10 Google Inc. Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry
JP6555612B2 (en) * 2015-07-03 2019-08-07 パナソニックIpマネジメント株式会社 Light control device
CA3078081C (en) 2015-09-04 2023-01-31 Lutron Technology Company Llc Load control device for high-efficiency loads
USD795728S1 (en) 2015-09-16 2017-08-29 Novar Ed&S Limited Door chime
US10270240B2 (en) 2015-10-08 2019-04-23 Hubbell Incorporated Surge protective device with abnormal overvoltage protection
NO342950B1 (en) 2015-11-12 2018-09-10 Comrod As Overvoltage protection circuit for a power converter
SE540833C2 (en) * 2016-01-19 2018-11-27 Blixt Tech Ab Circuit for breaking alternating current
JP6704176B2 (en) * 2016-02-01 2020-06-03 パナソニックIpマネジメント株式会社 Power supply device, lighting system and lighting fixture, and lighting system
CN105813353B (en) * 2016-05-11 2017-03-08 广东好太太科技集团股份有限公司 A kind of intelligence eliminates the protection circuit of UV lamp impact and its method
US10613213B2 (en) 2016-05-13 2020-04-07 Google Llc Systems, methods, and devices for utilizing radar with smart devices
US10687184B2 (en) 2016-05-13 2020-06-16 Google Llc Systems, methods, and devices for utilizing radar-based touch interfaces
JP6745478B2 (en) * 2016-06-30 2020-08-26 パナソニックIpマネジメント株式会社 Protection circuit and wiring equipment
CN106487290B (en) * 2016-11-02 2019-04-30 美的集团股份有限公司 Stop control apparatus, electric machine control system and its halt control method of motor
BE1024727B1 (en) * 2016-11-09 2018-06-14 Niko Nv CONNECTIVITY DETECTOR FOR A DIMMER
BE1024725B1 (en) * 2016-11-09 2018-06-14 Niko Nv FRONT CONTROLLER FOR A DIMMER
BE1024726B1 (en) 2016-11-09 2018-06-14 Niko Nv PRE-CONTROLLER FOR DETECTING CONNECTION STATE OF A DIMMER
US10241526B2 (en) * 2016-11-11 2019-03-26 Google Llc Thermostat switching circuitry with overcurrent shutdown
US10580544B2 (en) * 2016-12-07 2020-03-03 Medtronic, Inc. Power source and method of forming same
CN108258893B (en) * 2016-12-29 2020-10-30 亚瑞源科技(深圳)有限公司 Overcurrent protection circuit
TWI625067B (en) * 2017-05-11 2018-05-21 李淑媛 Stable Adjusting Light To LED Lighting Device And Method
EP3636047B1 (en) 2017-06-09 2023-02-15 Lutron Technology Company LLC Load control device having an overcurrent protection circuit
JP6548698B2 (en) * 2017-07-25 2019-07-24 三菱電機株式会社 Power converter
WO2019027580A1 (en) * 2017-08-01 2019-02-07 Kleverness Incorporated Intelligent switch device and central control system thereof
US10123391B1 (en) * 2017-09-28 2018-11-06 Eaton Intelligent Power Limited Dimmer switch and dimmer switch system with secondary switch
US10714925B2 (en) 2017-10-10 2020-07-14 Littelfuse, Inc. Self-powered electronic fuse with storage capacitor that charges with minimal disturbance of load current through the fuse
CN108235528B (en) * 2018-03-08 2024-04-19 合肥东泰工贸有限公司 Intelligent fire emergency lighting main power supply line three-wire-to-two-wire converter
US10264643B1 (en) 2018-05-09 2019-04-16 Leviton Manufacturing Co., Inc. Dual over-current protection for phase cut dimmer
US10992175B2 (en) 2018-06-15 2021-04-27 Google Llc Communication circuit for 2-wire protocols between HVAC systems and smart-home devices
CN112602379B (en) 2018-06-26 2023-10-20 路创技术有限责任公司 Load control device with controllable filter circuit
DE102018212197A1 (en) * 2018-07-23 2020-01-23 Robert Bosch Gmbh Electronic circuitry and operating procedures therefor
WO2020068089A1 (en) 2018-09-28 2020-04-02 Leviton Manufacturing Co., Inc. Dimmer with improved noise immunity
WO2020112838A1 (en) 2018-11-30 2020-06-04 Lutron Technology Company Llc Load control device configured to operate in two-wire and three-wire modes
FR3092444B1 (en) * 2019-01-31 2021-04-30 Legrand France Two-wire electronic control home automation device
CN109769331A (en) * 2019-03-20 2019-05-17 深圳市宝泰光电科技有限公司 A kind of three line compatible circuit of two line
EP3970451A1 (en) * 2019-05-17 2022-03-23 Lutron Technology Company LLC Load control device having a closed-loop gate drive circuit
US11903105B2 (en) 2020-05-21 2024-02-13 Leviton Manufacturing Co., Inc. Prediction and recovery of zero-crossing information and selective control signal pulse duration
WO2021236150A1 (en) * 2020-05-21 2021-11-25 Leviton Manufacturing Co., Inc. Prediction and recovery of zero-crossing information and selective control signal pulse duration
WO2021236174A1 (en) 2020-05-21 2021-11-25 Leviton Manufacturing Co., Inc. Switching control in electrical load controllers
DE102020125443A1 (en) 2020-09-29 2022-03-31 Schneider Electric Industries Sas Power control circuit, power control method
US11456677B2 (en) 2020-12-10 2022-09-27 Rolls-Royce Corporation Power converter protection circuit
US11860654B2 (en) * 2021-02-02 2024-01-02 Roku, Inc. Smart switch with functionalities determined based on a grounded conductor connection
EP4324297A1 (en) 2021-04-16 2024-02-21 Lutron Technology Company LLC Load control device having miswire detection
CN115327193A (en) * 2021-05-11 2022-11-11 宝华电器(深圳)有限公司 Test protection circuit with overvoltage protection
US11871493B2 (en) 2021-06-04 2024-01-09 Leviton Manufacturing Co., Inc. Timing adjustments for accurate zero-crossing determination
EP4102721A1 (en) * 2021-06-11 2022-12-14 GIRA Giersiepen GmbH & Co. KG Electronic switch
CN115474305A (en) * 2021-06-11 2022-12-13 吉徕·吉尔西本有限两合公司 Electronic switch
EP4254765A1 (en) * 2022-03-31 2023-10-04 Schneider Electric Industries SAS Power control circuit
US11689196B1 (en) * 2022-05-03 2023-06-27 Littelfuse, Inc. Solid state relay harvesting power from load by measuring zero crossing
TWI842266B (en) * 2022-12-12 2024-05-11 茂達電子股份有限公司 Power converter having overvoltage protection mechanism
CN115684985B (en) * 2023-01-05 2023-05-02 深圳市思远半导体有限公司 Detection circuit, method, chip and electronic equipment for switching power supply

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1374601A (en) 1920-09-25 1921-04-12 Osborne William Gun-magazine attachment
US3679965A (en) 1971-02-25 1972-07-25 Pioneer Magnetics Inc Power supply voltage output detector
US3792289A (en) * 1972-07-03 1974-02-12 A Kazem Solid state circuit breaker
US3835368A (en) 1973-05-21 1974-09-10 Gen Electric Voltage regulator for a direct current power supply
JPS5193450A (en) * 1975-02-14 1976-08-16
US4229669A (en) * 1978-04-03 1980-10-21 International Business Machines Corporation Tight tolerance zero crossing detector circuit
IT1202906B (en) 1979-03-20 1989-02-15 Sits Soc It Telecom Siemens CIRCUIT PROVISION FOR THE PILOTING OF A PARTIALIZER SWITCH, OF PARTICULAR APPLICATION IN A DIRECT CURRENT POWER SUPPLY
US4259789A (en) 1980-02-22 1981-04-07 The Singer Company Simulation technique for generating a sudden open circuit on high current lines
US4350935A (en) * 1980-03-28 1982-09-21 Lutron Electronics Co., Inc. Gas discharge lamp control
DE3366617D1 (en) * 1982-10-12 1986-11-06 Nissan Motor A semiconductor switching circuit with an overcurrent protection
US4528494A (en) * 1983-09-06 1985-07-09 General Electric Company Reverse-phase-control power switching circuit and method
ATE35882T1 (en) 1983-09-15 1988-08-15 Ibm SWITCHING POWER SUPPLY WITH OVERCURRENT PROTECTION.
US5440441A (en) 1984-10-24 1995-08-08 Ahuja; Om Apparatus for protecting, monitoring, and managing an AC/DC electrical line or a telecommunication line using a microprocessor
EP0261389A1 (en) 1986-08-21 1988-03-30 Honeywell Inc. AC Power supply control, in particular fluorescent light dimming
US5111380A (en) 1986-10-10 1992-05-05 Nilssen Ole K Controlled series-resonance-loaded inverter
US4760324A (en) 1987-10-07 1988-07-26 Raytheon Company Non-dissipative snubber circuit for high-efficiency switching power supplies
US4893212A (en) 1988-12-20 1990-01-09 North American Philips Corp. Protection of power integrated circuits against load voltage surges
US5021679A (en) 1989-06-30 1991-06-04 Poqet Computer Corporation Power supply and oscillator for a computer system providing automatic selection of supply voltage and frequency
CN2082486U (en) * 1990-07-07 1991-08-07 西安电子科技大学 Flip-flip of voltage zero passage with lower power and that may be integrated
US5109186A (en) 1990-07-20 1992-04-28 Delta Electronic Industrial Co., Ltd. PWM step-down MOSFET regulator
US5278490A (en) 1990-09-04 1994-01-11 California Institute Of Technology One-cycle controlled switching circuit
US5239255A (en) * 1991-02-20 1993-08-24 Bayview Technology Group Phase-controlled power modulation system
US5670858A (en) * 1991-06-03 1997-09-23 Condyne Technology, Inc. Single-phase induction motor safety controller
US5291384A (en) 1991-06-20 1994-03-01 Unitrode Corporation Phase shifted switching controller
US5191265A (en) * 1991-08-09 1993-03-02 Lutron Electronics Co., Inc. Wall mounted programmable modular control system
US5224029A (en) 1991-08-16 1993-06-29 Newman Jr Robert C Power factor and harmonic correction circuit including ac startup circuit
US5606481A (en) 1992-03-27 1997-02-25 Tandy Corporation Overvoltage protection for battery powered equipment
JP3018816B2 (en) * 1993-02-22 2000-03-13 株式会社日立製作所 Semiconductor element protection circuit and semiconductor device having the same
US5583423A (en) * 1993-11-22 1996-12-10 Bangerter; Fred F. Energy saving power control method
US5640113A (en) 1994-05-06 1997-06-17 The Watt Stopper Zero crossing circuit for a relay
JPH0876862A (en) * 1994-09-02 1996-03-22 Sanyo Electric Co Ltd Method and device for igniting control rectifier, and massage machine
US5811963A (en) * 1994-10-11 1998-09-22 Novitas Incorporated Line powered DC power supply
KR960019894A (en) * 1994-11-30 1996-06-17 배순훈 Power supply control circuit of electronic equipment
US5777837A (en) * 1995-02-02 1998-07-07 Hubbell Incorporated Three wire air gap off power supply circuit for operating switch and regulating current when switch or load is open
US5563759A (en) 1995-04-11 1996-10-08 International Rectifier Corporation Protected three-pin mosgated power switch with separate input reset signal level
US5600233A (en) * 1995-08-22 1997-02-04 Chicago Stage Equipment Co. Electronic power control circuit
US5600546A (en) * 1995-10-16 1997-02-04 Computer Products, Inc. Input harmonic current corrected AC-to-DC converter with multiple coupled primary windings
US5770928A (en) * 1995-11-02 1998-06-23 Nsi Corporation Dimming control system with distributed command processing
JP3178314B2 (en) * 1995-11-14 2001-06-18 三菱電機株式会社 Power converter
JP3172664B2 (en) * 1995-11-29 2001-06-04 三菱電機株式会社 Power converter
US5818214A (en) 1996-01-18 1998-10-06 International Rectifier Corporation Buck regulator circuit
CA2168941A1 (en) * 1996-02-06 1997-08-07 Barna Szabados Dimmer for fluorescent lighting
US6043635A (en) * 1996-05-17 2000-03-28 Echelon Corporation Switched leg power supply
US5737163A (en) 1996-06-17 1998-04-07 Burr-Brown Corporation DC-AC converter protection
JPH1023742A (en) * 1996-06-28 1998-01-23 Hitachi Ltd Semiconductor power converter
US6010310A (en) * 1996-08-08 2000-01-04 Pass & Seymour, Inc. Fan controller for reducing harmonic fluxuations that produces audible sounds
JPH10136656A (en) * 1996-10-29 1998-05-22 Mitsubishi Electric Corp Starting method of power converter
US5798581A (en) * 1996-12-17 1998-08-25 Lutron Electronics Co., Inc. Location independent dimmer switch for use in multiple location switch system, and switch system employing same
JPH10295072A (en) * 1997-04-16 1998-11-04 Hitachi Ltd Semiconductor power converter
US5923154A (en) 1997-04-28 1999-07-13 Delco Electronics Corp. Voltage boost circuit
US5914865A (en) 1997-10-23 1999-06-22 Hewlett-Packard Company Simplified AC-DC switching converter with output isolation
US5959443A (en) 1997-11-14 1999-09-28 Toko, Inc. Controller circuit for controlling a step down switching regulator operating in discontinuous conduction mode
GB2334600A (en) * 1998-02-24 1999-08-25 Lucas Ind Plc Pre-regulated power supplies for ECUs
EP1022844A3 (en) * 1999-01-19 2002-04-17 Matsushita Electric Industrial Co., Ltd. Power supply device and air conditioner using the same
JP2000236656A (en) * 1999-02-17 2000-08-29 Hitachi Ltd Semiconductor power converter
US6262565B1 (en) * 1999-05-07 2001-07-17 Mytech Corporation Electrical load switch
US6347028B1 (en) * 1999-06-21 2002-02-12 Lutron Electronics Co., Inc. Load control system having an overload protection circuit
JP2001057772A (en) * 1999-08-17 2001-02-27 Meidensha Corp Static power converter
US6175220B1 (en) * 1999-10-22 2001-01-16 Power Innovations, Inc. Short-circuit protection for forward-phase-control AC power controller
AU4867101A (en) * 2000-04-12 2001-10-23 Marko Cencur Compact non-contact electrical switch
US6222353B1 (en) 2000-05-31 2001-04-24 Philips Semiconductors, Inc. Voltage regulator circuit
US6969959B2 (en) * 2001-07-06 2005-11-29 Lutron Electronics Co., Inc. Electronic control systems and methods

Also Published As

Publication number Publication date
EP1413041B1 (en) 2014-10-08
US20100231055A1 (en) 2010-09-16
CA2628002A1 (en) 2003-01-16
CN101202438B (en) 2012-06-27
EP2194637B1 (en) 2011-12-07
EP2058932B1 (en) 2012-02-01
CA2627768A1 (en) 2003-01-16
SG153652A1 (en) 2009-07-29
JP2009076108A (en) 2009-04-09
CN101896026B (en) 2012-02-29
US7480128B2 (en) 2009-01-20
US7342764B2 (en) 2008-03-11
EP1413041A4 (en) 2007-03-07
US7358627B2 (en) 2008-04-15
JP4303106B2 (en) 2009-07-29
CN101896026A (en) 2010-11-24
CN101895213A (en) 2010-11-24
US20060119292A1 (en) 2006-06-08
ES2371160T3 (en) 2011-12-28
US20080094010A1 (en) 2008-04-24
CN101895213B (en) 2013-03-13
CN100488016C (en) 2009-05-13
CA2627819A1 (en) 2003-01-16
CA2628022A1 (en) 2003-01-16
WO2003005550A1 (en) 2003-01-16
EP2073363B1 (en) 2014-09-03
JP2008312237A (en) 2008-12-25
EP2194637A1 (en) 2010-06-09
CA2628002C (en) 2012-06-12
US20030006710A1 (en) 2003-01-09
US7719817B2 (en) 2010-05-18
ATE536658T1 (en) 2011-12-15
EP1413041A1 (en) 2004-04-28
CA2627819C (en) 2013-01-08
CN101895212B (en) 2012-11-07
ATE523946T1 (en) 2011-09-15
MXPA04000105A (en) 2004-05-21
US20030178892A1 (en) 2003-09-25
CA2627848A1 (en) 2003-01-16
JP2008312239A (en) 2008-12-25
KR100937306B1 (en) 2010-01-18
US20060119187A1 (en) 2006-06-08
US7859815B2 (en) 2010-12-28
JP2008277311A (en) 2008-11-13
EP2058932A3 (en) 2009-07-22
HK1120165A1 (en) 2009-03-20
AU2002346046B2 (en) 2007-12-20
EP2051365A3 (en) 2009-05-06
CA2452486C (en) 2009-11-10
CA2627848C (en) 2014-08-26
EP2051365B1 (en) 2011-09-07
KR20040015334A (en) 2004-02-18
US7005762B2 (en) 2006-02-28
CN1524333A (en) 2004-08-25
ATE544226T1 (en) 2012-02-15
CN101895212A (en) 2010-11-24
JP2008277310A (en) 2008-11-13
US20060119186A1 (en) 2006-06-08
CA2628022C (en) 2014-08-19
CA2627768C (en) 2012-06-12
US6969959B2 (en) 2005-11-29
EP2073363A1 (en) 2009-06-24
JP2009010963A (en) 2009-01-15
JP2004535123A (en) 2004-11-18
EP2058932A2 (en) 2009-05-13
CN101895221A (en) 2010-11-24
CN101888727A (en) 2010-11-17
CN101202438A (en) 2008-06-18
EP2051365A2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
CA2452486A1 (en) Electronic control systems and methods
KR102504997B1 (en) Solid State Line Fault Circuit Breaker
US20100091418A1 (en) Solid state circuit protection system that works with arc fault circuit interrupter
US6813720B2 (en) Method of and device for supplying electrical power to a load using a power modulation system including at least one controlled switch and overvoltage counting apparatus
EP2214458B1 (en) Load control device having a gate current sensing circuit
AU2002346046A1 (en) Electronic control systems and methods
EP1884141A2 (en) Two-wire dimmer with power supply and load protection circuit in the event of switch failure
US6281604B1 (en) Apparatus for controlling AC supply switches
WO2011071486A1 (en) Solid state circuit protection system that works with arc fault circuit interrupter
AU2008201337A1 (en) Electronic control systems and methods

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20220704