<Desc/Clms Page number 1>
OSSATURE DE BATIMENT
La présente invention concerne une ossature de bâtiment formée par l'assemblage sur chantier d'éléments préfabriqués.
On connaît par EP-A-0 012 736 une unité de construction préfabriquée en usine, en substance en forme de prisme droit (généralement un parallélépipède rectangle).
Chaque unité de construction comporte un élément de plancher et un élément de plafond consistant chacun en un caisson ouvert vers le bas, formé d'un cadre et d'une paroi horizontale raccordée au bord supérieur du cadre. Les éléments de plancher et de plafond sont reliés entre eux au moyen de montants ayant une section en forme de V. Les cadres et les montants, réalisés à partir de larges plats d'acier, sont assemblés entre eux par boulonnage. Les bâtiments sont alors réalisés par juxtaposition et superposition de telles unités de construction.
Les ossatures de bâtiments décrites dans BE-A-884 971 ont, dans l'ensemble, une structure assez semblable à celles réalisées suivant EP-A-0 012 736, mais elles sont réalisées au moyen d'éléments préfabriqués en béton.
Les techniques décrites dans EP-A-0 012 736 et BE-A-884 971 présentent plusieurs caractéristiques intéressantes et avantageuses. Parmi ces caractéristiques, il y a notamment la facilité et rapidité d'assemblage sur chantier des éléments préfabriqués en usine et également la facilité d'installation de gaines techniques. En effet, des ouvertures sont ménagées dans les parois horizontales inférieures et supérieures (planchers et plafonds), dans les angles formés par les montants en V.
Les espaces délimités par les branches du "V" des montants et fermés par des panneaux s'appliquant sur les extrémités des branches des montants forment ainsi des gaines techniques verticales dites "gaines
<Desc/Clms Page number 2>
d'encoignure" et permettent l'installation, l'inspection et la modification aisées des canalisations verticales installées dans ces gaines et passant d'étage en étage.
Les ossatures de bâtiments réalisées suivant ces techniques connues présentent cependant certains inconvénients qui limitent quelquefois leur utilisation.
C'est ainsi notamment que, dans une ossature réalisée par la juxtaposition et superposition de ces "unités de construction", il y a toujours un espace relativement grand entre la paroi de plancher d'une unité et la paroi de plafond de l'unité de construction située immédiatement en dessous. Cet espace permet certes d'y installer des gaines techniques horizontales, mais pour un nombre d'étages donné et une hauteur sous plafond donnée, cette technique augmente nécessairement la hauteur totale du bâtiment.
De plus, pour que ces techniques connues procurent pleinement les avantages de la standardisation des éléments préfabriqués, il est souhaitable que toutes les unités de construction aient les mêmes dimensions, ce qui limite assez fortement les possibilités architecturales, et ce d'autant plus que ces dimensions ne peuvent pas dépasser des limites assez contraignantes.
En outre, les parois horizontales des ossatures suivant BE-A-884 971 sont formées de caissons monolithiques en béton armé. Comme les dimensions de ces parois sont de préférence assez grandes, ces caissons sont lourds et encombrants et leur transport peut dès lors poser des problèmes, du moins dans certains pays ou régions. En outre, l'épaisseur des branches des montants en V et l'épaisseur des poutres qui forment les cadres desdits caissons est nécessairement plus grande que ce que permet la construction en acier. Ceci réduit fortement la section des gaines d'encoignure pouvant être réalisées dans les angles formés par les branches des montants.
La section de ces gaines d'encoignure peut de ce fait être insuffisante pour qu'on y fasse passer, par
<Desc/Clms Page number 3>
exemple, une ou plusieurs canalisations de diamètre relativement grand, telles que les chutes de WC.
Le document WO-A-98 54418 décrit une ossature de bâtiment formée par l'assemblage sur chantier d'éléments préfabriqués en béton armé, comprenant des poteaux, des poutres et des éléments de plancher. Les poteaux ont une section transversale en substance en forme de L, en forme de T ou en forme de croix et ont donc, respectivement, deux, trois ou quatre branches, suivant qu'ils servent d'appui, respectivement, à deux, trois ou quatre extrémités de poutres. Les moyens d'assemblage relient rigidement entre eux les poutres et les poteaux se rejoignant en chaque noeud de l'ossature, cette liaison étant telle qu'elle assure la continuité tant des poutres aboutées que des poteaux superposés.
La technique décrite dans WO-A-98 54418 offre de nombreux avantages mais présente néanmoins les inconvénients inhérents aux éléments préfabriqués en béton armé : poids important des éléments préfabriqués, nécessité d'engins de manutention importants, etc. En outre, certaines des formes de réalisation décrites dans ce document impliquent des coulées de béton, sur chantier, pour solidariser entre eux les éléments préfabriqués qui se rejoignent aux noeuds de l'ossature. Par ailleurs, la section des gaines d'encoignure qui peuvent être réalisées dans les angles formés par les branches des poteaux est, ici aussi relativement réduite.
Le document WO-A-01 88293, décrit une ossature de bâtiment formée par l'assemblage sur chantier d'éléments préfabriqués en acier. Les poteaux consistent en des ensembles de un, deux ou quatre profilés d'acier ayant une section en forme de L, suivant que ces poteaux servent de -support pour, respectivement, deux, trois ou quatre extrémités de poutres. Chaque poutre située sur le pourtour du bâtiment, est, par chacune de ses extrémités, boulonnée contre les branches de profilés en L orientées suivant ledit
<Desc/Clms Page number 4>
pourtour, de deux poteaux situés sur ce pourtour.
Chaque poutre située à l'intérieur du bâtiment consiste en un profilé d'acier creux à section rectangulaire et est, par chacune de ses extrémités, boulonnée entre une paire de branches de profilés en L parallèles entre elles, d'un même poteau, ces branches étant espacées l'une de l'autre d'une distance sensiblement égale à la largeur de cette poutre. Cette technique offre notamment les avantages que procure la construction en acier et permet une grande souplesse architecturale. Une telle ossature comprend cependant un grand nombre de profilés d'acier et certains profilés (les profilés creux à section rectangulaire) sont assez coûteux.
La présente invention a pour but de fournir une ossature de bâtiment qui offre les avantages essentiels de la technique antérieurement connue mais qui est en outre plus simple et plus économique en faisant notamment usage d'un nombre plus réduit de profilés d'acier, de boulons et autres éléments constitutifs.
L'invention a également pour but de réaliser une telle ossature de bâtiment conçue de manière à permettre l'installation simple et efficace de canalisations dans le bâtiment à réaliser.
Il importe également que la technique de construction offre les avantages dus à la facilité d'organisation d'un "chantier sec", procure en outre une grande flexibilité architecturale et facilite notamment d'éventuels travaux de modification ou d'agrandissement d'un bâtiment et le démontage et la réutilisation intégrale des éléments de l'ossature en cas de démontage partiel ou total d'un bâtiment.
La présente invention a pour objet une ossature de bâtiment à étages, formée par l'assemblage sur chantier d'éléments préfabriqués comprenant des poteaux, des poutres dont les extrémités sont fixées aux poteaux, et des éléments de plancher prenant appui sur des poutres.
Dans l'ossature suivant l'invention,
<Desc/Clms Page number 5>
les poteaux situés aux étages successifs sont disposés à la verticale les uns des autres, les poteaux superposés étant directement reliés entre eux, les poutres comportent, à chaque étage du bâtiment, des poutres extérieures alignées suivant le pourtour de celui-ci, des poutres principales disposées à l'intérieur dudit pourtour suivant des alignements parallèles entre eux, et des poutres transversales disposées transversalement aux alignements des poutres principales, les poteaux consistent en des profilés d'acier ayant une section en substance en forme de L, en forme de T ou en forme de croix, suivant qu'ils servent de support, respectivement, à deux, à trois ou à quatre extrémités de poutres, chaque branche de chaque profilé étant orientée suivant la poutre qu'elle supporte,
les poteaux situés aux coins du pourtour du bâtiment consistent chacun en un profilé ayant une section en substance en forme de L, l'ouverture du L étant dirigée vers l'intérieur du bâtiment, les branches du profilé, orientées suivant ce pourtour, portant chacune à son extrémité, au moins une aile perpendiculaire à cette branche, les autres poteaux situés sur le pourtour du bâtiment consistent chacun en un profilé ayant une section en substance en forme de T, les deux branches du T dirigées à l'opposé l'une de l'autre étant orientées suivant ce pourtour et portant à leur extrémité au moins une aile perpendiculaire à cette branche, la troisième branche du T étant dirigée vers l'intérieur du bâtiment et portant à son extrémité deux ailes perpendiculaires à cette branche,
- les poteaux situés à l'intérieur du pourtour du bâtiment consistent chacun en un profilé choisi parmi les profilés à section en T et les profilés à section en
<Desc/Clms Page number 6>
croix, chacune des branches de chacun de ces profilés portant à son extrémité deux ailes perpendiculaires à cette branche, - chaque poutre extérieure consiste en un profilé d'acier comprenant une âme verticale portant à chaque extrémité au moins une aile perpendiculaire à cette âme, - chaque poutre principale et chaque poutre transversale consiste en un profilé d'acier ayant une section en forme de I, comprenant une âme verticale portant à chaque extrémité deux ailes perpendiculaires à cette âme, - une plaque d'extrémité est fixée à chaque extrémité de chaque poutre, perpendiculairement à l'axe longitudinal de celle-ci,
chaque poutre étant fixée en place par boulonnage de ses plaques d'extrémité aux ailes des poteaux entre lesquelles elle est située, - des ouvertures aptes à permettre le passage de canalisations sont ménagées dans au moins certaines des branches et des ailes des poteaux et dans au moins certaines des âmes, des ailes et des plaques d'extrémité des poutres, - des ouvertures sont ménagées dans les éléments de plancher près d'au moins certains poteaux, dans les angles formés par les branches des profilés qui forment ces poteaux, permettant ainsi la réalisation de gaines techniques verticales passant d'étage en étage, dans les encoignures formées par ces branches.
Les poteaux de l'ossature sont avantageusement munis, à chacune de leurs extrémités de moyens aptes à rigidement relier entre eux des poteaux superposés.
Ces moyens peuvent notamment comporter, à chaque branche de profilé de chaque extrémité de poteau, un plat d'acier fixé, perpendiculairement à l'axe longitudinal du poteau, à l'aile ou aux ailes portée (s) une branche du profilé et à une portion de
<Desc/Clms Page number 7>
cette branche située près de cette aile ou de ces ailes, ce plat d'acier étant percé d'au moins un trou pour boulon, permettant ainsi de relier entre eux, par boulonnage, des poteaux superposés.
Ces moyens de liaison entre poteaux superposés peuvent éventuellement comporter, en outre, un plat d'acier analogue fixé perpendiculairement à l'axe longitudinal du poteau dans la zone de jonction entre les branches du poteau. Un tel plat d'acier supplémentaire peut être avantageux, en particulier pour les poteaux situés aux coins du pourtour du bâtiment.
Par ailleurs, des moyens de liaison différents peuvent également être utilisés pour relier entre eux des poteaux superposés.
Les poteaux situés aux coins dudit pourtour peuvent comporter : - un ou plusieurs poteaux consistant chacun en un profilé en L dont chaque branche porte à son extrémité une seule aile dirigée vers l'intérieur du bâtiment, perpendiculairement à cette branche, et/ ou - un ou plusieurs poteaux consistant chacun en un profilé en L dont chaque branche porte à son extrémité deux ailes perpendiculaires à cette branche, et/ ou un ou plusieurs poteaux consistant chacun en un profilé en L dont une branche porte à son extrémité deux ailes perpendiculaires à cette branche, l'autre branche portant à son extrémité une seule aile, dirigée vers l'intérieur du bâtiment, perpendiculairement à cette branche.
Les poteaux situés sur ledit pourtour mais non situés aux coins de ce pourtour peuvent comporter : des poteaux consistant chacun en un profilé en T dont les deux branches qui sont orientées suivant ce pourtour portent chacune à son extrémité une seule aile, dirigée vers l'intérieur du bâtiment, perpendiculairement à cette branche, la
<Desc/Clms Page number 8>
troisième branche du T portant à son extrémité deux ailes perpendiculaires à cette branche, et/ ou des poteaux consistant chacun en un profilé en T dont chaque branche porte à son extrémité deux ailes perpendiculaires à cette branche.
Les poutres extérieures peuvent comporter : des poutres extérieures consistant chacune en un profilé d'acier comprenant une âme verticale portant à chaque extrémité une seule aile, perpendiculaire à cette âme, ces deux ailes, situées du même côté de l'âme, étant dirigées vers l'intérieur du bâtiment, et/ ou des poutres extérieures consistant chacune en un profilé d'acier ayant une section en forme de I comprenant une âme verticale portant à chaque extrémité deux ailes perpendiculaires à cette âme.
En règle générale, une poutre extérieure dont l'âme porte à chaque extrémité une seule aile, est fixée entre des branches de poteaux qui ne portent également, à leur extrémité, qu'une seule aile.
De manière analogue, une poutre extérieure consistant en un profilé ayant une section en forme de I est, en règle générale, fixée entre les branches de poteaux qui portent à leurs extrémités deux ailes perpendiculaires à cette branche.
Les poutres de l'ossature peuvent être réalisées avec des profilés d'acier du commerce, tels qu'ils sont produits par les laminoirs.
Les profilés qui forment les poteaux de l'ossature peuvent également être produits tels quels par les laminoirs. Ces profilés peuvent cependant également être réalisés en assemblant entre eux, par exemple par soudage, des profilés de section plus simple. C'est ainsi qu'un profilé ayant une section en forme de croix potencée peut être réalisé, par
<Desc/Clms Page number 9>
exemple, en soudant un profilé à section en T contre chaque face de l'âme d'un profilé à section en I.
Dans une ossature suivant l'invention, les éléments de plancher peuvent être faits en des matériaux très divers, en particulier en béton, en bois ou en acier.
Les éléments de plancher prennent de préférence appui, par deux de leurs côtés opposés, sur les poutres principales et sur les poutres extérieures parallèles aux poutres principales.
De manière avantageuse, un panneau rapporté (amovible) raccorde entre elles les extrémités des paires de branches de poteau dans l'encoignure desquelles est réalisée une gaine technique verticale, fermant ainsi cette gaine technique.
Il est généralement avantageux que, la hauteur des poutres principales et des poutres extérieures parallèles aux poutres principales soit plus grande que la hauteur des poutres transversales.
Les poutres extérieures parallèles aux poutres transversales peuvent éventuellement avoir la même hauteur que les poutres transversales, mais il peut être avantageux que les poutres extérieures parallèles aux poutres transversales soient plus hautes que les poutres transversales.
La présente invention a également pour objet un bâtiment à étages qui comporte une ossature telle que décrite ci-dessus.
Les éléments constitutifs de l'ossature suivant l'invention sont peu diversifiés et facilement fabriqués par des procédés connus.
Grâce à la forme et à la disposition de ses éléments constitutifs, l'ossature permet l'installation simple et facile de canalisations dans le bâtiment réalisé.
Les nombreuses possibilités et facilités que procure l'ossature suivant l'invention, pour ce qui concerne notamment l'installation de diverses canalisations, seront mieux
<Desc/Clms Page number 10>
comprises à la lecture des commentaires des figures annexées (voir en particulier les figures 26 et 27).
On remarquera également que, pour la construction de l'ossature, les poteaux correspondant à un niveau donné du bâtiment peuvent être montés en place après la mise en place des éléments de plancher de ce niveau, ce qui facilite nettement le travail.
D'autres particularités et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif, d'un exemple de réalisation, référence étant faite aux dessins annexés dans lesquels : la Fig.lest une vue en perspective cavalière, avec arrachement partiel, d'une partie d'ossature de bâtiment suivant l'invention, vue obliquement par au-dessus; la Fig. 2 est une vue schématique en plan de la partie d'ossature montrée à la Fig.l; les Fig. 3 et 4 sont des vues schématiques en plan d'autres parties d'ossature suivant l'invention; les Fig.5 et 6 sont des vues en coupe verticale, respectivement suivant les lignes IV-IV et V-V de la Fig. 2, montrant, à échelle agrandie, des détails de la structure; les Fig. 7 à 12 sont des vues en coupe transversale de poteaux qui sont utilisés dans la technique suivant l'invention;
les Fig.l et 14 sont des vues en coupe transversale de poutres qui sont utilisées dans la technique suivant l'invention; la Fig. 15 est une vue en perspective cavalière montrant les extrémités des poutres et des poteaux qui peuvent être assemblés en un noeud d'ossature situé à l'intérieur du bâtiment, ces éléments étant vus obliquement par au-dessus; les Fig. 16 à 19 sont des vues analogues à la Fig. 15, montrant les phases successives de la réalisation du noeud d'ossature;
<Desc/Clms Page number 11>
la Fig. 20 est une vue du même noeud d'ossature que celui qui est montré à la Fig.19, mais montré obliquement par-dessous ;
cette Fig. 20 sont montrés, en outre, des éléments de dalle flottante (montrés avec arrachements) reposant sur les éléments de plancher ; les Fig. 21 et 22 sont des vues analogues aux Fig.15 et 18 mais montrent un noeud d'ossature à la jonction d'une poutre transversale, de deux poutres principales ou extérieures et de deux poteaux superposés situés à l'intérieur du bâtiment ou le long d'un de ses côtés; les Fig. 23 et 24 sont des vues analogues aux Fig. 21 et 22, mais montrent un noeud d'ossature à la jonction d'une poutre principale, de deux poutres extérieures et de deux poteaux superposés situés le long d'un des côtés du bâtiment;
les Fig. 25 et 26 sont des vues analogues aux Fig. 23 et 24, mais montrent un noeud d'ossature à la jonction de deux poutres extérieures et de deux poteaux superposés situés à un angle du bâtiment; la Fig. 27 est une coupe, suivant un plan horizontal, d'un poteau d'ossature situé à l'intérieur d'un bâtiment; cette Fig. 27 montre notamment des gaines techniques verticales formées dans les encoignures du poteau; la Fig. 28 est une vue en perspective cavalière d'une partie d'ossature vue obliquement par au-dessus ; Fig. 28 montre notamment des poteaux superposés situés à l'intérieur d'un bâtiment, ces poteaux étant équipés de diverses canalisations.
L'ossature 1 de bâtiment montrée aux Fig.l, 2 et 5 à 28 est composée de poteaux 2,3, 4,5, 6 7, de poutres principales 8, de poutres extérieures 9 parallèles aux poutres principales 8, de poutres transversales 10 et de poutres extérieures 11, parallèles aux poutres transversales 10. Tous ces poteaux et poutres sont des éléments en acier
<Desc/Clms Page number 12>
préfabriqués en usine, ce qui permet d'atteindre une grande précision pour ce qui concerne leurs dimensions.
L'ossature comprend également des éléments de plancher 12 en béton armé, préfabriqués en usine.
Les poteaux 4 situés aux angles du bâtiment consistent en un profilé d'acier ayant une section transversale en substance en forme de L à angle droit. L'ouverture du L est dirigée vers l'intérieur du bâtiment. la branche 13 de ce profilé qui est parallèle aux poutres transversales 10, porte à son extrémité une aile 14, dirigée vers l'intérieur du bâtiment, perpendiculairement à cette branche 13. La branche 13 de ce profilé qui est parallèle aux poutres principales 8, porte à son extrémité, deux ailes 14 perpendiculaires à cette branche 13.
Les autres poteaux 5,6 situés le long du pourtour du bâtiment consistent chacun en un profilé ayant une section en substance en forme de T, les deux branches 13 du T dirigées à l'opposé l'une de l'autre étant orientées suivant ce pourtour, la troisième branche 13 du T étant dirigée vers l'intérieur du bâtiment et portant à son extrémité deux ailes 14 perpendiculaires à cette branche 13.
Dans les poteaux 5, les deux branches 13 du T qui sont dirigées à l'opposé l'une de l'autre sont parallèles aux poutres transversales 10 et portent chacune à son extrémité une seule aile 14 dirigée vers l'intérieur du bâtiment, perpendiculairement à cette branche 13.
Dans les poteaux 6, les deux branches 13 du T qui sont dirigées à l'opposé l'une de l'autre sont parallèles aux poutres principales 8 et portent chacune à son extrémité deux ailes 14 perpendiculaires à cette branche 13.
Les poteaux 7 situés à l'intérieur du bâtiment consistent chacun en un profilé d'acier ayant une section en substance en forme de croix, chacune des branches 13 de
<Desc/Clms Page number 13>
chacun de ces profilés en croix portant à son extrémité deux ailes 14 perpendiculaires à cette branche 13. Les poteaux 7 présentent donc une section en forme de croix potencée.
Les poutres principales 8 et les poutres transversales 10 sont des profilés d'acier ayant une section en forme de I, comprenant une âme verticale 15 portant à chaque extrémité deux ailes 14 perpendiculaires à cette âme 15. La hauteur des poutres principales 8 est plus grande que celle des poutres transversales 10.
Les poutres extérieures 9 parallèles aux poutres principales 8 sont également des profilés ayant une section en forme de I. Les poutres extérieures 9 peuvent d'ailleurs être identiques aux poutres principales 8.
Les poutres extérieures 11 parallèles aux poutres transversales 10 consistent chacune en un profilé d'acier comprenant une,âme verticale 15 portant à chaque extrémité une seule aile 14 perpendiculaire à cette âme 15, ces deux ailes 14, situées du même côté de l'âme 15, étant dirigées vers l'intérieur du bâtiment.
La hauteur des poutres principales 8 et des poutres extérieures 9 parallèles aux poutres principales 8 est plus grande que la hauteur des poutres transversales 10 et des poutres extérieures 11parallèles aux poutres transversales 10.
Tous les poteaux 2,3,4,5,6,7 illustrés aux Fig. 7 à 12 sont munis à chacune de leurs extrémités de moyens aptes à rigidement relier entre eux des poteaux superposés.
Ces moyens comportent à chaque branche 13 de profilé de chaque extrémité de poteau, un plat d'acier 16, fixé perpendiculairement à l'axe longitudinal du poteau, à l'aile 14 ou aux ailes 14 par une branche 13 du profilé et à une portion de cette branche 13 située près de cette aile 14 ou de ces ailes 14. Ce plat d'acier 16 est percé d'au moins un trou 17 pour boulon permettant ainsi de relier entre eux, par boulonnage, des poteaux superposés.
<Desc/Clms Page number 14>
Les poteaux 2,3,4 qui présentent une section en substance en forme de L, sont munis d'un plat d'acier 18 supplémentaire, fixé perpendiculairement à l'axe longitudinal du poteau dans la zone de jonction entre les branches du poteau. Ce plat d'acier 18 est également percé d'un trou 17 pour boulon.
Une plaque d'extrémité 19 percée de trous 17 pour boulons est fixée, à chaque extrémité de chaque poutre 8,9,10,11, perpendiculairement à l'axe longitudinal de celle- ci. Les ailes 14 des poteaux 2,3,4,5,6,7 étant également percés de trous 17 pour boulons aux endroits appropriés, chaque poutre 8,9,10,11 peut ainsi être fixée en place par boulonnage de ses plaques d'extrémité 19 aux ailes 14 des poteaux 2,3,4,5,6,7 entre les quelles elle est située.
Des ouvertures 20 aptes à permettre le passage de canalisations 21 sont ménagées dans au moins certaines des branches 13 et des ailes 14 des poteaux 2,3,4,5,6,7 et dans au moins certaines des âmes 15, des ailes 14 et des plaques d'extrémité 19 des poutres 8,9,10,11.
Les éléments de plancher 12 en béton armé prennent appui par deux bords opposés sur une poutre principale 8 et sur une poutre extérieure 9 parallèle à cette poutre principale 8. Ils sont juxtaposés de manière à former une dalle continue. Des ouvertures 22 sont ménagées dans les éléments de plancher 12, près des poteaux 2,3,4,5,6,7, dans les angles formés par les branches 13 des profilés qui forment ces poteaux, permettant ainsi la réalisation de gaines techniques verticales passant d'étage en étage, dans les encoignures formées par ces branches 13.
Lors du montage d'une ossature et après avoir monté en place les poteaux et les poutres correspondant à un niveau du bâtiment, les éléments de plancher 12 sont posés en place.
<Desc/Clms Page number 15>
Après la mise en place des éléments de plancher 12, on peut éventuellement poser sur les planchers ainsi réalisés des dalles flottantes 23 (voir Fig. 5,6,20). La fabrication et la mise en place de ces dalles flottantes 23 sont avantageusement réalisées suivant la technique décrite dans EP-A-0750 709.
Après la réalisation d'un plancher, les poteaux 8,9,10,11peuvent être mis en place pour le niveau suivant du bâtiment, ces poteaux 8,9,10,11étant fixés par boulonnage aux poteaux 8,9,10,11correspondants sur lesquels ils reposent.
Les éléments préfabriqués en acier (poutres et poteaux) constitutifs de l'ossature 1 peuvent être fabriqués avec une bonne précision.
Pour tenir compte de certaines tolérances concernant les dimensions, il peut cependant être nécessaire d'interposer une cale d'épaisseur entre les plats d'acier 16,18 (pièces de raccordement) de certains poteaux 5,6,7 superposés. Ces cales d'épaisseur peuvent notamment consister en des plaquettes d'acier d'une épaisseur de quelques dixièmes de millimètres.
La Fig. 27 est une section, suivant un plan horizontal, d'un poteau 7. Dans les encoignures formées par les branches 13 de ce poteau 7, sont installées des gaines techniques verticales dans lesquelles passent des canalisations 21.
Une telle gaine technique peut être fermée par un panneau rapporté amovible (tel que 24,25,26 ou 27) qui raccorde entre elles les ailes 14 de deux branches 13 voisines, du poteau 7, dans l'encoignure desquelles est réalisée une gaine technique verticale. On remarquera que, suivant la forme du panneau de fermeture rapporté (24,25,26 ou 27), la gaine technique a une section plus ou moins grande.
La réalisation d'ossatures de bâtiment suivant l'invention offre de nombreux avantages et notamment les avantages bien connus qui sont dus à la facilité d'organisation de ce qu'il est convenu d'appeler le "chantier sec". On comprendra aussi aisément qu'avec
<Desc/Clms Page number 16>
une telle technique de construction, les travaux de modification ou d'agrandissement d'un bâtiment sont grandement facilités. Il est également très avantageux de pouvoir facilement démonter et réutiliser les éléments d'ossature des bâtiments que l'on souhaite démonter.
L'ossature de bâtiment suivant l'invention offre toutefois des avantages très particuliers du fait qu'elle peut être réalisée avec des éléments préfabriqués simples, peu nombreux, peu diversifiés et relativement peu coûteux, et qu'elle permet par ailleurs d'installer, de manière simple et efficace, des canalisations dans le bâtiment réalisé.
A cette fin, des ouvertures 20 aptes à permettre le passage de canalisations sont ménagées dans au moins certaines des branches 13 et des ailes 14 des poteaux 2,3,4,5,6,7 et dans au moins certaines des âmes 15, des ailes 14 et des plaques d'extrémité 19 des poutres 8,9,10,11.
Tout comme pour les trous 17 pour boulons dont sont munis les poteaux et les poutres, ces ouvertures 20 pour le passage de canalisations peuvent avantageusement être formées dans les poteaux et poutres, lors de la préfabrication en usine de ces éléments.
Les Fig. 27 et 28 montrent notamment que dans des gaines techniques verticales formées dans les encoignures des branches 13 d'un poteau 7, on peut faire passer des canalisations 21 très diverses et notamment des câbles (qui peuvent être des câbles électriques, des câbles de téléphone, de télévision, etc..), des conduites d'eau (qui peuvent être des conduites de distribution d'eau, des conduites de chauffage central, des décharges d'eaux usées, etc. ), des chutes de WC, des gaines d'amenée ou d'évacuation d'air (pour des installations de conditionnement d'air, de chauffage par air chaud, de hottes de cuisine, etc.).
<Desc/Clms Page number 17>
Grâce à des ouvertures 20 ménagées aux endroits appropriés dans les poteaux et les poutres, des canalisations 21 peuvent passer d'une gaine technique verticale vers l'espace situé hors de cette gaine technique, par exemple vers une cloison (double) montée entre deux poteaux voisins de l'ossature.
Grâce à des ouvertures 20 ménagées dans les branches 13 d'un poteau 7, des canalisations 21 peuvent également passer d'une gaine technique vers une gaine technique voisine formée dans le même poteau 7.
L'ossature suivant l'invention permet ainsi d'installer des canalisations les plus diverses dans le bâtiment et cela de manière simple et efficace. Les canalisations verticales sont, en effet, enfermées dans les gaines techniques verticales et, depuis ces gaines techniques verticales, des canalisations peuvent être conduites, par exemple contre ou dans des cloisons ou plafonds.
La partie d'ossature illustrée schématiquement aux Figures 1 et 2 ne constitue qu'un exemple choisi parmi les nombreuses et très diverses ossatures qui peuvent être réalisées suivant la technique de l'invention.
Les vues schématiques en plan montrées aux Fig. 3 et 4 illustrent deux autres types d'ossatures conformes à l'invention.
Dans la partie d'ossature montrée à la Fig. 3, un corridor A traverse le bâtiment, parallèlement aux poutres principales 8 et aux poutres extérieures 9. A l'intérieur du pourtour du bâtiment se trouvent des poteaux 7 à section en substance en forme de croix, mais également des poteaux 6 à section en substance en forme de T. En particulier, le long d'un côté du corridor A se trouvent des poteaux 7 à section en croix ce qui offre notamment l'avantage d'avoir des gaines techniques verticales accessibles depuis ce corridor A. Le long de l'autre côté de ce corridor A se trouvent cependant des poteaux 6
<Desc/Clms Page number 18>
à section en forme de T, qui offrent notamment l'avantage de ne pas réduire la largeur libre du corridor A.
La partie d'ossature montrée à la Fig.4, est similaire à celle de la Fig. 3, mais, dans le cas de la Fig.4, deux corridors B et C traversent le bâtiment parallèlement aux poutres principales 8.
Les poteaux situés le long des deux côtés des corridors B et C sont des profilés 6, ayant une section en forme de. T. L'ossature de bâtiment ne comporte donc pas de poteaux à section en forme de croix.
<Desc / Clms Page number 1>
BUILDING FRAMEWORK
The present invention relates to a building frame formed by the assembly on site of prefabricated elements.
EP-A-012 736 discloses a factory prefabricated construction unit, essentially in the form of a straight prism (generally a rectangular parallelepiped).
Each construction unit comprises a floor element and a ceiling element each consisting of a box open downwards, formed by a frame and a horizontal wall connected to the upper edge of the frame. The floor and ceiling elements are interconnected by means of uprights having a V-shaped section. The frames and the uprights, made from large steel plates, are joined together by bolting. The buildings are then produced by juxtaposition and superposition of such construction units.
The frameworks of buildings described in BE-A-884 971 have, on the whole, a structure quite similar to those produced according to EP-A-0 012 736, but they are produced by means of prefabricated concrete elements.
The techniques described in EP-A-0 012 736 and BE-A-884 971 have several interesting and advantageous characteristics. Among these characteristics, there is in particular the facility and speed of assembly on site of the prefabricated elements in factory and also the facility of installation of technical sheaths. In fact, openings are made in the lower and upper horizontal walls (floors and ceilings), in the angles formed by the V-shaped uprights.
The spaces delimited by the branches of the "V" of the uprights and closed by panels applying to the ends of the branches of the uprights thus form vertical technical sheaths called "sheaths
<Desc / Clms Page number 2>
and allow easy installation, inspection and modification of the vertical pipes installed in these ducts and passing from floor to floor.
The frameworks of buildings produced according to these known techniques however have certain drawbacks which sometimes limit their use.
Thus, in particular, in a framework produced by the juxtaposition and superposition of these "construction units", there is always a relatively large space between the floor wall of a unit and the ceiling wall of the unit. located immediately below. This space certainly allows the installation of horizontal technical ducts, but for a given number of floors and a given ceiling height, this technique necessarily increases the total height of the building.
In addition, in order for these known techniques to fully provide the advantages of the standardization of prefabricated elements, it is desirable that all the construction units have the same dimensions, which rather strongly limits the architectural possibilities, all the more so since these dimensions cannot exceed sufficiently restrictive limits.
In addition, the horizontal walls of the frames according to BE-A-884 971 are formed of monolithic boxes of reinforced concrete. As the dimensions of these walls are preferably quite large, these boxes are heavy and bulky and their transport can therefore pose problems, at least in certain countries or regions. In addition, the thickness of the branches of the V-shaped uprights and the thickness of the beams which form the frames of said boxes is necessarily greater than what is possible with steel construction. This greatly reduces the section of corner sheaths that can be made in the angles formed by the branches of the uprights.
The section of these corner sheaths may therefore be insufficient for them to pass through,
<Desc / Clms Page number 3>
example, one or more pipes of relatively large diameter, such as toilet waterfalls.
Document WO-A-98 54418 describes a building frame formed by the assembly on site of prefabricated elements of reinforced concrete, comprising posts, beams and floor elements. The posts have a cross-section which is essentially L-shaped, T-shaped or cross-shaped and therefore have, respectively, two, three or four branches, depending on whether they serve as support, respectively, for two, three or four ends of beams. The assembly means rigidly connect together the beams and the posts joining at each node of the frame, this connection being such that it ensures continuity both of the butted beams and of the superimposed posts.
The technique described in WO-A-98 54418 offers many advantages but nevertheless has the drawbacks inherent in prefabricated reinforced concrete elements: significant weight of the prefabricated elements, need for large handling equipment, etc. In addition, some of the embodiments described in this document involve pouring concrete, on site, to secure together the prefabricated elements which join at the nodes of the frame. Furthermore, the section of corner sheaths which can be produced in the angles formed by the branches of the posts is here also relatively small.
Document WO-A-01 88293 describes a building frame formed by the assembly on site of prefabricated steel elements. The posts consist of sets of one, two or four steel sections having an L-shaped section, depending on whether these posts serve as -support for, respectively, two, three or four ends of beams. Each beam located on the periphery of the building, is, by each of its ends, bolted against the branches of L-shaped profiles oriented along said
<Desc / Clms Page number 4>
perimeter, two posts located on this perimeter.
Each beam located inside the building consists of a hollow steel profile with rectangular section and is, by each of its ends, bolted between a pair of branches of L-profiles parallel to each other, of the same post, these branches being spaced from each other by a distance substantially equal to the width of this beam. This technique notably offers the advantages of steel construction and allows great architectural flexibility. However, such a framework includes a large number of steel sections and certain sections (hollow sections with rectangular section) are quite expensive.
The object of the present invention is to provide a building framework which offers the essential advantages of the previously known technique but which is also simpler and more economical, in particular by making use of a smaller number of steel profiles, of bolts. and other components.
The invention also aims to achieve such a building frame designed to allow the simple and efficient installation of pipes in the building to be produced.
It is also important that the construction technique offers the advantages due to the ease of organization of a "dry site", moreover provides great architectural flexibility and facilitates in particular possible work of modification or enlargement of a building. and the dismantling and full reuse of the elements of the framework in the event of partial or total dismantling of a building.
The present invention relates to a two-storey building frame, formed by the assembly on site of prefabricated elements comprising posts, beams whose ends are fixed to the posts, and floor elements supported on beams.
In the framework according to the invention,
<Desc / Clms Page number 5>
the posts located on the successive floors are arranged vertically from each other, the superposed posts being directly connected together, the beams comprise, on each floor of the building, external beams aligned along the periphery thereof, main beams arranged inside said periphery in parallel alignments with one another, and transverse beams arranged transversely to the alignments of the main beams, the posts consist of steel profiles having a cross section substantially L-shaped, T-shaped or in the shape of a cross, depending on whether they support two, three or four ends of beams, respectively, each branch of each profile being oriented along the beam it supports,
the posts located at the corners of the periphery of the building each consist of a profile having a section in the form of an L-shaped, the opening of the L being directed towards the interior of the building, the branches of the profile, oriented along this periphery, each at its end, at least one wing perpendicular to this branch, the other posts located on the periphery of the building each consist of a profile having a section in substantially T-shape, the two branches of the T directed opposite one the other being oriented along this periphery and carrying at their end at least one wing perpendicular to this branch, the third branch of the T being directed towards the interior of the building and carrying at its end two wings perpendicular to this branch,
- the posts located inside the perimeter of the building each consist of a profile chosen from among the T-section profiles and the T-section profiles
<Desc / Clms Page number 6>
cross, each of the branches of each of these profiles carrying at its end two wings perpendicular to this branch, - each external beam consists of a steel profile comprising a vertical core carrying at each end at least one wing perpendicular to this core, - each main beam and each transverse beam consists of a steel section having an I-shaped section, comprising a vertical core carrying at each end two wings perpendicular to this core, - an end plate is fixed to each end of each beam, perpendicular to its longitudinal axis,
each beam being fixed in place by bolting its end plates to the wings of the posts between which it is located, - openings adapted to allow the passage of pipes are formed in at least some of the branches and wings of the posts and in at least some of the webs, wings and end plates of the beams, - openings are made in the floor elements near at least some posts, in the angles formed by the branches of the profiles which form these posts, thus allowing the realization of vertical technical ducts passing from floor to floor, in the corners formed by these branches.
The posts of the frame are advantageously provided, at each of their ends with means capable of rigidly connecting together superposed posts.
These means may in particular comprise, to each profile branch of each end of the pole, a steel plate fixed, perpendicular to the longitudinal axis of the pole, to the wing or the wings carried, a branch of the profile and to a portion of
<Desc / Clms Page number 7>
this branch located near this wing or these wings, this steel plate being pierced with at least one bolt hole, thus making it possible to connect, by bolting, superposed posts.
These connecting means between superposed posts may optionally include, in addition, a similar steel plate fixed perpendicular to the longitudinal axis of the post in the junction zone between the branches of the post. Such an additional steel plate can be advantageous, in particular for the posts situated at the corners of the periphery of the building.
Furthermore, different connecting means can also be used to connect together superimposed posts.
The posts located at the corners of said periphery may include: - one or more posts each consisting of an L-shaped section, each branch of which carries at its end a single wing directed towards the interior of the building, perpendicular to this branch, and / or - a or several posts each consisting of an L-shaped section, each branch of which carries at its end two wings perpendicular to this branch, and / or one or more posts each consisting of an L-shaped section, one branch of which carries at its end two wings perpendicular to this branch branch, the other branch carrying at its end a single wing, directed towards the interior of the building, perpendicular to this branch.
The posts situated on the said periphery but not situated at the corners of this periphery may comprise: posts each consisting of a T-profile whose two branches which are oriented along this periphery each carry at its end a single wing, directed inwards of the building, perpendicular to this branch, the
<Desc / Clms Page number 8>
third branch of the T carrying at its end two wings perpendicular to this branch, and / or posts each consisting of a T-shaped section, each branch of which carries at its end two wings perpendicular to this branch.
The external beams may comprise: external beams each consisting of a steel profile comprising a vertical core carrying at each end a single wing, perpendicular to this core, these two wings, located on the same side of the core, being directed towards the interior of the building, and / or external beams each consisting of a steel section having an I-shaped section comprising a vertical core carrying at each end two wings perpendicular to this core.
As a general rule, an external beam, the core of which carries a single wing at each end, is fixed between branches of posts which also bear, at their end, only one wing.
Similarly, an outer beam consisting of a section having an I-shaped section is, as a general rule, fixed between the branches of posts which carry at their ends two wings perpendicular to this branch.
The frame beams can be made with commercial steel profiles, as produced by the rolling mills.
The profiles which form the posts of the frame can also be produced as such by the rolling mills. These sections can however also be produced by joining together, for example by welding, sections of simpler section. This is how a profile having a cross-shaped cross section can be made, by
<Desc / Clms Page number 9>
example, by welding a T-section profile against each side of the core of an I-section profile
In a frame according to the invention, the floor elements can be made of very diverse materials, in particular concrete, wood or steel.
The floor elements preferably bear, by two of their opposite sides, on the main beams and on the external beams parallel to the main beams.
Advantageously, an attached (removable) panel interconnects the ends of the pairs of pole branches in the corner of which a vertical technical sheath is produced, thus closing this technical sheath.
It is generally advantageous that the height of the main beams and of the external beams parallel to the main beams is greater than the height of the transverse beams.
The external beams parallel to the transverse beams may possibly have the same height as the transverse beams, but it may be advantageous for the external beams parallel to the transverse beams to be higher than the transverse beams.
The present invention also relates to a multi-storey building which includes a framework as described above.
The constituent elements of the framework according to the invention are little diversified and easily manufactured by known methods.
Thanks to the shape and the arrangement of its constituent elements, the framework allows the simple and easy installation of pipes in the realized building.
The many possibilities and facilities provided by the frame according to the invention, particularly with regard to the installation of various pipes, will be better.
<Desc / Clms Page number 10>
understood on reading the comments on the appended figures (see in particular Figures 26 and 27).
It will also be noted that, for the construction of the framework, the posts corresponding to a given level of the building can be mounted in place after the installation of the floor elements of this level, which clearly facilitates the work.
Other particularities and advantages of the invention will emerge from the description given below, without implied limitation, of an exemplary embodiment, reference being made to the appended drawings in which: Fig. 1 is a perspective view, with partial cutaway, of a building frame part according to the invention, viewed obliquely from above; Fig. 2 is a schematic plan view of the frame part shown in Fig.l; Figs. 3 and 4 are schematic plan views of other frame parts according to the invention; FIGS. 5 and 6 are views in vertical section, respectively along lines IV-IV and V-V of FIG. 2, showing, on an enlarged scale, details of the structure; Figs. 7 to 12 are cross-sectional views of posts which are used in the technique according to the invention;
Fig.l and 14 are cross-sectional views of beams which are used in the technique according to the invention; Fig. 15 is a perspective view showing the ends of the beams and posts which can be assembled in a framework node located inside the building, these elements being viewed obliquely from above; Figs. 16 to 19 are views similar to FIG. 15, showing the successive phases of the realization of the framework node;
<Desc / Clms Page number 11>
Fig. 20 is a view of the same framework node as that shown in FIG. 19, but shown obliquely from below;
this Fig. 20 are shown, in addition, floating slab elements (shown with cutouts) resting on the floor elements; Figs. 21 and 22 are views similar to FIGS. 15 and 18 but show a framework node at the junction of a transverse beam, two main or external beams and two superimposed posts located inside the building or along on one side; Figs. 23 and 24 are views similar to FIGS. 21 and 22, but show a framework node at the junction of a main beam, two external beams and two superimposed posts located along one of the sides of the building;
Figs. 25 and 26 are views similar to FIGS. 23 and 24, but show a framework node at the junction of two external beams and two superimposed posts located at a corner of the building; Fig. 27 is a section, along a horizontal plane, of a stud post located inside a building; this Fig. 27 shows in particular vertical technical sheaths formed in the corners of the post; Fig. 28 is a perspective view of a frame portion viewed obliquely from above; Fig. 28 shows in particular superimposed posts located inside a building, these posts being equipped with various pipes.
The building frame 1 shown in Figs. L, 2 and 5 to 28 is made up of posts 2,3, 4,5, 6 7, main beams 8, external beams 9 parallel to the main beams 8, transverse beams 10 and external beams 11, parallel to the transverse beams 10. All these posts and beams are steel elements
<Desc / Clms Page number 12>
prefabricated in the factory, which makes it possible to achieve great precision with regard to their dimensions.
The framework also includes reinforced concrete floor elements 12, prefabricated in the factory.
The posts 4 located at the corners of the building consist of a steel section having a substantially L-shaped cross section at a right angle. The opening of the L is directed towards the interior of the building. the branch 13 of this profile which is parallel to the transverse beams 10, carries at its end a wing 14, directed towards the interior of the building, perpendicular to this branch 13. The branch 13 of this profile which is parallel to the main beams 8, carries at its end, two wings 14 perpendicular to this branch 13.
The other posts 5, 6 located along the periphery of the building each consist of a profile having a section substantially in the shape of a T, the two branches 13 of the T directed opposite one another being oriented in this direction. periphery, the third branch 13 of the T being directed towards the interior of the building and carrying at its end two wings 14 perpendicular to this branch 13.
In the posts 5, the two branches 13 of the T which are directed opposite one another are parallel to the transverse beams 10 and each carry at its end a single wing 14 directed towards the interior of the building, perpendicularly to this branch 13.
In the posts 6, the two branches 13 of the T which are directed opposite one another are parallel to the main beams 8 and each carry at its end two wings 14 perpendicular to this branch 13.
The posts 7 located inside the building each consist of a steel section having a cross section substantially in the shape of a cross, each of the branches 13 of
<Desc / Clms Page number 13>
each of these cross sections carrying at its end two wings 14 perpendicular to this branch 13. The posts 7 therefore have a cross-shaped cross section.
The main beams 8 and the transverse beams 10 are steel sections having an I-shaped section, comprising a vertical core 15 carrying at each end two wings 14 perpendicular to this core 15. The height of the main beams 8 is greater than that of transverse beams 10.
The external beams 9 parallel to the main beams 8 are also profiles having an I-shaped section. The external beams 9 can moreover be identical to the main beams 8.
The outer beams 11 parallel to the transverse beams 10 each consist of a steel profile comprising a vertical core 15 carrying at each end a single wing 14 perpendicular to this core 15, these two wings 14, located on the same side of the core 15, being directed towards the interior of the building.
The height of the main beams 8 and of the external beams 9 parallel to the main beams 8 is greater than the height of the transverse beams 10 and of the external beams 11 parallel to the transverse beams 10.
All posts 2,3,4,5,6,7 illustrated in Figs. 7 to 12 are provided at each of their ends with means capable of rigidly connecting together superposed posts.
These means comprise at each profile branch 13 of each pole end, a steel plate 16, fixed perpendicular to the longitudinal axis of the pole, to the wing 14 or to the wings 14 by a branch 13 of the profile and to a portion of this branch 13 located near this wing 14 or these wings 14. This steel plate 16 is pierced with at least one hole 17 for a bolt, thus making it possible to connect, by bolting, stacked posts.
<Desc / Clms Page number 14>
The posts 2,3,4 which have a substantially L-shaped section, are provided with an additional steel plate 18, fixed perpendicular to the longitudinal axis of the post in the junction zone between the branches of the post. This steel plate 18 is also pierced with a hole 17 for a bolt.
An end plate 19 pierced with holes 17 for bolts is fixed, at each end of each beam 8, 9, 10, 11, perpendicular to the longitudinal axis thereof. The wings 14 of the posts 2,3,4,5,6,7 also being pierced with holes 17 for bolts in the appropriate places, each beam 8,9,10,11 can thus be fixed in place by bolting its plates end 19 to the wings 14 of the posts 2,3,4,5,6,7 between which it is located.
Openings 20 adapted to allow the passage of pipes 21 are formed in at least some of the branches 13 and wings 14 of the posts 2,3,4,5,6,7 and in at least some of the cores 15, wings 14 and end plates 19 of the beams 8,9,10,11.
The reinforced concrete floor elements 12 are supported by two opposite edges on a main beam 8 and on an external beam 9 parallel to this main beam 8. They are juxtaposed so as to form a continuous slab. Openings 22 are made in the floor elements 12, near the posts 2,3,4,5,6,7, in the angles formed by the branches 13 of the profiles which form these posts, thus allowing the realization of vertical technical sheaths passing from floor to floor, in the corners formed by these branches 13.
When mounting a frame and after mounting the posts and beams corresponding to a level of the building, the floor elements 12 are placed in place.
<Desc / Clms Page number 15>
After the floor elements 12 have been put in place, floating floors 23 can optionally be placed on the floors thus produced (see FIG. 5,6,20). The manufacture and installation of these floating slabs 23 are advantageously carried out according to the technique described in EP-A-0750 709.
After the completion of a floor, the posts 8,9,10,11 can be set up for the next level of the building, these posts 8,9,10,11 being fixed by bolting to the posts 8,9,10,11 corresponding on which they rest on.
The prefabricated steel elements (beams and columns) constituting the framework 1 can be manufactured with good precision.
To take account of certain dimensional tolerances, it may however be necessary to interpose a shim between the steel plates 16,18 (connecting pieces) of certain 5,6,7 superposed posts. These shims may in particular consist of steel plates with a thickness of a few tenths of a millimeter.
Fig. 27 is a section, along a horizontal plane, of a post 7. In the corners formed by the branches 13 of this post 7, vertical technical sheaths are installed in which pipes 21 pass.
Such a technical sheath can be closed by a removable attached panel (such as 24, 25, 26 or 27) which connects between them the wings 14 of two adjacent branches 13, of the post 7, in the corner of which a technical sheath is made. vertical. It will be noted that, depending on the shape of the attached closure panel (24, 25, 26 or 27), the technical sheath has a more or less large section.
The production of building frames according to the invention offers many advantages and in particular the well-known advantages which are due to the ease of organization of what is known as the "dry site". We will understand as easily as with
<Desc / Clms Page number 16>
such a construction technique, modification or enlargement of a building is greatly facilitated. It is also very advantageous to be able to easily dismantle and reuse the framework elements of the buildings that one wishes to dismantle.
The building frame according to the invention, however, offers very particular advantages because it can be produced with simple prefabricated elements, few in number, little diversified and relatively inexpensive, and which it also makes it possible to install, in a simple and effective way, pipelines in the completed building.
To this end, openings 20 adapted to allow the passage of pipes are formed in at least some of the branches 13 and wings 14 of the posts 2,3,4,5,6,7 and in at least some of the cores 15, wings 14 and end plates 19 of the beams 8, 9, 10, 11.
Just as for the holes 17 for bolts with which the posts and beams are provided, these openings 20 for the passage of pipes can advantageously be formed in the posts and beams, during the factory prefabrication of these elements.
Figs. 27 and 28 show in particular that in vertical technical sheaths formed in the corners of the branches 13 of a post 7, it is possible to pass very diverse pipes 21 and in particular cables (which may be electrical cables, telephone cables, television, etc.), water pipes (which can be water distribution pipes, central heating pipes, waste water discharges, etc.), toilet scraps, water pipes '' air supply or exhaust (for air conditioning, hot air heating, range hoods, etc.).
<Desc / Clms Page number 17>
Thanks to openings 20 made at the appropriate places in the posts and beams, pipes 21 can pass from a vertical technical sheath towards the space situated outside this technical sheath, for example towards a (double) partition mounted between two posts. neighbors of the frame.
Thanks to openings 20 formed in the branches 13 of a post 7, pipes 21 can also pass from a technical sheath to a neighboring technical sheath formed in the same post 7.
The framework according to the invention thus makes it possible to install a wide variety of pipes in the building and this in a simple and effective manner. The vertical pipes are, in fact, enclosed in the vertical technical sheaths and, from these vertical technical sheaths, pipes can be conducted, for example against or in partitions or ceilings.
The frame part illustrated schematically in Figures 1 and 2 is only one example chosen from the many and very diverse frames which can be produced according to the technique of the invention.
The schematic plan views shown in Figs. 3 and 4 illustrate two other types of framework according to the invention.
In the frame part shown in FIG. 3, a corridor A crosses the building, parallel to the main beams 8 and to the external beams 9. Inside the perimeter of the building there are posts 7 with a cross section substantially in the shape of a cross, but also posts 6 with a cross section T-shaped substance. In particular, along one side of corridor A, there are posts 7 with cross-section, which in particular offers the advantage of having vertical technical ducts accessible from this corridor A. Along on the other side of this corridor A, however, there are posts 6
<Desc / Clms Page number 18>
with a T-shaped section, which notably offer the advantage of not reducing the free width of corridor A.
The frame part shown in Fig. 4 is similar to that of Fig. 3, but, in the case of FIG. 4, two corridors B and C cross the building parallel to the main beams 8.
The posts located along the two sides of the corridors B and C are profiles 6, having a section in the form of. T. The building framework therefore does not include cross-section posts.