CA1148094A - Filter cartridges and methods and components for making them - Google Patents
Filter cartridges and methods and components for making themInfo
- Publication number
- CA1148094A CA1148094A CA000363716A CA363716A CA1148094A CA 1148094 A CA1148094 A CA 1148094A CA 000363716 A CA000363716 A CA 000363716A CA 363716 A CA363716 A CA 363716A CA 1148094 A CA1148094 A CA 1148094A
- Authority
- CA
- Canada
- Prior art keywords
- support
- filter
- ribs
- bonded
- membranes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000012528 membrane Substances 0.000 claims abstract description 95
- 230000008878 coupling Effects 0.000 claims abstract description 42
- 238000010168 coupling process Methods 0.000 claims abstract description 42
- 238000005859 coupling reaction Methods 0.000 claims abstract description 42
- 239000004033 plastic Substances 0.000 claims abstract description 26
- 210000004379 membrane Anatomy 0.000 claims description 85
- 239000000463 material Substances 0.000 claims description 47
- 239000007788 liquid Substances 0.000 claims description 43
- 239000011148 porous material Substances 0.000 claims description 30
- 239000002904 solvent Substances 0.000 claims description 27
- 125000006850 spacer group Chemical group 0.000 claims description 10
- 230000013011 mating Effects 0.000 claims 1
- 238000010137 moulding (plastic) Methods 0.000 claims 1
- 238000009987 spinning Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 abstract description 6
- 229940090045 cartridge Drugs 0.000 description 22
- 230000036961 partial effect Effects 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 238000011045 prefiltration Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241000237074 Centris Species 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 208000036366 Sensation of pressure Diseases 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/003—Membrane bonding or sealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/39—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with hollow discs side by side on, or around, one or more tubes, e.g. of the leaf type
- B01D29/41—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with hollow discs side by side on, or around, one or more tubes, e.g. of the leaf type mounted transversely on the tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
- B01D63/081—Manufacturing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
- B01D63/082—Flat membrane modules comprising a stack of flat membranes
- B01D63/084—Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Filtration Of Liquid (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
Novel membrane filter units are disclosed which are adapted for stacking and bonding into integral, disposable cartridges, optionally including an integral disposable housing. The units comprise a thin plastic support having flat membranes permanently bonded to their upper and lower surfaces. The support has a central opening, a sealing rim, and on each surface, inner and outer circumferential lands and intervening ribs or similar projections, the membranes being bonded and sealed to the lands and ribs. Each support surface adjacent the central opening has circumferential coupling and spacing means for bonding stacked units together in spaced relation. A novel method for bonding a membrane to a support is also disclosed.
Novel membrane filter units are disclosed which are adapted for stacking and bonding into integral, disposable cartridges, optionally including an integral disposable housing. The units comprise a thin plastic support having flat membranes permanently bonded to their upper and lower surfaces. The support has a central opening, a sealing rim, and on each surface, inner and outer circumferential lands and intervening ribs or similar projections, the membranes being bonded and sealed to the lands and ribs. Each support surface adjacent the central opening has circumferential coupling and spacing means for bonding stacked units together in spaced relation. A novel method for bonding a membrane to a support is also disclosed.
Description
~48~4 This invention relates to filtration and more partic-ularly to membrane filter cartridges and to components and methods for making them.
Membrane filters of various polymeric materials are known and are generally thin porous structures having porosities between about 50-80~ by volume. They are relatively fragile and are commonly used with various types of mechanical support or re-inforcement. Flow rates of liquids through such membranes per unit of area are a function of pore size, flow rates decreasing with decreasing pore size. To obtain high flow rates through filters with fine pores, for example below about one micron, rel-atively large filter areas are needed. Such areas have hereto-fore been provided by using large individual filters or by using a number of smaller individual filters in parallel. For use in critical applications such as sterilization, such membranes and their supporting apparatus must be free of leaks or defects cap-able of passing small particles or organisms.
Numbers of small filters have heretofore been hand-assembled for parallel flow with supporting plates and associatedapparatus, then tested, and, if necessary, sterili7ed, often at the user's site at considerable cost and inconvenience. The operations must be repeated if the hand assembly fails the ne-cessary tests. The mechanical parts are generally cleaned and re-used, only the filters being replaced. One assembly heretofore provided in disposable plastic has also been mechanically secured with relatively moveable parts.
Individual membrane filters of large area have been supported flat or cylindrically, or have been pleated for dispos-ftion in compact housings. Holders for flat membranes are large, X q~
~1~8~9~
1 for a given filter area, are usually not disposable, and alsorequire disassembly, cleaning, reassembly and testing with each change of filter. Pleating of fragile membranes creates stress concentrations at the folds, permits flexing of the fragile mem-branes in use, normally requires interleaving flow screens on one or both of the upstream and downstream sides, requires potting and adhesives to seal the ends and overlapping seams, and requires considerable hand operation. Because of concern for possible failures at the folds, seams, or ends, a separate flat final filter is sometimes used in series with pleated cartridges for added assurance in critical applications, for example, in sterilizing pharmaceuticals and intravenous fluids. In addition, the use of a number of different materials in pleated cartridge construction increases the sources for extractibles into the filtrate.
SUMMARY OF THE INVENTION
Principal objects of the present invention include the provision of novel membrane filter cartridges, novel components for use therein, and a novel procedure for bonding and sealing a membrane filter to a support. Further objects include provision of novel filter cartridges which are disposable, which avoid membrance folding, which are easy to automate for economical man-ufacture and easy to test for integrity, which use a minimum number of materials, and which are easy to provide in a variety of sizes using common parts. Other and additional objects and advantages will be apparent from the following more detailed description.
In one aspect, the present invention provides a filter unit adapted for bonding with similar units into disposable stacks, said unit having a central opening adapted for axial liquid flow therethrough and comprising a thin support having a porous mem-brane secured to its upper and lower surfaces, each of said sur-faces having inner and outer circumferential lands and intervening ~1~8~394 1 ribs àefining subs-tantially a common plane, the membran~ being permanently sealed to the surface of said lands and ribs in said plane, each support surface between the inner land and central opening having coupling means adapted for bonding to complimentary coupling means of a superposed filter unit, the coupling means on at least one surface extending beyond the surface of the adjacent membrane, said support having internal passageways for liquid between said membranes and said central openings, said opening and passageways providing the only liquid paths through the unit.
1~ Preferably the support is of plastic material and the membranes are mechanically bonded thereto by imbibing solvated material from the support into the membrane pores as hereinafter described.
The support structure may be made in any suitable manner in one or more pieces. If the support comprises a single piece, preferably the inner land and coupling means of one support sur-face are offset from the inner land and coupling means of the other surface from the axis of the central opening, the inner passageways of the support terminating within the offset between them. ~here the support comprises two or more parts, they are preferably welded together to form a unitary structure of a single material and one of the pieces contains both outer lands joined together liquid-tight to avoid leakage.
In a second aspect of the present invention, a disposable filter cartridge is provided which comprises a stack of filter units as described above integrally bonded together, liquid-tight, at said coupling means to provide a central, axial flow channel, the channel being sealed against liquid flow at one end and having connecting means bonded to the other end for connection to a liquid conduit, the bonded coupling means spacing adjacent mem-branes apart to define a flow channel therebetween external to the X
1~L8~94 1 units. Preferably the units have supports oE the same plasticmaterial and are bonded together at their coupling means by heat or solvent welding. The cartridges can be used in conventional cartridge housings having an inlet and outlet for liquids commun-icating respectively with the periphery and central opening of the cartridge. The normal flow path for liquids through the cart-ridge is thus ~rom the periphery between the membranes of adja-cent filter units, through the membranes and internal passageways, to the central opening. Reverse flow at somewhat reduced pres-sures is also possible since the membranes are bonded to theintervening support ribs, as well as the marginal lands, and are well supported against back pressure.
Iilternatively, the filter cartridges may be mounted and sealed in their own disposable housings which may comprise end caps and a central spacer, the end caps providing liquid inlet and outlet to the cartridge. The end caps may be identical and the number of filter units in the cartridge may be varied merely by changing the height of the central spacer. Preferably, the end caps and spacer of the housing are of the same plastic as the filter unit supports and are also joined and sealed by welding.
By this means only two materials are used, the plastic material of the support and housing, and the material of the membrane. No ad-hesives, potting compounds, o-rings or the like are required, thereby minimizing extractibles and mechanical stresses from ther-mal expansion and contraction.
In a third aspect, the present invention comprises a novel and advantageous method for sealing a microporous filter to the margins and to the intervening ribs or the like of a support.
The method is reliable and reproducible, readily automated, and minimizes damage to the filter and occlusion of its filter volume.
The method comprises using a support of a plastic material differ-ent from the filter material, absorbing into the pores of the ~ . ` .
1148~94 1 filter a predetermined amount of a solvent for the support mater-ial which is a non-solvent for the filter, contacting the support with the wetted filter, maintaining contact for a time sufficient to solvate the surface material of the support and wick a portion thereof into the pores of the filter, and removing the solvent, preferably by drying. Preferably the filter pores are filled with solvent, wi~hout substantial surface excess. Conveniently the filter can be saturated with excess solvent and spun to re-move the excess. Only minimum contact pressure between support and filter is required which avoids mechanical damage to the mem-brane.
The structure of the resulting filter and support is believed to be different from and superior to structures obtained w ~h prior techniques whereby heat, solvent or adhesive is applied -t~ the support. By the present method, support plastic is wicked or imbibed only into the membrane pores over the ribs or the like, without significant lateral spread which occludes filter area.
Indeed, the imbibed plastic need not, and normally does not, ex-tend through the membrane, thereby leaving portions over the ribs remote therefrom, with oblique channels through the membrane.
Experience to date, for example, indicate that for a given fluid, pressure and support structure, the present procedure reduces flow rate by only about 15%. The ribs preferably have a curved surface to minimize contact.
The new bonding procedure is applicable to any support structure having fine support features as shown for example in U.S. Patents 3,854,907; 3,730,353; and 3,471,019. Heretofore, fine ribbed or dimpled supports have not been bonded to the filters for reasons of occlusion, control and the like. Bonding by the procedure herein described is practical and can provide significant ~48~94 1 back-flow protecti.on against pressure surges and, in some cases, can obviate the need for check valves. The present technique can also be conveniently applied to laminate membranes to plastic fibrous supports such as woven clo-th or non-woven felts and spun-bonded filaments for reinforcement.
-6a-.
~ tt:l.IOM 01 1'~ll. I.NVl,N'rlON
The present invention may l~e bet-~-er ~1nclerstood ~y re~erence to the followinf~, detcliled descrip~ioll atl~a ~o tl~e accompcanyillg drawings in wllich: ~
Fig. 1 is a plan view of a filter cartriclge according to the present invention;
Fig. 2 is a sicle view of t:he carL.ridge shown i,n Fif,. l;
Fig. 3 is verai.cal diametrlc section throuf,h the cartridge showra in Figs. 1 and 2;
' Flg. 4 is a partial plan view to enlarge~ scale of one part of a two part filter support accorcling to the invent:ion;
Fig. 5 is a partial plan ViCt~ simiLar ~0 li.g. ~I showing the second part oE the two part support;
Fig. 6 is a section on tlle ],lne 6-6 of l'ig. 4;
Fig. 7 is a section on the line 7-7 of Fig. 5;
Fig. 8 is a section on the line 8-8 of Fi.f,. 4;
Fig. 9 is a section on the lille 9-9 o r ig. 5;
Fig. 1~ is a section similcar to F:ifis. 6 an~a 7 showing the two parts assemb'led, together with superposed filter UllitS sho~n 20 ' in broken lines;
Fig. 11 is ~a section si.milcar to Figs. 8 allcl 9 showinf~ t:lle 'two support parts .,as,~semble~;
Fig. 12 is a partial plan view, to reduccd scale, showing the reverse side of the support par~ shown itl ~ig. 4;
Fig. 13 is a parLial plan, to recluced scale, of ~he reverse side o~ the part shown in l'ig. 5;
Fig. 14 is a diametric ver~ical. SCC~:iOIl .silnilar ~o lif~. 3 showing a cartri(lr,e according to ~he ,a)resent invention anoullted in a conventional, re-usa~le cartridge holder;
Fig, 15 is a partial plan view il]u~stra~ltlg an aLternaaive one-piece ilter sul)port;
Fif~.' 16 is a partial plan view of Llle reverse side of athe support shown in ]'i.f~,. 15; ancl Fig. 17 is a part:ial section on tlle line 17-17 Or l~if~. 15.
.:
``` 114B094 '`~ Referring to the drawings, a self-contained filter cartridge having, for example, 500 square centi-meters of filter area, is shown in Figs. 1-3. The car-tridge comprises a housing 20 having an upper end cap 22, a lower en~ cap 24 and a spacer sleeve 26 there-between. Preferably the end c~ps 22 and 24 and-the spacer 26 are of the same plastic material and are welded together with heat or solvent at 28 and 30, end caps 22 and 24 having a marginal tongue, and spacer 26 having complementary grooves. End cap 22 is provided with a fitting 32 adapted for connection to an outlet conduit of tubing,or the like which is welded to the end cap at the weld line 34. Beneath the fitting 34', end cap 22 has a concentric ring 36 for bonding to a filter unit 38 as more fully hereinafter described. Ring 36 and the fitting 32 comprise connecting means for connecting a stack of ~filter units or discs 38 within the housing 20 to an oatlet conduit (not shown).
A vent 40 of any suitable type is provided in the end cap 22 to permit the venting of air from the housing at start-up. This may comprise, for example, a manually opening valve which is opened to exhaust air and there-after closed. Vent 40 is,provided with a removable cap 41.
- End cap 24 is similar to the end cap 22 and isprovided with an inlet 42 bonded thereto at the weld line 44. If desired, end cap 24 may bè provided with a vent 40 and is,otherwise identical to the cap 22. A vent at each end of the housing permits use of the cartridge with either end uppermost. ~nd cap 24 has a ring 46 similar to the 3~ ring 36. ~lowever, ring 36 is not bonded to the internal stack of filter discs 38. Instead, the lowermost disc 38 is sealed with an end cap 48 provided with external ribs 49 or the like resting on the inller periphery of ring 46 to - 1~48~94 prevent sealing against inlet flow.
In use, a liquid to be filtered enters inlet 42, passes around the outer periphery of the stack of filter units 38, enters the spaces between the units, passes through the filters to a central channel within the stack, as hereinafter described, from which the fil-trate passes out fitting 32 to the exit conduit.
One embodiment of the filter unit 38 is shown in ~igs. 4-13 comprising two interfitting parts 50 and 52. Part 50 comprises a flat disc portion 54 (Fig. 13) which carries concentric upstanding ribs 56 and is pro-vided with radial cutaway channels 58 beneath the ribs 56. Part 50 also has integral with the base 54 a solid rim 60 which has upper and lower flat lands 62 and 64.
lS Part 50 is also provided with an inner circumferential land 66. Inner land 66 and outer land 64 together with the surfaces of the intervening ribs 56 define a common plane to which a membrane filter 68 is bonded as herein-after described.
Both parts 50 and 52 have a central opening 70 and 72 respectively which are adapted for axial Elow of liquid therethrough. Between the edc~e of opening 70 and the~-inner circumferential land 66, part 50 has upstanding circumferential coupling means 74 adapted for permanent bonding to the cornplementary coupling of a superposed fil-ter unit 38 to lock the two units together and space their adjacent filtcrs 68 apart so that liquid may flow between them. Coupling 74 may have a surface of any desired con-figuration, but conveniently as shown is provided with an 30 upstanding tongue on its surface.
The part 52 fits within the part 50 as shown in ~igs. 10 and 11 and is bonded permanently thereto to make a unitary support for filters 68 bonded to its upper and .,~i ,, .
lower surface. Part 52 has a flat central portion 80 (Fig. 12) similar to the portion 54 oE the part 50 and is also provided with upstanding ribs 82 and radial channels 84 which are brldged by the ribs 82. The part 52 has an outer rim 76 which fits within the interior of the rim 60 of the part 50 inside the land 62. The part 52 has an inner circumferential land 78 which, when assembled with the part 50 as shown in Figs. 10 and 11, defines a common plane with the land 62 and the surfaces of the ribs 82. Between the opening 72 and the land 78, the part 52 is provided with upstanding coupling means 86 which as shown has a groove complementary to the tongue of the coupling means 74 of part S0.
When the parts 50 and 52 are assembled and bonded together, preferably by welding with heat or solvent, a unitary support 88 for membrane filters 68 is provided.
The membranes 68, one on each of the upper~or lower end\
lower surfaces of the support 88, are permanently bonded to the lands 66 and 64 and the tops of ribs 56l and the lands 62 and 78 and to the surfaces of ribs 82.
As illustrated in Fig. 10, the completed filter unit 88 has a hub about the openiny 70-72 comprising tlie coupling means 74 on one side and the coupling means 86 on the other, one being complementary to the other. As shown in Fig. 10 in broken lines, like fil~er units 38 are superimposed and bonded at their coupling means, pre-ferably by solvent welding. The filter units 38, com-prising a completed support 88 and the two filter mem-branes 68, may be bonded into stacks of any desired height -30 and secured within the housing 20 as shown in Fig. 3. The size of the cartridge can be varied by varying the number of units 38 included, and by varying the height of spacer 26.
`` 1148~94 The channels 58 and 84 of parts 50 and 52, re-spectively, terminate in openings 90 and 92 at the central openings 70 and 72, respectively, of the parts 50 and 52. Ill assembling the part 52 within the part 50, the channels 58 and 84 may be aligned, which will provide alignment for the openings 90 and 92, but such aliynment is not required. The space between the ribs 56 and 82 provide arcuate channels by which liquid passing through the filters 68 may flow to the radial channels 58 and 84 and then through the openings 80 and 82 into the central opening 70-72 of the filter element 38. Such spaces be-tween the ribs and radial channels provide internal passageways for liquid flowing through the membrane fil-ters 68 to the central opening 70-72, from which filtrate flows axially to the fitting 32 and to an outlet conduit.
Preferably all parts of the cartridge shown in Figs. 1-3, other than the membrane filters 68, are of a common plastic material, for example polycarbonate, and are welded together into a rigid unitary structure by means of heat or solvent. The resulting cartridge can be sterilized and used in an in-llne filtering application, discarded, and readily replaced with a minimum oE down-time, labor and inconvenience. While adhesive or other _ permanent bonding means can be employed to assemble the parts of the cartridge, welding as described is preferred and can be accomplished by automated operations. A car-tridge thus assembled will consist of but two materials, the plastic comprising the housing and filter supports, and the material from which the membrane is made. This 30 minimum number of materials not only decrcases the cost and operations involved, but also minimizes extractable materials.
The membranes 68 are microporous cast films or `` 3L~48(;~94 (,.,, ~
bonded or matted fibers, preferably pores,~less than ~~-about 25 microns in size. Such membranes and methods for making them from a variety of polymeric materials - are known. By being supported flat, without folds, and by being bonded to support ribs intermediate their peripheral margins, the membranes are well anchored against flow in either direction and are not subject to the stresses of folding or of flexing during use.
The membranes 68 may be bonded to the supports 88 in any deslred manner. Ilowever, it is preferred ac-cording to the present invention that they be bonded by the following procedure. A predetermined amount of a solvent for the plastic material of sUppo~t 88, which is a non-solvent for the membrane, is absorbed into the mem-brane pores. The membrane is lightly pressed on thelands and rib surfaces of the support. The solvent sol-vates the plastic.material, preferably a thermoplastic, of the support and wicks portions thereof into the mem-brane pores lying above the surfaces of the lands and ribs, but not substantially into the flow passages be-tween the ribs, thereby providing firm anchorage with a minimum of occlusion of filter volume. A predetermined amount of solvent can be premeasured and applied, and will spread throughout the membrane by capillarity. Pre-ferably, however, it has been found convenient to spinthe membrane, to apply excess solvent to the membrane, and to remove the excess by ~he centri~ugal force.
This procedure substantially saturated the membrane pores, without excess, and is readily automated. ~fter light contact sufficie~t to wick plastic into the membrane pores, the membrane is dried. This has not been found to be a critical operation and normal air drying after a dwell time of 60 seconds or lcss has becn found suitable.
'` ' ' : , 48~94 1 For the preferred materials, a dwell time of three seconds is sufficient. Any suitable solvent with a plastic comprising sup-port 8~ may be used.
Careful testing has established that the above bonding procedure effectively bonds the membrane liquid-tight against flow of liquid except through the membrane. It has also shown that the area of the membrarle occluded from the flow of liquid is sub-stantially less than is the case when other bonding techniques are used, for example by applying the solvent directly to the support plastic of by the use of heat and pressure. The resulting bond is believed to be at least partly mechanical, cross-sections of such membrane having shown extensions of support material filling the pore portions adjacent to the support.
In the embodiment currently preferred, the support ~8 and housing 20 are of polycarbonate, and the membrane 68 is of cast polyvinylidene fluoride. The membrane is solvent welded to its support, the filter units welded together at their coupling means, and the housing parts are solvent welded together, with trichloroethylene as solvent. The fittings to end caps 22 and 24 are prewelded ultrasonically with heat. Other suitable materials may be used.
An alternative filter cartridge of stacked discs 38 is shown in Fig. 14 disposed in a reusable cartridge holder 106 of conventional design. The cartridge comprises a plurality of filt-er units 38 ~onded together at their coupling means to form a central axial flow channel which is closed at its lower end by a bonded cap 100. The upper end of the central flow channel is provided with connecter means 102 comprising a hollow cylinder fitted with an O-ring seal 104. The holder 106 comprises a cap 112 having an X
,, . .. :
48~94 inlet`108 admitting liquid to the periphery of filter units 38 and an outlet 110, and a base 114. As shown, base 114 and cap 112 have interfitting threads 116 which seal against an O-ring 118. '~ny other suitable sealing means can be employed. For the sterilization of fluids, a conventional stainless steel housing with a sealing gasket and external clamp is preferred. Cap 112 is re-cessed beneath the inlet 110 for receiving the connector means 102, the walls of the recess cooperating with the O-ring 104 to provide a liquid seal.
An alternative one-piece support 150 for a filter unit according to the present invention is shown in Figs. 15-17. In this embodiment the disc has a rim 120 at its outcr circumference provided with lands 122 and 124 on its upper and lower surface. Inner circum-ferential lands 126 and 128 are provided which define with the outer circumferential lands 122 and 124, respec-tively, con~on planes to which membrane filters are bonded as previously 'described. Intermediate the lands 122 and 126, ribs 130 are provided. Similarly, ribs 132 are provided intermediate the inner and outer lands 124 and 128 on the opposite surface of the support. Ribs 130 and.132 are regularly spaced across the support surface and intersect, preferably at an angle of 90 deyrees, pro-viding a gridded structure through which liquids can flow.
Inner circumferential land 128 is radially off-`t~
set and lies wit~iin the land 126, thc ribs 13-1 extending , across the gap between them to provide structural support .. . .
and liquid passa(3eways into the central opening 134.
Coupling means 136 and 13~ are provided, respectively, be--.
tween the central opening 'l34 and the land~l26 and the land 128. As shown, coupling means 1~6 and 138 have sub-stantially flat outer surfaces which extend beyond the . .
`^~ 48~194 surface of the membranes bonded adjacent thereto. The support discs may be stacked alternately'right side up ~` and upside down with the coupling means 136 of adjacent ¦ discs in contact for permanent bonding and with the coupling means 138 bonded to coupling means 138 of another superposed disc. Alternatively, two sets of support discs may be provided which are identical ex-cept that one disc has coupling means provided with a tongue and the other disc having coupling means provided with a complementary groove. The alternative support shown in Figs. 15-17 may be bonded in stacks to form a central flow channel and housed in its own disposable housing or in a conventional reusable housing as pre-viously described.
While the coupl'ing means on the surfaces of the units 38 and the supports 150 may conveniently ex-tend each from the surface of the disc above the adjacent membrane to provide spacing between adjacent discs, one of them can provide all or a majority of the required height and spacing.
While the filter supports are herein described for convenience and clarity as being round and having inner and outer circumferential lands, the supports may have any other convenient shape, oval or polygonal, and such shapes are intended to be included in the terms here-in used. Similarly, while the central flow opening and cartridge channel is prefbrably round and axially located, the opening may be off center and oE other shapes if de-sired. Also, the term "ribs" as herein used is intended to include any,fine support structure, continuous or dis-continuous, useful for providing mechanical support to the membrane filter while providing flow paths for liquids passing through the filters. In ~ddition to discontinuous ``` 1~8094 or continous rlbs as shown, for example, aligned or randomly arranged upstanding dimples oE any desired cross-section may be used.
The present invention is useful with fibrous or cast microporous and ultra~iltration membranes having a pore size less than about 25 microns, and particularly less than about l micron. It may be used as a prefilter or as a final filter or blood, bacteria or the like.
It is especially useful as a sterilizing unit for liquids.
I0 When used as a final filter, prefilter materials can be included in the cartridges to protect the final membranes 6~. Such coarse filters may be superposed over the mem-branes 6~, or a cylinder of prefilter material can be bonded to the periphery of the s~ack of units 3~ as shown in broken llnes in Fig. 3 at 160. Cast microporous membrane filters are preferred.
As previously described, the three part integral housing shown in Figs. 2-3 facilitates changes in cartridge size. If desired, however, spacer 26 can be omitted and the end caps of proper size can be provided with compli-mentary margins and be bound together directly.
It should be understood that the foregoing description is for the purpose of illustration and that the invention includes all equivalents and modifications within the scope of the appended claims.
What is claimed is:
Membrane filters of various polymeric materials are known and are generally thin porous structures having porosities between about 50-80~ by volume. They are relatively fragile and are commonly used with various types of mechanical support or re-inforcement. Flow rates of liquids through such membranes per unit of area are a function of pore size, flow rates decreasing with decreasing pore size. To obtain high flow rates through filters with fine pores, for example below about one micron, rel-atively large filter areas are needed. Such areas have hereto-fore been provided by using large individual filters or by using a number of smaller individual filters in parallel. For use in critical applications such as sterilization, such membranes and their supporting apparatus must be free of leaks or defects cap-able of passing small particles or organisms.
Numbers of small filters have heretofore been hand-assembled for parallel flow with supporting plates and associatedapparatus, then tested, and, if necessary, sterili7ed, often at the user's site at considerable cost and inconvenience. The operations must be repeated if the hand assembly fails the ne-cessary tests. The mechanical parts are generally cleaned and re-used, only the filters being replaced. One assembly heretofore provided in disposable plastic has also been mechanically secured with relatively moveable parts.
Individual membrane filters of large area have been supported flat or cylindrically, or have been pleated for dispos-ftion in compact housings. Holders for flat membranes are large, X q~
~1~8~9~
1 for a given filter area, are usually not disposable, and alsorequire disassembly, cleaning, reassembly and testing with each change of filter. Pleating of fragile membranes creates stress concentrations at the folds, permits flexing of the fragile mem-branes in use, normally requires interleaving flow screens on one or both of the upstream and downstream sides, requires potting and adhesives to seal the ends and overlapping seams, and requires considerable hand operation. Because of concern for possible failures at the folds, seams, or ends, a separate flat final filter is sometimes used in series with pleated cartridges for added assurance in critical applications, for example, in sterilizing pharmaceuticals and intravenous fluids. In addition, the use of a number of different materials in pleated cartridge construction increases the sources for extractibles into the filtrate.
SUMMARY OF THE INVENTION
Principal objects of the present invention include the provision of novel membrane filter cartridges, novel components for use therein, and a novel procedure for bonding and sealing a membrane filter to a support. Further objects include provision of novel filter cartridges which are disposable, which avoid membrance folding, which are easy to automate for economical man-ufacture and easy to test for integrity, which use a minimum number of materials, and which are easy to provide in a variety of sizes using common parts. Other and additional objects and advantages will be apparent from the following more detailed description.
In one aspect, the present invention provides a filter unit adapted for bonding with similar units into disposable stacks, said unit having a central opening adapted for axial liquid flow therethrough and comprising a thin support having a porous mem-brane secured to its upper and lower surfaces, each of said sur-faces having inner and outer circumferential lands and intervening ~1~8~394 1 ribs àefining subs-tantially a common plane, the membran~ being permanently sealed to the surface of said lands and ribs in said plane, each support surface between the inner land and central opening having coupling means adapted for bonding to complimentary coupling means of a superposed filter unit, the coupling means on at least one surface extending beyond the surface of the adjacent membrane, said support having internal passageways for liquid between said membranes and said central openings, said opening and passageways providing the only liquid paths through the unit.
1~ Preferably the support is of plastic material and the membranes are mechanically bonded thereto by imbibing solvated material from the support into the membrane pores as hereinafter described.
The support structure may be made in any suitable manner in one or more pieces. If the support comprises a single piece, preferably the inner land and coupling means of one support sur-face are offset from the inner land and coupling means of the other surface from the axis of the central opening, the inner passageways of the support terminating within the offset between them. ~here the support comprises two or more parts, they are preferably welded together to form a unitary structure of a single material and one of the pieces contains both outer lands joined together liquid-tight to avoid leakage.
In a second aspect of the present invention, a disposable filter cartridge is provided which comprises a stack of filter units as described above integrally bonded together, liquid-tight, at said coupling means to provide a central, axial flow channel, the channel being sealed against liquid flow at one end and having connecting means bonded to the other end for connection to a liquid conduit, the bonded coupling means spacing adjacent mem-branes apart to define a flow channel therebetween external to the X
1~L8~94 1 units. Preferably the units have supports oE the same plasticmaterial and are bonded together at their coupling means by heat or solvent welding. The cartridges can be used in conventional cartridge housings having an inlet and outlet for liquids commun-icating respectively with the periphery and central opening of the cartridge. The normal flow path for liquids through the cart-ridge is thus ~rom the periphery between the membranes of adja-cent filter units, through the membranes and internal passageways, to the central opening. Reverse flow at somewhat reduced pres-sures is also possible since the membranes are bonded to theintervening support ribs, as well as the marginal lands, and are well supported against back pressure.
Iilternatively, the filter cartridges may be mounted and sealed in their own disposable housings which may comprise end caps and a central spacer, the end caps providing liquid inlet and outlet to the cartridge. The end caps may be identical and the number of filter units in the cartridge may be varied merely by changing the height of the central spacer. Preferably, the end caps and spacer of the housing are of the same plastic as the filter unit supports and are also joined and sealed by welding.
By this means only two materials are used, the plastic material of the support and housing, and the material of the membrane. No ad-hesives, potting compounds, o-rings or the like are required, thereby minimizing extractibles and mechanical stresses from ther-mal expansion and contraction.
In a third aspect, the present invention comprises a novel and advantageous method for sealing a microporous filter to the margins and to the intervening ribs or the like of a support.
The method is reliable and reproducible, readily automated, and minimizes damage to the filter and occlusion of its filter volume.
The method comprises using a support of a plastic material differ-ent from the filter material, absorbing into the pores of the ~ . ` .
1148~94 1 filter a predetermined amount of a solvent for the support mater-ial which is a non-solvent for the filter, contacting the support with the wetted filter, maintaining contact for a time sufficient to solvate the surface material of the support and wick a portion thereof into the pores of the filter, and removing the solvent, preferably by drying. Preferably the filter pores are filled with solvent, wi~hout substantial surface excess. Conveniently the filter can be saturated with excess solvent and spun to re-move the excess. Only minimum contact pressure between support and filter is required which avoids mechanical damage to the mem-brane.
The structure of the resulting filter and support is believed to be different from and superior to structures obtained w ~h prior techniques whereby heat, solvent or adhesive is applied -t~ the support. By the present method, support plastic is wicked or imbibed only into the membrane pores over the ribs or the like, without significant lateral spread which occludes filter area.
Indeed, the imbibed plastic need not, and normally does not, ex-tend through the membrane, thereby leaving portions over the ribs remote therefrom, with oblique channels through the membrane.
Experience to date, for example, indicate that for a given fluid, pressure and support structure, the present procedure reduces flow rate by only about 15%. The ribs preferably have a curved surface to minimize contact.
The new bonding procedure is applicable to any support structure having fine support features as shown for example in U.S. Patents 3,854,907; 3,730,353; and 3,471,019. Heretofore, fine ribbed or dimpled supports have not been bonded to the filters for reasons of occlusion, control and the like. Bonding by the procedure herein described is practical and can provide significant ~48~94 1 back-flow protecti.on against pressure surges and, in some cases, can obviate the need for check valves. The present technique can also be conveniently applied to laminate membranes to plastic fibrous supports such as woven clo-th or non-woven felts and spun-bonded filaments for reinforcement.
-6a-.
~ tt:l.IOM 01 1'~ll. I.NVl,N'rlON
The present invention may l~e bet-~-er ~1nclerstood ~y re~erence to the followinf~, detcliled descrip~ioll atl~a ~o tl~e accompcanyillg drawings in wllich: ~
Fig. 1 is a plan view of a filter cartriclge according to the present invention;
Fig. 2 is a sicle view of t:he carL.ridge shown i,n Fif,. l;
Fig. 3 is verai.cal diametrlc section throuf,h the cartridge showra in Figs. 1 and 2;
' Flg. 4 is a partial plan view to enlarge~ scale of one part of a two part filter support accorcling to the invent:ion;
Fig. 5 is a partial plan ViCt~ simiLar ~0 li.g. ~I showing the second part oE the two part support;
Fig. 6 is a section on tlle ],lne 6-6 of l'ig. 4;
Fig. 7 is a section on the line 7-7 of Fig. 5;
Fig. 8 is a section on the line 8-8 of Fi.f,. 4;
Fig. 9 is a section on the lille 9-9 o r ig. 5;
Fig. 1~ is a section similcar to F:ifis. 6 an~a 7 showing the two parts assemb'led, together with superposed filter UllitS sho~n 20 ' in broken lines;
Fig. 11 is ~a section si.milcar to Figs. 8 allcl 9 showinf~ t:lle 'two support parts .,as,~semble~;
Fig. 12 is a partial plan view, to reduccd scale, showing the reverse side of the support par~ shown itl ~ig. 4;
Fig. 13 is a parLial plan, to recluced scale, of ~he reverse side o~ the part shown in l'ig. 5;
Fig. 14 is a diametric ver~ical. SCC~:iOIl .silnilar ~o lif~. 3 showing a cartri(lr,e according to ~he ,a)resent invention anoullted in a conventional, re-usa~le cartridge holder;
Fig, 15 is a partial plan view il]u~stra~ltlg an aLternaaive one-piece ilter sul)port;
Fif~.' 16 is a partial plan view of Llle reverse side of athe support shown in ]'i.f~,. 15; ancl Fig. 17 is a part:ial section on tlle line 17-17 Or l~if~. 15.
.:
``` 114B094 '`~ Referring to the drawings, a self-contained filter cartridge having, for example, 500 square centi-meters of filter area, is shown in Figs. 1-3. The car-tridge comprises a housing 20 having an upper end cap 22, a lower en~ cap 24 and a spacer sleeve 26 there-between. Preferably the end c~ps 22 and 24 and-the spacer 26 are of the same plastic material and are welded together with heat or solvent at 28 and 30, end caps 22 and 24 having a marginal tongue, and spacer 26 having complementary grooves. End cap 22 is provided with a fitting 32 adapted for connection to an outlet conduit of tubing,or the like which is welded to the end cap at the weld line 34. Beneath the fitting 34', end cap 22 has a concentric ring 36 for bonding to a filter unit 38 as more fully hereinafter described. Ring 36 and the fitting 32 comprise connecting means for connecting a stack of ~filter units or discs 38 within the housing 20 to an oatlet conduit (not shown).
A vent 40 of any suitable type is provided in the end cap 22 to permit the venting of air from the housing at start-up. This may comprise, for example, a manually opening valve which is opened to exhaust air and there-after closed. Vent 40 is,provided with a removable cap 41.
- End cap 24 is similar to the end cap 22 and isprovided with an inlet 42 bonded thereto at the weld line 44. If desired, end cap 24 may bè provided with a vent 40 and is,otherwise identical to the cap 22. A vent at each end of the housing permits use of the cartridge with either end uppermost. ~nd cap 24 has a ring 46 similar to the 3~ ring 36. ~lowever, ring 36 is not bonded to the internal stack of filter discs 38. Instead, the lowermost disc 38 is sealed with an end cap 48 provided with external ribs 49 or the like resting on the inller periphery of ring 46 to - 1~48~94 prevent sealing against inlet flow.
In use, a liquid to be filtered enters inlet 42, passes around the outer periphery of the stack of filter units 38, enters the spaces between the units, passes through the filters to a central channel within the stack, as hereinafter described, from which the fil-trate passes out fitting 32 to the exit conduit.
One embodiment of the filter unit 38 is shown in ~igs. 4-13 comprising two interfitting parts 50 and 52. Part 50 comprises a flat disc portion 54 (Fig. 13) which carries concentric upstanding ribs 56 and is pro-vided with radial cutaway channels 58 beneath the ribs 56. Part 50 also has integral with the base 54 a solid rim 60 which has upper and lower flat lands 62 and 64.
lS Part 50 is also provided with an inner circumferential land 66. Inner land 66 and outer land 64 together with the surfaces of the intervening ribs 56 define a common plane to which a membrane filter 68 is bonded as herein-after described.
Both parts 50 and 52 have a central opening 70 and 72 respectively which are adapted for axial Elow of liquid therethrough. Between the edc~e of opening 70 and the~-inner circumferential land 66, part 50 has upstanding circumferential coupling means 74 adapted for permanent bonding to the cornplementary coupling of a superposed fil-ter unit 38 to lock the two units together and space their adjacent filtcrs 68 apart so that liquid may flow between them. Coupling 74 may have a surface of any desired con-figuration, but conveniently as shown is provided with an 30 upstanding tongue on its surface.
The part 52 fits within the part 50 as shown in ~igs. 10 and 11 and is bonded permanently thereto to make a unitary support for filters 68 bonded to its upper and .,~i ,, .
lower surface. Part 52 has a flat central portion 80 (Fig. 12) similar to the portion 54 oE the part 50 and is also provided with upstanding ribs 82 and radial channels 84 which are brldged by the ribs 82. The part 52 has an outer rim 76 which fits within the interior of the rim 60 of the part 50 inside the land 62. The part 52 has an inner circumferential land 78 which, when assembled with the part 50 as shown in Figs. 10 and 11, defines a common plane with the land 62 and the surfaces of the ribs 82. Between the opening 72 and the land 78, the part 52 is provided with upstanding coupling means 86 which as shown has a groove complementary to the tongue of the coupling means 74 of part S0.
When the parts 50 and 52 are assembled and bonded together, preferably by welding with heat or solvent, a unitary support 88 for membrane filters 68 is provided.
The membranes 68, one on each of the upper~or lower end\
lower surfaces of the support 88, are permanently bonded to the lands 66 and 64 and the tops of ribs 56l and the lands 62 and 78 and to the surfaces of ribs 82.
As illustrated in Fig. 10, the completed filter unit 88 has a hub about the openiny 70-72 comprising tlie coupling means 74 on one side and the coupling means 86 on the other, one being complementary to the other. As shown in Fig. 10 in broken lines, like fil~er units 38 are superimposed and bonded at their coupling means, pre-ferably by solvent welding. The filter units 38, com-prising a completed support 88 and the two filter mem-branes 68, may be bonded into stacks of any desired height -30 and secured within the housing 20 as shown in Fig. 3. The size of the cartridge can be varied by varying the number of units 38 included, and by varying the height of spacer 26.
`` 1148~94 The channels 58 and 84 of parts 50 and 52, re-spectively, terminate in openings 90 and 92 at the central openings 70 and 72, respectively, of the parts 50 and 52. Ill assembling the part 52 within the part 50, the channels 58 and 84 may be aligned, which will provide alignment for the openings 90 and 92, but such aliynment is not required. The space between the ribs 56 and 82 provide arcuate channels by which liquid passing through the filters 68 may flow to the radial channels 58 and 84 and then through the openings 80 and 82 into the central opening 70-72 of the filter element 38. Such spaces be-tween the ribs and radial channels provide internal passageways for liquid flowing through the membrane fil-ters 68 to the central opening 70-72, from which filtrate flows axially to the fitting 32 and to an outlet conduit.
Preferably all parts of the cartridge shown in Figs. 1-3, other than the membrane filters 68, are of a common plastic material, for example polycarbonate, and are welded together into a rigid unitary structure by means of heat or solvent. The resulting cartridge can be sterilized and used in an in-llne filtering application, discarded, and readily replaced with a minimum oE down-time, labor and inconvenience. While adhesive or other _ permanent bonding means can be employed to assemble the parts of the cartridge, welding as described is preferred and can be accomplished by automated operations. A car-tridge thus assembled will consist of but two materials, the plastic comprising the housing and filter supports, and the material from which the membrane is made. This 30 minimum number of materials not only decrcases the cost and operations involved, but also minimizes extractable materials.
The membranes 68 are microporous cast films or `` 3L~48(;~94 (,.,, ~
bonded or matted fibers, preferably pores,~less than ~~-about 25 microns in size. Such membranes and methods for making them from a variety of polymeric materials - are known. By being supported flat, without folds, and by being bonded to support ribs intermediate their peripheral margins, the membranes are well anchored against flow in either direction and are not subject to the stresses of folding or of flexing during use.
The membranes 68 may be bonded to the supports 88 in any deslred manner. Ilowever, it is preferred ac-cording to the present invention that they be bonded by the following procedure. A predetermined amount of a solvent for the plastic material of sUppo~t 88, which is a non-solvent for the membrane, is absorbed into the mem-brane pores. The membrane is lightly pressed on thelands and rib surfaces of the support. The solvent sol-vates the plastic.material, preferably a thermoplastic, of the support and wicks portions thereof into the mem-brane pores lying above the surfaces of the lands and ribs, but not substantially into the flow passages be-tween the ribs, thereby providing firm anchorage with a minimum of occlusion of filter volume. A predetermined amount of solvent can be premeasured and applied, and will spread throughout the membrane by capillarity. Pre-ferably, however, it has been found convenient to spinthe membrane, to apply excess solvent to the membrane, and to remove the excess by ~he centri~ugal force.
This procedure substantially saturated the membrane pores, without excess, and is readily automated. ~fter light contact sufficie~t to wick plastic into the membrane pores, the membrane is dried. This has not been found to be a critical operation and normal air drying after a dwell time of 60 seconds or lcss has becn found suitable.
'` ' ' : , 48~94 1 For the preferred materials, a dwell time of three seconds is sufficient. Any suitable solvent with a plastic comprising sup-port 8~ may be used.
Careful testing has established that the above bonding procedure effectively bonds the membrane liquid-tight against flow of liquid except through the membrane. It has also shown that the area of the membrarle occluded from the flow of liquid is sub-stantially less than is the case when other bonding techniques are used, for example by applying the solvent directly to the support plastic of by the use of heat and pressure. The resulting bond is believed to be at least partly mechanical, cross-sections of such membrane having shown extensions of support material filling the pore portions adjacent to the support.
In the embodiment currently preferred, the support ~8 and housing 20 are of polycarbonate, and the membrane 68 is of cast polyvinylidene fluoride. The membrane is solvent welded to its support, the filter units welded together at their coupling means, and the housing parts are solvent welded together, with trichloroethylene as solvent. The fittings to end caps 22 and 24 are prewelded ultrasonically with heat. Other suitable materials may be used.
An alternative filter cartridge of stacked discs 38 is shown in Fig. 14 disposed in a reusable cartridge holder 106 of conventional design. The cartridge comprises a plurality of filt-er units 38 ~onded together at their coupling means to form a central axial flow channel which is closed at its lower end by a bonded cap 100. The upper end of the central flow channel is provided with connecter means 102 comprising a hollow cylinder fitted with an O-ring seal 104. The holder 106 comprises a cap 112 having an X
,, . .. :
48~94 inlet`108 admitting liquid to the periphery of filter units 38 and an outlet 110, and a base 114. As shown, base 114 and cap 112 have interfitting threads 116 which seal against an O-ring 118. '~ny other suitable sealing means can be employed. For the sterilization of fluids, a conventional stainless steel housing with a sealing gasket and external clamp is preferred. Cap 112 is re-cessed beneath the inlet 110 for receiving the connector means 102, the walls of the recess cooperating with the O-ring 104 to provide a liquid seal.
An alternative one-piece support 150 for a filter unit according to the present invention is shown in Figs. 15-17. In this embodiment the disc has a rim 120 at its outcr circumference provided with lands 122 and 124 on its upper and lower surface. Inner circum-ferential lands 126 and 128 are provided which define with the outer circumferential lands 122 and 124, respec-tively, con~on planes to which membrane filters are bonded as previously 'described. Intermediate the lands 122 and 126, ribs 130 are provided. Similarly, ribs 132 are provided intermediate the inner and outer lands 124 and 128 on the opposite surface of the support. Ribs 130 and.132 are regularly spaced across the support surface and intersect, preferably at an angle of 90 deyrees, pro-viding a gridded structure through which liquids can flow.
Inner circumferential land 128 is radially off-`t~
set and lies wit~iin the land 126, thc ribs 13-1 extending , across the gap between them to provide structural support .. . .
and liquid passa(3eways into the central opening 134.
Coupling means 136 and 13~ are provided, respectively, be--.
tween the central opening 'l34 and the land~l26 and the land 128. As shown, coupling means 1~6 and 138 have sub-stantially flat outer surfaces which extend beyond the . .
`^~ 48~194 surface of the membranes bonded adjacent thereto. The support discs may be stacked alternately'right side up ~` and upside down with the coupling means 136 of adjacent ¦ discs in contact for permanent bonding and with the coupling means 138 bonded to coupling means 138 of another superposed disc. Alternatively, two sets of support discs may be provided which are identical ex-cept that one disc has coupling means provided with a tongue and the other disc having coupling means provided with a complementary groove. The alternative support shown in Figs. 15-17 may be bonded in stacks to form a central flow channel and housed in its own disposable housing or in a conventional reusable housing as pre-viously described.
While the coupl'ing means on the surfaces of the units 38 and the supports 150 may conveniently ex-tend each from the surface of the disc above the adjacent membrane to provide spacing between adjacent discs, one of them can provide all or a majority of the required height and spacing.
While the filter supports are herein described for convenience and clarity as being round and having inner and outer circumferential lands, the supports may have any other convenient shape, oval or polygonal, and such shapes are intended to be included in the terms here-in used. Similarly, while the central flow opening and cartridge channel is prefbrably round and axially located, the opening may be off center and oE other shapes if de-sired. Also, the term "ribs" as herein used is intended to include any,fine support structure, continuous or dis-continuous, useful for providing mechanical support to the membrane filter while providing flow paths for liquids passing through the filters. In ~ddition to discontinuous ``` 1~8094 or continous rlbs as shown, for example, aligned or randomly arranged upstanding dimples oE any desired cross-section may be used.
The present invention is useful with fibrous or cast microporous and ultra~iltration membranes having a pore size less than about 25 microns, and particularly less than about l micron. It may be used as a prefilter or as a final filter or blood, bacteria or the like.
It is especially useful as a sterilizing unit for liquids.
I0 When used as a final filter, prefilter materials can be included in the cartridges to protect the final membranes 6~. Such coarse filters may be superposed over the mem-branes 6~, or a cylinder of prefilter material can be bonded to the periphery of the s~ack of units 3~ as shown in broken llnes in Fig. 3 at 160. Cast microporous membrane filters are preferred.
As previously described, the three part integral housing shown in Figs. 2-3 facilitates changes in cartridge size. If desired, however, spacer 26 can be omitted and the end caps of proper size can be provided with compli-mentary margins and be bound together directly.
It should be understood that the foregoing description is for the purpose of illustration and that the invention includes all equivalents and modifications within the scope of the appended claims.
What is claimed is:
Claims (13)
1. A membrane filter unit adapted for bonding with similar units into integrated disposable stacks, said unit having a central opening adapted for axial liquid flow therethrough and comprising a thin plastic support having a porous membrane filter secured to its upper and lower surfaces, each of said surfaces having inner and outer circumferential lands and intervening ribs defining substantially a common plane, the membrane being permanently seal-ed to the surfaces of said lands and ribs in said plane, each sup-port surface between the central opening and inner land having coupling means adapted for bonding to complimentary coupling means of a superposed filter unit, the coupling means on at least one of said support surfaces extending beyond the surface of the adja-cent membrane, said support having internal passageways for liquid between said membranes and said central opening, said opening and passageways providing the exclusive liquid paths through the unit.
.
.
2. A filter unit according to claim 1 wherein said support comprises two pieces bonded together, each piece carrying the ribs, inner land and coupling means of one surface, one of said pieces carrying a sealed outer rim which includes the outer lands of both surfaces.
3. A filter unit according to claim 1 wherein said support is a one-piece plastic molding, the inner land and coupling means of one surface being within and spaced from the inner land and coupling means of the other surface, said internal passageways terminating in the space between respective inner lands.
4. A filter unit according to claim 3 wherein the ribs on one support surface extend across the space between the two inner lands, the gaps between the extended ribs forming a portion of the internal passageways communicating with the central opening.
5. A filter unit according to claim 1, 2 or 3 wherein said support is a plastic material different from said membrane, and wherein the membranes are bonded thereto by means of plastic material from the support extending into the pores of the mem-brane in contact with said lands and intervening ribs; the pores of the membranes between said ribs being substantially free of material from the support.
6. A disposable filter cartridge comprising a plurality of filter units according to claim 1, 2 or 3, the units being per-manently bonded together at said coupling means in stacked relationship to provide a central axial flow channel for liquids, the central flow channel being sealed at one end and having connecting means permanently bonded to the other end for con-nection to a liquid conduit, said bonded coupling means spacing adjacent membranes apart to define a flow channel for liquid therebetween external to said units.
7. A disposable filter cartridge comprising a plurality of filter units according to claim 1, 2 or 3, the units being permanently bonded together at said coupling means in stacked relationship to provide a central axial flow channel for liquids, the central flow channel being sealed at one end and having connecting means permanently bonded to the other end for con-nection to a liquid conduit, said bonded coupling means spacing adjacent membranes apart to define a flow channel for liquid therebetween external to said units, said support comprising a plastic material different from the material of said membrane, said membranes being bonded to the support by means of support material extending into the pores of the membrane in contact with the lands and ribs of the support, the pores of the membranes between ribs being substantially free of support material.
8. A disposable filter cartridge comprising a plurality of filter units according to claim 1, 2 or 3, the units being permanently bonded together at said coupling means in stacked relationship to provide a central axial flow channel for liquids, the central flow channel being sealed at one end and having connecting means permanently bonded to the other end for con-nection to a liquid conduit, said bonded coupling means spacing adjacent membranes apart to define a flow channel for liquid therebetween external to said units, said support comprising plastic material different from the material of said membrane, said membranes being bonded to the support by means of support material extending into the pores of the membrane in contact with the lands and ribs of the support, the pores of the membranes between ribs being substantially free of support material, all parts of the cartridge other than the membranes being of a common plastic material, all of said parts being integrally welded together.
9. A disposable filter cartridge comprising a plurality of filter units according to claim 1, 2 or 3, the units being permanently bonded together at said coupling means in stacked relationship to provide a central axial flow channel for liquids, the central flow channel being sealed at one end and having connecting means permanantly bonded to the other end for connection to a liquid conduit, said bonded coupling means spacing adjacent membranes apart to define a flow channel for liquid therebetween external to said units, said support comprising plastic material different from the material of said membrane, said membranes being bonded to the support by means of support material extending into the pores of the membrane in contact with the lands and ribs of the support, the pores of the membranes between ribs being substantially free of support material, said cartridge having membranes with pore sizes below about one micron and being adapted to sterilize liquids.
10. A disposable filter cartridge comprising a plurality of filter units according to claim 1, 2 or 3, the units being permanently bonded together at said coupling means in stacked relationship to provide a central axial flow channel for liquids, the central flow channel being sealed at one end and having connecting means permanently bonded to the other end for con-nection to a liquid conduit, said bonded coupling means spacing adjacent membranes apart to define a flow channel for liquid therebetween external to said units, said support comprising plastic material different from the material of said membrane, said membranes being bonded to the support by means of support material extending into the pores of the membrane in contact with the lands and ribs of the support, the pores of the membranes between ribs being substantially free of support material, said cartridge comprising a housing having a cap for each end and a spacer therebetween, said spacer having mating means for each end cap and being integrally welded thereto, one end cap at the sealed end of said central flow channel having an inlet for liquid, and the other end cap including said connecting means bonded to the other end of said central channel.
11. The method of bonding a filter to a plastic support which comprises absorbing a predetermined amount of solvent into the pores of the filter, said solvent being a solvent for the support but not the filter, contacting the dry support with the wetted filter, maintaining contact until said solvent said support and wicks a portion thereof into said pores, and removing the solvent.
12. The method according to claim 11 wherein the pores of the filter are substantially filled with solvent without excess.
13. The method according to claim 11 wherein excess liquid is applied to the filter to fill the pores, and the excess is removed by spinning the membrane.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9162679A | 1979-11-05 | 1979-11-05 | |
US91,626 | 1979-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1148094A true CA1148094A (en) | 1983-06-14 |
Family
ID=22228796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000363716A Expired CA1148094A (en) | 1979-11-05 | 1980-10-31 | Filter cartridges and methods and components for making them |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS56129016A (en) |
CA (1) | CA1148094A (en) |
DE (1) | DE3041729C2 (en) |
FR (1) | FR2468397A1 (en) |
GB (2) | GB2090543B (en) |
SE (1) | SE447795B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5898112A (en) * | 1981-12-08 | 1983-06-10 | Tsuchiya Mfg Co Ltd | Laminate type filter unit made of fluorine-contained resin |
JPS5920804U (en) * | 1982-07-30 | 1984-02-08 | 株式会社土屋製作所 | Filter media support plate for laminated precision filters |
JPS5962323A (en) * | 1982-09-30 | 1984-04-09 | Tsuchiya Mfg Co Ltd | Built-up type precision filter unit |
DE3318437A1 (en) * | 1983-05-20 | 1984-11-22 | Uhde Gmbh, 4600 Dortmund | SHAFT OF MULTIPLE LINKABLE ELEMENTS |
DE8502177U1 (en) * | 1985-01-28 | 1985-08-08 | Kemmelmeyer, Werner H., 8201 Rohrdorf | Filter device in segment design |
JPS6220614U (en) * | 1985-07-23 | 1987-02-07 | ||
GB8601965D0 (en) * | 1986-01-28 | 1986-03-05 | Flowtech Fluid Handling Ltd | Filter cell |
JPS61234905A (en) * | 1986-04-08 | 1986-10-20 | Kuraray Co Ltd | Filter |
FR2597363B1 (en) * | 1986-04-18 | 1991-11-08 | Sartorius Gmbh | FILTER ELEMENT FOR FLUIDS. |
US4876007A (en) * | 1986-08-28 | 1989-10-24 | Fuji Photo Film Co., Ltd. | Plate-type filter cartridge with internal support |
JPS6366107U (en) * | 1986-10-17 | 1988-05-02 | ||
US4783262A (en) * | 1987-03-30 | 1988-11-08 | Cuno Incorporated | Separator for cell type filter element |
GB9106481D0 (en) * | 1991-03-27 | 1991-05-15 | Pall Corp | Filters and filter units |
US5458719A (en) * | 1993-03-24 | 1995-10-17 | Pall Corporation | Method for bonding a porous medium to a substrate |
KR100314520B1 (en) * | 1999-06-02 | 2001-11-15 | 정북천 | The device of a oil filtration |
US7390403B2 (en) | 2004-03-19 | 2008-06-24 | Millipore Corporation | Prefilter system for biological systems |
US20080257814A1 (en) * | 2007-04-23 | 2008-10-23 | Millipore Corporation | Filtration Cartridge |
CN101868293B (en) | 2007-10-03 | 2013-07-03 | Emd密理博公司 | Stacked plates filtration cartridge |
EP2450092A1 (en) * | 2010-11-05 | 2012-05-09 | Grundfos Management A/S | Filter stack for a filter pump |
EP3033158B1 (en) * | 2013-08-15 | 2021-09-29 | 3M Innovative Properties Company | Filter element for biopharmaceutical applications |
JP6921390B2 (en) * | 2016-10-06 | 2021-08-18 | ジェックス株式会社 | Pet water dispenser and its filter |
JP6753606B2 (en) * | 2016-10-06 | 2020-09-09 | ジェックス株式会社 | Pet water dispenser and its filter |
US20210136969A1 (en) * | 2019-11-01 | 2021-05-06 | The Boeing Company | Pick and place system and methods for use |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3343681A (en) * | 1962-12-26 | 1967-09-26 | Cox Instr | Rupture proof filter assembly |
FR1449158A (en) * | 1964-12-15 | 1966-08-12 | Millipore Filter Corp | Filtered |
US3398833A (en) * | 1966-09-09 | 1968-08-27 | Aerojet General Co | Support plates for reverse osmosis desalination apparatus |
US3730353A (en) * | 1970-12-28 | 1973-05-01 | Millipore Corp | Filter support and filter unit construction |
GB1544475A (en) * | 1975-12-19 | 1979-04-19 | Johns Manville | Filter housing |
FR2383694A1 (en) * | 1977-03-18 | 1978-10-13 | Rhone Poulenc Ind | APPARATUS WITH FLAT MEMBRANES USABLE IN PARTICULAR IN GAS PERMEATION AND PROCEDURE FOR OBTAINING IT |
YU51378A (en) * | 1977-04-04 | 1982-10-31 | Dresser Ind | Membrane packing enabling the passing of leaking fluids |
CH625712A5 (en) * | 1977-12-01 | 1981-10-15 | Kilcher Chemie Ag | |
US4159954A (en) * | 1978-02-24 | 1979-07-03 | Gangemi Ronald J | Isolator filter |
-
1980
- 1980-10-31 CA CA000363716A patent/CA1148094A/en not_active Expired
- 1980-11-04 FR FR8023533A patent/FR2468397A1/en active Granted
- 1980-11-05 JP JP15473880A patent/JPS56129016A/en active Granted
- 1980-11-05 GB GB8139099A patent/GB2090543B/en not_active Expired
- 1980-11-05 DE DE3041729A patent/DE3041729C2/en not_active Expired
- 1980-11-05 SE SE8007745A patent/SE447795B/en not_active IP Right Cessation
- 1980-11-05 GB GB8035545A patent/GB2063089B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
FR2468397A1 (en) | 1981-05-08 |
GB2090543A (en) | 1982-07-14 |
DE3041729A1 (en) | 1981-05-14 |
SE447795B (en) | 1986-12-15 |
SE8007745L (en) | 1981-05-06 |
GB2063089A (en) | 1981-06-03 |
JPS56129016A (en) | 1981-10-08 |
GB2063089B (en) | 1982-12-08 |
JPS6243723B2 (en) | 1987-09-16 |
DE3041729C2 (en) | 1987-02-26 |
FR2468397B1 (en) | 1984-12-21 |
GB2090543B (en) | 1983-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1148094A (en) | Filter cartridges and methods and components for making them | |
US4501663A (en) | Filter cartridges and methods and components for making them | |
EP2363197B1 (en) | Filtration cartridge formed of stacked plates | |
JP4972811B2 (en) | Filtration cartridge | |
EP1779913B1 (en) | Filtration device | |
US7650805B2 (en) | Integrity testable multilayered filter device | |
EP1775002B1 (en) | Integrity testable multilayered filtration device | |
US5290445A (en) | Filtering apparatus | |
EP0508645B1 (en) | Filters and filter units | |
CN101820967B (en) | Filtration device | |
US6143174A (en) | Filtration unit with pleated filtering elements | |
JP2008238167A (en) | Cassette type filtration apparatus | |
JP4897087B2 (en) | Laminated plate type filtration cartridge | |
EP0343976B1 (en) | Filtering apparatus | |
EP0296881B1 (en) | Multi-leaf permeable membrane module | |
JP2000517240A (en) | Filtration unit with pleated filter element | |
Jornitz | Filter construction and design | |
GB2254268A (en) | Filter | |
CN114901376A (en) | Filter cassette in a bag and method of using same | |
JPH10165779A (en) | Filter membrane module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |