AU749992B2 - Method of designing agonists and antagonists to IGF receptor - Google Patents
Method of designing agonists and antagonists to IGF receptor Download PDFInfo
- Publication number
- AU749992B2 AU749992B2 AU15521/99A AU1552199A AU749992B2 AU 749992 B2 AU749992 B2 AU 749992B2 AU 15521/99 A AU15521/99 A AU 15521/99A AU 1552199 A AU1552199 A AU 1552199A AU 749992 B2 AU749992 B2 AU 749992B2
- Authority
- AU
- Australia
- Prior art keywords
- aaaa
- atoi
- atom
- atoll
- receptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Peptides Or Proteins (AREA)
Description
WO 99/28347 PCT/AU98/00998 METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR Field of the Invention This invention relates to the field of receptor structure and receptor/ligand interactions. In particular it relates to the field of using receptor structure to predict the structure of related receptors and to the use of the determined structures and predicted structures to select and screen for agonists and antagonists of the polypeptide ligands.
Background of the Invention Insulin is the peptide hormone that regulates glucose uptake and metabolism. The two types of diabetes mellitus are associated either with an inability to produce insulin because of destruction of the pancreatic islet cells (Homo-Delarche, F. Boitard, C.,1996, Immunol. Today 10: 456-460) or with poor glucose metabolism resulting from either insulin resistance at the target tissues, or from inadequate insulin secretion by the islets or faulty liver function (Taylor, S. et al., 1994, Diabetes, 43: 735-740).
Insulin-like growth factors-1 and 2 (IGF-1 and 2) are structurally related to insulin, but are more important in tissue growth and development than in metabolism. They are primarily produced in the liver in response to growth hormone, but are also produced in most other tissues, where they function as paracrine/autocrine regulators. The IGFs are strong mitogens, and are involved in numerous physiological states and certain cancers (Baserga, 1996, TibTech 14: 150-152).
Epidermal growth factor (EGF) is a small polypeptide cytokine that is unrelated to the insulin/IGF family. It stimulates marked proliferation of epithelial tissues, and is a member of a larger family of structurally-related cytokines, such as transforming growth factor a, amphiregulin, betacellulin, heparin-binding EGF and some viral gene products. Abnormal EGF family signalling is a characteristic of certain cancers (Soler, C. Carpenter, G., 1994 In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, ppl94-197; Walker, F. Burgess, A. 1994, In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp198-201).
Each of these growth factors mediates its biological actions through binding to the corresponding receptor. The IR, IGF-1R and the insulin receptor-related receptor (IRR), for which the ligand is not known, are closely related to each other, and are referred to as the insulin receptor subfamily. A WO 99/28347 PCT/AU98/00998 2 large body of information is now available concerning the primary structure of these insulin receptor subfamily members (Ebina, et al., 1985 Cell 747-758; Ullrich, et al., 1985, Nature 313: 756-761; Ullrich, A. et al., 1986, EMIBO J 5: 2503-2512; Shier, P. Watt, V. 1989, J. Biol. Chem. 264: 14605-14608) and the identification of some of their functional domains (for reviews see De Meyts, P. 1994, Diabetologia 37: 135-148; Lee, J. Pilch, P.
F. 1994 Amer. J. Physiol. 266: C319-C334.; Schaffer, L. 1994, Eur. J. Biochem.
221: 1127-1132). IGF-1R, IR and IRR are members of the tyrosine kinase receptor superfamily and are closely related to the epidermal growth factor receptor (EGFR) subfamily, with which they share significant sequence identity in the extracellular region as well as in the cytoplasmic kinase domains (Ullrich, A. et al., 1984 Nature 309: 418-425; Ward, C. W. et al., 1995 Proteins: Structure Function Genetics 22: 141-153). Both the insulin and EGF receptor subfamilies have a similar arrangement of two homologous domains (L1 and L2) separated by a cys-rich region of approximately 160 amino acids containing 22-24 cys residues (Bajaj, et al., 1987 Biochim.
Biophys. Acta 916: 220-226; Ward, C. W. et al., 1995 Proteins: Structure Function Genetics 22: 141-153). The C-terminal portion of the IGF-1R ectodomain (residues 463 to 906) is comprised of four domains: a connecting domain, two fibronectin type 3 (Fn3) repeats, and an insert domain (O'Bryan, J. et al., 1991 Mol Cell Biol 11: 5016-5031). The C-terminal portion of the EGFR ectodomain (residues 477-621) consists solely of a second cys-rich region containing 20 cys residues (Ullrich, A. et al., 1984, Nature 309: 418- 425).
Little is known about the secondary, tertiary and quaternary structure of the ectodomains of these receptor subfamilies. Unlike the members of the EGFR subfamily which are transmembrane monomers which dimerise on binding ligand, the IR subfamily members are homodimers, held together by disulphide bonds. The extracellular region of the IR/IGF-1R/IRR monomers contains an a-chain 703 to 735 amino acid residues) and 192-196 residues of the i-chain. There is a -23 residue transmembrane segment, followed by the cytoplasmic portion (354 to 408 amino acids), which contains the catalytic tyrosine kinase domain flanked by juxtamembrane and C-tail regulatory regions and is responsible for mediating all receptor-specific functions (White, M. F. Kahn, C. R. 1994 J. Biol. Chem. 269: Chemical analyses of the receptor suggest that the a-chains are linked to the if-chains WO 99/28347 PCT/AU98/00998 3 via a single disulphide bond, with the IR dimer being formed by at least two a-a disulphide linkages (Finn, F. et al., 1990, Proc. Natl. Acad. Sci. 87: 419-423; Chiacchia, K. 1991, Biochem. Biophys. Res. Commun. 176, 1178- 1182; Schaffer, L. Ljungqvist, 1992, Biochem. Biophys. Res. Comm. 189: 650-653; Sparrow, L. et al., 1997, J. Biol. Chem. 47: 29460-29467).
Although the three-dimensional (3D) structures of the ligands EGF, TGF-alpha (Hommel, et al., 1992, J. Mol. Biol. 227:271-282), insulin (Dodson, E. et al., 1983, Biopolymers 22:281-291), IGF-1 (Sato, et al., 1993, Int J Peptide Protein Res 41:433-440) and IGF-2 (Torres, A. et al.,1995, J. Mol. Biol. 248:385-401) are known, and numerous analytical and functional studies of ligand binding to EGFR (Soler, C. Carpenter, 1994 In Nicola (ed) Guidebook to Cytokines and Their receptors", Oxford Univ.
Press, Oxford, pp194-197), IGF-1R and IR (see De Meyts, 1994 Diabetologia, 37:135-148) have been carried out, the mechanisms of ligand binding and subsequent transmembrane signalling have not been resolved.
Ligand-induced, receptor-mediated phosphorylation is the signalling mechanism by which most cytokines, polypeptide hormones and membraneanchored ligands exert their biological effects. The primary kinase may be part of the intracellular portion of the transmembrane receptor protein, as in the tyrosine kinase receptors (for review see Yarden, et al., 1988, Ann.
Rev. Biochem. 57:443-478) or the Ser/Thr kinase receptors (Alevizopoulos,
A.
Mermod, 1997, BioEssays, 19:581-591) or may be non-covalently associated with the cytoplasmic tail of the transmembrane protein(s) making up the receptor complex, as in the case of the haemopoietic growth factor receptors (Stahl, et al., 1995, Science 267:1349-1353). The end result is the same, ligand binding leads to receptor dimerization or oligomerization or a conformational change in pre-existing receptor dimers or oligomers, resulting in activation by transphosphorylation, of the covalently attached or non-covalently associated protein kinase domains (Hunter, 1995, Cell, 80:225-236).
Many oncogenes have been shown to be homologous to growth factors, growth factor receptors or molecules in the signal transduction pathways (Baserga, R.,1994 Cell, 79:927-930; Hunter, 1997 Cell, 88:333- 346). One of the best examples is v-Erb (related to the EGFR). Since overexpression of a number of growth factor receptors results in liganddependent transformation, an alternate strategy for oncogenes is to regulate WO 99/28347 PCT/AU98/00998 4 the expression of growth factor receptors or their ligands or to directly bind to the receptors to stimulate the same effect (Baserga, 1994 Cell, 79:927- 930). Examples are v-Src, which activates IGF-1 R intracellularly; c-Myb, which transforms cells by enhancing the expression of IGF1R; and SV40 T antigen which interacts with the IGF-1R and enhances the secretion of IGF-1 (see Baserga, R.,1994 Cell, 79:927-930 for review). Cells in which the IGF-1R has been disrupted or deleted cannot be transformed by SV40 T antigen. If oncogenes activate growth factors and their receptors; then tumour suppressor genes should have the opposite effect. One good example of this is the Wilm's tumour suppressor gene, WT1, which suppresses the expression of IGF-1R (Drummond, J. et al., 1992, Science, 257:275-277). Cells that are driven to proliferate by oncogenes undergo massive apoptosis when growth factor receptors are ablated, since, unlike normal cells, they appear unable to withdraw from the cell-cycle and enter into the Go phase (Baserga, R.,1994 Cell, 79:927-930).
The insulin-like growth factor-1 receptor (IGF-1R) is one of several growth-factor receptors that regulate the proliferation of mammalian cells.
However, its ubiquitousness and certain unique aspects of its function make IGF-1R an ideal target for specific therapeutic interventions against abnormal growth, with very little effect on normal cells (see Baserga, 1996 TIBTECH, 14:150-152). The receptor is activated by IGF1, IGF2 and insulin, and plays a major role in cellular proliferation in at least three ways: it is essential for optimal growth of cells in vitro and in vivo; several cell types require IGF-1R to maintain the transformed state; and activated IGF-1R has a protective effect against apoptotic cell death (Baserga, 1996 TIBTECH, 14:150-152). These properties alone make it an ideal target for therapeutic interventions. Transgenic experiments have shown that IGF-1R is not an absolute requirement for cell growth, but is essential for the establishment of the transformed state (Baserga, R.,1994 Cell, 79: 927-930). In several cases (human glioblastoma, human melanoma; human breast carcinoma; human.
lung carcinoma; human ovarian carcinoma; human rhabdomyosarcoma; mouse melanoma, mouse leukaemia; rat glioblastoma; rat rhabdomyosarcoma; hamster mesothelioma the transformed phenotype can be reversed by decreasing the expression of IGF-1R using antisense to IGF-1R (Baserga, 1996 TIBTECH 14:150-152); or by interfering with its function by antibodies to IGF-1R (human breast carcinoma; human WO 99/28347 PCT/AU98/00998 rhabdomyosarcoma) or by dominant negatives of IGF-1R (rat glioblastoma; Baserga, R.,1996 TIBTECH 14:150-152).
Three effects are observed when the function of IGF-1R is impaired: tumour cells undergo massive apoptosis which results in inhibition of tumourogenesis; surviving tumour cells are eliminated by a specific immune response; and such a host response can cause a regression of an established wild-type tumour (Resnicoff, et al., 1995, Cancer Res. 54:2218-2222).
These effects, plus the fact that interference with IGF-1R function has a limited effect on normal cells (partial inhibition of growth without apoptosis) makes IGF-1R a unique target for therapeutic interventions (Baserga, 1996 TIBTECH 14:150-152). In addition IGF-1R is downstream of many other growth factor receptors, which makes it an even more generalised target. The implication of these findings is that if the number of IGF-1Rs on cells can be decreased or their function antagonised, then tumours cease to grow and can be removed immunologically. These studies establish that IGF-1R antagonists will be extremely important therapeutically.
Many cancer cells have constitutively active EGFR (Sandgreen, E. P., et al., 1990, Cell, 61:1121-135; Karnes, W. E. et al., 1992, Gastroenterology, 102:474-485) or other EGFR family members (Hines, N. E.,1993, Semin.
Cancer Biol. 4:19-26). Elevated levels of activated EGFR occur in bladder, breast, lung and brain tumours (Harris, A. et al., 1989, In Furth Greaves (eds) The Molecular Diagnostics of human cancer. Cold Spring Harbor Lab.
Press, CSH, NY, pp353-357). Antibodies to EGFR can inhibit ligand activation of EGFR (Sato, J. et al., 1983 Mol. Biol. Med. 1:511-529) and the growth of many epithelial cell lines (Aboud-Pirak et al., 1988, J. Natl Cancer Inst.
85:1327-1331). Patients receiving repeated doses of a humanised chimeric anti-EGFR monoclonal antibody showed signs of disease stabilization. The large doses required and the cost of production of humanised monoclonal antibody is likely to limit the application of this type of therapy. These findings indicate that the development of EGF antagonists will be attractive anticancer agents.
Summary of the Invention The present inventors have now obtained 3D structural information concerning the insulin-like growth factor receptor (IGF-1R). This information can be used to predict the structure of related members of the insulin WO 99/28347 PCT/AU98/00998 6 receptor family and provides a rational basis for the development of ligands for specific therapeutic applications.
Accordingly, in a first aspect the present invention provides a method of designing a compound able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, including the step of assessing the stereochemical complementarity between the compound and the receptor site of the molecule, wherein the receptor site includes: amino acids 1 to 462 of the receptor for IGF-1, having the atomic coordinates substantially as shown in Figure 1; a subset of said amino acids, or; amino acids present in the amino acid sequence of a member of the insulin receptor family, which form an equivalent three-dimensional structure to that of the receptor molecule as depicted in Figure 1.
The phrase "insulin receptor family" encompasses, for example, IGF- 1R, IR and IRR. In general, insulin receptor family members show similar domain arrangements and share significant sequence identity (preferably at least 40% identity).
By "stereochemical complementarity" we mean that the biologically active substance or a portion thereof correlates, in the manner of the classic "lock-and-key" visualisation of ligand-receptor interaction, with the groove in the receptor site.
In a preferred embodiment of this aspect of the invention, the compound is selected or modified from a known compound identified from a database.
In a further preferred embodiment, the compound is designed so as to complement the structure of the receptor molecule as depicted in Figure 1.
In a further preferred embodiment, the compound has structural regions able to make close contact with amino acid residues at the surface of the receptor site lining the groove, as depicted in Figure 2.
In a further preferred embodiment, the compound has a stereochemistry such that it can interact with both the L1 and L2 domains of the receptor site.
In a further preferred embodiment, the compound has a stereochemistry such that it can interact with the L1 domain of a first monomer of the receptor homodimer, and with the L2 domain of the other monomer of the receptor homodimer.
In a further preferred embodiment, the interaction of the compound with the receptor site alters the position of at least one of the L1, L2 or cysteine- WO 99/28347 PCT/AU98/00998 7 rich domains of the receptor molecule relative to the position of at least one of the other of said domains. Preferably, the compound interacts with the P sheet of the L1 domain of the receptor molecule, thereby causing an alteration in the position of the L1 domain relative to the position of the cysteine-rich domain or of the L2 domain. Alternatively, the compound interacts with the receptor site in the region of the interface between the L1 domain an the cysteine-rich domain of the receptor molecule, thereby causing the L1 domain and the cysteine-rich domain to move away from each other. In another preferred embodiment, the compound interacts with the hinge region between the L2 domain and the cysteine-rich domain of the receptor molecule, thereby causing an alteration in the positions of the L2 domain and the cysteine-rich domain relative to each other.
In a further preferred embodiment, the stereochemical complementarity between the compound and the receptor site is such that the compound has a Kb for the receptor side of less than 10GM, more preferably is less than 10- 8
M.
In a further preferred embodiment or the first aspect of the present invention, the compound has the ability to increase an activity mediated by the receptor molecule.
In a further preferred embodiment, the compound has the ability to decrease an activity mediated by the receptor molecule. Preferably, the stereochemical interaction between the compound and the receptor site is adapted to prevent the binding of a natural ligand of the receptor molecule to the receptor site. It is preferred that the compound has a K, of less than 10-M, more preferably less than 10 8 M and more preferably less than 10 9
M.
In a further preferred embodiment of the first aspect of the present invention, the receptor is the IGF-1R, or the insulin receptor.
In a second aspect, the present invention provides a computer-assisted method for identifying potential compounds able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, using a programmed computer including a processor, an input device, and an output device, including the steps of: inputting into the programmed computer, through the input device, data comprising the atomic coordinates of the IGF-1R molecule as shown in Figure i, or a subset thereof; generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic WO 99/28347 PCT/AU98/00998 8 coordinates of the IGF-1R site as shown in Figure 1, or a subset thereof, thereby generating a criteria data set; comparing, using the processor, the criteria data set to a computer database of chemical structures; selecting from the database, using computer methods, chemical structures which are structurally similar to a portion of said criteria data set; and outputting, to the output device, the selected chemical structures which are similar to a portion of the criteria data set.
In a preferred embodiment of the second aspect, the programmed computer includes a data storage system which includes the dtatbase of chemical structures.
In a preferred embodiment of the second aspect, the method is used to identify potential compounds which have the ability to decrease an activity mediated by the receptor.
In another preferred embodiment, the computer-assisted method further includes the step of selecting one or more chemical structures from step (e) which interact with the receptor site of the molecule in a manner which prevents the binding of natural ligands to the receptor site.
In another preferred embodiment, the computer-assisted method further includes the step of obtaining a compound with a chemical structure selected in steps and and testing the compound for the ability to decrease an activity mediated by the receptor.
In a further preferred embodiment, the computer-assisted method is used to identify potential compounds which have the ability to increase an activity mediated by the receptor molecule.
In another preferred embodiment, the computer-assisted method further includes the step of obtaining a molecule with a chemical structure selected in steps and and testing the compound for the ability to increase an activity mediated by the receptor.
In a further preferred embodiment of the second aspect of the present invention, the receptor is the IGF-1R, or the insulin receptor.
In a third aspect, the present invention provides a method of screening of a putative compound having the ability to modulate the activity of a receptor of the insulin receptor family, including the steps of identifying a putative compound by a method according to the first or second aspects, and testing the WO 99/28347 PCT/AU98/00998 9 compound for the ability to increase or decrease an activity mediated by the receptor.
In a preferred embodiment of the third aspect, the test is carried out in vitro.
In a further preferred embodiment of the third aspect, the test is a high throughput assay.
In a preferred embodiment of the third aspect, the test is carried out in vivo.
Brief Description of the Drawings Figure 1. IGF-1R residues 1-462, in terms of atomic coordinates refined to a resolution of 2.6 A (average accuracy 0.3A). The coordinates are in relation to a Cartesian system of orthogonal axes.
Figure 2. Depiction of the residues lining the groove of the IGF-1R receptor fragment 1-462.
Figure 3. Gel filtration chromatography of affinity-purified IGF-1R/462 protein. The protein was purified on a Superdex S200 column (Pharmacia) fitted to a BioLogic L.C. system (Biorad), equilibrated and eluted at 0.8 ml/min with 40 mMvl Tris/150 mM NaCl/0.02% NaN3 adjusted to pH Protein eluting in peak 1 contained aggregated IGF-1R/462 protein, peak 2 contained monomeric protein and peak 3 contained the c-myc undecapeptide used for elution from the Mab 9E10 immunoaffinity column. Nonreduced SDS-PAGE of fraction 2 from IGF-1R/462 obtained following Superdex S200 (Fig.la). Standard proteins are indicated.
Figure 4. Ion exchange chromatography of affinity-purified, truncated IGF- 1R ectodomain. A mixture of gradient and isocratic elution chromatography was performed on a Resource Q column (Pharmacia) fitted to a BioLogic System (Biorad), using 20 mM Tris/pH 8.0 as buffer A and the same buffer containing 1M NaCI as buffer B. Protein solution in TBSA was diluted at least 1:2 with water and loaded onto the column at 2 ml/min. Elution was monitored by absorbance (280 nm) and conductivity (mS/cm). Target protein (peak 2) eluted isocratically with 20 mM Tris/0.14 M NaC1 pH 8.0. Inset: WO 99/28347 PCT/AU98/00998 Isoelectric focusing gel (pH 3 7; Novex Australia Pty Ltd)of fraction 2. The pi was estimated at 5.1 from standard proteins (not shown).
Figure 5. Polypeptide fold for residues 1-462 of IGF-1R. The L1 domain is at the top, viewed from the N-terminal end and L2 is at the bottom. The space at the centre is of sufficient size to accommodate IGF-1. Helices are indicated by curled ribbon and b-strands by arrows. Cysteine side chains are drawn as ball-and-stick with lines showing disulfide bonds. The arrow points in the direction of view for L1 in Figure 7.
Figure 6. Amino acid sequences of IGF-1R and related proteins, a, L1 and L2 domains of human IGF-1R and IR are shown based on a sequence alignment for the two proteins and a structural alignment for the L1 and L2domains.
Positions showing conservation physico-chemical properties of amino acids are boxed, residues used in the structural alignment are shown in Times Italic and residues which form the Trp 176 pocket are in Times Bold.
Secondary structure elements for L1 (above the sequences) and L2 (below) are indicated as cylinders for helices and arrows for p-strands. Strands are shaded (pale, medium and dark grey) according to the p-sheet to which they belong. Disulfide bonds are also indicated. b, Cys-rich domains of human IGF-1R, IR and EGFR (domains 2 and 4) are aligned based on sequence and structural considerations. Secondary structural elements and disulfide bonds are indicated above the sequences. The dashed bond is only present in IR.
Different types of disulfide bonded modules are labelled below the sequences as open, filled or broken lines. Boxed residues show conservation of physicochemical properties and structurally conserved residues for modules 4-7 are shown in Times Italic. Residues from EGFR which do not conform to the pattern are in lowercase with probable disulfide bonding indicated below and the conserved Trp 176 and the semi-conserved Gln 182 are in Times Bold.
Figure 7. Stereo view of a superposition of the L1 (white) and L2 (black) domains. Residues numbers above are for L1 and below for L2. The side chain of Trp 176 which protrudes into the core of L1 is drawn as ball-andstick.
WO 99/28347 PCT/AU98/00998 11 Figure 8. Schematic diagram showing the association of three P-finger motifs. p-strands are drawn as arrows and disulfide bonds as zigzags.
Figure 9: Sequence alignment of hIGF-1R, hIR and hIRR ectodomains, derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.
For assignment of homologous 3D structures see Figure 6.
Figure 10 Gel filtration chromatography of insulin receptor ectodomain and MFab complexes. hIR -11 ectodomain dimer (5 20 mg) was complexed with MFab derivatives (15-25 mg each) of the anti-hIR antibodies 18-44, 83-7 and 83-14 (Soos et al., 1986). Flution profiles were generated from samples loaded on to a Superdex S200 column (Pharmacia), connected to a BioLogic chromatography system (Biorad) and monitored at 280 nm. The column was eluted at 0.8 ml/min with 40 mM Tris/150 mM sodium chloride/0.02% sodium azide buffer adjusted to pH 8.0: Profile 0, hIR -11 ectodomain, Profile 1, ectodomain mixed with MFab 18-44; Profile 2 ectodomain mixed with MIFab18-44 and MFab 83-14; Profile 3, ectodomain mixed with MFab 18-44, MFab 83-14 and MFab 83-7. The apparent mass of each complex was determined from a plot of the following standard proteins: thyroglobulin (660 kDa), ferritin (440 kDa), bovine gamma globulin (158 kDa), bovine serum albumin (67 kDa), chicken ovalbumin (44 kDa) and equine myoglobin (17 kDa).
Figure 11 Schematic representations of electron microscopy images of the hIR ectodomain dimer.
Detailed Description of the Invention We describe herein the expression, purification, and crystallization of a recombinant truncated IGF-1R fragment (residues 1-462) containing the L1cysteine-rich-L2 region of the ectodomain. The selected truncation position is just downstream of the exon 6/exon 7 junction (Abbott, A. et al., 1992. J Biol Chem., 267:10759-10763), and occurs at a position where the sequences of the IR and EGFR families diverge markedly (Ward, C. et al.,1995, Proteins: Struct., Funct., Genet. 22:141-153; Lax, et al., 1988, Molec.
Cellul. Biol. 8:1970-1978) suggesting it represents a domain boundary. To WO 99/28347 PCT/AU98/00998 12 limit the effects of glycosylation, the IGF-1R fragment was expressed in Lec8 cells, a glycosylation mutant of Chinese hamster ovary (CHO) cells, whose defined glycosylation defect produces N-linked oligosaccharides truncated at N-acetyl glucosamine residues distal to mannose residues (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383). Such an approach has facilitated glycoprotein crystallization (Davis, S. et al., 1993, Protein Eng. 6:229-232; Liu, et al., 1996, J. Biol. Chem. 271:33639-33646).
The IGF-1R construct described herein includes a c-myc peptide tag (Hoogenboom, H. et al.,1991, Nucleic Acids Res. 19:4133-4137) that is recognised by the Mab 9E10 (Evan, G. et al., 1985, Mol. Cell. Biol. 5:3610- 3616) enabling the expressed product to be purified by peptide elution from an antibody affinity column followed by gel filtration over Superdex S200.
The purified proteins crystallized under a sparse matrix screen (Jancarik, J. Kim, 1991, J. Appl. Cryst. 24:409-411) but the crystals were of variable quality, with the best diffracting to 3.0-3.5A. Isocratic gradient elution by anion-exchange chromatography yielded protein that was less heterogenous and gave crystals of sufficient quality to determine the structure of the first three domains of the human IGF-1R.
The IGF-1R fragment consisted of residues 1-462 of IGF-1R linked via an enterokinase-cleavable pentapeptide sequence to an eleven residue c-myc peptide tag at the C-terminal end. The fragment was expressed in Lec8 cells by continuous media perfusion in a bioreactor using porous carrier disks. It was secreted into the culture medium and purified by peptide elution from an anti-c-myc antibody column followed by Superdex S200 gel filtration. The receptor fragment bound two anti-IGF-1R monoclonal antibodies, 24-31 and 24-60, which recognize conformational epitopes, but could not be shown to bind IGF-1 or IGF-2. Crystals of variable quality were grown as rhombic prisms in 1.7 M ammonium sulfate at pH 7.5 with the best diffracting to A. Further purification by isocratic elution on an anion-exchange column gave protein which produced better quality crystals, diffracting to 2.6 A, that were suitable for X-ray structure determination.
The structure of this fragment (IGF-1R residues 1-462; L1-cys rich-L2 domains) has been determined to 2.6 A resolution by X-ray diffraction. The L domains each adopt a compact shape consisting of a single stranded righthanded P-helix. The cys-rich region is composed of eight disulphide-bonded modules, seven of which form a rod-shaped domain with modules associated WO 99/28347 PCT/AU98/00998 13 in a novel manner. At the centre of this reasonably extended structure is a space, bounded by all three domains, and of sufficient size to accommodate a ligand molecule. Functional studies on IGF-1R and other members of the insulin receptor family show that the regions primarily responsible for hormone-binding map to this central site. Thus this structure gives a first view of how members of the insulin receptor family might interact with their ligands.
Another group has reported the crystallization of a related receptor, the EGFR, in a complex with its ligand EGF (Weber, et al., 1994, J Chromat. 679:181-189). However, difficulties were encountered with these crystals which diffracted to only 6 A, insufficient for the determination of an atomic resolution structure of this complex (Weber, et al., 1994, J Chromat 679:181-189) or the generation of accurate models of structurally related receptor domains such as IGF-1R and IR by homology modelling.
The present inventors have developed 3D structural information about cytokine receptors in order to enable a more accurate understanding of how the binding of ligand leads to signal transduction. Such information provides a rational basis for the development of ligands for specific therapeutic applications, something that heretofore could not have been predicted de novo from available sequence data.
The precise mechanisms underlying the binding of agonists and antagonists to the IGF-1R site are not fully clarified. However, the binding of ligands to the receptor site, preferably with an affinity in the order of 1O-M or higher, is understood to arise from enhanced stereochemical complementarity relative to naturally occurring IGF-1 ligands.
Such stereochemical complementarity, pursuant to the present invention, is characteristic of a molecule that matches intra-site surface residues lining the groove of the receptor site as eneumerated by the coordinates set out in Figure 1. The residues lining the groove are depicted in Figure 2. By "match" we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by enthalpyreducing Van der Waals interactions which promote desolvation of the biologically active substance within the site, in such a way that retention of the biologically active substance within the groove is favoured energetically.
Substances which are complemetary to the shape of the receptor site characterised by amino acids positioned at atomic coordinates set out in WO 99/28347 PCT/AU98/00998 14 Figure 1 may be able to bind to the receptor site and, when the binding is sufficiently strong, substantially prohibit binding of the naturally occurring ligands to the site.
It will be appreciated that it is not necessary that the complementarity between ligands and the receptor site extend over all residues lining the groove in order to inhibit binding of the natural ligand.
Accordingly, agonists or antagonists which bind to a portion of the residues lining the groove are encompassed by the present invention.
In general, the design of a molecule possessing stereochemical complementarity call be accomplished by means of techniques that optimize, either chemically or geometrically, the "fit" between a molecule and a target receptor. Known techniques of this sort are reviewed by Sheridan and Venkataraghavan, Acc. Chem Res. 1987 20 322; Goodford, J. Med. Chem.
1984 27 557; Beddell, Chem. Soc. Reviews 1985, 279; Hol, Angew. Chem.
1986 25 767 and Verlinde C.L.M.J Hol, W.G.J. Structure 1994, 2, 577, the respective contents of which are hereby incorporated by reference. See also Blundell et al., Nature 1987 326 347 (drug development based on information regarding receptor structure).
Thus, there are two preferred approaches to designing a molecule, according to the present invention, that complements the shape of IGF-1R or a related receptor molecule. By the geometric approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains "pockets" or "grooves" that form binding sites for the second body (the complementing molecule, as ligand). The second preferred approach entails an assessment of the interaction of respective chemical groups ("probes") with the active site at sample positions within and around the site, resulting in an array of energy values from which three-dimensional contour surfaces at selected energy levels can be generated.
The geometric approach is illustrated by Kuntz et al., J. Mol. Biol.
1982 161 269, the contents of which are hereby incorporated by reference, whose algorithm for ligand design is implemented in a commercial software package distributed by the Regents of the University of California and further described in a document, provided by the distributor, which is entitled "Overview of the DOCK Package, Version the contents of which are WO 99/28347 PCT/AU98/00998 hereby incorporated by reference. Pursuant to the Kuntz algorithm, the shape of the cavity represented by the IGF-R1 site is defined as a series of overlapping spheres of different radii. One or more extant data bases of crystallographic data, such as the Cambridge Structural Database System maintained by Cambridge University (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, and the Protein Data Bank maintained by Brookhaven National Laboratory (Chemistry Dept. Upton, NY 11973, is then searched for molecules which approximate the shape thus defined.
Molecules identified in this way, on the basis of geometric parameters, can then be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions and Van der Waals interactions.
The chemical-probe approach to ligand design is described, for example, by Goodford, J. Med. Chem. 1985 28 849, the contents of which are hereby incorporated by reference, and is implemented in several commercial software packages, such as GRID (product of Molecular Discovery Ltd., West Way House, Elms Parade, Oxford OX2 9LL, Pursuant to this approach, the chemical prerequisites for a site-complementing molecule are identified at the outset, by probing the active site (as represented via the atomic coordinates shown in Fig. 1) with different chemical probes, water, a methyl group, an amine nitrogen, a carboxyl oxygen, and a hydroxyl.
Favored sites for interaction between the active site and each probe are thus determined, and from the resulting three-dimensional pattern of such sites a putative complementary molecule can be generated.
The chemical-probe approach is especially useful in defining variants of a molecule known to bind the target receptor. Accordingly, crystallographic analysis of IGF-1 bound to the receptor site is expected to provide useful information regarding the interaction between the archetype ligand and the active site of interest.
Programs suitable for searching three-dimensional databases to identify molecules bearing a desired pharmacophore include: MACCS-3D and ISIS/3D (Molecular Design Ltd., San Leandro, CA), ChemDBS-3D (Chemical Design Ltd., Oxford, and Sybyl/3DB Unity (Tripos Associates, St.
Louis, MO).
WO 99/28347 PCT/AU98/00998 16 Programs suitable for pharmacophore selection and design include: DISCO (Abbott Laboratories, Abbott Park, IL), Catalyst (Bio-CAD Corp., Mountain View, CA), and ChemDBS-3D (Chemical Design Ltd., Oxford, Databases of chemical structures are available from a number of sources including Cambridge Crystallographic Data Centre (Cambridge, U.K.) and Chemical Abstracts Service (Columbus, OH).
De novo design programs include Ludi (Biosym Technologies Inc., San Diego, CA), Sybyl (Tripos Associates) and Aladdin (Daylight Chemical Information Systems, Irvine, CA).
Those skilled in the art will recognize that the design of a mimetic may require slight structural alteration or adjustment of a chemical structure designed or identified using the methods of the invention.
The invention may be implemented in hardware or software, or a combination of both. However, preferably, the invention is implemented in computer programs executing on programmable computers each comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.
Each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be compiled or interpreted language.
Each such computer program is preferably stored on a storage medium or device ROIMI or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so WO 99/28347 PCT/AU98/00998 17 configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.
Compounds designed according to the methods of the present invention may be assessed by a number of in vitro and in vivo assays of hormone function. For example, the identification of IGF-1R antagonists of may be undertaken using a solid-phase receptor binding assay. Potential antagonists may be screened for their ability to inhibit the binding of europium-labelled IGF ligands to soluble, recombinant IGF-1R in a microplate-based format. Europium is a lanthanide fluorophore, the presence of which can be measured using time-resolved fluorometry. The sensitivity of this assay matches that achieved by radioisotopes, measurement is rapid and is performed in a microplate format to allow high-sample throughput, and the approach is gaining wide acceptance as the method of choice in the development of screens for receptor agonists/antagonists see Apell et.al. J.
Biomolec. Screening 3:19-27, 1998 Inglese et. al. Biochemistry 37:2372- 2377, 1998).
Binding affinity and inhibitor potency may be measured for candidate inhibitors using biosensor technology.
The IGF-1R antagonists may be tested for their ability to modulate receptor activity using a cell-based assay incorporating a stably transfected, IGF-1-responsive reporter gene [Souriau, Fort, Roux, Hartley, O., LeFranc, M-P. and Weill, 1997, Nucleic Acids Res. 25, 1585-1590]. An IGF-1-responsive, luciferase reporter gene has been assembled and transfected in 293 cells. The assay addresses the ability of IGF-1 to activate the reporter gene in the presence of novel ligands. It offers a rapid (results within 6-8 hours of hormone exposure), high-throughput (assay can be conducted in a 96-well format for automated counting) analysis using an extremely sensitive detection system (chemiluminescence). Once candidate compounds have been identified, their ability to antagonise signal transduction via the IGF-1R can be assessed using a number of routine in vitro cellular assays such as inhibition of IGF-1-mediated cell proliferation, induction of apoptosis in the presence of IGF-1 and the ablation of IGF-1driven anchorage-independent cell growth in soft agar [D'Ambrosio, C., Ferber, Resnicoff, M. and Baserga, 1996, Cancer Res. 56, 4013-4020].
Such assays may be conducted on the P6 cell line, a cell line highly responsive to IGF as a result of the constitutive overexpression of the IGF-1R WO 99/28347 PCT/AU98/00998 18 (45-50,000 receptors/cell, [Pietrzkowski, Sell, Lammers, Ullrich, A.
and Baserga, R.,1992, Cell Growth.Diff. 3, 199-205]). Ultimately, the efficacy of any antagonist as a tumour therapeutic may be tested in vivo in animals bearing tumour isografts and xenografts as described [Resnicoff, Burgaud, Rotman, H. Abraham, D. and Baserga, 1995, Cancer Res. 55, 3739- 3741; Resnicoff, Sell, Rubini, Coppola, Ambrose, Baserga, R. and Rubin, 1994 Cancer Res. 54: 2218-2222].
Tumour growth inhibition assays may be designed around a nude mouse xenograft model using a range of cell lines. The effects of the receptor antagonists and inhibitors may be tested on the growth of subcutaneous tumours.
A further use of the structure of the IGF-1R fragment described here is in facilitating structure determination of a related protein, such as a larger fragment of this receptor, another member of the insulin receptor family or a member of the EGF receptor family. This new structure may be either of the protein alone, or in complex with its ligand. For crystallographic analysis this is achieved using the method of molecular replacement (Brunger, Meth.
Enzym. 1997 276 558-580, Navaza and Saludjian, ibid. 581-594, Tong and Rossmann, ibid. 594-611, Bentley, ibid. 611-619) in a program such as XPLOR. In this procedure diffraction data is collected from a crystalline protein of unknown structure. A transform of these data (Patterson function) is compared with a Patterson function calculated from a known structure.
Firstly, the one Patterson function is rotated on the other to determine the correct orientation of the unknown molecule in the crystal. The translation function is then calculated to determine the location of the molecule with respect to the crystal axes. Once the molecule has been correctly positioned in the unit cell initial phases for the experimental data may be calculated.
These phases are necessary for calculation of an electron density map from which structural differences may be observed and for refinement of the structure. Due to limitations in the method the search molecule must be structurally related to that which is to be determined. However it is sufficient for only part of the unknown structure 50%) to be similar to the search molecule. Thus the three dimensional structure of IGF-1R residues 1-462 may be used to solve structures consisting of related receptors, enabling a program of drug design as outlined above.
In summary, the general principles of receptor-based drug design can be applied by persons skilled in the art, using the crystallographic results presented above, to produce ligands of IGF-1R or other related receptors, having sufficient stereochemical complementarity to exhibit high affinity binding to the receptor site.
The present invention is further described below with reference to the following, non-limiting examples.
Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed in Australia before the priority date of each claim of this application.
EXAMPLE 1 Expression, Purification and Crystallization of the IGF-1R Fragment.
Several factors hamper macromolecular crystallization including sample selection, purity, stability, solubility (McPherson, et al., 1995, Structure 3:759-768); Gilliland, G. Ladner, J. 1996, Curr. Opin.
.i .:Struct. Biol. 6:595-603), and the nature and extent of glycosylation (Davis, S.
et al., 1993, Protein Eng. 6:229-232). Initial attempts to obtain structural data from soluble IGF-1R ectodomain (residues 1-906) protein, expressed in Lec8 cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) and purified by 30 affinity chromatography, produced large, well-formed crystals (1.0 mm x 0.2 O* mm x 0.2 mm) which gave no discernible X-ray diffraction pattern (unpublished data). Similar difficulties have been encountered with crystals of the structurally-related epidermal growth factor receptor (EGFR) ectodomain, which diffracted to only 6 A, insufficient for the determination of an atomic resolution structure (Weber, W. et al., 1994, J Chromat 679:181- 19A 189). This prompted us to search for a fragment of IGF-1R that was more amenable to X-ray crystallographic studies.
The fragment expressed (residues 1-462) comprises the Ll-cysteinerich-L2 region of the ectodomain. The selected truncation position at Val462 is four residues downstream of the exon 6/exon 7 junction (Abbott, A. et al., 1992, J Biol Chem. 267:10759-10763), and occurs at a position where the sequences of the IR and the structurally related EGFR families diverge markedly (Lax, et al., 1988, Molec Cell Biol. 8:1970-1978; Ward, C. et al., 1995, Proteins: Struct., Funct., Genet. 22:141-153), suggesting that it represents a domain boundary. The expression strategy included use of the pEE14 vector (Bebbington, C. R. Hentschel, C. C. 1987, In: Glover, D.
ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163) in glycosidase-defective Lec8 cells (Stanley, 1989, Molec. Cellul. Biol. 9:377- *o* o.
••go• WO 99/28347 PCT/AU98/00998 383), which produce N-linked oligosaccharides lacking the terminal galactose and N-acetylneuraminic acid residues (Davis, S. et al., 1993, Protein Eng.
6:229-232; Liu, et al., 1996, J Biol Chem 271:33639-33646.). The construct contained a C-terminal c-myc affinity tag (Hoogenboom, H. et al., 1991, Nucl Acids Res. 19:4133-4137), which facilitated immunoaffinity purification by specific peptide elution and avoided aggressive purification conditions.
These procedures yielded protein which readily crystallized after a further gel filtration purification step. This provided a general protocol to enhance crystallisation prospects for labile, multidomain glycoproteins.
The structure of this fragment is of considerable interest, since it contains the major determinants governing insulin and IGF-1 binding specificity (Gustafson, T. A. Rutter, W. 1990, J. Biol. Chem. 265:18663- 18667; Andersen, A. et al., 1990, Biochemistry, 29:7363-7366; Schumacher, et al., 1991, J. Biol. Chem. 266:19288-19295; Schumacher, et al., 1993, J. Biol. Chem. 268:1087-1094; Schaffer, et al., 1993, J. Biol.
Chem. 268:3044-3047; Williams, P. et al., 1995, J. Biol. Chem. 270:3012- 3016), and is very similar to an IGF-1R fragment (residues 1-486) reported to act as a strong dominant negative for several growth functions and which induces apoptosis of tumour cells in vivo (D'Ambrosio, et al., 1996, Cancer Res. 56:4013-4020).
The expression plasmid pEE14/IGF-1R/462 was constructed by inserting the oligonucleotide cassette: AatlI 5'GACGTC GACGATGACGATAAG GAACAAAAACTCATC D V D D D D K E Q K L I (EK cleavage) (c-myc tail) S E E D L N (Stop) TCAGAAGAGGATCTGAAT TAGAATTC GACGTC 3' EcoRI AatlI encoding an enterokinase cleavage site, c-myc epitope tag (Hoogenboom, H.
et al., 1991, Nucleic acids Res. 19:4133-4137) and stop codon into the AatII site (within codon 462) of Igf-lr cDNA in the mammalian expression vector pECE (Ebina, et al., 1985, Cell, 40:747-758; kindly supplied by W. J.
Rutter, UCSF, USA), and introducing the DNA comprising the 5' 1521 bp of WO 99/28347 PCT/AU98/00998 21 the cDNA (Ullrich, et al., 1986, EMBO J. 5:2503-2512) ligated to the oligonucleotide cassette into the EcoRI site of the mammalian plasmid expression vector pEE14 (Bebbington, C. R. Hentschel, C. C. 1987, In: Glover, D. ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163; Celltech Ltd., UK). Plasmid pEE14/IGF-1R/462 was transfected into Lec8 mutant CHO cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) obtained from the American Tissue Culture Collection (CRL:1737), using Lipofectin (Gibco-BRL). Cell lines were maintained after transfection in glutamine-free medium (Glascow modification of Eagle's medium (GMEM; ICN Biomedicals, Australia) and 10% dialysed FCS (Sigma, Australia) containing 25 tM methionine sulphoximine (MSX; Sigma, Australia) as described (Bebbington, C. R. Hentschel, C. C. 1987, In: Glover, D. ed. DNA Cloning.
Academic Press, San Diego. Vol 3, p163). Transfectants were screened for protein expression by Western blotting and sandwich enzyme-linked immunosorbent assay (ELISA) (Cosgrove, et al., 1995, using monoclonal antibody (Mab) 9E10 (Evan et al., 1985) as the capture antibody, and either biotinylated anti-IGF-1R Mab 24-60 or 24-31 for detection(Soos et al., 1992; gifts from Ken Siddle, University of Cambridge, UK). Large-scale cultivation of selected clones expressing IGF-1R/462 was carried out in a Celligen Plus bioreactor (New Brunswick Scientific, USA) containing 70 g Fibra-Cel Disks (Sterilin, UK) as carriers in a 1.25 L working volume. Continuous perfusion culture using GMEM medium supplemented with non-essential amino acids, nucleosides, 25 pM MSX and 10% FCS was maintained for 1 to 2 weeks followed by the more enriched DMEM/F12 without glutamine, with the same supplemention for the next 4-5 weeks. The fermentation production run was carried out three times under similar conditions, and resulted in an estimated overall yield of 50 mg of receptor protein from 430 L of harvested medium.
Cell growth was poor during the initial stages of the fermentation when GMEM medium was employed, but improved dramatically following the switch to the more enriched medium. Target protein productivity was essentially constant during the period from -100 to 700 h of the 760 h fermentation, as measured by ELISA using Mab 9E10 as the capture antibody and biotinylated Mab 24-31 as the developing antibody.
Soluble IGF-1R/462 protein was recovered from harvested fermentation medium by affinity chromatography on columns prepared by coupling Mab 9E10 to divinyl sulphone-activated agarose beads (Mini Leak; WO 99/28347 PCT/AU98/00998 22 Kem EnTec, Denmark) as recommended by the manufacturer. Mini-Leak Low and Medium affinity columns with antibody loadings of 1.5-4.5 mg/ml of hydrated matrix were obtained, with the loading range of 2.5-3 mg/ml giving optimal performance (data not shown). Mab 9E10 was produced by growing hybridoma cells (American Tissue Culture Collection) in serum-free medium in the Celligen Plus bioreactor and recovering the secreted antibody (4 g) using protein A glass beads (Prosep-A, Bioprocessing Limited, USA).
Harvested culture medium containing IGF-1R/462 protein was adjusted to pH with Tris-HCl (Sigma), made 0.02% in sodium azide and passed at 3-5 ml/min over 50 ml Mab 9E10 antibody columns at 4° C. Bound protein was recovered by recycling a solution of 2-10 mg of the undecamer c-myc peptide EQKLISEEDLN (Hoogenboom et al., 1991) in 20 ml of Tris-buffered saline containing 0.02% sodium azide (TBSA). Between 65% and 75% of the product was recovered from the medium as estimated by ELISA, with a further 15-25% being recovered by a second pass over the columns. Peptide recirculation (-10 times) through the column eluted bound protein more efficiently than a single, slower elution. Residual bound protein was eluted with sodium citrate buffer at pH 3.0 into 1 M Tris HCl pH 8.0 to neutralize the eluant, and columns were re-equilibrated with TBSA.
Gel filtration over Superdex S200 (Pharmacia, Sweden), of affinitypurified material showed a dominant protein peak at -63 kDa, together with a smaller quantity of aggregated protein (Figure 3a). The peak protein migrated primarily as two closely spaced bands on reduced sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; Figure 3b), reacted positively in the ELISA with both Mab 24-60 and Mab 24-31, and gave a single sequence corresponding to the N-terminal 14 residues of IGF-1R. No binding of IGF-1 or IGF-2 could be detected in the solid plate binding assay (Cosgrove et al., 1995, Protein Express Purif. 6:789-798). The IGF-1R/462 fragment was further purified by ion-exchange chromatography on Resource Q (Pharmacia, Sweden). Using shallow salt gradients, protein enriched in the slowest migrating SDS-PAGE band was obtained (data not shown), which formed relatively large, well-formed crystals (see below). Isoelectric focussing showed the presence of one major and two minor isoforms. Protein purified on Resource Q with an isocratic elution step of 0.14 M NaCl in mMl TrisCl at pH 8.0 (fraction 2, Figure 4) showed less heterogeneity on isoelectric focussing (Figure 4 inset) and SDS-PAGE (data not shown), and WO 99/28347 PCT/AU98/00998 23 produced crystals of sufficient quality for structure determination (see below).
Crystals were grown by the hanging drop vapour diffusion method using purified protein concentrated in Centricon 10 concentrators (Amicon Inc, USA) to 5-10 mg/ml in 10-20 mM Tris-HCl pH 8.0 and 0.02% (w/v) sodium azide, or 100 mM ammonium sulfate and 0.02% sodium azide.
Crystallization conditions were initially identified using the factorial screen (Jancarik, J. Kim, S.-H.,1991, J Appl Cryst 24:409-411),and then optimised.
Crystals were examined on an M18XHF rotating anode generator (Siemens, Germany) equipped with Franks mirrors (MSC, USA) and RAXIS IIC and IV image plate detectors (Rigaku, Japan).
From the initial crystallization screen of this protein, crystals of about 0.1 mm in size grew in one week. Upon refining conditions, crystals of up to 0.6 x 0.4 x 0.4 mm could be grown from a solution of 1.7-2.0 M ammonium sulfate, 0.1 M HEPES pH 7.5. The crystals varied considerably in shape and diffraction quality, growing predominantly as rhombic prisms with a length to width ratio of up to 5:1, but sometimes as rhombic bipyramids, the latter form being favoured when using material which had been eluted from the Mab 9E10 column at pH 3.0. Each crystal showed a minor imperfection in the form of very faint lines from the centre to the vertices.
Protein from dissolved crystals did not appear to be different from the protein stock solution when run on an isoelectric focusing gel. Upon X-ray examination, the crystals diffracted to 3.0-4.0 A and were found to belong to the space group P2 1 2 2 2 with a 76.8 A, b 99.0 A, c 119.6 A. In the diffraction pattern, the crystal variability noted above was manifest as a large and anisotropic mosaic spread, with concomitant variation in resolution. To improve the quality of the crystals, they were grown in the presence of various additives or wvere recrystallized. These methods failed to substantially improve the crystal quality although bigger crystals were obtained by recrystallization. The variability in crystal quality appeared to be due to protein heterogeneity, as demonstrated by the observation that more highly purified protein, eluted isocratically from the Resource Q column and showing one major band on isoelectric focusing (Figure 4 inset), produced crystals of sufficient quality for structure determination. These crystals diffracted to 2.6 A resolution with cell dimensions, a 77.0 A, b 99.5 A, c 120.1 A and mosaic spread of 0.50. Heavy metal derivatives of the IGF- WO 99/28347 PCT/AU98/00998 24 1R/462 crystals have been obtained and are leading to the determination of an atomic resolution structure of this fragment, which contains the L1, cysteine-rich and L2 domains of human IGF-1R.
EXAMPLE 2 Structure of the IGF-1R/1-462 Crystals were cryo-cooled to-170°C in a mother liquor containing glycerol, 2.2 M ammonium sulfate and 100 mM Tris at pH 8.0. Native and derivative diffraction data were recorded on Rigaku RAXIS IIc or IV area detectors using copper Kc radiation from a Siemens rotating anode generator with Yale/MSC mirroroptics. The space group was P2,2 1 2 1 with a 77.39 A, b 99.72 A, and c 120.29 A. Data were reduced using DENZO and SCALEPACK (Otwinowski, Z. Minor, 1996, Mode.Meth. Enzym.
276:307-326). Diffraction was notably anisotropic for all crystals examined.
Phasing by multiple isomorphous replacement(MIR) was performed with PROTEIN (Steigeman, W. Dissertation (Technical Univ. Munich, 1974) using anomalous scattering for both U02 and PIP derivatives. Statistics for data collection and phasing are given in Table 1. In the initial MIR map regions of protein and solvent could clearly be seen, but the path of the polypeptide was by no means obvious. That map was subject to solvent flattening and histogram matching in DM (Cowtan, K.,1994, Joint CCP4 and ESF-EACBM newslett. Protein Crystallogr. 31:34-38). The structure was traced and rebuilt using O (Jones, T. et al., 1991, Acta Crystallogr.
A47:110-119) and refined with X-PLOR 3.851 (Brunger, A. 1996, X-PLOR ReferenceManual 3.851, Yale Univ., New Haven, CT). After 5 rounds of rebuilding and energy minimisation the R-factor dropped to 0.279 and Rfree 0.359 for data 7-2.6 A resolution. The current model contains 458 amino acids and 3 N-linked carbohydrates but no solvent molecules. For residues with B(Ca) 70, A atomic positions are less reliable (37-42, 155-159, 305, 336-341, 404-406,453-458). There is weak electron density for residues 459- 461, but the c-myc tail appears completely disordered.
The 1-462 fragment consists of the N-terminal three domains of IGF- 1R (L1, cys-rich, L2), and contains regions of the molecule which dictate ligand specificity (17-23). The molecule adopts a reasonably extended structure (approximately 40 x 48 x 105 A) with domain 2 (cys-rich region) WO 99/28347 PCT/AU98/00998 making contact along the length of domain 1 (Ll) but very little contact with the third domain (L2) (see Figure This leaves a space at the centre of the molecule of approximately 24 A x 24 A x 24 A which is bounded on three sides by the three domains of the molecule. The space is of sufficient size to accommodate the ligand, IGF-1.
Table 1 Summary of Crystallographic data Data set" Resol. Mean R,,,,rgb Completeness No. of RIL.i,c Phasing FOMe I/s (multiplicity) sites powerd Native 2.6 18.7 0.064 0.996 0.47/0.71 PIP 3.0 15.8 0.060 0.982 3 0.66 1.71 U02Ac2 4.5 7.5 0.095 0.989 2 0.82 1.17 Refinement No of refl. No. of Atoms Ry.t Rree f Bonds' Anglesg resolution (free) (A) 7.0-2.6 24270 3903 0.237 0.304 0.017 0.048 (2693) a PIP, Di-4-iodobis(ethylenediamine)diplatinum dinitrate; UO2Ac2, Uranyl acetate.
b Rmerge ZhZj Ilh,j-Ihl ZhZj Ih. where Ih,j is an intensity measurement j and Ih is the mean intensity for that reflection h.
c Rcullis h I IFPI-I-Fp IF-icalcl I/Zhl IFplI-II-FpI where FpH, Fp and FHcalc are, respectively, derivative, native and heavy atom structure factors for centric reflections h.
d Phasing power 7h FI-calc /Zhc, where FHcalc is defined above and e is the lack of closure.
e FOM(figure of merit) <cos(Aoh)>, where Ac(h is the error in the phase angle for reflection h. Values are given before and after density modification at 3.0 and 2.8 A resolution, respectively.
f Rcrvst and Rfree are defined in Brunger, A.T. XPLOR reference manual 3.851 (Yale Univ., New Haven, CT, 1996) WO 99/28347 PCT/AU98/00998 26 g r.m.s. deviation from ideal bond and angle-related distances.
The L domains Each of the L domains (residues 1-150 and300-460) adopts a compact shape (24 x 32 x 37 A) consisting of a single-stranded right handed 0-helix and capped on the ends by short a-helices and disulfide bonds. The body of the domain looks like a loaf of bread, with the base formed from a flat sixstranded p-sheet, 5 residues long and the sides being p-sheets three residues long (Figures 5 The top is irregular, but in places is similar for the two domains. The two domains are superposable with an rms deviation in Co positions of 1.6 A for 109 atoms (Figure Although this fold is reminiscent of other P-helix proteins it is much simpler and smaller with very few elaborations, and thus it represents a new superfamily of domains. One notable difference between the two domains is that the indole ring of Trp 176 from the cys-rich region (Figure 6b) is inserted into the hydrophobic core of L1, and the C-terminal helix is only vestigial (Figure For the insulin receptor family the sequence motif of residues which form the Trp pocket in L1 does not occur in L2 (Figure 6a). However in the EGF receptor, which has an additional cys-rich region after the L2 domain (14, 15), the pocket motif can be found in both L domains and the Trp is conserved in both cys-rich regions (Figure 6b).
The repetitive nature of the P-helix is reflected in the sequence and the first five turns were correctly identified by Bajaj, et al. (1987, Biochim.Biophys. Acta 916:220-226), the conserved Gly residues being found in turns making one bottom edge of the domain. However, their conclusions about the fold were incorrect. The"helix-like" repeat is actually a pair of bends at the top edge of the domain. In their Motif V, the Gly is not in a bend but is followed by the insertion of a conserved loop of 7-8 residues (see Figure 6a). Glycine is structurally important in the Gly bends as mutation of these residues compromises folding of the receptor [van der Vorm, et al., 1992, J. Biol. Chem. 267, 66-71; Wertheimer, E. et al., 1994, J. Biol. Chem.
269, 7587-7592].
Comparison of the L domains with other right-handed P-helix structures such as pectate lyase (Yoder, M. et al., 1993,.Structure, 1:241- 251-1507) and the p22 tailspike protein (Steinbacher, et al., 1997, J.Mol.
Biol. 267:865-880) shows some striking similarities as well as differences. In WO 99/28347 PCT/AU98/00998 27 all cases the ends of the domain are capped by a-helices, but the L domains also have a disulphide bond at each end to hold the termini. The other 3helix domains are considerably longer and have significant twist to their sheets, while the L domains have flat sheets. Although the sizes of the helix repeats are similar (here 24-25 residues vs 22-23 for pectate lyase) the crosssections are quite different. The L domains have a rectangular cross-section, while pectate lyase and p22 tailspike protein are V-shaped, and have many, and sometimes quite large, insertions (Yoder, M. et al., 1993, Structure, 1:241-251-1507; Steinbacher, et al., 1997, J.Mol. Biol. 267:865-880). In the hydrophobic core a common feature is the stacking of aliphatic residues from successive turns of the P-helix, and near the C-terminus of each L domain there is also a short Asn ladder, reminiscent of the long Asn ladder observed in pectate lyase (Yoder, M. et al., 1993, Structure 1:241-251- 1507). On the opposite side of the L domains the Gly bend, as well as the two bends and sheet preceding it, have no counterpart in the other P-helix domains. Thus although the L domains are built on similar principles to the other P-helix domains they constitute a separate superfamily.
The cys-rich domain The cys-rich domain is composed of eight disulfide-bonded modules (Figure 6b), the first of which sits at the end of L1, while the remainder make a curved rod running diagonally across L1 and reaching to L2 (Figure The strands in modules 2-7 run roughly perpendicular to the axis of the rod in a manner more akin to laminin (Stetefeld, et al.,1996, J.Mol.Biol. 257:644- 657 than to TNF receptor (Banner, D. et al., 1993, Cell, 73:431-445), but the modular arrangement of the cys-rich domain is different to those of other cys-rich proteins for which structures are known. The first 3 modules of IGF- 1R have a common core, containing a pair of disulfide bonds, but show considerable variation in the loops (Figure 6b). The connectivity of these modules is the same as in the first half of EGF (Cys 1-3and but their structures do not appear to be closely related to any member of the EGF family. Modules 4 to 7 have a different motif, a 0-finger, and best match residues 2152-2168 of fibrillin (Dowling, A. et al., 1996, Cell, 85:597-605).
Each is composed of three polypeptide strands, the first and third being disulfide bonded and the latter two forming a P-ribbon. The p-ribbon of each 3- finger module lines up antiparallel to form a tightly twisted 8-stranded psheet (Figures 5 and Module 6 deviates from the common pattern,with WO 99/28347 PCT/AU98/00998 28 the first segment being replaced by an cc-helix followed by a large loop that is likely to have a role in ligand binding (see below). As module 5 is most similar to module 7 it is possible that the four modules arose from serial gene duplications. The final module is a disulfide-linked bend of five residues.
The fact that the two major types of cys-rich modules occur separately implies that these are the minimal building blocks of cys-rich domains found in many proteins. Although it can be as short as 16 residues, the motif of modules 4-7 is clearly distinct, and capable of forming a regular extended structure. Thus cys-rich domains such as these can be considered as being made of repeat units each composed of a small number of modules.
Hormone binding Attempts have been made to locate the IGF-1 (and insulin) binding site by examining natural (Taylor, S. 1992, Diabetes, 41:1473-1490) and site-directed mutants (Williams, P. et al., 1995, J. Biol. Chem. 270:3012- 3016; Mynarcik, D. C et al., 1996, J. Biol. Chem. 271:2439-2442; Mynarcik, D.
et al., 1997, J. Biol. Chem. 272:2077-2081), chimeric receptors (Andersen, A. et al., 1990, Biochemistry 29:7363-7366; Gustafson, T. Rutter, W.
1990, J. Biol. Chem. 265:18663-18667; Schiffer, et al.,1993, J. Biol.
Chem. 268:3044-3047; Schumacher, 1993, J. Biol. Chem. 268:1087-1094; Kjeldsen, et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408) and by crosslinking studies (Wedekind, et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258; Fabry, 1992, J. Biol. Chem. 267:8950-8956; Waugh, S. et al., 1989, Biochemistry, 28:3448-3458; Kurose, et al., 1994),.J. Biol.
Chem.269:29190-29197-34). IGF-1R/IR chimeras not only show which regions of the receptors account for ligand specificity, but also provide an efficient means of identifying some parts of the hormone binding site.
Paradoxically, regions controlling specificity are not the same for insulin and IGF-1. Replacing the first 68 residues of IGF-1R with those of IR confers insulin-binding ability on the chimeric IGF-1R (Kjeldsen, et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408), and replacing residues 198-300 in the cys-rich region of IR with the corresponding residues 191-290 of IGF-1R allows the chimeric receptor to bind IGF-1 (Schiffer, et al.,1993, J. Biol.
Chem. 268:3044-3047). Thus a receptor can be constructed which binds both IGF-1 and insulin with near native affinity. From the structure it is clear that if the hormone bound in the central space it could contact both these regions.
WO 99/28347 PCT/AU98/00998 29 From analysis of a series of chimeras examined by Gustafson, T. Rutter, W. J. Biol. Chem. 265:18663-18667, 1990), the specificity determinant in the cys-rich region can be limited further to residues 223-274.
This region corresponds to modules 4-6, and includes a large and somewhat mobile loop (residues 255-263, mean B[Ca atoms] 57 A2) which extends into the central space (see Figure In IR this loop is four residues bigger, and is stabilised by an additional disulfide bond (Schiffer, L. Hansen, P.H.,1996, Exp. Clin. Endocrinol. Diabetes, 104: Suppl. 2, 89). The larger loop of IR may serve to exclude IGF-1 from the hormone binding site while allowing the smaller insulin molecule to bind. It is interesting to note that mosquito IR homologue, which has a loop two residues larger than the mammalian IRs, also appears to bind insulin but not IGF-1 (Graf, et al., 1997, Insect Molec.Biol. 6:151-163). Analysis of the structure indicates that the insulin/IGF-1 specificity is controlled by residues in this loop (amino acids 253-272 in IGF-1R; amino acids 260-283 in IR) As chimeras only address residues which differ between the two receptors, a more precise analysis of the site can be obtained from single site mutants. In particular, from an alanine-replacement study, four regions of L1 important for insulin binding were identified (Williams, P. et al., 1995, J.
Biol. Chem. 270:3012-3016). The first three are at similar positions on successive turns of the -helix and the fourth lies on the conserved bulge on the large P-sheet. Thus there is a footprint for insulin binding to the L1 domain which lies on the first half of the large P-sheet facing into the central space. Residues further along the sheet which are conserved in IGF-1R could also be important. The conservative substitution of leucine for methionine at residue 119 of IR (113 of IGF-1R) causes a mild form of leprechaunism [Hone, J. et al., 1994, J. Med. Genet. 31, 715-716]. This residue is buried, and the mutation could perturb neighbouring residues to affect insulin binding.
The axis of the L2 domain is perpendicular to that of the L1 domain, and the N-terminal end of its P-helix is presented to the hormone-binding site. On this face of the L2 domain the only mutation studied so far is the naturally occurring IR mutant, S323L, which gives rise to Rabson-Mendehall syndrome and severe insulin resistance (Roach, P.,1994, Diabetes 43:1096- 1102). As this mutant only affects insulin binding and not cell-surface expression, residue 323 of IR (residue 313 of IGF-1R) is probably at or near the binding site. Structurally this residue lies in the middle of a region WO 99/28347 PCT/AU98/00998 (residues 309-318 of IGF-1R) which is conserved in both IR and IGF-1R, and the surrounding region, 332-345 (of IGF-1R), is also quite well conserved in the these receptors (Figure 6a). Therefore this region is quite likely to form part of the hormone-binding site, but would not have been detected by chimeras. It is interesting to note that in this region IRR is not as well conserved as the other two receptors (Shier, P. Watt, 1989, J.Biol.Chem. 264:4605-14608).
The distance from this putative hormone-binding region on L2 to that found on L1 is about 30 A (Figure Thus L1 and L2 appear too far apart to bind IGF-1 or insulin. However, in the crystal structure there is a deep cleft between part of the cys-rich domain (residue 262)and L2 (residue 305), and this cleft is occupied by a loop from a neighbouring molecule. Thus it seems probable that the position of the L2 domain in the receptor structure or the hormone-receptor complex adopts a different position with respect to the cys-rich domain than that found in the crystal. The movement required to bring L2 sufficiently close to L1 is small, namely a rotation of approximately 250 about residue 298.
A number of IR mutants have been identified which constitutively activate the receptor, and the majority of these are found in the a chain.
Curiously all a chain mutants involve changes to or from proline or the deletion of an amino acid, implying that they cause local structural rearrangements. The mutation R86N is similar to wild type, but R86P reduces cell-surface expression and insulin binding while constitutively activating autophosphorylation [Granskov, K. et al., 1993, Biochem. Biophys.
Res. Commun. 192, 905-911]. The proline mutation probably disturbs residues preceding 87 which lie in the interface between the L1 and cys-rich domains, but it could also affect insulin binding. In the cys-rich domain residues 233, 281, 244 and 247 of IR are not conserved in IGF-1R (Figure 6b), yet L233P [Klinkhamer, M.P. et al., 1989, EMBO J. 8, 2503-2507], deletion of N281 [Debois-Mouthon, C. et al., 1996, J. Clin. Endochronol. Metab. 81, 719- 727] or the triple mutant P243R, P244R and H247D [Rafaeloff, R. et al., 1989, J. Biol. Chem. 264, 15900-15904] cause constitutive kinase activation. Due to their locations each of these three mutants appears likely to compromise the folding of a p-finger domain and, in turn, the structural integrity of the rodlike cys-rich domain. The structural ramifications of these mutations could be significant for the whole receptor ectodomain, as disturbing the Ll/cys- WO 99/28347 PCT/AU98/00998 31 rich interface or distorting the rod-like domain could affect the relative position of L1 and the cys-rich domain in this context.
L1 has been further implicated, as deletion of K121 on the opposite side of L1 from the cys-rich domain was also found to cause autophosphorylation [Jospe, N. et al., 1994, J. Clin. Endochronol. Metab. 79, 1294-1302]. By contrast this mutation does not affect insulin binding. Thus a possible mechanism emerges for insulin binding and signal transduction.
When insulin binds between L1 and L2 it modifies the relative position of L1 and the cys-rich domain in the receptor, perhaps by hinge motion between L2 and the cys-rich domain like that suggested above, and the structural rearrangement is transmitted across the plasma membrane. In the absence of insulin the same signal can be initiated by mutations in the cys-rich region or at the L/cys-rich interface, but at the expense on insulin binding. The signal can also be initiated more directly by mutations on the opposite side of L1 which affect the interaction of L1 with other parts of the ectodomain, possibly the other half of the receptor dimer.
Ligand Studies Although there is no structural information about an IGF-1/IGF-1R complex a number of studies have probed the nature of this interaction.
Results from cross-linking experiments with IGF-1 and insulin and their cognate receptors are consistent with the hormone binding site proposed above. For example B29 of insulin can be cross-linked to the cys-rich region (residues 205-316( (Yip, C. et al., 1988, Biochim. Biophys. Res. Commun.
157:321-329) or the L1 domain (Wedekind, et al., 1989, Biol. Chem Hoppe- Seyler, 370:251-258). However, these two regions are reasonably well separated, and those studies may indicate that B29 is mobile. Other studies unfortunately do not map the site any more precisely.
Analogues and site-directed mutants of IGF-1 and IGF-2 have been more fruitful. IGF-1 and IGF-2 contain two extra regions relative to insulin, the C region between B and A and a D peptide at the C-terminus. For IGF-1, replacement of the C region by a four Gly linker reduced affinity for IGF-1R by a factor of 40 but increased affinity for IR 5-fold (Bayne, M.L.,et al., 1988, J. Biol.Chem. 264:11004-11008). Changes in affinity are consistent with the deletion in IGF-1 complementing differences in the cys-rich regions of IGF- 1R and IR noted above. Mutation of residues either side of the C region (residue 24 for IGF-1 [Cascieri, et al., 1988, Biochemistry 27:3229- WO 99/28347 PCT/AU98/00998 32 3233], residues 27,43 for IGF-2, [Sakano, et al., 1991, J. Biol. Chem.
266:20626-20635]) also has deleterious effects on the affinity of the hormone for IGF-1R, as has truncation of the nearby D peptide in IGF-2 (Roth, et al., 1991, Biochem. Biophys. Res. Commun. 181:907-914).
Insulin has been extensively mutated. Binding studies [summarised in Kristensen, C. et al., 1997, J. Biol. Chem. 272, 12978-12983] indicate that insulin may bind its receptor via a hydrophobic patch (residues A2, A3, A19, B8, B11, B12, B15 and possibly B23 B24). However this patch is normally buried, and requires the removal of the B chain's C-terminus from the observed position. Assuming IGF-1, IGF-2 and insulin bind their receptors in the same orientation, these data suggest an approximate orientation for the hormone when bound to the receptor.
One notable feature of IGF-1 and IGF-2 is the large number of charged residues and their uneven distribution over the surface. Basic residues are predominantly found in the C region and, in solution, this region is not well ordered in either IGF-1 or -2 (Sato, et al., 1993, Int J Peptide Protein Res. 41:433-440; Torres, A. et al., 1995,J. Mol. Biol. 248:385-401).
In contrast the binding site of the receptor has a sizable patch of acidic residues in the corner where the cys-rich domain departs from L1. Other acidic residues which are specific to this receptor are found along the inside face of the cys-rich domain and the loop (residues 255-263) extending from module 6. Thus it is possible that electrostatic interactions play an important part in IGF-1 binding, with the C region binding to the acidic patch of the cys-rich region near L1 and the acidic patch on the other side of the hormone directed towards a small patch of basic residues (residues 307-310) on the N-terminal end of L2.
Although the structure of this fragment gives significant information about the nature of the hormone binding site, residues outside this region have also been shown to affect binding of ligand. A number of studies have implicated residues 704-715 of IR (Mynarcik, D. C et al., 1996, J. Biol. Chem.
271, 2439-2442; Kurose, et al., 1994, J. Biol. Chem.269:29190-29197).
These residues could contact insulin on one of the sides left open in the current structure. Using insulin labelled at the B1 residue, Fabry, et al.,(1992, J. Biol. Chem. 267:8950-8956) cross-linked insulin to the fragment 390-488, part of which is not near the site as described. The explanation for this could be either the region 390-488 reaches back to the hormone binding WO 99/28347 PCT/AU98/00998 33 site, or this region could contact another hormone bound to the other half of the receptor. Further structural information is needed to establish how these other regions contact the hormone and to elucidate how binding of the hormone is communicated to the kinase inside the cell.
The structure of the L1-cys-rich-L2 domains of IGF-1R presented here represents the first structural information for the extracellular portion of a member of the insulin receptor family. The L domains display a novel fold which is common to the EGF receptor family, and the modular architecture of the cys-rich domain implies that smaller building blocks should be used to describe the composition of cysteine-rich domains. This fragment contains the major specificity determinants of receptors of this class for their ligands.
It has an elongated structure with a space in the middle which could accommodate the ligand. The three sides of this site correspond to regions which have been implicated in hormone binding. Although other sites are present in the receptor ectodomain which interact with the ligand, this structure gives us an initial view of how the insulin, IGF-1 and IGF-2 might interact with their cell surface receptors to control their metabolic and mitogenic effects Such information will provide valuable insight into the structure of the corresponding domains of the IR and insulin receptor-related receptor as well as members of the related EGFR family (Bajaj, et al., 1987, Biochim Biophys Acta 916:220-226; Ward, C. W. et al., 1995, Proteins: Struct Funct Genet 22:141-153).
EXAMPLE 3 Prediction of 3D Structure of the Corresponding Domains of IRR and IR Based on Structure of IGF-1R Fragment.
The sequence identities between the different members of the insulin receptor family are sufficient to allow accurate sequence alignments to facilitate 3D structure predictions by homology modelling. The alignments of the ectodomains of human IGF-1R, IR, and IRR are shown in Figure 9.
EXAMPLE 4 Single-Molecule Imaging of Human Insulin Receptor Ectodomain and its Fab Complexes Cloning and expression of hIR -11 ectodomain protein A full length clone of the human IR exon -11 form (hIR -11) was prepared by exchanging an Aat II fragment, nucleotides 1195 to 2987 of the WO 99/28347 PCT/AU98/00998 34 exon +11 clone (plasmid pET; Ellis et al., 1986; gift from Dr W. J. Rutter, UCSF) of hIR (Ebina et al., 1985, Cell 40, 747-758) with the equivalent Aat II fragment from a plasmid (pHIR/P12-1, ATCC 57493) encoding part of the extracellular domain and the entire cytoplasmic domain of hIR -11 (Ullrich et al., 1985, Nature 313 756-761). The ectodomain fragment of hIR -11 (2901 bp, coding for the 27 residue signal sequence and residues His1- Asn914) was produced by Sail and SspI digestion and inserted into the mammalian expression vector pEE6.HCMV-GS (Celltech Limited, Slough, Berkshire, UK) into which a stop codon linker had been inserted, as described previously (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798) for the hIR exon +11 ectodomain.
The resulting recombinant plasmid pHIR II (2 jg) was transfected into glycosylation-deficient Chinese hamster ovary (Lec 8) cells (Stanley, 1989, Molec. Cellul. Biol. 9, 377-383) with Lipofectin (Gibco-BRL). After transfection, the cells were maintained in glutamine-free medium GMEM (ICN Biomedicals, Australia) as described previously (Bebbington Hentschel, 1987, In DNA Cloning (Glover, ectodomain.), Vol III, Academic Press, san Diego; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798). Expressing cell lines were selected for growth in GMEM with M methionine sulphoximine (MSX, Sigma). Transfectants were screened for protein expression using sandwich ELISA with anti-IR monoclonal antibodies 83-7 and 83-14. Metabolic labelling of cells, immunoprecipitations, insulin binding assays and Scatchard analyses were performed as described previously for the exon +11 form of hIR ectodomain (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798).
hlR -11 ectodomain production and purification The selected clone (inoculum of 1.28 x 108 cells) was grown in a spinner flask packed with 10 g of Fibra-cel disc carriers (Sterilin, in 500 ml of GMEM medium containing 10% fetal calf serum (FCS) and 25 tM MSX.
Selection pressure was maintained for the duration of the culture.
Ectodomain was recovered from harvested medium by affinity chromatography on immobilized insulin, and further purified by gel filtration chromatography on Superdex S200 (Pharmacia; 1 x 40 cm) in Tris-buffered saline containing 0.02% sodium azide (TBSA) as described previously (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798).
Solutions of purified hIR -11 ectodomain were stored at 40 C prior to use.
WO 99/28347 PCT/AU98/00998 Production of Fab fragments and their complexes with ectodomain Purification of Mabs 83-7, 83-14 and 18-44 from ascites fluid by affinity chromatography using Protein A-Sepharose, and the production of Fabs, were based on the methodologies described in Coligan et al.,1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates Wiley Interscience, John Wiley and Sons. Fab was produced from monoclonal antibody by mercuripapain digestion for 1-4 h, followed by gel filtration on Superdex S200. Products were monitored by reducing and non-reducing SDS-PAGE. For 83-7 Mab, an IgG Type 1 monoclonal antibody, the bivalent (Fab)2' isolated by this method was reduced to monovalent Fab 83-7 by mild reduction with mM L-cysteine.HCl in 100 mM Tris pH (Coligan et al., 1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates Wiley Interscience, John Wiley and Sons).
Complexes of Fab with hIR -11 ectodomain were produced by mixing 2.5 to 3.5 molar excess of Fab with hIR -11 ectodomain at ambient temperature in TBSA at pH 8.0. After 1-3 h, the complex was separated from unbound Fab by gel filtration over a Superdex S200 column in the same buffer.
Electron microscopy Uncomplexed hIR -11 ectodomain and the Fab complexes described above were diluted in phosphate-buffered saline (PBS) to concentrations of the order of 0.01-0.03 mg/ml. Prior to dilution, 10% glutaraldehyde (Fluka) was added to the PBS to achieve a final concentration of 1% glutaraldehyde.
Droplets of 3ml of this solution were applied to thin carbon film on 700mesh gold grids after glow-discharging in nitrogen for 30 s. After 1 min. the excess protein solution was drawn off and followed by application and withdrawal of 4-5 droplets of negative stain uranyl acetate (Agar), 2% uranyl formate K and 2% potassium phosphotungstate (Probing and Structure) adjusted to pH 6.0 with KOH, or 2% methylamine tungstate (Agar) adjusted to pH 6.8 with NH40H]. In the case of both uranyl acetate and uranyl formate staining, an intermediate wash with 2 or 3 droplets of PBS was included prior to application of the stain. The grids were air-dried and WO 99/28347 PCT/AU98/00998 36 then examined at 60kV accelerating voltage in a JEOL 100B transmission electron microscope at a magnification of 100,000x. It was found that there was a typical thickness of negative stain in which Fabs were most easily seen. Hence areas for photography had to be chosen from particular zones of the grid. Electron micrographs were recorded on Kodak SO-163 film and developed in undiluted Kodak D19 developer. The electron-optical magnification was calibrated under identical imaging conditions by recording single-molecule images of the antigen-antibody complex of influenza virus neuraminidase heads and NC10 MFab (Tulloch et al., 1986, J.Mol. Biol. 190, 215-225; Malby et al., 1994, Structure, 2, 733-746).
Image processing Electron micrographs showing particles in a limited number of identifiable projections were chosen for digitisation. Micrographs were digitised on a Perkin-Elmer model 1010 GMS PDS flatbed scanning microdensitometer with a scanning aperture (square) size of 20 mm and stepping increment of 20 mm corresponding to a distance of 0.2 nm on the specimen. Particles were selected from the digitised micrograph using the interactive windowing facility of the SPIDER image processing system (Frank et al., 1996, J. Struct. Biol. 116, 190-199). Particles were scaled to an optical density range of 0.0 2.0 and aligned by the PSPC reference-free alignment algorithm (Marco et al., 1996, Ultramicroscopy, 66, 5-10). Averages were then calculated over a subset of correctly aligned particles chosen interactively as being representative of a single view of the particle. The final average image presented here is derived from a library of 94 images.
Biochemical characterization of expressed hIR -11 ectodomain The recombinant protein examined corresponded to the the first 914 residues of the 917 residue ectodomain of the exon -11 form of the human insulin receptor (Ullrich et al., 1986, Nature 313 756-761). Expressed protein was shown, by SDS-PAGE and autoradiography of immunoprecipitated product from metabolically labelled cells, to exist as a homodimeric complex of -270 320 kDa apparent mass, which dissociated under reducing conditions into monomeric ac and p' subunits of respective apparent mass -120 kDa and -35 kDa (data not shown).
Purified hIR -11 ectodomain, expressed in Lec8 cells and purified by affinity chromatography on an insulin affinity column, eluted as a symmetrical peak on a Superdex S200 gel filtration column (Figure 10). The WO 99/28347 PCT/AU98/00998 37 protein eluted with an apparent mass of -400 kDa, calculated from a standard curve generated by the elution positions of standard proteins (not shown). As expected for protein expressed in Lec 8 cells, whose glycosylation defect produces truncated oligosaccharides (Stanley, 1989,.
Molec. Cellul. Biol. 9, 377-383), this value is less than the apparent mass (450 500 kDa) reported for hIR +11 ectodomain expressed in wild-type CHO-K1 cells (Johnson et al., 1988, Proc. Nat Acad. Sci USA 85, 7516-7520; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798).
Radioassay of insulin binding to purified ectodomain gave linear Scatchard plots and Kd values of 1.5 1.8 x 10-9 M, similar to the values of 2.4 5.0 x 10-9 Ml reported for the hIR -11 ectodomain (Andersen et al., 1990, Biochemistry 29, 7363-7366; Markussen et al., 1991, J. Biol. Chem. 266, 18814-18818; Schaffer, 1994, Eur. J. Biochem. 221, 1127-1132) and the values of -1.0 5.0 x 10-9 M reported for the hIR +11 ectodomain (Schaefer et al., 1992, 1. Biol. Chem. 267, 23393-23402; Whittaker et al., 1994, Molec.
Endocrinol. 8, 1521-1527; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798).
Expression of hIGF-1R ectodomain Cloning, expression and purification of this protein used elements common to those described for hIR -11 ectodomain (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798), and resulted in purified product that was recognised by receptor-specific Mabs 17-69, 24-31 and 24-60 (Soos et al., 1992, J. Biol. Chem. 267, 12955-63) and was composed of a and P' subunits of mass similar to those of hIR ectodomain.
Preparation of hIR -11 ectodomain/MFab complexes A complex of hIR -11 ectodomain and Fab from antibody 83-14 eluted as a symmetrical peak of 460 -500 kDa (Figure 10), as did complexes generated from a mixture of hIR -11 ectodomain with Fab from antibody 18- 44 and a mixture of hIR -11 ectodomain with Fab 83-7 (not shown). A cocomplex of ectodomain with Fabs from antibodies 18-44 and 83-14 eluted at 620 kDa, as did a co-complex with MFabs 83-14/83-7 and another with MFabs 83-7/18-44 (not shown). A complex of hIR -11 ectodomain with all three MFab derivatives, 18-44, 83-7 and 83-14, eluted at an apparent mass of 710 kDa (Figure Electron microscopy Imaging of hIR -11 and hIGF-1R ectodomains WO 99/28347 PCT/AU98/00998 38 Single-molecule imaging of uncomplexed dimeric hIR -11 ectodomain was carried out under a variety of negative staining conditions, which emphasised different aspects of the structure of the molecular envelope. Images obtained by this investigation are depicted in Figure 11.
The least aggressive or penetrative stain was potassium phosphotungstate (KPT) which revealed consistent globular particles with very little internal structure other than a suggestion of a division into two parallel bars. Staining with methylamine tungstate also revealed the parallel bar images.
Further investigation using progressively more penetrative, but also potentially more disruptive, stains confirmed the observations above.
Staining with uranyl acetate and uranyl formate showed the separation of the parallel bars most clearly, but uranyl acetate showed evidence of disrupting the structure of the particles, i.e. a decrease in the consistency of the particle shape and a tendency for particles to look unravelled or denatured despite having been subjected to chemical cross-linking prior to staining. In areas of thicker stain, parallel bars predominated, whereas in more thinly stained regions, U-shaped particles could be identified, sometimes outnumbering the parallel-bar structures (see Figure 11).
Imaging of hIR -11 ectodomain complexed with 83-7 MFab This complex was particularly noteworthy for the consistency of the form of the particles, especially under the gentler staining conditions afforded by stains such as KPT and methylamine tungstate. The particles were interpreted as having been restricted in the views they presented, after air-drying on the carbon support film, by the almost diametrically opposite binding of the two Fab arms to the antigen to form a highly elongated complex structure. Under these conditions three distinct views could be recognised (see Figure 11). Two views (interpreted as top-down/bottom-up) show the Fab arms displaced clockwise or anti-clockwise as extensions of the parallel plates with two-fold symmetry. The third view shows an image with the two Fab arms in line roughly through the centre of the receptor on its opposite sides, interpreted as a side projection of binding half-way up the plates.
The use of aggressive uranyl stains operating at lower pHs revealed internal structure of the molecular envelope at the expense of consistency of the particle morphology. For example, staining with uranyl acetate or uranyl WO 99/28347 PCT/AU98/00998 39 formate showed that parallel bars can be seen in particles in which the Fab arms are displaced either clockwise or anticlockwise but not where the intermediate central or axial position of the two Fab arms is presented in projection. These observations show 83-7 MFab binding roughly half-way up the side-edge of each hIR -11 ectodomain plate. The epitope recognised by Mab 83-7 has been mapped to the cys-rich region, residues 191-297, by analysis of chimeric receptors (Zhang and Roth, 1991, Proc. Natl. Acad. Sci.
USA 88, 9858-9862).
Imaging of hIR -11 ectodomain complexed with either 83-14 MFab or 18-44 MFab Complexes were formed with Fabs from the most insulin-mimetic antibody Mab 83-14. Projections showing the Fab arms bound to and extending out from near the base of the U-shaped particles were identified.
A second field of particles showed objects composed of two parallel bars as observed for the undecorated ectodomain, with Fab arms projecting obliquely from diametrically opposite extremities (see Figure 11). Similar but less definitive images were also seen when MFab 18-44 was bound to hIR -11 ectodomain. The epitope for Mab 83-14 is between residues 469-592 (Prigent et al., 1990) in the connecting domain. This domain contains one of the disulphide bonds (Cys524-Cys524) between the two monomers in the IR dimer (Schaffer and Ljungqvist, 1992, Biochem. Biophys. Res. Commun. 189, 650-653). The epitope for Mab 18-44 is a linear epitope, residues 765-770 (Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977) in the p-chain, near the end of the insert domain (O'Bryan et al., 1991, Mol. Cell. Biol. 11, 5016- 5031). The insert domain contains the second disulphide bond connecting the two monomers in the IR dimer (Sparrow et al., 1997, J. Biol. Chem., 272, 29460-29467).
Imaging of hIR -11 ectodomain co-complexed with two different MFabs per monomer The double complex of hIR -11 ectodomain with MFabs 83-7 and 18- 44 was stained with 2% KPT at pH 6.0, and revealed the molecular envelopes. The particle appears complex in shape, and can assume a number of different orientations on the carbon support film, giving rise to a number of different projections in the micrograph. The predominant view is of an asymmetric X-shape (some examples circled). It shows the 83-7 MFab arms bound at opposite ends of the parallel bars with the two 18-44 MFabs WO 99/28347 PCT/AU98/00998 appearing as shorter projections extending out from either side of each ectodomain.
Images of the double complex of hIR -11 ectodomain with 83-7 and 83-14 MFabs gave X-shaped images similar to those seen with the 83-7/18-44 double complex. In contrast the double complex of hIR -11 ectodomain with 18-44 and 83-14 MFabs did not present the characteristic asymmetric Xshapes described above. Instead, the molecular envelope appeared to be elongated in many views, with only an occasional X-shaped projection.
While a detailed interpretation of these images would be premature, it is clear that MFabs 18-44 and 83-14, two of the more potent insulin mimetic antibodies (Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977), can bind simultaneously to the receptor.
Imaging of hIR -11 ectodomain co-complexed with three different MFabs per monomer A field of particles from a micrograph of hIR -11 ectodomain were complexed simultaneously with MFabs 83-7, 83-14 and 18-44. In the thicker stain regions the molecular envelope was X-shaped, and looked very similar to that of the double complexes of hIR -11 ectodomain with either 83-7 and 18-44 or 83-7 and 83-14. However, in the more thinly stained regions particles of greater complexity were visible, and it was possible occasionally to identify that there are in fact more than four IMFabs bound to the ectodomain dimer.
The single-molecule imaging of hIR -11 ectodomain presented here suggests a molecular envelope for this dimeric species significantly different from that of any previously published study. However, an unequivocal determination of the molecular envelope even from the present study is not entirely straightforward. A major complicating factor here has been the relative fragility of the expressed ectodomain when exposed to the rigors of electron microscope preparation by negative staining. For example, staining with potassium phosphotungstate KPT, pH 6.0-7.0) frequently suggested a denaturation of the dimeric molecules, but when appropriate conditions were satisfied, good seemingly interpretable molecular envelope images were achieved; staining with methylamine tungstate pH supported the best KPT molecular envelope images, but had the suggestion of a swelling of the molecular structure at neutral pH; and the acid-pH stains of uranyl acetate pH and uranyl formate pH-3.0), with their ability to penetrate the WO 99/28347 PCT/AU98/00998 41 ectodomain structure, appeared to illuminate not so much the molecular envelope as the zones of high projected protein density within the dimer.
An amalgam of impressions from these various staining regimens has led to the following interpretation of single-molecule images of these undecorated, or naked, dimers: the predominant dimeric molecular image encountered here has been that of "parallel bars"of projected protein density.
This view is so predominant, indeed, that it suggests there is either a single preferred orientation of the molecules on the glow-discharged carbon support film, or that this impression of parallel bars of density may represent a mixture of superficially similar structure projections, with the subtleties of these different projections being masked by the relatively coarse resolution of this single-molecule direct imaging. The impression of parallel bars of projected protein density is particularly predominant in regions of thicker negative stain. A second view of the molecular envelope, appreciably less well represented in regions of thicker stain but predominant in regions of thin staining, is that of 'open' U's, or V's. These two views of hIR -11 ectodomain were supported by the single-molecule imaging of hIGF-1R ectodomain under comparable conditions of negative staining.
If the assumption is made that these two recognisable projected views, that of parallel bars and of open U's/V's, are different views of the same dimeric molecule, an assumption strongly supported by the MFab complex imaging, a coarse model of the molecular envelope can be rationalized. The model structure is roughly that of a cube, composed of two almost-parallel plates of high protein density, separated by a deep cleft of low protein main-chain and side-chain density able to be penetrated by stain, and connected by intermediate stain-excluding density near what is assumed here to be their base that is, nearest the membrane-anchoring region). The width of the low-density cleft appears to be of the order of 30-35A, sufficient to accommodate the binding of the insulin molecule of diameter ca. although we have no electron microscopical evidence to support insulinbinding in this cleft at this stage.
It has been established through imaging of bound 83-7 MFab that there is a dimeric two-fold axis normal to the membrane surface between these plates of density. Occasionally, dimer images display a relative displacement of the bars of density, interpreted here as a limited capacity for a shearing of the interconnecting zone between the two plates along their WO 99/28347 PCT/AU98/00998 42 horizontal axis parallel to the membrane; other images show bars skewed from parallel, implying a limited capacity for the plates to rotate independently around the two-fold axis, again via this interconnecting zone.
These two observations each suggest a relatively flexible connectivity between the dimer plates in the membrane-proximal region of intermediate protein density, which could possibly contribute to the transmembrane signalling process.
The approximate overall measured dimensions of the ectodomain dimer are 110 x 90 x 120A, calibrated against the dimensions of imaged influenza neuraminidase heads, known from the solved X-ray structure (Varghese et al., 1983, Nature 303, 35-40). It can be noted that there is a compatibility here between the molecular weights and molecular dimensions of these two molecular species: the compact tetrameric influenza neuraminidase heads of Mr -200 kDa occupy a volume almost 100 x 100 x 60 A; the more open dimeric insulin receptor ectodomains of similar Mr -240 kDa imaged here occupy a volume approximately 110 x 90 x 120 A roughly twice that of the neuraminidase heads, accommodating the slightly higher molecular weight and substantial central low-density cleft.
The low-resolution roughly cubic compact structure proposed here differs substantially from the T-shaped model proposed by Christiansen et al.
(1991, Proc. Natl. Acad. Sci. U. S. A. 88, 249-252) and Tranum-Jensen et al., (1994, J. Membrane Biol. 140, 215-223) for the whole receptor and the elongated model proposed by Schaefer et al. (1992,J. Biol. Chem. 267, 23393- 23402) for soluble ectodomain. Significantly, those previous studies did not provide any convincing independent electron microscopical evidence that their imaged objects were in fact insulin receptor.
In the present study, the identity of the imaged molecules as hIR -11 ectodomain has been confirmed by imaging complexes of the dimer with Fabs of the three well-established conformational Mabs against native hIR, 83-7, 83-14 and 18-44 (Soos et al.,1986, Biochem. J. 235, 199-208; 1989, Proc.
NatlAcad. Sci. USA 86, 5217-5221), bound singly and in combination. In all these instances, virtually every particle in the field of view exhibited MFab decoration through binding to conformational epitopes, establishing not only the identity of the imaged particles but also the conformational integrity of the expressed ectodomains. Furthermore, the cleanliness and uniformity of these hIR -11 ectodomain preparations, both naked and decorated, visualised WO 99/28347 PCT/AU98/00998 43 here by electron microscopy demonstrate their high suitability for X-ray crystallization trials.
The known flexibility of the Fab arms exacerbates image-to-image variability beyond the limited extent already described for the undecorated dimeric ectodomains, complicating any precise interpretation of these antigen-antibody complexes. Such molecular flexibility also renders largely impractical any single-molecule computer image averaging to facilitate image interpretation, progressively more so with the higher order antigen-antibody complexes studied here.
The most readily interpretable of these images, showing least imageto-image variability, are those of 83-7 MFab bound to dimers where, fortuitously, the antigen-antibody complex is constrained in its degrees of rotational freedom on the carbon support film. Many projected images show the two Fab arms in line roughly through the centre of the antigen on its opposite sides, interpreted as a side projection of binding half-way up the plates from their membrane-proximal base. Other sub-sets of images show the two Fab arms still parallel but displaced clockwise or anticlockwise with 2-fold symmetry, each Fab approximating an extension of one of the parallel bars of antigen density, interpreted here as representing top or bottom projections along the 2-fold axis. The third projection, along the axis of the Fab arms, could not be sampled here because of the constraining geometry of this molecular complex. These observations suggest binding of 83-7 MFab roughly half-way up the side-edge of the hIR -11 ectodomain plate. This then allows an initial attempt at spatially mapping the 83-7 MFab epitope, which has been sequence-mapped to residues 191-297 in the cys-rich region of the insulin receptor (Zhang and Roth, 1991, Proc. Natl. Acad. Sci. USA 88, 9858- 9862). The spatial separation and relative orientations of the two binding epitopes of Mab 83-7 on the hIR -11 ectodomain dimer as indicated here appear inconsistent with the proposal that Mab 83-7 could bind intramolecularly to hIR (O'Brien et al., 1987, Biochem J. 6, 4003-4010).
Decoration of the ectodomain dimer with 83-7 MFab established that the two plates of high protein-density are arranged with 2-fold symmetry.
Decoration with either 83-14 or 18-44 MFab on the other hand, allowed sampling of the third projection of the ectodomain dimer precluded by 83-7 MFab binding. Significantly, this third view established unequivocally the Ushaped projection of the hIR -11 ectodomain dimer, something which was WO 99/28347 PCT/AU98/00998 44 only able to be assumed with the undecorated ectodomain images. Further, this projection has allowed a rough spatial mapping close to the base of the U-shaped dimer for the epitopes recognised by 83-14 MFab (residues 469-592, connecting domain) and 18-44 MFab (residues 765-770, b-chain insert domain; exon 11 plus numbering, Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977).
Inherent in the model structure is the implication that, with the twofold axis aligned normal to the membrane surface, the mouth of the lowdensity cleft where insulin binding may occur would lie most distant from the transmembrane anchor, whilst the zone of intermediate density connecting the two high-density plates would be in close proximity to the membrane. It follows, in this model, that the L1/cys-rich/L2 domains(Bajaj et al., 1997, Biochim. Biophys. Acta 916, 220-226; Ward et al.,1995, Proteins: Struct., Funct., Genet. 22, 141-153), which comprise much of the insulinbinding region (see Mynarcik et al., 1997, J. Biol. Chem. 272, 2077-2081), most probably lie in the membrane-distal upper halves of the two plates, whilst the membrane-proximal lower halves contain the connecting domains, the fibronectin-type domains, the insert domains and the interchain disulphide bonds (Schaffer and Ljungqvist, 1992, Biochem. Biophys. Res.
Commun. 189, 650-653; Sparrow et al., 1997,J. Biol. Chem., 272, 29460- 29467). Such a disposition of domains is supported by the images seen with the single MFab decoration, the 83-7 vMFab epitope in the cys-rich region being spatially mapped roughly half-way up the side-edge of the ectodomain plates, and the 83-14 and 18-44 MFab epitopes (connecting domain and 0chain insert domain, respectively) being mapped near the base of the plates.
Our preference is for a single a-be monomer to occupy a single plate, although the possibility of a single monomer straddling the two plates of protein density cannot be discounted.
The more complex images involving co-binding of two, and even more so of all three, MFabs to each monomer of the ectodomain dimer are not easily interpretable with respect to relative domain arrangements within the monomer at present, not least of all because of the difficulty of finding conditions of negative staining that will simultaneously maintain the integrity of the Fab binding while highlighting recognisable and reproducible details of the internal structure of the dimeric IR ectodomain.
WO 99/28347 PCT/AU98/00998 The data presented here demonstrate the ability of single-molecule imaging to give an initial insight into the topology of multidomain structures such as the ectodomain of hIR, and the value of combining this technique with that of either single or multiple monoclonal Fab attachment per monomer as a potential means of epitope, and domain, mapping of the structure. By imaging Fab complexes of other members of the family, such as hIGF-1R ectodomain, and combining available sequence-mapped epitope information with that presented here, a more comprehensive understanding of domain arrangements within the IR family ectodomains should be forthcoming.
EXAMPLE Structure-Based Design of Ligands for the IGF Receptor as Potential Inhibitors of IGF Binding The structure of IGF receptor can be considered as a filter or screen to design, or evaluate, potential ligands for the receptor. Those skilled in the art can use a number of well known methods for de novo ligand design, such as GRID, GREEN, HSITE, MCSS, HINT, BUCKETS, CLIX, LUDI, CAVEAT, SPLICE, HOOK, NEWLEAD, PRO LIGAND, ELANA, LEGEND, GenStar, GrowMol, GROW, GEMINI, GroupBuild, SPROUT, and LEAPFROG, to generate potential agonists or antagonists for IGF-1R. In addition, the IGF-1R structure may be used as a query for database searches for potential ligands.
The databases searched may be existing eg ACD, Cambridge Crystallographic, NCI, or virtual. Virtual databases, which contain very large numbers (currently up to 1012) of chemically reasonable structures, may be generated by those skilled in the art using techniques such as DBMaker, ChemSpace, TRIAD and ILIAD.
The IGFR structure contains a number of sites into which putative ligands may bind. Search strategies known to those skilled in the art may be used to identify putative ligands for these sites. Examples of two suitable search strategies are described below: Database Search The properties of key parts of the putative site may be used as a database search query. For example, the Unity 2.x database software may be used. A flexible 3D search can be run in which a "directed tweak" algorithm is used to find low energy conformations of potential ligands which satisfy the query.
(ii) Do novo design of ligands WO 99/28347 PCT/AU98/00998 46 The Leapfrog algorithm as incorporated in the software package, Sybyl version 6.4.2 (Tripos Associates, St Louis), may be used to design potential ligands for IGF-1R sites. The coordinates of residues around the site may be taken from the x-ray structure, hydrogens and charges (Kollman all atom dictionary charges) added. From the size, shape and properties of the site, a number of potential ligands may be proposed. Leapfrog may be used to optimize the conformation of ligands and position on the site, to rank the likely strength of binding interactions with IGF-1R, and to suggest modifications to the structures which would have enhanced binding.
It is also possible to design ligands capable of interacting with more than one site. One way in which this may be done is by attaching flexible linkers to ligands designed for specific sites so as to join them. The linkers may be attached in such a way that they do not disrupt the binding to individual sites.
All references cited above are incorporated herein in their entirety by reference.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
EDITORIAL NOTE NO. 15521/99 The sequence listing is numbered from page 1-58.
The claims pages follow, starting from page number 47.
WO 99/28347 PCT/AU98/00998 1/58 ATOMi
ATOM
ATOMl
ATOH
ATOII
ATOl AT014 ATOHI ATOMl
ATOH
ATO1
ATOM
ATOIl
ATOII
ATOH
ATOH
ATOl1
ATOM
ATOM
ATOM
ATOM
ATOH
ATOll
ATOM
ATOI I ATOll ATOI I ATOI I
ATOH
ATOH
ATOIH
ATOM
ATOI I ATO I AT OH ATOI 1
ATOH
ATOH
ATOM
ATOI1 ATOll ATOH1
ATOH
ATOI
ATOl
ATOM
ATOI 1 ATOI-1
ATOH
ATOI I ATOll ATOll ATOI I
ATOM
ATOI
ATOM
ATO l ATOI-1 ATOI I
ATOHI
ATOM
ATOI-I
ATOII
ATOM I
ATOM
ATOM
ATOII
ATOll ATOI I ATOI I ATOI I ATOI I ATOll ATOMl ATOI I
ATOH
ATOll ATOI I ATOH I
ATOH
CB GLU CG GLU CD GLU OE1 GLU OE2 GLU C GLU O GLU 1-1 GLU CA GLU II ILE CA ILE CB ILE CG2 ILE CGI ILE CD1 ILE C ILE O ILE II CYS CA CYS C CYS O CYS CB CYS SG CYS II GLY CA GLY C GLY O GLY II PRO CD PRO CA PRO CB PRO CG PRO C PRO O PRO iH GLY CA GLY C GLY O GLY II ILE CA ILE CB ILE CG2 ILE CG1 ILE CD1 ILE C ILE O ILE II ASP CA ASP CB ASP CG ASP OD1 ASP OD2 ASP C ASP O ASP II ILE CA ILE CB ILE CG2 ILE CG1 ILE CDI ILE C ILE O ILE II ARG CA ARG CB ARG CG ARG CD ARG HlE ARG CZ ARG 11H1 ARG I.IH2 ARG C ARG O ARG II ASH CA ASII CB ASH CG ASli OD1 ASH IID2 ASH C ASH O ASH I; ASP CA ASP Figure 1 £5.907 11.986 56.138 11.019 57.382 11.319 58.40.1 10.754 57.424 12.013 53.508 12.557 52.685 11.863 54.256 10.338 5.1.602 11.778 53.608 13.860 52.768 14.699 52.925 16.122 52.036 17.122 52.560 16.006 53.150 17.176 53.122 14.711 54.258, 15.029 52.235 14.409 52.435 14.677 51.429 15.708 50.290 15.521 52.159 13.415 53.019 12.004 51.851 16.709 50.973 17.718 51.703 1.8.407 52.916 18.345 51.056 19.212 51.637 19.947 49.605 19.341 49.397 20.703 50.632 21.036 48.932 18.217 49.403 17.094 47.787 18.438 .16.896 17.336 47.710 16.365 48.510 16.863 47.586 15.111 48.307 14.053 48.556 12.797 49.043 11.700 49.561 12.857 49.678 14.249 47.338 13.762 46.150 13.843 47.767 13.631 46.938 13.283 47.003 14.469 .15.909 14.379 45.660 13.262 ,15.253 15.374 47.428 12.000 48.423 12.143 47.096 10.817 47.441 9.505 47.212 8.483 47.669 7.085 47.888 8.917 49.376 8.947 46.530 9.137 45.338 9.420 ,17.004 8.417 ,16.283 8.089 45.703 9.358 46.361 10.169 46.002 11.635 45.082 12.226 44.269 13.262 44.153 13.891 43.455 13.803 47.019 7.373 48.240 7.288 46.248 6.654 46.800 5.917 47.704 6.798 46.878 7.732 45.749 7.451 47.499 8.869 17.635 .1.736 47.303 3.701 48.566 .1.822 -19.204 3.570 66.300 65.162 64.321 64.796 63.270 66.350 65.781 67.159 67.081 66.375 65.604-1 66.160 65.484 67.663 68.498 64.139 63.852 63.196 61.773 61.302 61.690 60.999 61.6741 60.580 60.003 58.869 58.8841 58.048 56.860 58.083 57.474 56.683 57.354 57.396 56.795 56.350 55.529 54.753 55.788 55.141 55.933 54.988 57.067 57.668 53.977 54.195 52.751 51.631 50.651 49. 600 49.096 49.251 50.992 50.330 51.321 50.939 52.077 51.653 53.364 53.286 49.794 49.832 48.812 47.600 47.023 45.952 46.264 45.284 45.498 416.666 44 .602 46.492 46. 281 45.629 44 .494 43.671 42.829 42.403 42.587 441 .915 44.347 45.878 46.263 1.00 59.11 1.00 78.17 1.00 85.10 1.00 86.18 1.00 78.70 1.00 48.46 1.00 51.27 1.00 61.64 1.00 5.1 77 1.00 37.66 1.00 40.87 1.00 41.97 1.00 38.50 1.00 46.58 1.00 32.29 1.00 46.47 1.00 51.66 1.00 49.61 1.00 38.93 1.00 42.06 1.00 42.37 1.00 35.66 1.00 36.98 1.00 42.39 1.00 47.71 1.00 48.23 1.00 55.36 1.00 49.63 1.00 45.28 1.00 41.57 1.00 44.30 1.00 46.43 1.00 36.40 1.00 43.35 1.00 39.15 1.00 39.24 1.00 33.68 1.00 36.00 1.00 35.70 1.00 37.65 1.00 36.31 1.00 34.67 1.00 39.34 1.00 40.22 1.00 45.00 1.00 51.52 1.00 45.60 1.00 44.05 1.00 44.21 1.00 43.48 1.00 51.77 1.00 46.84 1.00 42.16 1.00 48.50 1.00 42.76 1.00 44.05 1.00 40.82 1.00 36.35 1.00 41.17 1.00 13.78 1.00 51.48 1.00 63.05 1.00 54.87 1.00 5.1.17 1.00 48.54 1.00 46.55 1.00 52.63 1.00 59.27 1.00 56.22 1.00 E5.14 1.00 52.29 1.00 57.23 3.00 56.32 1.00 57.23 1.00 50.73 1.00 44.65 1.00 50.72 1.00 72.59 1.00 54.38 1.00 53.07 1.00 51.95 1.00 50.96 1.00 55.44 AAAA C AAAA C AAAA C AAAA 0 AAAA 0 AAAA C AAAA 0 AAAA II AAAA C AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA II AAAA C AAAA C AAAA 0 AAAA C AAAA S AAAA I AAAA C AAAA C AAAA 0 AAAA H AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA C AAAA C AAAA C AAAA 0 AAAA 1 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA II AAAA C AAAA C AAAA C AAAA 0 AAAA 0 AAAA C AAAA 0 AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA H AAAA C AAAA C AAAA C AAAA C AAAA 11 AAAA C AAAA IH AAAA II .AAAA C AAAA 0 AAAA II AAAA C AAAA C AAAA C AAAA 0 AAAA II AAAA C AAAA 0 AAAA II AAAA C WO 99/28347 PCT/AU98/00998 ATO I ATO I ATOI I ATOI I
ATOH
ATOI I
ATOH
ATOI
ATOI I
ATOHI
ATOI I ATOll ATOI I
ATOMI
ATO! I
ATOM
ATON
ATOI-1
ATOH
ATOlH ATOlH
ATOM
ATOM
AT OH
ATOH
ATOH
ATOI I ATOIl
ATOIH
ATOI I ATOI 1 ATOI I ATOI I ATOI I ATOI I ATO I ATOI I
ATOM
ATOM
ATOH
ATOI
ATOlM
ATOI
ATOH
ATOI I ATOI I
ATOH
ATOI I ATOI I
ATOHI
ATOI I ATOI I
ATOH
ATO1 I
ATOHI-
ATOI I
ATOII
ATOI I
ATOH
ATOI I
ATOI.H
ATOi-l ATOIl ATOI-l
ATOI-
ATOI I ATOI I
ATOHI
ATOI I ATOI I ATOI I ATOi I ATOMl
ATOHI
ATOI I ATOI-1 ATOI I ATO1
ATOI-I
ATOii ATOI I ATOI I ATOI I
ATOIH
ATOIH
50. 668 50.879 50. 141 51.391 49.061 .1 9.68-7 48.411 418. 328 47.968 47.467 46.216 45.746 48. 233 .17.788 46.542 46.144 49.622 49. 621 50.786 52.078 53.174 52.863 53. 990 53.945 54-. 920 52.43.1 53.266 51. 628 51.724 50. 861 5 .566 51. 55.1 51.168 52.016 51.219 51.576 50.440 49. 913 48. 950 47.502 46.837 46.687 51.0,12 50.913 52.252 53.422 54.609 54.539 54.768 55.316 56.537 53.944 54 .492 53.52.1 53.827 53.250 53.888 52. 96-1 52.528 51.628 51.0 69 51.377 53.2 68 53.402 52.445 51.653 50.186 49.202 47.846 49.018 52.210 51.970 53.270 53.819 54.876 55.893 57.095 58.123 56.993 54.310 5.1 .301 541 633 55.054 5.1.066 541 .228 3.568 4 .026 3.185 5.120 3.322 3.849 2.187 1.672 0.196 -0.357 -0.024 -0.541 -1.247 -1.778 -1.420 977 1.839 2.321 1. .5411 1.681 1.318 -0.078 -0.515 -0.161 -1.254 3.058 3.292 1 .038 5.399 6.220 6.605 8.105 9.005 8.378 5.530 6.500 4 .535 4.449 3.295 3.425 2.063 4.424 4.280 4 .601 3.936 3. 914 3.252 1.733 1.278 -0.141 -0.225 5.270 5.262 6.344 7.673 8.702 8.764 9.362 10.703 11.444 10. 941 12.656 7. 924 9.010 7.069 7.282 6.924 7.371 6.743 8.866 6.428 6.810 5.708 4.833 3.960 4 .840 4 .077 4.795 2.885 5.417 4 .652 6.659 7 .204 8.141 8.456 2/58 45 .758 14 31 43.457 43.989 47.758 48.711 48.036 419.397 ,19.409 50.721 51.248 52.450 51.457 52.661 53.160 54.358 50.198 51.354 49.594 50.218 49.219 48.686 47.754 46. 57 3 48.361 50.753 51.6.14 50.349 50.831 .19.911 48. 648 48.428 4 9.184 47.211 52.258 52. 940 52.688 54.019 54.159 53.707 53.790 54.545 55.039 56.235 54.560 55.404 54.737 54.831 53.387 53.426 52.554 55.852 56. 933 55.201 55.676 54.704 53.333 52.269 52.650 52.021 50.943 52.555 57.077 57.644 57.632 58.794 58.674 57.608 57. 852 57.495 59. 912 61.030 59.652 60.679 59. 982 59.272 58.757 58.722 58.420 61.989 62. 937 62.207 63.454 64.1108 65. 303 I 0o 1.00 1 .00 3 .00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1 .00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1 .00 1.00 1.00 1.00 1 .00 1.00 1 .00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1 .00 1.00 1.00 1.00 1 .00 1.00 1 .00 1 .00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 66..47 68.25 58.31 70.56 59.23 59.65 59.64 64 .06 64 .56 69.18 72.71 71.51 70.36 7 1 .64 71 .31 63.25 65.99 65.01 63.51 63.51 68.37 84 62 92.28 94.82 98.03 61.62 62.09 57.02 51 .71 43.75 59.65 72.96 80.58 74.17 50.15 48.04 46.22 45.52 37.73 41.40 42.43 35. 93 51.52 52.53 51.01 50.73 56.10 62.40 63.85 68.40 73.83 44.78 39.39 41.15 43.01 43.97 53.60 60.34 50.00 48.86 47.96 43.72 44 .03 45.53 46.36 50.25 50.83 46.43 22.57 45.88 49.87 51.54 49.35 49.60 57.91 70.16 69.35 71.38 72.84 43.55 40.01 41.06 47.17 49.76 48.10 AAAA AAAA C AAAA 0 AAAA 0 AAAA C AAAA 0 AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C AAAA AAAA C AAAA C AAAA 0 AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA 'l AAAA C AAAA 0 AAAA C AUAA C AAAA C AAAA C AAAA C AAAA 0 AAAA 11 AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA CI AAAA C AAAA I: AAAA C AAAA O AAAA AAAA 7 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA C; AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA 0 AAAA C AAAA C AAAA ;i AAAA 7 AAAA .7 AAAA 0 WO 99/28347 PCT/AU98/00998 ATOI I ATO! I ATOMl ATOllI ATOI I ATOll AT Oll
ATOM
ATOMl ATOMl ATOllI ATOll ATOMl
ATOM
ATOII
ATOM
ATOMl
ATOM
ATOM
ATOll
ATOM
ATOllI ATOllI ATOllI
ATOM
ATOM
ATOM~
ATOI I ATOll AT01 I A111 ATOllI ATOI I ATOll ATOllI ATOll ATOI I ATOM1.
ATOM4 ATOM4
ATOM
ATOM
ATOM
AT011 ATOM1 ATOllI ATOll AT0l4 ATOI I ATOI I ATOHl AT OM
ATOM
AT Oi ATOll
ATOM
AT 01- ATOll ATOI I ATOI I
ATOH
ATOI I ATOI 1 ATOlM ATOI I ATOI I ATOllI AToll ATOllI ATOI I ATOI I ATOll ATOll ATOI I ATOllI ATOllI ATOll[ ATOMl ATOI I ATOllI ATOI I
ATOI
ATo Oi ATOll
ATOII
56C. 379, 57. 413 5-7. 4 99 b8.3-16 53. 129 52.107 51. 215 50. 750 51.182 52. 07 6 51.287 50.339 50. 944 51.410 52.110 49. 250 48.085 ,19.6-16 48.732 48. 925 48.056 48.656 48.895 49. 987 47.855 -17. 908 47.113 4 7. 02 7 47. 67 4*7.169 47. 397 46.223 48.2G4 47.832 48.875 48. 490 49.561 50.654 49.571 ,17 .413 48.161 46.117 45.498 44.531 43. 988 44 .304 43. 318 42.403 43.058 4 3. 70.1 44. .361 43. 130 4 3. 76C9 44 .367 4 4. 971 43. 953 45.119 413. 250 43.7641 43. 830 4 4. 212 4S.538 44. .551 42.897 4 1. 68 9 43.389 42.601 42.893 42. 37 2 '11 .519 4 2.7 17- 42.080 41.329 43. 173 44.357 4 .308 4 2. 750 42.668 43.161 43.481 43.170 41.80-1 40.753 42. 314I 41 .4841 .855 -169 8. 711 9.614 9.089 7.923 9.9211 10. 328 9.801 9. 482 9.481 10.843 8.-57 1 10.599 10.414 11.797 12.855 13. 979 15S. 157 13. 566 13. 4471 13. 963 13. 450 14 .094 13.299 14I. 039 11.896 11. 155 15.490 15. 776 1 6. 4712 17 .8 '17 18.703 20. 144 20. 762 20. 937 2.175 18.376 19.069 18.104 18.503 17.400 16. 715 17.209 16.189 16.'794 17.256 16.355 16. 706 18. 572 18. 972 18. 021 18B. 425 14. 9,16 15.147 13. 900 12.730 11 .611 10.258 10.396 9.203 12.342 12. 165 12.2n85 11.891 12.801 14 .155 14.753 15.120 16. 281 16.093 10.538 10. 388 9.542 8 .271 7.204 5.830 7 .555 C. 5751 8. 04-1 7.5b89 8.489 B. 235 3/58 96 31 0 3. 87 9 65. 069 6 2.690 61. 1.18 66. 137 (7.204 68 .593 68.822 68. 838 A7 116 67.481 ,6 689 6 7. 08 2 68.886 C5. 043 6.1.791 64 .203 C-2 .882 01 853 GO. 54 2 61 705 CIO. -17 1 9.l1 63 .213 63.042 -S3.22 6 63. 856 64 .116 C5 .013 64 .489 C6.182 61.869 61.181 61.582 60. 320 59.893 60. 775 58.604 58.253 57. 217 I5. 9612 55. 116 53. 9(,7 ES 00 54 .42 8 53 G052 -2.464 57 697?- 57 .383 57-. 4 51' 56. 803 571.85-6 S 7 24 2 50G. -169 5 8. 2- 90 S5. 616 55.80 5-1.395 53. 197 027 52.046 907 51.444 52. .7 14 52. 584 Cl 1 99 53. 063 54 .335 73 5 827 49 l. 5 56C 48. 3180 I 1 00 00.1 00 .0 -00 1.00 1 .00 1 .00 1 .00 1 .00 1.00 1.00 1.00 1.00 1 00 1 .00 S. 00 1 .00 1 00 1.-00 1.00 1 .00 1 00 1.-00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1.00 1 .0 1 .00 1 .00 1.00 1 .00 1 00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 0 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1.-00 1.-00 1 00 1 .00 1 1% 1.00 1.00 1.00 1 .00 1 .00 1.00 519.11 68.38 77. 90 47. 44- 40. 43 36. 0 44 82 39.51 36.24 43.51 41 .38 33.83 44 .55 4 5. 95 33.03 35. 29 30.60 2'7.21 25. 37 4 1 52 44 .40 40.13 32.05 25.85 18.73 29.80 27.41 3. 92 40. 91 36.60 29. 24 29. 92 38.0(0 37.39 41.56 49.16 37 .79 39.68 37.28 31 .17 33.72 33.29 29.24 28. 93 31.53 31.78 36.07 28. 91 30.98 28.77 31.53 44 .74 29.23 35.58 26.63 29.83 2 709 31.90 35. 03 25.05 33.84 43.29 35.95 3 4 92 32.8B5 25.08 40.88 33.66 31.33 37 .27 37.68 38.70 4 0.-0 2 39.47 37.95 23.86 41 .66 28 .22 46C.5S2 413. SC 'I 9. 89 4 9.77
AA
~AAA
AAA
AAAA
AAAA
WA
WA
WA
WA
WA
AAAA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
AAAA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
AP-AA
WA
WA
WAk
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WAA
WA
WA
WA
WA
WA
AA
WA
WA
WA
;AAAA
WA
kA
WA
WO 99/28347 PCT/AU98/00998 4/58 ATOll .312 C'B IEU 32 41.127 9.515 .1 6' 3 .00 47.4.? AAAA C ATOll 313 CG3 LEU 3 2 12.091 10.688 47.562 1.00 45.33 AAAA C ATOll 31-I CD] LE' 32 .11.517 11.812 .16.673 1 .00 35. 77 AAA C ATOll 315 CD2 LEU- 32 42.371 11.229 .18.96U 1.00 49.18 AAAA C ATOll 316 C LEU 32 .12.136 7.296 17.353 1.00 51.00 AAAA C ATOH 317 0 LEU 32 ,13.338 7.370 .7.186 1.00 41.36 AAAA 0 ATOM 318 II LEU 33 41.270 6.722 .16.497 1.00 50.74- AAAA II ATOM 320 CA LEU 33 11.602 6.175 45.197 1.00 49.92 AAAA C ATOll 321 CB LEU 33 42.091 7.262 .14.182 1.00 34.83 AAAA C ATOM 322 CG LEU 33 41.233 8.537 .14.164 1.00 33.92 AAAA C ATOl 323 CDI LEU 33 41.892 9.587 43.298 1.00 37.49 AAAA C ATOll 324 CD2 LEU 33 39.823 8.313 43.644 1.00 33.01 AAAA C ATOll 325 C LEU 33 42.618 5.073 .15.287 1.00 48.35 AAAA C ATOM 326 0 LEU 33 43.580 5.077 44.538 1.00 54.14 AAAA 0 ATOM 327 II ILE 34 42.543 4.212 46.254 1.00 47.61 AAAA H ATOM 329 CA ILE 34 43.523 3.184 .16.540 1.00 51.70 AAAA C ATOI 330 CB ILE 34 44.101 3.346 47.963 1.00 57.98 AAAA C ATOll 331 CG2 ILE 34 44.538 2.043 48.600 1.00 48.98 AAAA C ATOM 332 CG1I LE 34 45.267 4.371 417.967 1.00 46.70 AAAA C ATOM 333 CDI ILE 34 15.561 .1.70.1 .19.439 1.00 66.47 AAAA C ATOM 334 C ILE 34 42.829 1.844 46.408 1.00 59.85 AAAA C ATOM 335 0 ILE 34 41.726 1.531 46.856 1.00 60.11 AAAA 0 ATON 336 II1 SER 35 43.622 0.833 .16.013 1.00 67.79 AAAA H1 ATOll 338 CA SER 35 43.048 -0.511 45.922 1.00 68.80 AAAA C ATOM 339 CL SER 35 42.767 -0.882 ,14.469 1.00 64.16 AAAA C ATOM 340 OG SER 35 41.731 -1.846 4-1.1.498 1.00 75.76 AAAA 0 ATOll 342 C SER 35 43.928 -1.56.1 46.537 1.00 70.73 AAAA C ATOMl 343 0 SER 35 44.885 -1.954 45.909 1.00 73.65 AAAA 0 ATOM 344 II LYS 36 43.687 -2.017 47.740 1.00 74.75 AAAA II ATOll 346 CA LYS 36 44.465 -3.014 .18.421 1.00 76.09 AAAA C ATOll 317 CB LYS 36 44.046 -3.131 49.885 1.00 81.22 AAAA C ATOll 3.18 CG LYS 36 45.147 -3.654 50.775 1.00 78.87 AAA C ATOll 349 CD LYS 36 44.693 -4.575 51.887 1.00 81.39 AAAA C ATOM 350 CE LYS 36 44.890 -6.025 51.492 1.00 89.38 AAAA C ATOll 351 11 LYS 36 44.371 -6.989 52.506 1.00 91.63 AAAA II ATO 355 C LYS 36 44.252 -4.362 47.753 1.00 81.41 AAAA C ATOM 356 0 LYS 36 43.145 -4.772 47.451 1.00 78.20 AAAA O ATOll 357 11 ALA 37 45.371 -5.080 47.615 1.00 88.27 AAAA 11 ATOM 359 CA ALA 37 45.361 -6.396 46.986 1.00 90.10 AAAA C ATOll 360 CB ALA 37 46.700 -6.655 46.327 1.00 95.49 AAAA C ATOM 361 C ALA 37 45.011 -7.473 47.995 1.00 92.36 AAAA C ATOll 362 0 ALA 37 45.668 -7.627 .19.012 1.00 92.35 AAAA 0 ATOM 363 II SER 38 44.031 -8.301 47.622 1.00 94.31 AAAA II ATOM 365 CA SER 38 43.528 -9.352 48.484 1.00 95.70 AAAA C ATOM 366 CB SER 38 42.405 -10.164 .17.858 1.00 97.44 AAAA C ATOM 367 OG SER 38 42.061 -11.176 48.814 1.00103.48 AAAA 0 ATOM 369 C SER 38 44.702 -10.263 .18.821 1.00 96.87 AAAA C ATOM 370 0 SER 38 44.761 -10.778 49.924 1.00 98.06 AAAA O ATOMl 371 II ASP 39 45.584 -10.415 47.852 1.00 97.99 AAA II ATOH 373 CA ASP 39 46.821 -11.148 47.980 1.00 99.19 AAAA C ATOM 374 CB ASP 39 47.579 -11.050 46.652 1.00102.13 AAAA C ATOM 375 CG ASP 39 47.696 -12.387 45.949 0.01101.22 AAAA C ATOll 376 OD1 ASP 39 46.644 -12.978 45.623 0.01101.42 AAAA 0 ATOM 377 OD2 ASP 39 48.833 -12.848 .15.718 0.01101.41 AAAA 0 ATOM 3178 C ASP 39 47.660 -10.564 49.105 1.00 99.40 AAAA C ATOll 379 0 ASP 39 47.692 -11.056 50.224- 1.00 99.15 AAAA 0 ATOM 380 II TYR 40 48.354 -9.479 48.818 1.00100.96 AAAA II ATOI. 382 CA TYR 40 49.120 -8.706 49.802 1.00101.16 AAAA C ATOM 383 CB TYR 40 49.511 -7.393 19.130 1.00103.67 AAAA C ATOI 384 CG TYR 40 50.159 -6.281 49.887 1.00107.81 AAAA. C ATOll 385 CD1 TYR 40 50.931 -5.325 49.228 1.00109.56 AAAA C ATOll 386 CE1 TYR 40 51.540 -4.280 49.910 1.00109.67 AAAA C ATOll 387 CD2 TYR 40 50.04.1 -6.115 51.25.1 1.00109.28 AAAA C ATOM 388 CE2 TYR 40 50.618 -5.102 51.976 1.00109.83 AAAA C ATOll 389 C2 TYR IJ 51.372 1.181 51.276 1.00110.16 ;,AAAA C ATOll 390 OH TYF, 40 51.999 -3.127 51.893 1.00109.81 AAAA 0 ATOll 392 C TYR 40 48.343 -8.529 51.100 1.00 99.10 jAAAA C ATOll 393 0 TYR -10 .17.168 -8.182 51.183 1.00 99.05 A.AAA 0 ATOMl 394 II LYS 4] 49.041 -8.653 52.218 1.00 98.62 AAAA II ATOH 396 CA LYS 41 48.443 -8.549 53.546 1.00100.30 AAAA C ATOI 397 CB LYS 41 49.385 -9.160 54.599 1.00104.42 AAAA C ATOll 398 CG LYS 41 49.218 -10.649 54.81.1 0.01101.06 AAAA C ATOll 399 CD LYS 41 47.776 -11.107 54.919 0.01100.66 AAAA C ATOM 400 CE LYS 41 47.205 -10.880 56.308 0.01 99.86 AAAA C ATOM 401 llZ LYS .11 47.882 -11.728 57.328 0.01 99.62 AAAA II ATOll 405 C 1.YS 41 48.035 -7.136 53.917 1.00 98.99 AAAA C ATOll 406 0 LYS .11 47.615 -6.371 53.057 1.00103.33 AAAA 0 ATOM 407 !I SER 42 48.198 -6.754 55.221 1.00 91.75 AAAA lii ATO .09 CA SER 42 47.825 -5.412 55.604 1.00 85.06 AAAA C ATOll 410 CB SER 42 46.385 -5.520 56.147 1.00 95.33 AAAA C ATOM 1 411 OG SEP. 42 46.547 -6.1.10 57.426 1.00104.63 ,.AA 0 ATOll 413 C SER 42 18.628 -4.715 56.687 1.00 80.78 A.AA ATOll 414 0 SEF, 42 49.326 -5.259 57.538 1.00 81.03 -AAA 0 ATOM .15 II TYR 43 48.495 -3.395 56.673 1.00 73.03 AAAA I: ATOll 417 CA TYR 43 49.069 -2.488 57.635 1.00 67.25 AAAA C WO 99/28347 PCT/AU98/00998 ATO!l I ATO: I ATO1 I ATO! I ATO! I AT Oi ATO! I Kvraoi ATOI I AT 01' AToll ATOI I
ATOM
ATOllI
ATOI
ATOll
ATOM
ATOll ATOI I Arc.:
ATOM
ATOI I ATOll ATOM4 ATOll
ATOH
ATOMI
ATO! I
ATOM
AT 01- ATOl I ATO! I AT Oi ATOM1
ATOM
ATOI I
ATOM
ATOil ATollI ATOllI ATOll ATOMl
ATOM
ATOMl
ATOM
ATOll ATOllI ATOI I ATOI I ATO] I ATO! I ATOI I ATOllI ATO1 i ATOI I ATOI I ATOll ATO! I
ATOH
ATOI 1 ATOMl ATOT I ATO! I ATO OI ATOllI ATOll ATOll ATOI I ATOll ATO1 I ATOlI ATO] I
ATOM
ATOM
ATO! I ATO] I ATO1 ArOllI ATO! 1 AT OI ATOI I ATOI I ATOI I ATOt I
ATOH~
4123 421 425 423 424 425 4 31 432 4133 434 435 .137 438 4 .114 445 446 448 4 '19 4 50 451 453 457 458 461 .162 463 465 4 67 468 469 470 4711 -172 4176 478 480 481 492 .183 4P.4 485, 489 .10 491 403 49'!.
495 4196 408 4 9 500 501 £0 D2 503 504 507 508 509 510 511 512 513 515 516 517 519 521 C" TYR< G Ti C~L1 TYR
TYR
c -121 TR C E2 T'TR CZ TYR 0! 1 T1YRK C TY R TY R I I ARG C A ARc; C B ARG C-3 ARG C D ARG I E AR'3 C3 ARC; liH1 ARG 11112 1 %RG C ARG O ARC; 11 PHE CA PHlE CBI PHlE CG PHE CDI PHlE CD2 PlE CEl PilE CE2 P1lE C 7 PilE 7 PHlE C) PHE I! I RO CD PRO CA PRO CBI PRO CG PRO C PRO O PRO I I LY S CA LY S C B LY S C G LYS C D LYS C E LYS 11Z L C LY S 0 LYS3 I i LEU CA LEUI C B LE CG LEO: CD1 LEL £0D2 LE! 2 LEO O LLLI I THR C A THE C 8 T!!R 001I TI4R CG2 THlR
THR
TIIR
I I VAL CA ;AL VA L £01 V!AL C G 2 VAL C VAL O VALE l I ILE CAk ILE C B ILE C'32 I LE CcGI ILE CDI ILE C ILE O ILE I I T1IR CA THR CB T IlE 0131 THlE THlE C TI!R O TIIR 4 9 '7 ,0 4 9. 95 3 50. 031 -98 9. 770( 50.53C 51. 508 52.262 48. 248 47. 088 48.782 -18.019 417.842 7 .815 4.G..885 417.090 -16.461 45.644 -16.67.1 48.811 419. 916 4 8.27 6 48.86C5 48 7-74 4 9. 106c 50.373 .18 127 50. 653 418. 358 .19.912 :18 .181 -17.70C8 48. 494 49.30'0 48. 032 48. 514 49. 404 48.558 48. 32 9 49. 450 4 9. 991 51. 378 52.032 53. 563 54.115 54 .024 49.014 -1 9. 189 48.300 47.370 4 6. e23 45. 9-17 46. 6-37 4 591 46.1866 4 5. 271 46.138 45. 045 45. 548 46C. 39C 465. 230C 4 4. 230 43.111 4 4 .735 43 995 414 .293 4 3. A30 43.881 44.271 415. 195 43. 319 413. 30 1 42 .346 41. 991, 43.0-6 4 2. 3S8 4 2.6C59 4 1 .546 .13. 34 2 42 806 43. 961 4 4 2 6 4 4.7 751 41 7-1 1 -11-101- -1 .021 -1.935, 781 0. 050 0.21! 0. 7112 56.3 -2.381 -2.851 -2.375 -3.327 927 536 -4'I 5 139 -0.285 552 0.866 1. 941 3.24 9 2. 937 3.05 1 2.428 715 2096 '..323 1.338 0.097 1.530 0. 319 -0.4.64 2.768 2.830 3.533 4 679 4.981 3.995 3. 976 4 .648 6.132 5.848 6 827 5.8 7 .004 6. 919 7 .967 9. 310 7 .738 7.022 6. 187 8.041 8.151 8 207 9.340 6l. 957 9.4'25 9. 451 10. 415 11 664 12. 708 1.1 066 12.311 12. 305 11 .863 12. 939 13. 575 12.864 13. 802 11.611 10.5519 1.1.939 141.830 16l. 058 17.305 18. 338 18. 56C7 1 7 926 17 .9;;1 19. 030' 5/58 54 .87-) 53. 728 53.432 52. 305 58.925 5 9. 030 59.825 61. 039 61 .76 0 6 3. 2.1 63. 983; 65.403 66.395 66,. 132 67. 629 C1.845 62. 320 62. 139 62.86C3 61i.978 59. 998 59. 728 58.672 58. 40c 65. 132 67. 38C G7 .233 C68. 4.13 66.676 67 .362 C6. 852 65. 902 65.891 67 .1 47 66. 874 67.195 C7. 952 66. 053 65 8 C, 6-I1. 3 8 G63.7987 63 .8786 66. 8 C-, 66. 863 67 .6C73 68 57 4 70. C 34 70. 225 70.529 C8. 321 68. 837 (7 .605 67 .418 680.5SC03 68 .208 6 9. 913 9. C048 65. '431 6 5..115 6-4 133 63. 152 61 .978 62.67 1 C61 .86151 64 .431 641.923 6,4 .2 3 9 61.719 64 .939 C3. 791 C,6. 114i 63.8-53 6 4 .24 3 I 0 .00 1 .00 1 00 S. 00 1 .00 1.00 1 .00 1.00 S. 00 1 .00 1 .00 1 .00 1 00 1 .00 1 .00 1.00 1 .00 1 .00 1.00 1 00 1 .00 1 .00 1 .00 1 .00 1 .00 1 0 1 00 1 00 1 .00 1 .00) 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1 00 1 .00 1 .00 1.00 1 .00 1. 00 1 .00 1 .00 1 .00 1 00 1.0 1 00 1.00 1.0'20 1 .00 1 .00 1 .00 1 .00 1 .00,: 1, 00 1.0) 1 .00 1. 00 1.00 1. .00 1 .00 1 .70) 1. .00 1 .00 1.0 1.00 1 0C 1 .00 1 .00 1 .00 1
OC
1. 00 1 IC 1 u0 6 5. 3 7 C3.9- 63. 87 67 C6. 9.1 651.23 64.88 62.90 57 8B 56.45 46.51 54. .6C 58.54 68.56 6!..82 61.53 66.03 55. 1'9 58.4.3 51 .13 45. 94 35.89 30. 29 45.72 35. 95 47.76C 3 9. 9 2 46. 44 4 1 40. 99 43 .2 0 47 .74 43. 34 44 92 45. 48 41. 30 44 .57 39.33 38.10 48.07 67 .95 61 .33 72.19 -79 .209 39.76 35.45S 3C.45S 40. 40 28. 59 31. 04 36.936 34.49 42.2 36. 48 38.9 37. 9C 48. 1 35. 90 31.90 39. 48 34 4 9 37. 32 38.72 37. 24 29. 96 3 2. 52 37.03 p37. 96 37.4 9 32 .498 34.51 32. 31 30.78 I19.69 134 .1I, 129.08 133.93 33.83 35. 39 41. 28 22.01i 0 39.02 038. 88
AAA-
AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA C AAAA 0; A.M.A Ci AAAA C AAAA C AAA C AAAA C1 AAM C AAAA C1 ?AAA 11 AAAA C AAAA 0 AAA 1 AAAA C AAAA C AAAA C AAAA C AAAA C AJCAA C A'AAA C AAAA C AAAA C AAAA 0 AAAA 11 AAAA C PAAA C 7-.AAA C AAAA C
AAAA-::
AAAA 0 AAAA 11 AAAA C AAAA C A.AAA C A.AAA C AAAA C AAAA 11 AAAA C AAAA 0 AAAA 11 AAAA C AAZA C ,JAA C AAAA C 7-.AAA C AAAA C AAAA 0 AAAA 1; AAAA C: A.M.A C AAAlA 0 AAAA C AAAA C AAkAA 0 AAAA 11 ,3\nAA C AAAA C Z.AAA C AAAA C \AM. c AAAA 0 AAAR 11 A.M.A C AAAA C AAAA C A.M.A C AAAA C AAAA C A.AAA 0 A.M.A ii AAAA C P-AAA C AAAA 0 ?AIIA C AMAA T
AAC
WO 99/28347 PCT/AU98/00998 AT01 I AT01-l ATOi I ATOl
ATOM
ATO1I
ATOM-
AT01ll
ATOII
ATOM
AT01ll AT01 I AT01ll AT01I AT01ll AT014 ATOMl ATO! I AT01ll ATOI I ATOI l
ATOH
ATOM-
ATO1I AToll1 ATO1I ATOI I AT 01 I ATOHl AT 01I ATOI I ATOMl
ATOM
ATOM
ATOMA
AT01lI ATOMl AT01 I AWNl ATOMl ATOMl
ATOM
ATOI I AT OIl ATOM1 ATOll
ATOM
ATOM
ATOI I ATO! I ATOI I ATOi I ATO! I AT01lI ATOI I ATOI I AT01-l ATOI I ATOI I ATOllI
ATOM
ATOM
ATOI I
ATOM-
ATOI I ATOI I ATODI I ATIDll AT01 I AT01ll ATOI I ATOI I ATOI I ATOI I ATOI I AT Oi
ATOM
ATOM
ATOI I AT01ll ATOI I ATOI I Arol I ATollJ-
ATOM
.41 .524 40.43-1 -i 1. 064 4 2. 061 412. 517 -12. 638 42.799 39. 506 38. 9 2 2 39. 639 38. 666 37. 6 54 38. 247 38. 487 38. 980 38.577 39.049 39.263 39.7(53 39. 405 '10.513 38.683 39.111 39.011 39.349 410.668 39. 496 38.201 36. 995 38.700 37 955 37. 998 37. 984 37 .07C6 37 .286 38.595 39.71.4 37.846 38.133 37. 944 39.064 38. 513 39. 630 37.203 35. 985 37.792 36.895 36.704 36. 447 37. 413 35. 20 0 37 .124 34 .885 3S. 877 37.351 38.487 36. 471 36.753 36 .911 35.8C9 35. 92 1 35. 822 34. 950 33. 702 35.237 38.037 38. 981 38. 01 39.101 39.624 40. 40'7 40.425 38.539 37.535 39.09-1 38.617 38.302 39. 613 40.757 39. 200 4 0. 136 -1.0:i6 2 -10 .1187 39. 9l8 5 4 0.00L3 1 477 17.1153 18.1 51 19. 552 2 0. 396 19. 908 1.7 89 156. 311 16. 353 15. 342 15S. 8 02 16. 476C 15.733 16G. 2 43 17 844 18 .'384 1'7 .569 18.047 14 .115 14 .360 13. 021 11 .812 10.663 31 4 9. 477 8 .093 11 .54 8 11 .632' 11 .348 11 .201 12.446 12 514 11- 1 60 13.807 10.047 10. 205 9. 008 7 .832 6.588 G. 5341 .890 5. 162 7.825 7.993 7.898 8.002 S9. 448 9. 815 9'.706 1D. 301 1. 033 1 1 10 52 1 052 .073 118 S.281 62 A. 422 5832 6 -7 7 .729 494 '113 3. 625 .43 3.066 1 .872 4 .352 1 .337 1 .2-24 0.371 992O~ -1 .483 .934 602 -3.105 -4 .079 9 111 -4 .835 2.34 -'.443 6/58 6 2.6G39 61 .7-85 -0.483 60. 834 59. 697 59.931 61. 388 62. 386 60. 102 59. 713 58.6336C 57.388 56. 305 55. 086 57.307 5 6. 124 55.032 53.847 59. 142 58. 67 8 59. 0041 58.454 59. 510 58.818 5B. 040 59.705 57.238 57. 427 56. 0 35 S4.99 53.9419 52. 16 51.821 51 .985 54 .008 53.547 53. 800 53.034 53. 916 55. 026 56.417 55.039 51.838 51.969 50.6412 49. 467 4 9. 102 4 7.6192 46C. 697 417.32C 45".-396 46. 011 415.037 48. 379 47 .934 47. 944 46G. 815 451. 4 27 45.121 .13.706 42 .806I -42. 036, 4 1. 931 41 327- 47 049 46.232 4 8 .023 48. 341 .19.7 S1 SO0. 296G 49. 893 498. 368 4 9. 072 4 7.65 9 -17 7 .1 9 4C.3(54 48.386 48.670 48. 84 9 49. 385 E 1. 38 3 S52. B C0E i 00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 00 1 .00 1 .00 1 00 1 .00 1.00 1 .00 1 .00 1.00 1.00 1 .00 1 .00 1 .00 1 .00 1. 00 1.00 1 .00 1 00 1 00 1 .00 1 .00 1 00 1 .00 1.00 1.00 1.00 1.00 1 .00 1.00 S. 00 1 .00 1 .00 1 .00 1.00 1.00 1 .00 1.00 1 .00J 1 .00 1 .00 1. 00O 1 .00 1 .00 1.00 1 .00 1.00 1.00 1 .00 1 .00 100 1 00 1 .00 1.00 1 .00 1.00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1.00 1 .00 1 .00 1 .00 1 .00 1.00 1.00 1 00 1 .00 1.09 1 CIO 3G. 93 38. 3B 79. 76 30. 48 40. 82 57 .56G 35.74 39.19 38.95 30.60 35.96 30.71 21.18 20. 21.04 23. 97 24 .69 26. 72 37.55 33. 87 30.40 23.24 30.08 14.-78 26. 98 26.66 14. 45 37. 43 39.55 41.83 36.98 33.29 30.35 47.95 33.47 39.75 44 .38 36.68 41.53 37.00 36.13 33.26 24.11 46.03 44 .78 47.07 48.75 46. 67 54.66 55.19 53.86 50. 36 41. 84 46. 50 4 9.71 52.16 4 4 .26 40.80 23.79 46.53 37. 64 49.23 41 .36 47.00 4 12. 58 42.25 14 I. 11 40.84 39.14 40.12 35.0OF 28.86 43.56 -17 .66 41. 92 42. 05 52.4'0 43.08 50.59 45.71 45.39 48.04 2 3-1 46. 91, 49.11 AAA 1 AAAA C2 AAAA C AAAA C AAAA C AAkAA 0 A.AAA 0 AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA 11 AATAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA H* AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AMAA 11 AAAA C AAAA C AAAA C AAAA C AAA 1 AAAA C AA 14 AAAA If1 AAAA C AAAA 0 AAA If AAAA C AAAA 'C AAAA C AAAA C AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA 0 MAAA H4 AAAA C AAAA C AAAA 0 AAAA 11 AA.AA C WO 99/28347 PCT/AU98/00998 ATOI I
ATOI
ATOH
ATO I ATO I
ATOH
ATOHl
ATOM
ATOll
ATOM
ATOM
ATOI I
ATOM
ATOMl ATOI I
ATON
ATOll
ATOM
ATOHl
ATOM
ATOMl
ATOM
ATOIH
ATOHl ATOI I ATOll
ATO
ATOll
ATOM
ATOI I ATOl ATOI I ATOtl ATOll
ATOM
ATOI I ATO I ATOll ATOll
ATOH
ATOI-
ATOM
ATOM
ATOM
ATOll
ATOM
ATOM
ATOI
ATOM
ATOM
ATOM
ATOHl
ATOM
ATOl ATO I ATOi
ATOM
ATOI I
ATOI-
ATOII
ATOM
ATOM
ATOI I
ATOI
ATO I ATOll
ATOH
ATOM
ATOI I ATO I
ATOH
ATOll
ATOI
ATOM
ATOi I
ATOM
ATOI-
ATOM
ATOM
ATO I ATOll
ATOM
ATOI I ATOll ATOll 40.271 40.265 41.172 40.637 38.643 37.587 38.658 37.462 37.689 37.832 37. 104 37.424 37.036 37.096 35.986 37.766 37.539 37.743 37.501 38.516 39.716 38.054 38.956 38.247 37.283 36.974 37.767 39.646 4 0.762 39. 000 39.773 40.998 41.855 41.013 42.194 .12.012 41.205 '10.912 40.819 43.363 44.436 43.145 44.175 43.920 43.902 43.541 45.211 44.347 45.470 413.2 96 43.423 42.987 43.465 42.532 44.815 42.945 45.229 44.293 42.655 41 874 43.053 44.269 42.444 43.308 44.669 42.453 412.005 43.058 43.20 1 44.637 41 1.735 44 644 44.880 42.875 ,13.099 42.309 41.940 41.476 40.819 41.918 40.202 40.929 40.073 411.081 40.150 -0.953 -0.423 -1.164 1.047 -2.881 -2.430 -3.862 .448 -5.956 -6.484 -7.940 -8.699 -8.320 -4.007 -4.332 -3.042 -2.523 -3.596 -2.971 -1.405 -1.692 -0.289 0.758 2.083 2.476 3.951 2.200 0.462 0. 947 -0.346 -0.672 -1.508 -1.724 -2.189 -2.834 -3.417 -4.678 -5.341 -5.065 -1.837 -2.269 -0.609 0.352 1.393 0.882 2.037 0.200 1. 107 1.210 1.737 2 .564 3. 973 4 .501 4.748 4.767 5.263 5.256 5.506 1.999 2.734 0.852 0.058 0.237 -0.983 -0.564 1.089 0.630 2.220 3.032 2.916 1.638 1.619 0.475 4.477 5.201 4.809 6.207 6.373 7.713 8.721 7.518 6.569 5.737 7.585 7.826 7/58 53.027 54.413 55.416 54.246 53.323 52.837 54.190 54.749 54.734 53.293 53.128 54.132 51.978 56.163 56.600 56. 761 58.060 59.139 60.429 58.432 58.374 58.984 59.405 59.498 58.402 58.512 56.994 60.734 60. 927 61.5B3 62.799 62.445 63.287 61.309 60.738 59.361 59.311 60.320 58.187 60.596 60.903 60.247 60.048 58.945 57.494 56.565 57.113 61.350 61.851 61.869 63.046 62. 700 61.390 60.3841 61.130 59.159 59.895 58.896 64.2119 61.838 64.768 64.411 65.899 66. 246 65.717 67.126 68.159 67.231 68.401 68.962 69.761 70.979 69.169 68.135 69.104 66.978 66.730 65.292 64.882 64.963 63.478 67 .817 68.081 68.5892 69.683 1.00 11.41 1.00 53.11 1.00 48.27 1.00 50.51 1.00 54.20 1.00 57.73 1.00 53.97 1.00 56.96 1.00 65.33 1.00 75.14 1.00 78.10 1.00 63.93 1.00 88.77 1.00 57.12 1.00 59.82 1.00 50.64 1.00 47.19 1.00 49.241 1.00 50.90 1.00 48.35 1.00 52.75 1.00 41.03 1.00 41.91 1.00 25.25 1.00 34.49 1.00 30.81 1.00 34.34 1.00 45.39 1.00 41.C05 1.00 45.21 1.00 48.11 i.00 44.51 1.00 45.42 1.00 47.60 1.00 50.99 1.00 39.413 1.00 45.82 1.00 44.69 1.00 47.23 1.00 45.89 1.00 44.84 1.00 42.49 1.00 45.80 1.00 45.25 1.00 54.25 1.00 47.26 1.00 50.76 1.00 49.50 1.00 54.51 1.00 44.60 1.00 39.67 1.00 26.08 1.00 45.32 1.00 47.41 1.00 .18.77 1.00 56.16 1.00 47.21 1.00 49.541 1.00 40.09 1.00 35.74 1.00 39.19 1.00 39.94 1.00 35.30 1.00 38.03 1.00 38.36 1.00 33.72 1.00 39.32 1.00 36.55 1.00 32.60 1.00 36.89 1.00 47.03 1.00 64.42 1.00 63.17 1.00 30.11 1.00 36.53 1.00 27.62 1.00 34.07 1.00 28.37 1.00 29.33 1.00 31.86 1.00 32.07 1.00 32.14 1.00 35.02 1.00 29.47 1.00 34.80
,AAAA
AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA II AAAA C AAAA C AAAA C AAAA 0 AAAA O AAAA O AAAA 0 AAAA O AAAA C AA.M Ii AAAA C AAAA C AAAA O AAAA C AAAA C AAAA 1C AAAA C AAAA C AAAA C AAA C AAAA 0 AAA. AAAA C AAAA O AAAA 0 AAAA 0 AAAA 113 AAAA C AAAA O AAAA C AAAA 0 AAAA 0 AAAA C AAAA 0 AAAA 1 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA N AAAA AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA C AAAA C AAAA C AAAA Cii AAAA C AAAA 0 AAAA C AAF C AAAA C AAAA 0 AAAA II AAAA C AAAA 0 AAAA I AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C
AAAA
AAAA
WO 99/28347
ATOM
AT01 l
ATOM-
ATOI I ATOI I AToll1 AT01-l
ATOM-
AToll AT01 I AToll1 AT01lI
ATOM
ATOM
ATOll ATOI I AToll ATOll ATOllI
ATO)M
ATOM4 ATO! I AT01ll ATOI I ATOI I AT0Hl
ATOM
ATOM4
ATOM
ATOM
ATON
ATOM
ATOI I ATOll
ATOM-
ATOM
AT01lI
ATOM
ATOM
ATMlI AT0ll
ATO!
ATOI I ATO: I
ATOM-
AT01ll AT01ll
ATOM-
ATOM
ATOM
ATOM
ATOIl I ATOll ATO: I ATO[ I ATOllI
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
AToll1 AT0ll ATOllI AT01-l ATOI I ATollI AT0I I ATO1I AT01ll ATO! I AT0ll ATOI 1 ATOI I ATOM1 ATollI
ATOM
ATOM1 ATOll ATO1I ATOI I AT0Hl ATO! I
ATOI
725 -126 727 731 732 733 734 735 736 738 7 39 7.10 7411 '742 743 744 7415 -747 748 749 750 "751 753 754j 7; 161 762 764 765 766 767 770 771 772 773 7714 '775 776 778 -!-79 780 781 7e2 783 -786 787 788 7P9 790 -791 792 793 795 796 797 798 799 800 801 802 e.04 805 8 06 07- 911 913 814 815 B16 817 818 8 19 820 821
'IHR
TIIR
THR
TIIR
'JAL
VAL
VAL
VAL
VAL
VAL
VAL,
1 LE
ILE
I LE
ILE
ILE
ILE
I LE I LE
ARG
ARG
ARG
ARG
ARC,
ARG
ARG
ARG
ARG
AR'3
GLY
G LY
GLY
TRP
TR P TR P
TRP
TR P TR P
TRP
TR P
TRP
TR P
TRI'
TRP
TRP
TRP
L: S
LYS
LYS
LY S LY S LY S
LYS
LYS
LYS
LEU
LEL'
LEU.
LEU
LEU
LELI
LELI
['HE
['HE
[NE
M~E
['HE
['HE
PHlE
['HE
TYR
TYR
TlYR TY R L TYR 2 TYR -11 C2,8 41.729 40.262 39.424 38. 270 .1 0. 047 39. 351 39.856 39.173 39. 675 39. 613 40.7241 38.600 38.6963 37. .831 37. 856 38. 222 37. 149 38. 157 36. 9871 38. 906 38.605 39. 961 39. 993 411 .290 411 411 40. 977 37 64 3 36C-. 9 44 37 .688 36.982 37 .19 9 36.363 38.439 38.757 40. 177 410.626 41.691 41.826 412. 473 40.199 40. 917 42.770 43. 389 43.525 38.606 38.585 38 .659 38.305 39.45S3 39.838 4 1 .025 4i 1.27 C 42. 530 37.585 37 .9050 36.477 35.742 34 .290 34 .115 32.832 34 .089 35. 7 3 3 36. 082 35.430 35. 17 6 35. 513 35.348 36.378 34 142- 36. 217 33. 9C3 35 .005 33 .670 32.830 33.301 31. 911 31.043 30. 07 5 31 .359 32. 196 33. 2541 3 1 9 ,6 G. 485 7 831 9. 155 9.3 2 2 10. 198 11 .4741 12. 44 5 13. 801 11 .910 12. 045 11 .808l 12. 555 13. 340 12 76c9 13. 630 11.314 10. 556 14.-716 14 .777 15.733 1 6. 901 17.475 18 .836 18. 9 57 1 7 81I'l 18. 016 19 10rj4 1,7.0121 171.733 18.6C3 7 17.661 18.409 19.880 20.775 20. 321 2 1 .7 40 21. 943 23.343 24 .001 25.288 23.625 24.235 25. 413 26.213 24.548 25.794 22.418 23.624 11.681 22.153 23. 211 24 .350 960 19.843 1. 2G7 20. 157 20.315 2.0.319 21.080 18.955 20.023 20. 947 18.813 18.6C53 17. 226 16 901 17 130 J16. 36C1 16.769 16.061 16 .238 18B. 911 18.045 20.148 20 60 5 19. 977 19. 210 2.0. 1 9 2 19. 982 11 998 8/58 70. 880 253 c69. 602 9,1 0773 68.892 C9. 934 71. 366, 67 .4.94 67. 022 C6. 796 C5. 592 64 492 63 .208 64. 277 63. 470 66. 000 66. 27 4 66. 230 67.021 67 .461 68. 058 61[1. 9018 69. 773 '71 .06 4 66cl. 66l4 G-1 81 63. 950 C4 063 C3 .67 4 G04 3 04 64 337 64.8B45 65. 1641 64 .433 65.002 63. 370 66.113 66. 054 64 .543 62. 876 653. 470 62. 986 A2. 961 6 1 .895 60. 573 5968 59. 470 CO. 306 5C..89e 59.092 5 9. 9l17 60. 237 59.207 58.60-3 59.092 C0. 632 60. 954 C1. 297 57.1014 56.368 56. 59l 55S. 182 5-1. 7G5 53. 357 5.4.-47 5 2. 914 51. 10:4 51. 538 50 .67 2 54 .99-3 55. 276 5.1.770 54 633 55.7 53 2G9 51 .609 51.575 1 0) 16G. 09 1.03O 46.30 1.00) 39. 45 1 .00 35.4l8 1. 00 35.32 1.00 29.80 1. 00 34.91 1.00 2C. 03 1.00 24 .51 1 00 19.87 1.00 37. 57 1 .0C0 351 99 1.00 35.91 1.00 31.48 1.0IO 29.60 1.00 19.54 1 .00r 28.52 1.00 28.85 1.00 33.84 1.00 38.84 1.00 30.32 1.00 30.82 1.00 26.62 1 .00 52.42 1 00 49.10 1.00 39.23 1.23" -1e. 79 1.00 30.34 40.38 1 00 32 .75, 1 31. 40C 1. 00 32.87 1 .0C)0 16.23 1 .00 31.58 1.00O 34 .03 1.00 31.21 1.00 30.80 1.00 39.07 1.00 36.64 1.00 28. 52 1 .00 36.49 1.00 37 .96 1.00 29.59 1 .00 27.67 1.00 31.83 1.00 46.14 1.00 35.31 1.030 28.75 1 .0 3. 61 1 .00 31 .84 1 .0C0 32. 78 1 .00 41 .17 1.0C0 34.6C8 1.00OC 44 .77 1i.0,- 50.41 1.00 67.26 1 .00 34 .52 1.00 31.77 1.00 31.02 1.00 31.20 1.00 36. 97 1. 00 27. 98 1.00 28.77 1 .00 29.86 1.00 29. 34 1.00 2-7.78 1.-00 28. 68 1 .00 32.78 1 .00 30.48 1 .00 32.86 1 .00 30. 93 1 .20 43.27 2 .,00 26. 30 1 .00 37.73 1.00 30. 06 1.00 27.36 1.00 31.68 1.00 40.76 44 .00 1 50.4-1 1.00 31 .55 :0 21000 PCT/AU98/00998 ,Awl c AAAA 0 A.A AA C AAAA C .'AAA 0 WAl1 AAAA C ;,AAA C .AAAA C AAAA C AAAA C AAAA 0 WAl1 AAAA C AAAA C AAAA C AAAA C .\AAA C AAAA C AAAA 0 AAA 0I AA AA C AAAA C AAAA C AAPA c AA- I I AAAA C Z AZ..A C AALAA 0 WAAIlI AAAA C AAAA C AAAA 0 AAA I I AAAA C AAA C AAAA C AAAA C AAAA C NAAA C AAAA C WAIlI AAAA C AAAA C AAJAA C- AAAAk C AAAA 0 AAA 1-1 ?AAAA C WIAA C ?AAA C PAAA C .kAAA C W~kA WAA C WAA C2 WAIlI WAA C WAA C WAA C WAA C WAA C WAA C WAA 0 WAI I WAA C WAA C ?a~aA C AAAA C AAAA C AAAA C WAA C WAA C WAA C AAAA 0 AAAA I I WAA C WAA C AAAAn 0 WAA C ivAAA C kkA~~ C AAA-A C WO 99/28347 PCT/AU98/00998
ATOI
ATO! I ATOI l ATOMl ATOil AT Oil ATOll ATOI I
ATOM
ATOll ATOI I ATOI I ATOllI ATOI I ATOI I ATOI I ATO! I ATOI I ATOMl ATOI I ATOllI ATOI I
ATOM
ATOllI ATOMl ATOI I ATOI I ATOllI ATOI I ATOI I ATOI I ATOI I ATOI I ATOllI ATOllI ATOll ATOI I ATOllI ATOll
ATOH~
ATOMl
ATOM
ATOTIl ATOI I ATOI I AT OIl AT Oil AT OI ATOl ATOll ATOI I
ATOM
ATCHl ATOI I ATOI I ATO! I ATCI I ATOI I ATOllI ATOllI
ATOM
ATOllI ATOI I ATOllI ATOllI AT Oil AT OIl ATOI I ATOllI Aroi I ATOI I ATOll1 ATOI I ATOI I ATOI I ATOI I ATOI l ATOllI ATOll ATOllI
ATOM
ATOI I ATOI I PATOi I ATOllI TY R TY R
TYR
TYR
ASII
ASH
ASH
ASH!
ASH
ASi:
ASH
ASH
TYR
TY R
TYR
TYRH
TY R TY R TY R TY R
TYRH
TY R
TYR
TV R
ALA
ALA
ALA
ALA
ALA
LEOj
LELI
LELI
LEU
LEU
LEU
LELT
LEU
VAL,
VAL
VAL
VAL
VAL.
VAL
VAL
ILE
I LE
ILE
ILE
ILE
ILE
ILE
I LE PHlE
PHE
PHE
PHlE PH E
PHE
PHE
PHE
PH L PH E
PHE
GLIJ
GLU
G LU
GLU
01.0
GLU
0121
GLU
GLL'
I lET I lET I lETr I lET I lET lET lET H ET T HR
THR
T H R
LTHE
!TIIR
34 027 32. 679 33.710 34I 492 31.043 3 0. 250( 28. 763 2 8.274 28.319 27.8-39 30.68G 30.137 31.455 31.6C17 31.473 30.078 29.868 28.611 28. 95.1 27. C661 27.497 26.258 32. 977 33.943 33. 027 34. 2571 33.999 34 .729 35.7Q5 33. 832 34.188 33. 798 33.801 35.140 33. 637 33.530 32.320 34.174 33.438 33. 66C 32. 974 33. 1C5 33.898 35.069 33.078 33. 361 32. 9-41 32.898 33.893 33. 4 24 32.509 31. 330) 33.082 32. 346, 32 .34 7 31.581 30.387 32.052- 219. 61 1 31 .290 30.083 32. 85G 341.027 32.02-4 32 24 8 32.479 31.13C6 30.855 31. 473 30. 0,58 33-122 34.298 33. 352 341.409 341. 2 99 412 36. 802 36.340 34.012- 33. 335 3-4.449 34.17 5 34 CC-- 34.013 34.332 2.0. 4 80 2.2. 4196 21 .737 0. 461 20. 057 2 0. 04 6 .164 '.34 3 18.679 18 206 17.900 16G.5'0 4 15.579 15.733 16C. 2 91 16. 4-15 15.371 15 .5-33 16.072 16.315 16G. 367 16. 977 15. 691 15.325 15.370 13. 962 13. 481 173 805 10.860 9.363 8.915 8. 432 11.429 11.421 11. 300 11 032 12.085 11.675 13. 402 9. 684 9. 407 8.728 '7.4 33 6. 384 4 954l G6.42 0 5.613 7.206 6.881 7,.371 8.776 9. 081 77 2 8.721 10). 11 1 9.086 9.76?C,4 C6.3841 G. 296 5.S19 4 601 5.231 5. 77 6 (15 i 4 .813 3 734 3.411 3.209 .11 2.156 3. 306 4 .405 1.005 0. 298 051 8 -2,.900 488 9/58 110. 556, SO. 521 50. 012 48. 989 5-.92-1 57.700 5G. 797 57 .119 55 S-52 59. 580 57 800 58.222 17 .000 5C. 4153 15. 199 54.7104 57. 200 56. 70S 55. -44S 54 .886 58.891 58. 495 59.979 60.670 62.157 60. 216 60. 57 59.5S97 60. 471 60. 188 59.571 61.393 S.021 58.001 56.875 55.628 54 .553 53 .261 55.0,42 55.114 -S 117 S4 .822 54 280 55. 296 54 .821 500 57 .675 53.027 553. 205 51 84 5 SO 110 48.865 49.025 4 7 .62 0 47.930I 46. 534 46.687 49.557 49.203 49.001 -17 954 46.583 46C,. 2 50 .14 .757 44.082 44 .573 48,313 -I 587 -19.482 Eli. 08 8 51 584 52.420 52.401 49.745 SO.5S23 48.602 418. 27t3 11 868, 4 5.8692 46.51--- 01 20.C0 .01 270.00) 0.0 20.00c 0.01 20.00 1.00 40.91 1 .00 36.54 1 .00 47 .84 1.00 60.75 1.00 45.55 1.00 65. 98 1.00 36.33 1.00 38.241 1.00 32.70 1 .00 35. 4b 1 .00 35.54 1.00 41.35 1.00 38.22 1.00 40.83 1 .00 '17.42 1 .00 45. 91 1.00 46.06 1.00 46.05 1.00 32.08 1.00 37 .44 1.00 30.21 1.00 34.10 1 .00 25.48 1 .0(0 32.67 1 .00 35.10 1.06 28. 56 1.00 29.26 1 .00 13.64 1.00 25.77 1.00 27.21 1.00 23.52 1 .00 35.60 1 .00 38.97 1.00 37. 86 1.00 33.32 1.00 22.38 1.00 19. 24 1.00 13.27 1 .00 31 79 1 .00 33. 57 1 .00 31.08 1.00 30.45S 1.00 30.17 1.00 37.24 1.00 24 .92 1.00 23. 96 1.00 40. 64 1 .00 38.6c, 1.00 41.45 100 37 .7 1.0-)0 32.17 1.00 39.77 1. 00 32. 02 1.00 292 1.00 33. 30 1.00 43.09 1.00 50.24 1.00 40.72 1.00 4 6. 15 1.00 39.1IC 1.00 42.45 1.00 38.08 1.00 58.86 1 .00 C3. 5E 1.00 6-1.10 1.00 C63.6G.1 1.00 42. 06 1 .00 441.71 1.00 46.52 1.00 427'. 2 1 .00 38.37 1.00 509-21- 1.00 57.67 1.00 38.36 1.00 43.37 1.00 45.58 1.00 47.09 1. 00 32 1.1)0 S5 s2 I .00 57.81 1.00 4-1.71 ,.T-AA C2 AAAVA C AAAA C2 ."AAA 0 AAE Hf AAAA C AAAA C AAAA C ,%AAA 0 ,-.AAA 11 AAAA C2 A AAA 0 AAAA 11 AAAA C AAAA C AAJ C AAAA C ,v'AAA C AAAA C AAA C AAAA C AAAA 0 AAAA C AAAA 0 ;,AAA 11 AAAA C2 M.kAA C2 ?.AAA C J' .AA 0 .A.AA 11 AAAA C kAAA C ?.AAA C2 AAAA C AAAA C AAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAA.A 'c AAAA C AAAA 0 zAAAA 1H AAAA C F-AAA '2 AAAA C AAAA C AAAA C AAAA C AjAA 0 7.MA-A AAAA C
AAAAC
AAAA C -AAA C AAAA C AAAA C2 AAAA C AAAA C2 ?IAA C ?..AAA 0 4MAA I I A.M.A '2 AAAA C2 AAAA A.AAA C AAAA 0 ,A.MA 0 AAAA '2 AAMA 0 nAAA I I WA.0.A C2 NAAA C AAA C2 AAAA S AAAA C AAAA C ;AAA 0 ;,AAA I I AAAA 17 A.M.A 0 AAA C* WO 99/28347 AT 011
ATON
ATON
AT01 I ATOll ATOll AT01ll AT01I AT01 l ATOI I ATOI I ATO! I ATOll AT0ll ATOllI AT01 I ATOf I ATOI I ATOI I ATOll ATOll ATOI I AT01ll
ATOM
ATOI I ATOll ATOMl
ATOH
AT01ll AT01 I ATOI I AT01ll ATO! I AT01 I
ATOM
AT0ll AT01lI AT01lI ATOII1 ATOI 1 ATO1I AT01ll AT01lI AT Oi AT01 ATOI I ATO1I
ATO!
AToll
ATOM
ATOI I Tll AT0ll ATOI I ATOI I ATOI 1 ATOI I AT Oil ATO1I ATOI I ATOI I AT01ll
ATOIH
ATOH
ATOI 1 AT01ll ATOlM AT01lI AT Oil ATO! I AT0Oil AT OI ATOMl ATOI i AT OI ATOll ATOll AT01lI ATO! I AT0I I ATOI I AT OI ATOI I AT0 OI AT 01 I 920 193 924 925 926 929 930 931 G33 '934 935 936 937 938 9390 942 9.13 944 9.15 94l6 947 951 952 953 955 956 9517 958 959 960 961 964 965 967 9(8 969 971l 973 S-7 'I 975 976 978 9(00 991 98 2 983 984 9935 987 988 98 9 990 9 91 09 993 994 995 997 999 1001 1003 100-1 1005 1008 1009 10.)10 1012 1013 1014 1015 1016 1017 1018 1019 102-Q1
TIIR
o THR I I AS[! CA ASH C13 ASH CG ASI 001 ASI 1102 ASH C ASH 0 ASH I I LEU CA LEU CBI LEL' cc LEO CDl LEU CD2 LEO C LEU 0 LEO I I LYS CA LZS CB LYS CG LYS CD LYS CE LYS 112. LYS C LYS 0 LYS I I A'sP CA AS P C D ASP CG ASP 01 ASP 002 ASP C ASP
ASP
I 1 I1LE CA ILE CBI ILE CG2 1ILF 1101 ILE C01 ILE C ILE 0 I LE I I G LY CA GLY C GLY 0 GLY ;Ii LEU CA LEO CB LEU CG LEU
CILEU
2 LEOJ C LEO 0 LEO' I I TY R C A TYR CB TYR CG TYP.R CDl TYR CEl TYR CD2 TYR CE2 TYRK CZ TYR O1l TY R C TYR 0 TYR I I AS11 CA ASH CGI ASO CC AS11 C A Sih 1: LIEO CA LEO C8 LEO CG LEO CDl LEO CDC2 LEOL C LE O CA A- 34 .885I 36. 11 r 3 1. 237 34.7.17 36.2 'I1 36. 494 36 .847 36.308 34 .522 34 .752 34 .308 34. 3241 34.185 34 .323 35.785 33.817 33. 163 32 .0418 33. 451 32. 3C4 32.801 32.7)60 32. 9841 33.772 34.098- 31. 970 30. 978 32. 68 5 32 2 99 32. 294 33. 6G2 341 5 79 33. 931 33.209 34 .160 32.822 33.675 32. 983 34 097 31.835 31.6C29 34 854 35. 9-70 34 .61l8 35.477 36.279 37 .023 36.1930 36. 763 36. 4 96 36. 94 3 36.'7 1 0 38.4112 36.312 35E,. 9 50 36. 704 36.329 36. 491 37. 919 38. 57 1 39.901 38. 615 39. 927 40.548 41 834 36. 989 36.6C30 37. 752 38.9093 39. 603 40C,.112_ 39.735 40.864 37. 673 38. C,4 7 3C.845 36. 473 35. 948 35.525 3 6 .60Q6 35. 199 35.484 34 449 35. 81C, 34 920 137 .1 -I 983 -4 .06c9 -1.315 -41. 849 081 6. 153 -3.838 -4 8141 -2.609 -2 .277 786 -0.296 -0.537 1 .177 986 936 863 -1 .648 -C6.075 -6 976 -8 .446 -9.160o 10. 556 -4 .055 -4 .502 071 -384 -3.292 -3 .5162 825 -4 .782 -1I. 22 4 1.0C7 4 366 0.820 2.006 3.133 2.4188 3.958 0.322 0. 669 -0.393 0. 97 2 -0.084 572 1 .2 21I 2.215 3.636 3.980 5-479 3.599 1.97(6 2.863 0.851 0.395 -1.104 -1 .559 -1.380 -1 .74 3 -2.112 505 -2.321 -2 .662 1.059 0.813 2.091 2. 979 2. 9]11 1 804 1.8C4 0. 84 S .1 .385 5. 361 .1.640 6. 04 0 6.140 482 9.513 '?.169 (.508 .874 7 .456 7 .941 10/58 419. 186 -19. 3C-1 4 9. .193 50.285 50. 001 4 8. 599 47/.688 48.408 51.163 520.13 53. 621 S3.8351 5269 5 4 .27 5 53.772 5S.213 55. 995 5-..788 5S. 127 54 .027 54.489 57.122 5-7 C 691 57.45 861 C0. 059 61.012 60. 714 5.201 58. 437 6 0.12 9 60. 340 61.0(76 61 .207 60. 092 59. 9-18 61.114 6O.84zl1 62. 192 C3.121 64 .0241 64.899 63. 913 64.771 64 .294 62. 835 62. 610 C.6(44 CC. 97 9 66. 77 9 68.071 69. 2C64 60.369 C6G.587 69.749 C-7. 322 (_.479 C8.688 CO. 997 69. 214 70. 375 69.068s 70. 223 7j. 3C3 71 268 72. 4 5.1 r69. 917 .(759- 68. 8-2 68.621 67 .213 612 65146.
60. 837 E63 S.605 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1 00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 1 .00 1 .00 1 .00 1 .00 1 00 1.00 1.00 1.00 1 .00 1 .00 1 .00 1.00 1.00 1 .00 1.00 1.00 1 .00 1.00 1.00 1 00 1 .00 1 00 1 .00 1 00 1 .00 1 .0 1 .00 1.00 1 .00 1 .00 1 .00 1.00 1. 00 1.00 1 00 1.00 1.00 1 00 1.06 1 .00 1.00 01 1.0.) I -DO 1-D: 1 21 51.83 57.91 4 9. 85 45. 64 59.01 '75. 4'1 77 49 79.63 42. 58 416. 36G 37. 28 39. 9C 34.05 35.81 35.48 25. 46 43.75, 44 04 46.50 42 .76 4 1.41 49.78 58.09 73. 43 79. 13 45.29 46.23 45.131 56.95 59.88 56.01 41. .25 417.03 40.41 37.83 38.99 3B. 95 34 84 39.29 35.11 43.05 34.22 33.74 35.90 38.21 33.35 31.65 32. 13 21l.31 37.69E 31.94 31. 95 31 .87 33.33 41 .03 4 6. 665 5 1 .20C 49.44 415. 1'5 47 .08 49. 43 55.82 33. 4C 4 3.01-.
38.12 30.718 48.63 54 .01 47.22 4 43. 08 33. 82 39.8I 135.28 136.S7 I34.7-, 30.32 2 23.2'- 3 7.1I 137.31-- 34.24 033 31 0 29.F.1 PCT/AU98/00998 AAAA AAAA 0 WAA i AAAA C AAAA C AAAA C AAAA 0 AAAA C1 AAAA 0 AWA1l A.AAA C AAAA C AAA C AAAA C AAAA C AAAA C AAAA 0 AWA C AAAA C AAA C AAAA C AAAA C AAA C AAA 0 AAA C AAAA C AAAA C AAAA 0 AAA 0 WAA C WAA C WAA C WAA C WAA C W C W,,A C W 0 W C WAA C WPA C W C WAA C WAA C WAA C WAA C WAA C AAAA C WAA C WAA C WAA C AAAA 01 WAA C W 0 W C WAA C W C W C AAAA 0 W C
AAAAC
AAAA
WO 99/28347 PCT/AU98/00998 ATOI I ATOll ATO I
ATOM-
ATOM
ATOM
ATOMl ATOMl
ATOM
ATO!I
ATOI I
ATOM
ATOM
ATOM
ATOI
ATOI
ATOI I
ATOM
ATOMl
ATOM
ATOl
ATOM
ATOl ATO I ATOl ATOMl
ATOM
ATOM
ATOI I ATOIl ATOI I ATOI I
ATOM
ATOM
ATOM
ATOML
ATOM
ATOM
ATOM
ATOMl ATOMl ATOMl
ATOM
ATOll ATOI I ATOI I ATOI I ATOI I ATOI I
ATOI
ATOIl ATOMl ATOI I ATOMl ATO ll ATOMl ATOMl ATO I ATOll ATOI I
ATOI-
ATOI I ATOI I ATOl
ATOI-
ATOI I
ATOIM
ATOMl
ATOM
ATOMl
ATOM
ATO- I ATOIl ATOI I ATOlM AT01l ATOMl ATO I ATOI I
ATOH
ATOI I ATOI I ATOI I ATOI I ATOl- 1022 1023 10241 1025 1027 1028 1031 1034 1035 1036 1038 1044 1045 1039 1040 1041 1042 10-16 1048 1049 1050 1051 1052 1053 1054 1055 1057 1058 1059 1061 1062 1063 1064 1066 1067 1068 1069 1070 1072 1073 1076 1079 1080 1081 1083 1084 1085 1086 1088 1089 1090 1--91 1092 1094 1095 1096 1097 1098 1099 1100 1101 1103 1104 1105 1106 1107 1109 1110 1113 1116 1117 ill'/ 1118 1120 1121 1122 1123 112-1 1125 1126 1127 1129 1130 1131 1132 1133 35.568 36.3560 35.425 34.582 341.900 36.047 33.990 34.466 33.553 34.992 34.549 34.907 36.086 35.203 34.786 35.125 33.828 33.969 34.129 33.239 33.132 33.928 33.055 33.803 32.628 34.719 34.532 35.902 36.819 35. 954 33.728 33.392 33.669 33.046 33.965 33.105 33. 917 33. 511 34.045 35.162 33.454 32.701 33.379 31.567 31.082 30.470 30.471 29.920 29.086 27.708 29.745 30. 921 29.030 29.569 29.669 30.091 28.345 28.437 28.738 27.533 29.432 26.773 29.186 28.548 28.659 27.950 27.778 28.334 27.012 29.200 30.343 28.326 28.612 28.457 28.850 29.374 29.324 27.729 26.637 28.175 27.491 27.471 26.567 26.349 26.763 7. C7l 6.375 5.183 5.320 I1.847 4 .211 5.070 9.273 9.7,13 10.065 11.150 12.149 12.067 12.199 13.568 14.549 13.985 12.669 13.551 13.185 1-.408 12.034 11.293 14.909 15.106 15.789 16.983 17.607 16.503 18. 411 17.950 19.060 17.777 18.809 20.011 21.174 22.444 23.376 23.608 22.929 24.543 18.328 17.381 18.809 18.385 17.008 16.306 16.560 15.371 15.721 1.335 14.332 13.337 12.273 10.967 11.140 10.237 8.872 11.928 12.179 11 .423 11.107 12.085 11.653 12. 912 12.726 13.503 14.695 1" .925 9.738 9.611 8.754 7.376 6.461 5.021 7.012 .250 6.959 .182 .199 7.103 8. 4.13 8.402 9.840 10.662 11/58 73. 018 73. 165 ,3.2418 74.413 75.621 75.8000 76.577 .5.10 12.223 70.637 70.590 69.310 69.050 71.721 71.756 71.127 72.649 68.576 67.469 66.307 65.374 65.558 64.643 68.009 68.243 68.350 69.145 69.579 69.738 70.855 68.332 68.831 67.019 66. 180 65. 951 65.543 65.529 64.451 63.266 62.868 62.494 6-1.78 .1 64.430 64.284 62.983 63.001 64.006 61.894 61.833 61. 223 60.957 60.687 60.557 59.771 60.591 62.036 60.684 61.407 58.521 59.532 57.501 56.247 55.169 53.816 52. 992 51.770 50.720 50.696 49.789 15.791 55.406 5S.886 55.555 56.760 56.449 57.874 59.176 5.1.398 54.664 53.190 51.935 51.216 49. 969 49.578 50. 414 1.00 1.01) 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1 .00I 1.00 i.00 1.00 1 .00 1.130 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 00 1.00 1.00 1.00 1.00 1.00 1 00 1.00 1.00 1.,0, 1 00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1 .00 1 .00 100 1.00 38.11 48.37 50.71 52.38 72.73 81.87 78.27 32.58 39.89 33.47 30.97 31.00 37.79 12.28 24.93 38. 14 35.96 31.90 23.39 16.51 20.38 18.30 25.48 27.40 32.86 30.43 28.27 35.78 40.26 28.13 27.95 32.99 30.28 31.25 25.13 30.68 17.12 33.40 46.41 40.30 39.82 31.50 32.67 32.60 28.87 32.32 38.03 34.11 36.71 15.32 32.12 34.11 26.55 32.90 38.07 34.05 26.54 27.11 33.98 32.15 30.54 27.48 26.35 25.83 32.92 50.34 47.61 44.92 46.00 29.74 36.52 33.99 36.26 33.27 15.85 31. 92 42.3.1 39.26 50.72 35.86 38.76 25.58 27 97 36.85 45.57 -AAA C AAA C AAAA C AAAA 11 AAAA C AAAA 11 AAAA 11 AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA O AAAA C AAAA C AAA 0 AAAA II IVAAA li AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA II AAAA C AAAA C AAAA 0 AAAA C AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA II AAAA C AAAA II AAAA II AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA 0 AAAA 1 MMN I-I AAAA C NAAA C AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AMAW I AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA li AAAA C ,%AAA C AAAA H AAAA C AAA C AAAA C AAAA O AAAA I11 AAAA C A.AAA C AAA AAC AAAA C AAAA O FAMA II AAAAW C AAPAA C AMAL C WO 99/28347 PCT/AU98/00998 12/5 8 ATOH 1134 022 GLU 1141 25.781 10. 1 C6 40 18 8 u 30 553 AA ATOMl 1135 C G, LU 114 280.03 9 6.072 50 9 44 1.00 44.17 TkkA C ATOMl 1136 0 G LU 114 29. 120 S. 538 51.090 1 .00 4 9.-97? TtAA ATOM 1137 1- LYS 115 27.191 5.,S56 S0. 096 1 .00 40.55 AAAA 1! ATOH 1139 CA LT S 115 2 7 219 4 .440 -49.2.2 1 .00 4 1 .16- AAA C ATOM 1140 CB L"YS 115 27,275 4 .7454 .17.71!8 1.00 23.62 AAA C ATOM 1141 CG LY,.S 115 27.019 A. 194 .17.411 1.00 18. 39 AAAA C ATOM 11,42 CD LYiS 115 26. 537 6. 355 15.982 1 .00 24 .74 AAAA C ATOll 1143 CE LYS 115 26.751 7. 804 4.1 .622 1.00 41.86 AAAA C ATOM4 1144 W' LYS 115 27. 165 8. 045 -14.196 1.00OC 60.91 ~AZA 11 ATOM 1148 C LY S 115 28. 287 3.421 49-.611 1.00I 42. 39 ?A.AA I ATOM 1149 0 LY S 115 29. 102 3.103 48 .7419 1.00 46G. 68 AAAA 0 ATOll 1150 11 ASH 116 28. 137 2. 677 50.665 1.00 40. 99 AAAA 11 AToll 1152 CA ASH 116 2 9. 022 1.570 50 .97 6 1.00 37.33 AAMA C ATOH 1153 CB3 ASHI 116 29.5341 1.868 52. 381 1 .00 46.12 AAAM C ATOll1 1154 CG ASH 116 30. 372 3.153 52.3415 1 .00 4S. 92 AAAA C AT011 1155 001 ASH 116C 31.337 3.016 51.583 1.00 38.59 AAAA 0 ATOM 1156 1102 ASH 116G 29. 927 4.174 53.056 1.00 37. 35 MAAA 11 ATOl 1159 C ASI 116I c 28.2-75 0. 277 50. 974 1.00 42. 52 ?AAA C ATOl 1160 0 ASI 116 c 28.067 -0.361 52. 033 1 .00- 48. 24 AAMA 0 ATOM 1161 HI ALA 117 27. 989 -0.188 49.772 1.00 40.94 AAMA It ATOl1 1163 CA ALA 11-7 27.195 -1I. 37 6 49. 542 1 .00 4 3. 35 AA C ATOM4 1164 CBI ALA 11-7 27.494 884 48. 156 1.00 47. 63 kAAA C ATOM~ 1165 C ALA 117 27.294 -2.504 50. 529 1.00 46C. 55 AAAA C ATOI 1 1166 0 ALA 117 26.211 998 50.890 1.00 51. 24 TAAAA 0 ATOH~ 116C7 I1I ASP 118 28. 484 -2.823 51.005 1.00 47 .43 AAAA H ATOM 1169 CA ASP 118 28.559 -3.980 51.920 1.0 CO15.741 AAAA C ATOM 1170 CB ASP 118 29.659 -4.9415 !51l.477 1.00 55 .39 ARAA C ATOM 1171 CG ASP 118E 2 9.6Go84 1!9 19. 958 1 .00 40 ~AA C ATOll 1172 001 ASP 118 28. 8'?0 5. S76 -19.-608 1.-00 64.10- -A;A ID ATOf 1 1173 002 ASP 118 30. 4 48 -4.447 419.207 1.00 G66. 73 ?IAPA 0 ATOM 117.1 C ASP 118 28. 818 586 53.353 1.00 37 .29 AJ\ C ATOl1 1175 0 ASP 118 2 9. 127 -4.536 54.026 1.00 42.89 AAAA 0 ATOM 1176 11 121' 119 28.670 -2.327 53.685 1 .00I 36.46 AAAA I I ATOM 1178 CA LELO 119 28.986 -1.885 5E. 04 7 1 .00 40.58 AAAA C ATOM 1.179 CB LELO 119 29.159 -0.389 SS. 14-5 1.00 34 .31 AfvAA C AToll 1180 CG LELI 119 29.640 0.331 56 3 78 1.00 36.58 AiA C ATOll 1181 CDl LEU 119 30.950 -0.101 56. 948 1.00 35.77 AAAA C ATOMl 1182 CD2 LEL' 119) 2 9.7 91 1.830 56.104 1.00 29.68 AAAA C ATOMl 1183 C LEII 119 27. 937 -2.376 56.007 1.90 4 3.6G7 AAAA C ATOl 1184 0 LEO 119 26.748 -2.248 55. 7 43 1.00 4 5. 32 AAAA 0 ATOl 1185 14 CYS 120 28.361 967 57.110 1.00 43.53 AAAA I I ATOll1 1187 CA CYiS 120 27. 378 -3.407 58.089 1.20G 38. 93 AAPJ\ C ATOll 1188 C CYS 1210 27 .881 -2.921 59.426 1.00 41. 91 AAAA ATOl 1189 0 CY S 120 28. 660 -1.960 59.446 1.00 43.66 AAAA 0 ATOll1 1190 CB CYS 120 27. 2 8 4. 907 58. 100 1.00 37.5E9 AAAA C ATOll1 1.191 SG CYS 12 0 26.568 -5.622 56 .639 1.00 58.3 2 AAMA S AT01ll 1192 11 TYR 12 1 27 328 -3.456 60.5109 1.00 38. 05 AAAA 11 ATOll 1191 CA TYR 12--1 27.795 -3.010 61.927 1.90 39.68 .MAA C ATol1 1195 CBI TYR 12- 1 2'-9.18 9 -3.572 C2. 13-- 1.00 34.61 A.MA C ATOM 1196 CG TYR 121 28. 950) -5.032 6-2. 519 1.00 36.52 APA,\ ATOll 1 197 C M TYR 12 1 29. 087 -6.0C4 5 61 .582 1 .00I 33.58 A ATOll 1198 CEl TY R 121 2 8. 85 -7.350 61.980 1.00 41.21 AAAA C AT01ll 1199 CD2 TYR 121 28. 560 -5.337 63.817 1.00 36.31 AAAA C ATOll1 1200 C E2 ri: 121 28.257 -6.630 64 201 1 .00 r 39.48 AAAAC ATOll1 1201 C7 TlYR 12 1 28.432 -7.641 63.270 1.00 4 6. C- 1AA AToll 1202 OH TYR 121 28.161 924 63.730 1 0C 4 9. 20 C ;AAA 0 ATOMl 1204 C TYR 12--1 2 7.6C171 523 61 .789 1.00 38.83 AAAA ATOl1 12'05 0) TYR 12111 28. 445 -0.778 62.369 1.00I 43.22 AAMA 0 ATOl1 12 06 11 LEII 122 26. 587 04 5 61. 16J 1.00 39.59 -aAA 11 ATol 1208 CA LEU 122 26. 361 0.405 C-1.-090 1.00 4 4. 82 AAAA C AToll1 1209 CB LEO 12 2 25.990 0.715 59.6C34 1.00 46.48 AAMA C ATOl1 1210 CG LEU 122 26.497 2.014 59.108 1.00 44 .44 AAAA C ATOMl 1211 CDl LELO 122 25.778 2 .448B 57.859 1 .00 32.19 AA. C AT01l1 12127 CD2 LEOI 12 2 26.136 3. 051 6,0.170 1.00 47.76 AAA C AT Ofl 1213 C LEt' 122 25.212 0.910 61.935 1.00 44 .85 AAAA C AToll1 1214 0 LEO 122 25. 269 1 .759 62. 839 1 .00 47.66 AAAA 0 ATOM 1215 1.1 SER 123 2111 0.137 61.843 1 .00 40.12 MAAA If AToll 1217 CA SER 123 22.-94 9 0.435 62.703 1.,D0 33.88 iiAAA C AToll 1218 CB SER 123 21.75.1 -0.330 62. 239 1 .00 19.26 AAAA C AToll 1219 0.3 SER 123 21 .961l -1.762 G2.402 2.00O 34 .35 AAA.A 0) ATOl1 12 21 C SER 1 2 3 23.165 0.060 64.159 1.00 37 .43 -AAA C7 ATOMl 1222 0 SEP 123 22. 326 0.28 6e) 5 025 1.00 35.33 MMA 0 ATOM 1223 11 THR 124 24.242 -0.698 G4.432 1.00 39.03 ;%AAA 11 AToll1 1225 CA THllR 124 24. -554 -1.165 C5.753 1.00 37 79 zjA ATol 122- Z6 CB TH R 1211 25.369 -2.461 65.719 1 .00C 42. 39 PAAA AToll1 12:27 001l TIIR 1 2 4 26. -502 -2.020 64.924 1.00 47.70 AAA ATOll 1229 CG2 THR 12Z4 24.677 622 65. 006 1.00I 40. 93 AAMA C ATOll1 1230 C T14R 11 25.522 -0.206 66. 14 5 1.00 39.29 AAAA ATOll1 1231 0 THR 12-I 25. 9.18 -0.642 C,7-199 1.00 41.41 ;.AAA 0 AT01l1 1232 I VAL 125 5.737 1.001 65. 985 1.00 37.80 AAA H ATOll1 1234 CA VAL 1 2 5 -26.5-191 1 .9QC4 6 661 1.0 1 OC AMAAC ATOll1 123 5 CO VAL 12-5 27.-683 2. 542 65.71 -1 1.00 39.5,0 kAA c ATOll1 1236 CGl VAL 125s 28. 570 3.599 6C. 3S' 1.00 28.36 :AAA AToll1 123-7 CG2 VAL 125S 28.693 1.565 65. 110 1.00 33.07 AM7AAC WO 99/28347 PCT/AU98/00998 AT C1 I ATrOi AM Il ATO; I ATOMl AToll1 AT0ll
ATOM
ATOI I
ATOM
ATOll ATOll ATOI I ATollI ATOI I
ATOM
AT0ll ATO1I ATOfI ATOil
ATOM
AT Oil
ATOM
AT01ll
ATOM
AT01ll
ATOM
AT01ll ATollI AT Oil ATOI I ATO1I AT01ll
ATOM
AT01lI ATOM1 ATOMl
ATOM
AT01 I AT01ll
ATOM
ATOM
ATOM
AT01ll ATO1I ATrOll ATO~lI ATOI I ATO? I ATOI I ATOI I AToll1 ATClI A'ral I AT0I I ATOIl I ATOI I ATOI I
ATOM
ATOM
AT01ll ATO! I AT OI AT 01 ATOHl
ATOM
AT0ll AT01lI
ATOM
ATONl ATOI I AToll1 AT01ll ATOI I ATOI I ATOI I AT0I I AT01 I AT01ll
ATMI
ATOI I AT01 I ATOI I AT01 I 1238 1239 12420 1243 12.14 1245 12 '16 1247 12418 124.9 1251 12521 1253 1.254 12558 12 17 1258G 1260 1261 1262 12637 1268 1269 1271 1263 1276 1 -2-7 1-"72 1 16 1281 282 1284 1285 1286 12897 1288 1 289 1290 1291 1293 12-94 12 95 11-296 1 2 7 1298 1299 1300 1302 1303 130C4 1305 1306 1307 1308 1309 1311 131 2 1313 1314 1315 1 317 1318 1319 1320 1321 132 2 132 3 132 5 1326C 1327 1329 1330 1331 1333 334 1335 1 '.75',1 24 941 26.072 25. 310 24.86C2 23. 8 79 2 3. 6 99 23.220 26. 14 '6 26.740 26.029 26.777 26.568 27.195 28.587 28.631 29. 778 2 6. 4 65 27.311 2 9. 7 92 3 0. 972 30. 937 26. 558 27. 382 25.493 25. 201 2 3. 757r 23.433 26. 133 26.212 26G. 662 27.701 27. 920 26.795 27.292 26.232 29. 054 29. 645 29. 31C 30.480 30.793 31. 992 30. 969 31.053 30.305 31.224 29.089 28.895 28.499 28. 023 29. 128 27 .661 26.599 26. 610 27.017 27.349 27 536 27.413 2 5.5 2 0 24481 25. 75.1 24'1.9.17 25.6213 24 694' 24 77 7 24.115 23. 813 23. 202' 24.265 22. 616 21. 920 880 20.093 2-0.882 21. 39C 22.61IS 298 -4 .324 23. 724 .3 127 3. 7 SCO 3.6f:36C .1.734 .335 5.303 C. 520 4.865 S985 A. 400 ;64.9 7. 856, 8.296 7. 37 2 7.208 G.3186 .845I C6. b15 5.712 S..7 83 71.445 6.405O 9.010 9. 977 8.931 10. 041 10.0,12 8. 912 9.971, 10. 857 P. 7 92 8. 607 7.132 324 5.02-1 7 11'7 9.22C 10.001 9. 217 9.743 8.886 9.4'34 7.413 6.457 11. 178 11.985 11 495 121.96C5 12 .116 12.805 13. '581 1 3. '25 12. 867 14 .811 15. 54 2 16. 9'44 12.137 16. 122 18. 331 IS. 659 IS. 032 16.398 16. 776 987 15.669 15c. 7 91 14. .565 13.440 1 .7 01 13.732 13. 10C, 14.7 77 15. 139 16. 277 17. 369 15. C-1 2 15. 111 16.353 103.709 13/58 31 6.8 367 618. 967 10. 342 983 70. 685 71. 9641 68.872 67.704 67 4 10 6 5. 93 0 64..907 6 4 5 18 C63. 5 79 r64 .873 6 4.18 8 C3.3941 62. 954 C4.285 C3. 336 68. 367 68. 4971 69. 171 70.081 .10. 603 71.424 72. 134' 71. 54 9 2. 741 73.371 73. 975 '74 .5C-) 72.113 72. 824 70. 807 70. 141 68. 901 68.176 69. 347 68. 165 69.679 69. 966 69. 193 68.6c51 67 .259 6,5.878 15. 32 4 6S. 334 6.9. 285S 69. 311 69. 518 70. 003 7 0. 381 /1 .834 72. 521 72.208 68. 946 68 .939 67. 90() 66. 773 66l.092 G S. 7 7 6.1 517 6-6. 219 CS. 377 66. 120 66.85S r7 0G8 6-1 .353 C63. 292 64.626 6 3. 692 C-1 305 34 684 C2 .309 61. 359 6 2.1I C.
y. 979 61l 3,9 61 7i- I 00O 1 .00 1 .0 I 00 1 CI0 1.00 1 00 1 .00 1.00 1.00 1.00 1 .00 1 .00 1 .00 1.00 1.00 1.00v 1 .0C0 1.00 I 00 1 .00 1.00 1 .00 1 .00 1.00 1. 00 1 00 I .00L 1 .00 1 .00 1 .00 1 00 1.00 1 .00 1.00 1.00 1. 00 1.00 1.00 1 .00 1 .00 1 .00 1 .00 1.00 1. 00 1 O0 1 .00 1.900 1.00 100 1 00 1 .00 1.00 i.00 1 .00 1 00 1 .00 1 .00 1 .00 1 00 1.00 1.00 1 00 1 00 1 .00 1 .00 1 .00 I 00 1 .00 1 .00 1 00 1 .00 1. 00 C- '0
CL
.11 .22 37. 41 34 .73 415.53 27 .71 52 .32 40.83 42. 78 35. 42 33. 02 2.89 31. .3C 28.60O 2.9. 06 35.51 1 8. 67 42. 87 32. 53 31 5I 37 .86 36.09 40. 87 31 24 34 .04 36. 87 28.96 32.39 30.91 2.18 36.73 32.53 39. 28 32. 54 32. 12 38.04 34.50 42. 09 41.35 41.73 31.95 26.64 4 2. 65 46. 48 38.46 -15.14I 41 45 46.81 36.79 30.I1S 19.92 39.292 37 33.73 38. 20 4 3. 17 43.29 4 7. 12 60. 5; 413. 46C 49.32 45.03 38.62 33.82 33.33 33.71 27.88 29. 90 40.63 35. 2C 30. 8.1 36.98 32. 9S 39.65.
43.12 45.19 39.25 41. 15 43.81 41.11 37. 39.6C1 36.59.- -,AAA C2 AAAA AAAA CI AA C A.M.A C A.M.A 0 AAAA 0 AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C2 A.AAA '2 A.M.A C AAAA C2 AAAA C2 A.M.AA 2 A.M.A C AAAA C AAAA '2 AAAA 0 AAAA 11I AAAA C2 AAAA C2 A.M.A 0 AAAA C A.AAA 0 AAAA '1 AAAA '2 AAAA C A.AAA C AAAA C AAAA C2 AAAA 0 AAAA 0~ AAAA 1C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA 0I A.M.A '2 A.M.A C AAA C2 A.AAA '2 TtAA '2 A.M.A '2 AAAA 0
MMII
AAAA 11 AAAA '2 AAAA C2 AAAA 0 A.M.A 0 AA AA 02 AAAA 0 MMA 0* AAAA H2 A.M.A '2 AAAA '2 AAkAA C AAAA II AAAA 11 AAAA '2 A.AA.A C AAAA '2 AAAA 11 AAAA CI AAAA C2 AAAA '2 A.AAA 0 AAAA AAAA 0- AA.M MM C2 AT01 1 1336 001 ASHI 136 22 .695 19. -07-19 1. 149 1 .30 50. 81 WO 99/28347 PCT/AU98/00998 ATOllI ATOI I IATOI I AT OfI ATo OIl ATOlM ATOllI AT 01 ATOMl ATOI I ATOIlI ATOI I ATOil ATOllI ATOI I AT OfI1 ATOll ATlOl I ATO OI ATOI I A TO I ATlOI ATOMl ATOI I ATOll ATOI I ATOlli ATOllI AT 01 ATOfll AT 01 ATOT I ATOllI ATOI l ATOll
ATOM-
ATOll
ATOM-
AT 01
ATOM-
AT011 ATOllI ATOllI
ATOH'
ATOI I ATOll ATOI l ATOll ATOI I AT 011 A; TOI I Aloll
ATOII
ATOllI ATOllI ATOllI ATOllI ATOllI ATO I1 ATOllI ATOI l ATOI I ATOM1- ATOI -I ATOllI ATOI I ATOll ATC'l 1 ATOI i ATOMl- ATOll ATOll ATOI I ATOl ATOI I AZTOI I ATOllI AT Oll ATOllI ATOllI ATOI I APTOI I ATOI I A'TOllI ATOI 0I 1337 1340 1341 13412 1344 1345 1 3 '16 13417 1348 1 351 1352 1353 1355 13.56 1357 1358 1359 1360 1361 136C 2 13C3 1365 1366 1367 13C9 1370 1 371 1372 1373 1374 1375 1376 1378 1379 1380 1381 1382 1383 1384' 1386 1387 1388 1389 1391 1392 1.393 1394 1395 1398 1399 1400 1402 1-103 14 0 4 1405 1406 140'7 1'1111 1412 1-I113 1411I 1415 1I .16 1417 1418 1-11 9 1,12 0 1421 1 -122 1423 14 2 4 14 '25 1426 1427 1.129 1430 1.131 1432 1.133 1434 1438 1-13 9 1440 144 2 1443 37 9 24. .031 24. 535S 2.1.7 2 1 24. 7 3 1 25.631 2).70 2830 23. 950 22.71C 24 .5'92 24.093 24. 682 N4. i'18 23.083 22. 51.0 24.357' 23. 8-1 2.868 22296 24.373 25. 505 23. -161 23.6G37 2 3. 23 -I 23.640 23. 711 24.45 7--q 538 23. 286 22. 533 21. 967 22. 800 20. 807 23.422 24.537 22.899 23. 381 24 .265 25.132 23. 985 24 85 8 25. 257 26. 131 26C,. 9 0-I 25. 945 24.153 23.113 24.1574 25. 166f 24 .75 10 25S. 5 12- 25. C.4 3 26. 080 22. 902 2 2. 960 806 2-1.6C17 20. 55 9 19. 54 9 20. 134 210. 521 2-0. 90-4 20. 318 2 0. 123 2-0.448 19. 70I 19.01'93 20. 556 18.870 16. 823' 14.7a'! 141. 14 7.-C 21.1-31 1 9.41 15'. 230 15. 484 1 4.035 12 .959 11.703 11.965 13.121 10. 923 12 74 9 12.755 12. 251 11.983 12.861 12.7'41 13.671 13.579 11 .717 11.615 1.2.562 12 .504 10.5178 10.317 9.660 8. 249 7.450 5. 984 8.057 7 .100 7.,708 7.80 6. 997 6.4-81 7 627 8.375 7 .034 5.670 6.172 4 .562 3.805 2.6C96 2.003 .418 1.390 1 .774 3.022 3.077 4 .022 -i .015 990 3 .32 8 -4 .686 -5.743 -7 .131 -B.093 -2.431 -2.099 -3.047 469 118 -3 .60O2 -3.299 -4 .050 -236 -3.533 -2 .054 i .233 I 910 -5.6C55 -6.592 924 I .229 -7 .050 -8.232 -8.422 3610 138 3.6 -7.64 9 4 4 C -8.070 14/5 8 6258b CC).259 59.-19i C60. 793 C60). 1261 61 033 62. 217 62. 369 63. 000 58.817 58.855 17 .785 56. 489 '55. 421 54.078 53. 3-18 52.392 53.195 5 1 0151 51 .5C4 '50. 318 56.0511 55.797 56.116 55. 935 5.171 57 .093 58.4(9 59. 389 54 930 54 .757 53 .873 52.755, 51 .881 50. 881 51 .047 51 .874 51.-637 51 .402 50.278 50.8B35 10.176 52 .116 52 .74C 54 .187 53 .269 55.019 52.687 S52. 055 53 .272 53.195 53. 433 53.8B32 5 3. 100 53.558 53.040 54 .169 5 5. 360 53.731 52 .315 5.1 .489 53.455 52 .099 5659 55 ',1 56.859 57. 09-I 8 128 59.099 58. 602 58 .155 58.768 57 .489 57 .295 56.6C4-1 S5. 982 56. 451 51.934 55.753 56'. 44 6 FC0. 7 3 2 55. 389 5 1 742 53.294 1 00 1 .00 1 00 1.-00 1 .00 1 .00 1.00 1 00 1.-00 1.-00 1.-00 1.-00 1 .00 1.00 1 00 1.00 1.-00 1 .00 1.00 1 .00 1 00 1.100 1 .00 1.00 1.00 1 0 1.00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 1.00 1 00 1.00 1. 00 1.00 1 .00 1.00 1 .00 1.00 1 .00 1.0 1.-00 1.00 1 .03' 1 .00 1.00 1.00 1.00 1 00 1 .00 1 .00 I1. .0 1 00 1 .00 1-00 1.00 1 .100 1.00 1.00 1 .00I 0 01l 47-.85 35.31 38.70 289. 11 32. 98 24 .45 26.63 3 0.2 18B. 90 35.89 38.57 32.86 30.2 27.10 3'7.8 9 39. 22 37.65 4 4 28 4 1.9 39.42 415.48 31.33 37.-76 35.40 34 04 28. 66 21. 99 42 .861 52.23 35.73 42. 61 35. 2, 9 32 .39 36.05 25.88 34. 96 41. 96 44 .03 42.66 30.94 38.98 35.871 38. 92 44 32 43.12 42.00 410.4.7 -111. 98 45. 84 4 9. C 4 5. 23 4 9. 14 41.49 4-I. 96G 48.66 38.35 53.83 52.85 55.21 52. 39 52.58 48.30 51 .41 50.41 44 .6C5 36.84 12- 38 0. 17 40.19 37.08 33.65 -17.1 7 48 05 53.7 6.94 6 5. 44 C4. .32 62. 75 G2. 14 61.38 61 4 l 6c. 22 62-I. 92 C7 3-2 62. 32 AAA AAAA C2 AAAA 0 A AI I AAAA C AAAA C2 AA\AA C2 AAAA 0 AAAA 1-i AAAA C2 A.AAA 0 AAAA 11 AAAA C2 AAAA C2 AAAA C AAAA C2 AAAA C AAAA '2 AAAA C2 AAAA C AAAA 0 AAAA C2 AAAA 0 AAAA N- AAAA C AAAA C AAAA '2 AAAA 'C AZAAA C LAAA C2 AAAA 0 AAAA 11 AAAA C AAAA '2 AAAA C AAAA C AAAA C AAAA 0 AAAA If AAAA C AAAA C AAAA 0 AAAA 11 AAAA C2 AAAA '2 AAAA C AAAA 0 AAA 11 AAAA ?AAAA 0 IIA 1
~AAC
AAAA C AAAA C AAAA C AAAA '2 AAA 11 AAAA C2 AAAA 0
AAA
AAAA C AAAA '2 AAAA C AAAA AAAA C AAAA 0 AAAA 11 AAAA C AAAA C2 ~AAA C2 AAAA '2 AAAA. C AAAA 0 AAAA 11 AAAA C2 kAAA C2 iAAAA '2 A~AAA '2 AAAA '2 IIA 1 ~AAA c2 A-AAA 0 ;IAAA 1; AAA
AA.AA
WO 99/28347 PCT/AU98/00998 AT01 -I ATO01 AT Cl- ATOI I ATOI I AllOI I AT OH
ATOH
ATOH
ATOM~
ATOl ATOI I
ATOII
ATOllI ATOll ATOllI ATOll ATOll ATOllI
ATOM~
ATOI I ATOll ATOll ATOI I ATOll ATOMl ATOll ATOll ATOI I ATOI I ATOI I ATrol ATOI i
ATOH-
ATOllI
ATOH-
ATOllI AT Oi ATOHl ATOMl
ATOM
ATOll
ATOM
ATOM
ATOM
ATOll ATOI I ATOllI ATOI I ATO! I ATOI I ATOI I ATOI I ATOT I ATOI I ATOll ATOllI
ATOM
ATOM
AT'OM
ATOllI ATOlM ATOMl ATOI I ATO! I ATOI I ATOll AT 01 ATOll ATOllI
ATOH
ATOI I ATOllI
ATOM
ATOlli ATOllI ATOI I
ATOM
ATOllI ATOll ATOI I ATOI I ATOI I
ATON
1 4 44 1 .15 1 .14C 1.1.17 1.48 1 '149 14150 1.1 52 1453 1 454' 1.55 14.56 1-157 1459 14160 1461 1162 1464 1.165 11I6 1467 1468 1469 1470 1171 1.17 3 1 4174 1475 .1476 1477 14.18 1.179 11180 14 82 1-183 111841 14185 1486 1487 11188 1489 1490 1491 14'92 1493 1494 1496 1 497 14198 1499 1501 1502 1503 1505 15'06 1507 1508 1510 1511 151LI2 1513 1514 1515 1516 I 517 1519 15,20 1521 1522 1523 1525 1526 1527 1528 15219 1'530 1531 1532 15 33 1535 1536 1537 1539 15'4 0 19.8967 20.161 21.339 19 .'201 22. 136 22.883 22 .506r 23.693 23. 598 24 473 23.952 24 .5C5 22 .5114 22.387 23. 4.143 23. 925 23.717 2 4. 791 25.041 25.320 25.726 25.102 24 .51 9 23.392 25.532 25. 314 25. 209 24.063 24 .515 22.8937 26. 40C'9 2-7.598 26.024 26.992 27 650 27 .07 4 26.3518 25. 985 28.826 29. 618 29. 1 97 30.601 30. 861 28. 5-13 27 .859 28 .444 27I. 610 26. 2 45 2 5. 786 2 5. 64 9 24 3 1 1 24 916 24 063 22,686 24 .060 23.0015 25. 003 24 .884 25. 907 25. 456 23. 687 23.6C64 25 .027, 24 .353 25. 974 2-7. 317 24.8516 23.8903 24 984 23.935 2 3 .12 8 21 687 21 .3417 21 .284 21.199 24 .434 23. 988 25 "76 25. 810 26.989' -C 2C6. -8 27 .368 -71.636 -7.053 -8.,170 9. 4 3/ -7.484 588 -8.702 9. 524 -6.301 091 743 744 627 -10. 603 -8.4296 198 -6.703 034 -C.796 854 -8.820 -9,369 -9.908 -11.409 -12.101 -13. 421 -12. 372 -9.454 -9.734 -8.773 189 325 -10.405 -5.635 -9.072 -7.838 -10.094 323 -8.159 -10.734 -10. 0751 -12.049 -12.804 -13.230 -14.318 -12. 468 -12.683 -11. 661 -10. 417 -11. 995 -14.094 -14.664 -14.655 -15.973 -16. 190 -15.6-5 -15.857 -17.214 -17.106 -18. 122 -17.057 -18.102 -18.158 -17.890 -18. 654 -16. 906 -16. 629 -1 7. 865 -17. 546 -16. 081 -15. 733 -15. 317 -15. 915 -16.117 -14.94 2 -1.11.119 805 -1-I .4 427 -12.79G3 12 .5'92 15/58 51.093 50. 701 50.37C 55.541 55. 361 56. 355 57 .1I83 58. 196 58.411 58.001 56.808 58. 977 60 0291 1 120 61.699 61 .596 62.533 62.750 61.410 60.4890 C61.363 63. 855 64 .377 C4 524 65.853 65. 806 65.092 64 .489 65 .951 C6.805 66.634 67 .84 9 689.74 0 69.4.93 C9 .575 69.657 68.703 70. 059 69. 903 70.851 71.557 70.6C90 71.850 72.615 71.843 '72 .745 '72 .223 72 .547 71 .314 70.828 C69. 705 70. 420 C9. 092 70. 353 7 C1.617 6 9. 617 C69. 024 67.896 6C. 542 C,6. 2 55 65. 087 7 0.03 2 69.835 70.967 *71 .986 72.766 72 .92 1 73. 841 74 .781 75E).2'0 8 75.560 7 5. 302 7 4 .096 76C. 28 2 76. 025 77 .145" 75S. 76G9 76-.8418 77 S.1 7 886 7626 10 1 .00 7 3. 31, 1.00 85.90 1.00 95.25 1 .00 87 .47 1 .00 69. 1 .00 72.86 1.00 66.76 1.00 64.65 1.00 65.56 1.00 65.89 1.00 57.29 1.00 59.22 1.00 67.88 1.00 62.15 1.00 59.18 1.00 61.11 1.00 5-1.88 1.00 55.78 1.00 .19.10 1.00 58.510 1.00 57.73 1.00 49.69 1.00 59.36 1.00 6'7.48 1.00 54l.39 1.00 52."19 1.00 58.55 1.00 69.45 1.00 65.26 1.00 65.4I3 1.00 51.93 1.00 55.59 1.00 48.62 1.00 56.73 1.00 63.58 1.00 62.40 1.00 41.99 1.00 55.83 1.00 68.05 1.00 66.66 1.00 70.60 1.00 69.98 1.00 70.58 1.00 69.64 1.00 69.58 1.00 71.23 1.00 78.07 1.00 81.75 1.00 80.26 1.00 84.54 1.00 89.38 1.00 85.07 1.00 841.51 1.00 82.27 1.00 93.69 1.00 95.92 1.00 97.23 1.00 99.05 1.00100.40 0.01 99.75 0.01 99.72 0.01 99.59 1.00100.57 1.00101.64 1.00100.53 1.00101.00 1.0'0103.42 1.00101.1c, 1.00104.59 1.00 98.39 1.00 97.43 1.00105.93 1.00113.87 1 .00119. 34 1. 00126. 27 1.00117.79 1.00 95.00 1.00 95.89 1.00 93.30' 1.00 92.28 1.00 97.37 1.00 98.05 I 0 I .11- 1.00 9-.7S AAA;j'A C A.AAA C AAA 0 APAA 0 AAAA 1C A.M.A CI AAAA C AA.AA 0 AP.AA 0 AA.AA S AAAA 1S AAAA CI AAAA C AAAA 0 AAAA 0 ~AAA II AAAA C AAAPA C AAkAA 0 .kAA 0 .AAAA 0 AAMA 0 AAAA 0
AAA
AAAA C A.M.A C7 AAA.A C AAAA C AAAAn c~ AAAA 0 AAAA 01 IIk A.M.A C AAAA 0 AAAA C A.AAA S~ AAAA IS AAAA CI AAAA C AAAA C AAAA C A.M.A C AAAA 0 AA.AA 0 A.M.A CI A AAA C A.M.%A C AI'AA 0
'I:
.M.AA C
IAA'
PAAA C AAAAZ C AAAA 0 AAAA _1-1 AAAA C AAAA C AAAA S AA.AA C ?.AAA C A.AAA C ,AMA 0 LA1AA CI LAAAA C AAAA C AAAA 0 A.AAA I(I AAAA CI A.M.A C AAAA C A.A.A C AAAA 0 A.M.A 0 A.AAA C AAAA 0 AAA.A I I A~aAA C AAAA.P C A.M.A 0 ?L.A r AAAA C2 MAAA; I ATOi 1 154-1 11 FRO I1_.10 2,1.194 -12.007 75.932 1.'30 88 WO 99/28347 PCT/AU98/00998 ATOl A1,01.1 ATO I ATOHl
ATOM
ATO I
ATOM
ATOI
ATOH
ATON
ATOI I
ATOM
ATOM
ATOM
ATOHl
ATOH
ATOII
ATOH
ATOM
ATO I ATO1 ATOl ATOm
ATOM
ATOll ATOI I
ATOH
ATOI I
ATOI-
ATOI I ATCOi I
ATOM
ATOM
ATOI I ATO l ATOl ATOi
ATOHI
ATOl
ATON
ATOH
ATOM
ATOIl I ATO I
ATOM
ATOll ATOl
ATOM
ATOI I ATOil ATOI I ATOIl ATO I
ATOM
ATOll I
ATOH
ATOll ATOl
ATOM
ATOl- ATOl ATOMl
ATOH
ATOl
ATO-
ATOl ATOI I ATOI I
ATOH
ATOI I ATO-1 ATOI I ATOI I ATOI I ATOIl
ATOH
ATOM
ATOI I ATOl ATOll ATOHl ATO! I ATO I ATOI I ATOI I ATOI I 1512 1543 154 4 1545 1546 1547 1548 1550 1551 1c cC' 1553 1554 1555 1556 1557 1559 1560 1561 1562 1563 1564 1566 1567 1568 1569 1570 1571 1572 1573 1574 1576 1577 1578 1579 1580 1581 1585 1586 1587 1589 1590 1591 1593 1594 1595 1596 1598 1599 1600 1602 1603 1604 1605 1607 1608 1609 1610 1611 1612 1613 1614 1616 1617 1618 1619 1620 1623 1624 1625 1627 1628 1629 1630 1631 16341 1635 1636 1638 1639 1640 1641 1642 16'13 1644 1645 23.789 25.463 24. 125 23.370 26.503 26.319 27.563 28.530 29.924 30.118 30.716 29. 841 28.358 28.788 27.681 27. .4193 26.306 25.224 27.422 28.533 26.4109 25.355 26.051 26.476 25.917 26.470 24.646 24.299 24.488 23.1-12 22.011 20.714 20.560 19.400 10.409 17 951 21.615 21.466 21.333 20.775 21.831 22.053 23.119 19.532 19.346 18.781 17.689 16.297 15.662 16.157 17 983 18.219 17.912 18.182 19.437 19.589 20.722 21.899 16.937 16.655 16.318 15.112 15.526 14.497 14.3141 13.749 13.951 13.544 13.641 12.717 11.315 10.943 10.917 10.658 13.003 12.100 14.22G 14.655 15.283 15.08 1451 7 13. 869 14.7633 15.6417 16.52 -12.122 -10.701 -9.978 -10. 671 -10.025 -9.934 -9.522 -8.735 -9.178 -10.630 -11.621 -10.905 -7.234 -6.443 -6.819 -5.381 -41.777 -5.324 -5.099 -6.064 -3.522 -2.675 -1.412 -1.364 -0.135 0.473 0.208 -2.340 -2.423 -1.815 -1.499 -2.244 -3.639 -4.432 -5.012 -6.372 -0.0.10 0.484 0.570 1.943 2.952 2.689 2.842 1.881 0.897 2.985 2.991 3.096 4.385 2.740 051 5.206 3.725 4.672 4.335 5.346 4.305 3.665 4.524 3.4135 5.635 5.633 5.253 5.696 5.112 6.763 41.739 3.879 4.728 3.759 4.106 5.487 5.779 6.448 2.306 1. 544 1. 907 0.513 0.278 953 -0.605 0.466 -1.437 2.379 1. 172 16/58 76.395 15.361 75.456 '16.515 76.236 77.456 75.596 76.3708 76.038 75.706 77.094 78.471 76.189 77.031 75.095 74.938 75.670 75.928 73.459 72.132 76.031 76.538 77.027 78.4165 79.116 80. 016 78.721 75.472 74.234 75.880 75.081 75.450 74.870 75.622 74.720 75.134 75.204 76.282 74.034 74.077 73.553 72.127 74.362 73.189 72.414 73.173 72.182 72.833 72.819 74.313 71.137 71.509 69.866 68.777 67.90.1 66.716 68.724 67.966 67.882 G7.394 67.537 66.713 65.292 64.244 63.150 64.522 67.14 1 66.326 68.433 69.007 68.540 69.093 70.280 68.213 68.719 68.383 68.862 68.850 67.524 66.702 65.294 65.04" 64 .389 70. 01 C 70.213 1. 00 1.00 .100 1.00 i. 00 1 .00 1.00 1.00 1.00 1 .00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 O 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 10 1 .00 1.00 1.00 1.00 1.00 1.00 1.00 I 00 1.00 1.00 1.00 1.00 1 .00 1.00 1 .00 I1.0 86.67 84.74 84.76 84.62 79.60 79.70 C 74.45 67.04 69.93 71.43 85.25 69.31 61.76 58.60 54.81 49.76 51.52 53.89 48.31 54 02 46.31 47.19 49.95 62.30 81.67 73.22 80.93 49.05 415.90 47.43 43.92 44.48 48.65 49. 04 49.21 37.67 45.01 .15.69 44 94 43.13 47.81 39.13 40.40 40.92 35.01 39.18 42 97 55.99 41.42 42.83 .10.17 35.72 42.21 41.05 39.50 15.26 36.20 35.70 410.94 35.51 42.29 45.22 45.69 51.19 41.75 48.89 46.55 45.95 45.12 -13.67 36. 84 42.75 36.67 40.74 44 69 45.72 41.64 45.88 55. 92 67.08 74.56 77.75 70.71 17. 1 C -19. 9 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA 11 AAAA C AAAA C AAAA C AAAA S AAAA C AAAA C AAAA O AAAA 1 AAAA C AAAA C AAAA O AAAA C AAAA S AiAA 11 AAAA C AAAA C AAAA C AAAA C AAAA O AAAA O AAAA C AAAA O AAAA I-! AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 11 AAAA C AAAA 0 AAAA I AAAA C AAAA C AAAA O AAAA C AAAA C AAAA O AAA II AAAA C AAAA C PAAA O AAAA C AAAA C .AAAA CO AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA 11 AAAA C AAA C AAAA C AAAA O AAAA II AAAA C AAAA O AAAA 11 AAAA C AAAA C AAAA C AAAA O AAAA II AAAA C AAAA O AAA II AAAA C AAAA C AAAA C ?.AAA C AAAA Co AAAA 0 AAAA C AAAA WO 99/28347 PCT/AU98/00998 i.TOI I ATOI I TO1-1 ATOi l ATOI I ATO lI
ATOMI
.601 I ATOll ATOll %Ol I ATOllI ATOI I ATOI I ATCI I
;.TOII
.:JDf I ATOll ATOI I ATOlf ATOI I ATOll ATOPl ATOll TOf I ATOf
ATOII
ATONI ATOMl ATOl ATOI I iaTOll ATOll ATOI I ATOlI A-TOI I
ATOI
.7011 ATOI ATOll ATOll ATOI I .TOI I A TOI I ATOll ATOll ATC'l I .TOI I ATOl ATOI I ATOI I ATOll .zTOI I :TOll ATOll
A.TOM
AT OII
ATOM
TOll A.TOI I ATOll
ATOM
ATOII
ATOI I ATOll ATOI I ATOll TOll ATOll ATOI I .ATOI I ATOI I 16(.1 8 16.19 1650 1651 1652 1653 1654 1655 1656 1658 1659 1660 1663 1664 1665 1666 1669 1670 1671 1673 1 74 1 6 7 5I 1675 1;76 1677 1678 1679 1C80 1683 1685 1688 1689 1690 1691 1693 16641 1697 1700 1701 1702 1704 1705 17 06 1707 1-108 17 C, 9 1711 1712 1713 17 14 1715 1716 17 17 1718 1720 1721 1722 1723 1724 1725 1727 1728 1729 1731 1732 1733 1734 1736 1737 1738 17-Il 17431 1742 1743 1745 1746 1747 1748 174 9 1753 34 1.231 15.4331 16.175 16.980 7.634 16.065 16.7341 17.516 18.174 17. 058 16.519 18.331 19. 203 9.085 18.939 19. 233 18. 449 20.66 21.163 21.373 22.794 23.223 22.759 21. 931 21.438 23. 081 22.583 1.757 21..171 23.673 23.389 24.579 25. 517 5.537 24 .210 23.372 21.974 21 144 21.477 19.909 26.921 27.548 27.493 28.787 29.407 28.755 28. 576 27.812' 30.764 31.430 3.769 3.680 32.588 32~555 32.535 32.730? 3.636 3 2.4478 32.43 31.631 31.703 31.682 31.964 33.480 34. 309 33.676 31.20 31.2 30. 92-1 31.53 31.505 1041 31.71 31. 20-0 32. 977 30. Q230 341. 0'S3 31.55 31.711, 31. 204 34.4 1- 34 O-; 31 511c, 588 86; -1.168 -0.210 -0.4 69 -429 .2.675 -1.718 '.017 -1.938 -3.024 -1 .752 -2.898 -3.278 66 -5.6 46 048 -2.712 -1.760 -3.796 92 -5.374 27.1 -7.316 -8.181 -6.132 -7.016 038 -9.006 C99 -2.983 -2.318 -1.496 -0.132 0.623 0.344 0.760 0.570 0.022 1.022 -2.094 -2.557 -2.183 -2.758 -2.395 -2.018 -4.253 -5.181 517 091 -1.409 -I.069 1.186 2.217 1.520 0.257 1.636 3.565 2.822 3.817 -3.268 -3.121 -4.460 -5.644 -6.062 5.025 -7.271 814 -6.539 G00 -9.236 -10.500 -1.066 489 -9.539 -10.202 -9.130 -9.392 -10. 24 -11.218 -8.377 17/58 170 ?5- 73.359 71.62( 76S. 207 75.1941 7G.366 76.973 78.146 71.832 71.889 71.493 193 69.498 70.30-1 68.29o5 71.560' 72.213 71.363j 71.6c 98 71 .1 .1 72 .63C' 72.237 73.193 73. 978 74 .91 6 74.53 75,.320 7 7 62 69.567 71.366 70.577 71.233 71. 234 10.003 70.039 69.017 67.864 69.197 70. 461 71.406 69.291 68 997i 67.665 66. 665 69.167 67.827 67.583 66 325 66.564 76. .2 cB i e C-7. -I: 65. 11 68. 52 68.679 67.088 6,4.78? 65. 745 65. 109 64.199 (66. 005, 65.161 65.162 6.13 6.1..283 C5.859 67l. 06,-1 C5. 946 65.'792 63.73.- (S.14 S 67.21 3 69.135 67.253 68. A4 3 8.: 177 1 0 .00 1 .00 1 .0 1.00 1.00 1.00 1 .00 I 00 1 .00 1 .00 I 00 1 00 1 0IO 1 AO0 1 .00 1.00 1 00 1 .00o 1.00 1.00 1.00 1.00 1 .00 1.00 .17 1 .00 1 .00 1.00 1 .00 I 07 1.00 1 00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00
IO*
1 .00 1.00 1.00 1 VO' 1 00 1.00 1.00 1 0 1.0 1 1CO 1.00 1:0 4 0. 49. 94 48. 90 46.46 41.17 43. 62 4 4 44 43.58 4 0.16C 51.41 52.59 53.70 52.36 55.43 61.75 61.61 57. 97 43.81 39.38 43.20 4 4 .76 41 .66 45.18 'IC. 48 51.36 '14.86 46.92 '0.33 50.61 416.94 S49.7G -7.79 49.13 44 .32 48.14 51.47 48.35 48.23 38.96 54 .65 45.98 14 97 46.21 45.60 46.23 44.78 35.62 51 92 48.16 42. 48 36.38 25.56 23.71 32.40 2.31 28.3'1 37.21 28.51 22.23 29.51 39.30 39.15 41.33 49.28 43.66 47.85 58.51 48.76 51.53 51. 96 58.95, 66.55 7.23 57 S 66.05, 57.56 53. 39 48.46 51 .39 57 ?.AAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA C AAAA 0 AAAA II .2AAA C AAAA C AAAA C AAAA 0 AA II AAAA 0 F~M. II AAAA C AAAA C AkAA C AAAA C AAAA C AAAA C AAAA C ?AAA C .AAAA C rA.M.A C, AAARA C AAAA 0 AAAA 11 .\AAA C AAAA C A..A C AAAA C AAAA C AAA I AAAA II AAAA C AAAA 0 AAAA If AAAA C AAAA C AAAA 0 AAAA C AAAA S AAAA C iAAA W 7 .AAAA C AA.M C AAAA C PAAA C AAAA AAAA 0 .AAAA C AAAA 0 AAA II AAA.; C AAAA C AAAA 0 ZAAA 1 AAAA C2 AAAA C .AAA ii AAAA AAAA C2 .kAAA 0- AAAA '7 AAAA C AAA c
A
-AA C AA II ~AAA C AAA 0 WO 99/28347 PCT/AU98/00998 ATOIl I ATC4; AT01ll AMC1I ATOI I ATOllI ATOI I AT01ll AT0 OI ATrOj ATOI I
ATO!
AT01I ATOll
ATOM-
AT01 l ATOMl ATOI I AToll1 AT0ll ATOI I
ATOII
AT01 I AT01ll ATl ATOI I ATOI I ATllI AT OH
ATOI
ATOI I ATOI I AT01ll
ATOM
ATOll ATCA I AT01ll ATOllI
ATOM.
ATOI I ATOlM ATOll ATOI I AT0ll ATOI I
ATOM~
ATOI I ATOllI ATOllI ATO1I
ATOII
AT Ci I ATOI I AT01lI ATOf I ATOll
ATOI
ATOI I ATO! I ATOI I AT01 ATOt I AT01 I
ATOM
ATC011 ATO1I ATOIlI AT01ll AT01 l ATOi I ATrOI
ATOII
ATOI I ATOI I ATOll ATOI I AT01-l AT01lI ATOll
ATOM-
ATollI ATOllI ATllI AT01 I AT0olI 1 754 17516 1757 1758 1759 1760 1762 176-C3 1766 1769 1770 1771 1773 1774 1775 1-776 17-7 1778 1780 1781 1 78 2 1783 1784 1785 1788 1789 1790 1792 1793 179 ?,1 17195 1796 1797 1801 1802 1833 1805 1806 1807 1808 1809 1810 1811 1812 18114 1815 1816 1817 1818 1819 1820 1821 18z2 1823 1824 1825 1826 1828 1829 1830 1832 1833 1834 1836 1837 1838 1840 1841 1842 1843 1845 1846 18.17 1848 1 8419 1850 1852 1853 1854 1855 18517 1958 18';9 18610 1861 33. 626 33. 808 34. 925 36.324 37.288 38.569 39.298 38. 877 .10. 474 32. 530 31 .862 32 .230 31.199 31.646 32. 835 30. 9'10 30.363 30. 659 30. 948 2-9 .7419 29.809 28 .75 7 -7.898 28.85,7 31.218 30. 458 32 213 32.479 33.966 34 86 5 36.337 37.178 38.499 31.659 31.679 31.365 30.388 28.927 27.855 26. 911 26.738 31.051 31 .770 30.796 31.342 30. 297 2 9 .13 3 31. 965 33.623 30.688 32.066 29. 71-7 30.523 31. 910 219. 120 29. 82 0 27 .801 27.050 2-5.59.1 25. 4741 27. .630 27 606 28. 108 28.870 29. 80, 28. 94 3 30. 605 29. 8 02 29.84 3 30.6413 31.583 30. 951 31 .618 32.116C 33. 347 29.689 29.038 29. 44.1 29.609 29. 8.12 30.359 30. 058 28.568s 1' 8 26. 713 -7.022 820 -4 .962 5101 -4 .948 -5l.605 -5.895 -5.608 -6 .478 -4.977 -4.476 -4 .728 -3.9241 463 -2.227 -4 .282 944 -1.600 -0 .177 0. 619 2.085 2.867 2.304 4 .164 0.089 327 0 .866 1 .0C64 1 .275 0.267 0.734 -0.208 -0.654 2 .205 3.305 2.0C1 4 3.041 2.613 2. 955 1.601 1.855 3.200 2.292, 41.195 4 .365 4 .320 4 .649 .772 5.771 3. 978 3.777 3. 933 3.487 3.920 5.320 6.3415 5.367 6. 592 6.287 41 935 7 176 8.708 6.853 7.507 6. .159 5.365 '7 04 8 8.583 9.739 8 .247 9.116 10. 331 11.327 8.372 7 .001 10. 322 11 52 1 11 .83.1 1 0l. 932 13 .05S 2 13. 52 0 15.035 15. 288 16G. 7 33 16.806 18/58 68. 913 69 6,91 69.0741 69. 285 68.27 9 68.203 6 9. 276C 70.,.198 69.180 69.821 '71. 063 71.619 71.692 71. 72 4 '73. 110 73.3416 71.690 71.690 71.196 71.4.35 '70.73 3 '70. 033 '70. 912 7 3.16 2 -74. 04 1 -73. 521 7.1. 931 751.185 74.482 *7 4.523 73.6C84 74.158 75.477 74. 946 7c. 698 '77. 413 -77. 537 7C. 536 75.912 74 .171 '78 .77 0 79.116 79. 5C5 80. 892 81.989 81.761 81.000 80. 31 2 83. 2 06 83. 702 84. 304 85. 503 85. 198 6-1 .431 R4 507 84.5'4 6 84.750 85. 129 85. 566 85. 83C 85.803 86. 908 87.963 88. 618a 89.016 8 9. 75F0, 8'7.42 87 631 86. 4 46 85. 8171 85.195 85.017 84.769 85. 535 84. 806G 84 .323 82.8B86 82.082 82. C24 81. 364 81. 21 -1 01. 002 80.7123 80I. 471 1.00 4'1 0 1 .00 48.25 1.00 .19.72 1.00 60.92 1.00 70.83 1.00 76.18 1.00 7C,. 5 9 1.00 80.82 1.00 79.33 1.00) 48. 10 1.00 16. 99 1 .00 44 .80 1 .00 45.20 1.00 44..50 1.00 47.09 1.00 43.88 1.00 56.08 1.00 39. 30 1.00 13.4l3 1.00 23. 99 1.00 28.57 1.00 29. 35 1.00 38.55 1.00 28. 14 1.00 46.07 1.00 47.01 1 .00 46. 98 1.00 4 5. 26 1.00 48.68 1.00 47. 95 1.00 .18.0( 1.00 46.78 1.00 44 .00 1.00 48.13 1.00 48.84 1.00 52.59 1.00 53. 22 1.00 54 .27 1 .00 56.16 1.00 57.56 1.00 416.57 1.00 50.55 1.00 48.82 1.00 53.97 1.00 58.63 1.00 65.16 1.00 65.87 1.00 60. 37 1.00 60.09 1.00 69. 41 1.00 71.11 1.00 69. 11 1 .00 68.03 1.00 71.02 1 .00 69. 47 1.00 65.93 1.00I 68.78 1.00 69.29G 1. 00 78. 29 1.00 91.78 1.00 67.19 1.00 63.98 1.00 68.20) 1.00 68.39 1.00 73.84 1.00 89.33 1.00 73.71 1.00 67. 52 1.00 68.30 1.00 63.89 1.00 57.29 1.00 57.70 1.00 517.56 1 .00 58.67 1.00 53.4 C 1.00 56. 91 1.00 57 .2 8 1.00 59.62- 1.00 57.91 1.00 62.78 1.00 6'7.72^ 1.00 72. 76C 1.00 8ll..C9 1.00 9 0.15I 1.00 91.83j
AAPA
A.AAA C A.M.A C AAAA C .AAAi AAAA C
AAA:
AAAA rC AAAA 0 A.M.A 1; AAAA C AAAA C AAAA 0 AAAA C AAAA S AAAA 11 AAAA C AAAA r- AAAA c A?.A C AAAA 0 AAAA N] AAP. C AAAA 01 AAAA C AAAA C AAAA C AAAA NI A.M.A C AAAA 0 AAAA 1 AAAA C AAAA C AAAA C AAAA S AAAA C AAAA C AAAA 0 A.M.A 11 AAAA C AAAA C AAAA 0 AAAA C AAAA S AAAA 11
AAAA
AAA?. c AAAA C AAAA C AAAA C AAAA 0 A.AAA 0- M.AA CI AAAA C AAAA C AAAA 0 AAAA C AAAA C AAAA 01
AAAN
AAAA
AAAA 0 AAAA C A.M.A S AAM 11 AAAA C2 AAAA C AAAA 0 M.M. HI AAAA C APA C
AAAJZ.
WO 99/28347 PCT/AU98/00998 AToi ATOll AToi ATOI I ATOI I AT 014 ATOM1
ATOH
ATOll ATOI I ATOI-l AToll ATollI ATOI I ATOll ATOllI ATOMl ATOil ATOiM AT0O1l ATOil ATOlM AToll ATOI I ATOllI ATOI I ATOI I ATOI I ATOI I ATOllI ATOI I
ATOII
ATOlM AT OI ATOf I ATOllI AT Oi ATOI I ATOI I ATOll AToll ATOllI ATOll ATOllI ATOI i ATOllI ATOll AT01 I ATOll ATCOl I ATOI I ATOI I AT Oi1 AT OI A TOI I ATOI I ATOllI ATOI I ATOI I AT01lI ATOI I AToll ATOI I ATOllI ATOI I AT01ll ATOil ATOI I ATOllI ATOI I ATOI I AT01lI AT01lI AT01lI AT01ll ATOI I ATOll ArT ll ATOll ATOllI ATCll AT0ll ATOI I ATO!i i ATOll1 1962c 1866 1667 1868 18-70 1871 1872 1873 1871 1876 1877 1880 1883 1884 1885 1887 1988 1889 1880 1891 1893 1894 1895 1896 18 97 1898 1900 1901 1902 1904 1905 1906 1907 1909 1910 1911 1912 1913 1914 1915 1616 1917 1919 1920 1921 1922 1923 1926 1927 1928 1830 1931 1932 1933 1 934 1937 1938 1939 1 941 19.12 1943 1944 19415 1946 1947 1948 1949 1951 1952 1953 1954 1955 1956 1958 1959 1960 1961 1962 1963 1965 1966 1967 1968 1969 i970 36113 31.8688 32. .186 32. 488 33.885 34.505 34.670 34 .366 35. 622 35. 966 35. 026 37.162 3 4.221 33.336 35. 521 35. 962 37.167 36. 221 36. 220I 36.5441 36.836 37.834 37 .9521 35. 510 34 .785 380. 412, 3 9. 46." 410.237 410.288 -11.681 38.857 37.633 39. 610 39. 139 40.395 40.4.79 39.235 38.356 39. 060 38.302 37.690 38.666 38.025 39. 021 3 9. 7 22 40.3641 39. 622 37.033 36. 8.15 36.384 35. 356 314.120 33. 806 33.475 3 3. 9 80 35.784 34. 992 36. 955 37. 342 38. 702 38.846 39.579 39.385 40. 28 37.314 37. 922 36. 605 36.6003 37. 978 38. BR-I 35.824 34 .196 38. 124 39. 338 3 9. 230C 38. 165 391?. 590 39. 644 4 0. 2 54 4 0. 290 39. 284 3 9. 17G 4 1 1 71 11.996 4 1 .501! 16. 182 13. 299 13. 935 12. 141 12. 171 12.070 13. 4003 13.330 13. 280 12.407 11.4'86 12.463 10. 851 10. 007 10. 795 9.557 9. 921 8.525 8. 908 304 6. 302 5. 304 5. 291 S. 741 4.524 4 .'499 3.584 3. 142 4 .248 2.8641 2 .404 2.315 1.408 0.145 612 -1 116 -0.983 -1 .884 0.041 -0.579 -1.537 -0.312 947 -1 .394 -2.692 -3.273 -3.183 0.0413 0.281 0.795 1 734 0. 880 0.095 C 651 -1 .206)1- 2 .563 2.8277 3. 16G4 4.1 05 4 3. 624 3.717 2.532 2.40( 1.821 5.463 5.676 6. 393 7 .721 8.315 8 .058 B. 664 8. 100 9.192 9.889 11. 287 11 .7041 10. 07 L.
8 .597 12.075 13. 461l 14 .184 13.851 13 9 5 15. 330 16c 404; 19/58 7 2.1 $72 82.079- 83.432 84.131 *8 6. 37 7 8-7.330 87.600O 87.9510 81.337 E1l. 17 76 80. 968 80. 355 79 541 81.4.51 8 2 .6G16 81.065 82. 0,13 81.448 80.216 82.504 fi1..102 82.311 81.913 83.188 811 .091 8L.74$ 8 1. ?26- 81.318 80.882 80. 364 79.914 77. 67 0 '77. C687 76.939 81.4C7 81.159 82.739 83.886 84.966 84.672 8 5.551 83.443 84 .486 85.6C64 83.607 04 .048 84 .373 83. 102 82. 01-1 C3. 268 85.228 86.117 85'. 157 86. 2 55 86.7144 88.233 88.832 90.066 88.079 85.690 84 .632 8C. 313 85. 740 86.300 87. 098 84 .540' 8,1 .202 84.786 115.1C6 821-.6c9 1 81.747 84.C75 85.128 8 4 .289 83. 1 03 94 .810 ell.26 8 4.5 SO 1 .01) 1. 00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1.00 .00 1 .00 1.00 1 00 1 .00 1.00 S. 00 i. 00 1 .00 1 .00 1 .00 1 .01) 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1.00 1.00 1.00 1.00 0.01 0.01 0.01 1.00 1.00 1.00 1 .00 1 .00 1 .00 .300 1.00 1 .00 1.00 1.00 1 .00 1.00 1 .00 1.00 1.00 1.00 1 .00 I .100 1.00 1 .00 1.00 1 .00 1 .00 1 .00 1 .00 1.00 1 .00 I 00 1 .00 1 .00 1 .00 I.00 1001 1 0 97 .6 70.13 6 6 2 59. 95 66.58 71.59 73. 91 85. 74 90. 67 88. 49 72. 95 58.83 55. 13 50. 19 46. 24 45.15 48. 97 44.80 50. 30 57.50 61.25 61 .52 57.96 54 4 9 58.51l 57-1 42 G5. 73 70.15 -7-7 .C,1 54.59 58.75 55. 95 60.07 68.06 73. 96 83.08 81 .19 82. 10 63. 91 63.51 67.4-D 69.21 68. 49 69.09 69. 04 68. 97 69.01 68.11.1 69. 91 68. 48 60C,. 1 7 3.20,' 65.34 C-1 .01 64. 20 C4.7.
64 .6.1 6C.11 77. 15 80.24 81 .65 77. 94 62.92 63.62 56.16 55.11 57.77 63. 79 52.7 0 55. 85 5.1.50 48. 19 -12. 34 54 .32 40. 90 51.42 39. 12 41. 55 4C.59 45 51 32
AAAA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
AAAA
WA
AAAA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WAA
WA
WA
WA
".AAA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
WA
AAAA
WA
WA
AWA
WA
WA
WA
WA
WA
WA
WA
WA,
WA
WO 99/28347 PCT/AU98/00998 AT 044 ATO OI ATOI l ATOlI ATOll ATOMl ATOIl I ATOlM
ATOM
ATOll ATOi I ATOMl AT01lI AT01 I ATO! I AT01ll ATOMl AT 01 I
ATOM
ATOMl AT01 I ATOI I ATOll ATOil ATOM1 AT0OH ATO!l I ATOll ATOI I ATOI I ATOllI ATOI I
ATOM
AMO I AT01lI AT01ll ATOllI ATOll
ATOM
ATOT I ATOll AToll1
ATOM
ATOl ATOMl AT0Oi1 AT01l ATollI AToll ATOll ATOf l ATOI I ATOll ATMlI ATOI I
ATOM
AT01ll AT01ll ATOI I ATO! I ATOI I ATOI I ATOlM ATOll AT01 I AT Oil ATOll AT0ll
ATOM
ATOl ATOI I AT CI AT0ll AT01lI ATOllI ATOI I
ATOM
AT01lI ATONl AT01ll AT01 I ATllI ATrOll ATOI I ATOI 1971 1 972 1973 1975 1976 1077 19Q78 1980 1981 1982 1984 1985 1986 1 187 1 988 1989 1990 I 991 1992 19911 1995 1996 1997 1998 1999 2001 2003 20 4 205 2006 2007 2008 2010 2011 2012 2013 2015 2016 2019 2020 2021 2023 2024 2 025 2026 21027 2 02 8 2030 031 2032 20e)35 2036 2038 204() 2041 204.2 2043 2 0.14 2045 .10471 2048 2051 2052 2057 2063 2064 2058 2059 2060 2 065 2008 41 .88'7 42.665 42.563 38.738 38.758 37.780 37.248 38.131 38.4410 37.698 39. 792 40. 439 41.727 41.397 -10.778 410.766 4 0.226 4 0.'718 41 .238 4 0.61l2 40. 997 39.892 38.746 41.288 412. 923 40.232 39. 169 30 9. 2C 38. 274 3C.879 38.331 39.310 410.400 38.264 38.403 38.4 46C0 37 .668 39. 622 39.832 39. 909 40.600 41.144 41.781 41.599 42.824 43. 453 4 2. 8C2 42.629 41.380 441. 734 4S. S06 4 7.0O2 4 7 .54 C 45.331 415.529 45.105 4 4. 9 80 46.333 43. 962 43.92 43.117 4 3. 042 41. 951 41.104 42.021 42. 409 43.611 41 .537 41. 912 41 .783 4 3.28 9 4 3.72 9 44 .06C8 45.366 45.300 45.198 46.336 47.697 48. 254 48.513 4 5.C66 45' .6C18 45. 430 4 6. 6,7 1 46.590 17.529l 1 813 17.207 15. 293 1S.840 15. 987 17.107 17.210 16.519 17.045 16.53S 17. 139 17 .891 19. 251 20. 282 20. 34 4I 21.198 16.084 16.405 14 .830 13. 764l 13.628 13. 920 12. 491 12. 246 13. 57 9 13. 446 14.505 14. 365 1.4 .243 15. 599 12. 109 11 .568 11.359 10.098 9.061 8.102 9.079 7.8B98 6.631 5.597 8.068 9.084 7 .123 7 .307 035 4 .963 8.258 7 .6C02 6. 1 .15 4 .950 5.083 G. 204 .713 3.6C14 5. 806 684 5.926 G6.74 7 -7.792 6.416 5. 166 '7.257 6.170 8.535 8.725 9. 492 10. 710 10. 255 11.300 12. 202 11 .551 12 .284 11.794 10.379 10.896 11.105 11.170 13.565 14.4 432 15. 926 1 C. 5413 20/58 851.178 86. 3.40 86. 258 84.711 86.082 83.879 84.7-12 8 5. 910C 82.607 81.731 82.561l 81.381 811. 804 82. 397 81 .1501 80.248 82.141 80. 319 79.251 80.735 79.838 78.819 719. 133 80.572 81.211 77 .520 7C6.533 '75.4 62 '7 4.30S 741.895 ,3.420 '75. 912 7S. 813 75.6C81 74 .9-78 76.058 76.057 76. 760 77.660 76.787 77.461 78.377 78. 163 79.189 7 9. 9C1 80. 404 P8).4 23 81. 146C 82. 261 80.883 81.318 81 11 15 61. 818 82. 826 893. 326 8 3. 548 85. 00.1 85. 64 9 85.395 84.711 86. 359 87.115 86.575 97. 556 88.175 87 .177 87.393 B71.347 88.057 89. 541 87. 907 8.6C52' 86. 899 86.9 85 25 84.117 86. 600 86.362 85.302 8 427 85.305 84.143 84 446G 84 .98C6 95.473 1 .00 I 0 1 00 1 .00 1 00 1.00 1 00 1 .00 1.00 1 .00 1.00 1.00 1 00 1. 00 1.00 1 .00 1.00 1.00 1.00 1 .00 1 .00 1.00 1.00 1.00 1 .00 1.00 I 00 1 00 i 10 1 00 1.00 1 .00 1 .00 1.00 1 .00 1.00 1 .00 1.00 1.00 1.00 1 .00 1.00 1 00 1.00 1.00 1 .0 1 00 1 .00 1.00 1 .001 1.00 1.00 1 00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 1 .00 1.00 I 00 1 .00 1.0 1 .00 1 .00 1 .0 1 .00 1 00 1.00 1.00 1.00 1.00 1 .00 1 .00 1 .00 1 .00 1 .00 39.5',9 ,13. 48 471.74 46. 97 4'C6. 44 39. 47 43. 3-7 53.27 53. 16 SC. 341 50.512 48. 58 4 3.74 64 .04 57. .6C 45.71 46. 5C 42.05 45.81 49. 20 50.34 515 52.9 49. 88 48. 66 .471 4 50 .7 1 38. 44 36. 59 42 .41 40.57 47.15 45. 04 50.36 48.27 35.77 61.34 4 9. 1-7 48.24 52.04 55. 99 57. 41 58.33 52.5"1 58.22' 59.37 58.10 07 56 .34 54. 42 52.79 56.60 63.41 56.58 SO.7 8 55. 93 55. 86 55.50 59.65 53.64 571.46 53.987 S9. 41 66.4 0 60.03 63.36 61. 5C 58.38 C7 .32 75. 48 83. 64 90.0OE 59. 78e 56 .47 4 0. 1 56. 3 C 1 AAAA C A~AAA N: AAAA I I AAAA C A-AAA C AAAA C A.AAA C AAAA C: A.M.A 0
AAAAC
AAAA C A AAA C AAA C AAAA C AAAA 0 AAAA C A-AAA 0 AAAA 01 AAAA C AAAA C ;',AAA 0 A.M.A C AAAA S kAAA 11 AAAA C A AAA C AAAA C: AAAA C: AAA C AAAA C .'.AAA 0 AAAA 41) AAAA C AAAA C A.M.A 0 AAAA 11 AAAA C AAAA 0 AAAA C ;AAA 0I AAAA C AA.AA C AAAA 0 AAAA C aAAA C AAA C AAAA C .Ak 0 AAAA C AAAA C .M.AA C .kkAA 0) 'AAA I I AAA C A.M.AA C- AAAA C AAAA 0 AAAA C AAAA C AAA. 0 NAA CI A'AAA C A.M.A 0 AAAA C AAAA C AAAA 0 NA\AA I I AAAA I I 7-AAA C :Aki. C AAA C WO 9928347PCT/AU98/00998 TO~l 271 A)2 SP 15 .7.76 1592621/58 9.L;7 94u10002 ASA P0 8-4 AT~ll 072 C ASP .p ,6.819 14 .31S 8 3 2 21 _1.3 37' A ATOl 1 Q7 3 (3 ASP 21 4G.9 98 1S. 14 8 82. 32- 1.3 53.58 AAAA 0 ATOll1 2074 1 TIIO 21 47.719 13.4-25 83.51 1.0087 AA ATot 2 -076 CA THR -I16 48.883 13. 114 82.7341 1.00 45.76 AAAA C Tll 2077l CB TIIR 16 50. 20 1 13.176 8 3.52 1.05.6 ??C ATOM 2178 06 TI 216 50.10 1177 8.335 1.00 45. 14 AAAA 0 ATOM 2080 CG S? THR 21 G 50.436 14 .314 84 .518 1.00O 41.38 AkAA C ATOM 208 C R 26 4861 1.1 82.158 1.00O 48.31 AAAA C AT of1 2 08 2 TIR 216G 4 9.596 11.282 81.4414 1.00O 47.49 AAAA 0 A; TOM 2083 If A LA 217 4 7 .5 59 11.057 8 2. 476G 1.00 4 9.-65 AAAA II AT 011 2085 CA ALA 217 471. 259 9.760 81.845 1.00 51.83 AAAA C ATOM 2086 CB ALA 217 .16.908 8.775 82.9.13 1.00 52.6G2 PAAA C ATOll 2 087 c ALA 217 4 6.2 01 9.747 8 0. 7 09 1.00 50.60 F~AC ATOl1 2088 0 ALA 2 17 45.775 8.632 80.335 1.00 49.13 AAAA 0 ATOll1 2089 11 CY S 218 45. 74.1 10.905 8 0.2 2 C 1. 00 4 3. 56 AAAA I I ATOM 2 0 91 CA CY S 218 4 4. 802 11. 0 30 79. 1571i.00 48. 09 AAMA C A -TOll 2092 c CY S 218 45. -16C6 10.33] 77. 869 1.00 47.-06 ?AAC ATOM 2093 0 CY S 218 4 6.3(-0 967 77.6,12 1 .00 .55.57, A 0 ATOM 2094 COB CY S 218 441.536 12.-501 78.7-75 1.-00 51.-54 ,7JAA C ATOM 2095 SO CYS 218 44.- 250G 13.4 94 80.302 1.00 56.98 AAAA S ATOi'1 2098 11 VAL 219 44 .22C 10.085 75. 97 8 1 .00 43.40 AAAA N4 ATOM 2098 CA VAL 219 44.575 9.547 751.654 1.00 35. 22 AAAA C ATOl1 2099 CD VAL 21 43.693 8.427 7 5. 2 42 1.00 32.26 AAAA C ATOl1 2100 CGl 1CAL 219 13. 952 7 .873 73.886 1.00 36.19 AAAA C ATOM 2101 CG2 VAL 2 19 43.811 7 .144 7 6.0C71 1. 00 45.51 AAAA C ATOM 2102 C: VAL 219 44.1.453 10.750 7-11.735 1.300 32.06 AAAA C ATOl1 2103 0 VA L 2 19C 45. 303 10. 897 73. 874 1.0)0 42.2--^7 AA?.A 0 ATI LA 21 43.728 11 .75 7 1.0 0 24 .24 A?\I A TOlI 210 C A ALA 20 4 3.63!) 12.985 74 .385 1. 00 27.' AAA C: AZmTOM I 210.7 'b A LA U2. .12. 536 12.99 73.331 0CJ 2 8 .,42 A_' AT01ll 2108 c ALA 20 43.292 14.071 75.390 1.00 2 9.-21 AAAA C ATO 2fI 1109 0 ALA 22 0 .12. 84 6 13.6C01 76.4-55 1.100 37.88 AAAA 0 ATOM4 11.0 11 CY S 221 4 3. 285 15.3341 75.058 1.00 30.27 AAAA 11 ATOM 2112 CA CYS 22 1 42. 753 16.382 75.875 1. 35. 55 AAAA C ATOl I 2_113 C CTYS 221 41.4z60 1'7 05 75.452 1.00 47. -06G AAJ\ C ATOl1 2 114 0 CYS 221 41. 265 1-7. 598 '741.368 1.00 49.57 AAAA 0 ATOllI 2115 CB CY 3 21 43.804 17 .1478 76. 06C3 1.00 4 7. 45" AA C ATOM- 2116 SO CYS 221 45.494 16. 935 -76.538 1.00 47.06 AAAA S AToll 2117 it AR'S 22 40.503 17.133 76. 396 1.00" 51.-4'7 AAAA I I ATOll1 2 119 CA ARG 222 3n.231 17.906 -76.338 1.00 51.86 AAAA C ATOll 212 0 C13 ARG 72 38.647 18.074 7 7 .712 1.00 54 .53 AAAA C ATOl1 2121 C-3 AR'S 22 37.314 18.687 77.854 1.0.0 .15. 56 AAAA C ATO1 2 12 2 CD ARG 22Z2 36.538 18.338 79.087 1.00 5.1.4 S AAAA C .AT 0l1 2123 lNE AIRS 222 36.272 16. 947 79,269 1.0)0 65. 53 AAAA if ATM ,15 CZ AR'S 222 35.531 16.080 '78,617 1.06.0 AAC ATO1l 2126 11111 AR'S 222 34l.925 16.599 77.533 1 .0 70.26 AAAA 11 ATOll1 2129 I1H2 ARG 2 35.3-12 14.780 '78. 901 1.00 54.11 AAPA If ATOl1 2 132 C AR'S 222 39.562 19.28C 75.-741c' 1.0 0 50.66 AAAA C A TOl1 2133 0 ARG 2 38.737 19.845 7S.10 1.00 S8. 34 AAAA (D A:.TOl 2134 i Ills 22 40 .55 19.981 7c.1' 1 .00 45.61S AAAA 11 ALT04ll 2130 -CA IfIS 23 4 0.9"8C8 2 1.2"9 1 7 5. 21 1.00_- 46.93 AA c ATOlf 1 2137 CO3 HIS 23 4 1.0C-57 22.251 77. 911 1.3--0 49.51 AAAA C AT.1,l1l 2130 C13 141s 223 39.710 22 .344 77.6 17 1.00 56.83 AAAA C ATCI1 2139 2D2 HIs 223 38.820 23.360 77.55 6 1.-D3 61.08 APJ\A C ATOll1 2140 1101 Ills 223 39.082 21.388 78.425 1.00 63.28 AAI ATO I 21 12 CE1 HIS 223 37.831 21.615 7?8. 7 S9 1.05IN 58.01 APA C ATOl1 2143 IIF:2 H is 223 37.681 23.0113 ?8.23:2 1 .00 48. 56 AAAA 11 ATOl1 2145 C, HIS 223 4 2. 363 21.260 75 12 2 1.00 50.718 AAAA C ATOllI 2146 0 IllS 22 3 '42. 5106 20.7 53 1 .30) 47. 43 AAAA 0 ATOIl 2147 11 TY R 221.1 43.359 21 .8 4-7 75.769 1 .03 4 9.20' AAAA 11 AT01l1 2149 CA TY R 224 44 .712 21.992 75.259 1 .00 48. 17 AAAA C ATOll1 21510 CB TY R 22 4 45.144 23.430 75.42C 1 .00 4-1.07 AAAA C ATOll1 215 1 TYR 224 44.318 24. 2 34 7j4.417 1 0 51.77 AAAA C ATOlI 2152 Cll TYiR 224 43.193 214.869 74.904 1.00 48. 94 AAAA C ATOll1 2153 CEl TYR 22 4 42.401 25.633 7 4.08 9 1.00) 48.41 tAAA C ATOll 2 '15 1 CD2 TYR _'24 4-..23 24.358 '73.065 1.1 0 54.82 AAAA C ATOM 2155 CE2 TYR _2 43.847 25.131 72.233 1 .0'0 56.09 AA.AA C ATOll1 2156 C7 TYR I. -12.739 25.745 72.'766 1. 00 541.23 AAAA C ATOll1 2157 Oil TY R 24 41.915 26.522 '72. 017 1.00 611.70 AAAA 0 ATollI 1 5 9 C TYR 24 45.725 21.095 75.892 1.00) 48.19 AAA C- ATOll 1 2160 0 TYR .15. 77 6 20.913 '77. 111 1.0 '0 55.75 AAAA 0 A .TOl 216l11I TYR 2 5 -16. 584 20.514 -75_.C7 7 1.00Q 48.79 AAAA 11 ATOll 2163 CA TYR 2 47.61,5 19.653 -75 -55 1 .00 43.02 AAAA C ATOll1 2104 CB TYR 25 48.020 18.639 74.S46 42.32 APA C2 ATOll1 2165 CG TYR 2 40.286 17.926 74.954 1 46.95 AAAA C ATOlI 2166 CDI TYR 49.299 16.858 5.8171.03.7 AAC ATOllI 2167 CEl TY R 225 50.45.0 16.221 76.173 1 .00 47.26' AAAA C A-TO-l 2168 002 TY R 225, 50.487 18.407 74.421 1.30 52.82 AAAA C ATOl 2169 CE2 TYR 2_25 1.6,C,56C 17.791 7.1.761 1.00 53.94 AAAA C ATO!l 2 170 TYR 25 51.C39 1 (570, 1~4 1.00 S52. 31 AAAA C AToll 217 1 Oil TYR 25 -2.88C6 16167.9 .0.1 AaA\ o ATOll1 2173 C TYR 25 .;e.872 :20.5 r 179 i.0 13 AAA' ATOll 2174 0 TYR 2215 4 9.090 21.E14 7.1' S 1.00 53.97 AAA 0 A~oll 2175II TYR 226 49.634 20.Z53 76.821 1.0584 A I WO 99/28347 ATOI 1 17--" ATOlI 21i78 ATOM 1 2-179 AT011 2 18 0 ATOll 2-181 ATOM 2182 ATOMl 218 3 ATOMl 218 4 ATOll 1 2185 ATOM 2187 ATOM 2188 ATOll1 2189 AT01- 21191 AToll1 2192 ATOl 21 ATOM 2 194 AT0ll 2195 AToll 219 AT01 l 2198 ATOM 2199 AT01l1 2 2 00 AT01l1 2202 AT0ll 1 22 AT0ll 2204 ATOll1 2205 AT0ll 2206 AT01l1 2207 AT0ll 2208 ATal 2211'l ATll1 2212 ATOll1 2213 AToll1 2214 ATOll1 22115 ATOll1 2217 AToll 22118 ATOll1 2219 ATOM 2220 ATOM 2221 ATOM 2222 ATOM. 2223 ATOM 2224 ATOM1 2225 ATOM 2226 ATOl 222 7 ATOM 22 28 ATOM 222 29 AToll 2230 ATOMl 2232 AT01ll 2 23 3 ATOl1 2234 ATl 22)I1 3 5 AT0ll 2 236 A T'0ll 2238 ATOM 223 9 ATOM 2240 ATOl 2 2411 ATOM1 2242 ATOM 22413 ATO 0 2 244 ATOM 2245 ATOM 224 6 ATOM 2247 ATOM 2248 AT OM 1 22 49 AT01ll 2250 ATOM 251 ATOM 2252 AT01ll 2253 AT (Al 22514 ATOM 2 25 5 ATOM 22 56 AT01l1 2257 ATCll 2259 ATOM 2261O ATOM 2262l ATOM 22C3 ATOl 2 266 AT0ll 2267 AT01ll 2268 AT0ll 22-'7 0 AzT0ll 2 271 ATOM 227 ATOM 227 4 PCT/AU98/00998 22/58 2C6 50. 455 22. 313 '77 .785 1.00 22C 51 .71 23. 126 77.9.41 1.00 2126 52.121 2.3.557 79.197 1.00 226 53.289 24.275 719.400OC 1.00 226 52.580 23.409 76. 864 1.00 226 53.758 24.118 '17.020 1.00 226 54.099 241.549 -78.301 1.00 226 55.267 25.2541 78.43L 1.00 226 51.784 20.356 78.165 1.00 226C 51.492 20.133 79.350 1.00 '227 52.978 20.080 77.642 1.00 227 54.061 19.557 78.440 1.00 227 54.528 20.620 70.428 1.00 227 53.600 18.309 '79. 1'70 1.00 2 27 53.663 18.218 80.413 1.00 228 53.076 17.360 78.393 1.00 228 52.585 16.135 79.028 1.00 228 51.312 16.330 719.861 1.00 2728 51.028 15.538 80.776 1.00 229 50.643 17.495 '9.7 91 1.00 22 9 49.489 17.671 80.635 1.00 22-9 1.90c8 18.610 81.774 1.00 29 48.627 18.896 82.566 1.00 29 51.002 18.035 82.682 1.00 229 48.255 18.173 79.873 1.00 22 48.344 19.279 79.309 1.00 230 47.100 17.518 80.036 1.00 230 45.81 19117 79.471 1.00 236 .15 .4 E6 19'-.2350 19.226 1.00 230) 44.964 19.2-18 81.321 1.00 230 441.746 17.132 79.370 1.00 230 45.149 15.753 78.266 1.00 231 45.63-7 20. 534 -79. 731 1.00 231 45.445 21.769 80.462 1 .00 231 46.618 22.736 80.080 1.00 231. 46.798 23.878 81.053 1.00 231 47.838 21.913 80.506 1.00 231 44.111 22.321 80.057 1.00 231 43.599 22.183 78.936 1.00 232 43.482 23.105 80.913 1.00 232 43.830 23.385 82.320 1.00 2732 42.153 23.625 80.575 1.00 232 41.537 2'3.e77 81.928 1.00 232 42.683 24.287 82.765 1.00 232 42.361 24.913 '79.79S 1.00 22 41.498 25.482 79.137 1.00 233 43.C15 25.400 79.901 1.00 233 43.998 26.569 '79. 124 1.00 233 43.440 27.801 7 79. 74 C 1.00 '33 4 5. 5,-2 78.974 1 .0 0 23 46.195S 25.879 1'9-(6 1.00 231 45.Ge-4 27.508 ?8021.00 23.1 47 .430 27.S18 771.907 1.00 234 48.001 2 8. 34 0 7c. 076C 1 .00 234 47.650 29.513 79.2501 1.00 234 47.816 28.034 76c.511 1.00 234 47 .60C8 26. 78 9 75.226 1.00 -35 49.127 27.853 '79.599 1.00 235 49.692 26.557 207 1.00 235 49.911 28.569 80.599 1.00 235 50.984 27.581 80.975 1.00 235 50.912 26.417 80.077 1.00 "35 504729.852 80.050 1.00 23 5 50.8.18 29. 957 7 8 .8F70 1.00 236 50.676 30.875 80.887 1.00 236 50. 405 30.822 82.363 1.00 236 51.323 32.1413 80. 4 93 1.00 236 51.695 32.814 81 .8:6 1,.00 236 50.652 32.277 82-1. 75 1 .00 236 52.5415 31.886 79.671 1.00 236 53.215 30.892 '79.928 1.00 23 7 52.837 32.757 78.316, 1 .00 237 53.895 32.623 77 .71 1.I-C0 237 55.259 32 .6C53 78 4 5 1.00 237 55.3571 33.855 719.371 1 .00I 2'-37 5 6. 0- i 33.783 3 79 1.00 2371 54.631 34.910 '79.051 1.00 2 37 53.897 31.425 -76.788 1.00 2 37 54.962- 30.935 76C,.3 26- 1.00 238 52.617 30.657 70.692' 1.00 39 28.248 7.41 1 i..00 238 5127 28.3413 7 2 27 1 .00- 233 53 .5S52 .'7.986- 74 2 4 1.00 56. 83 59.511 65. 45 69.12 70.77 69.38 70. 94 72. 96 -70. 84 57 55 56. 90 53. 82 51.82 55.81 53.56 49.63 50.68 4 9. 02 51.61 51.10 47 .09 51.11 56.52 38.39 50.16s 51 .37 53.71 4.221 410. 32 38 .4 42 4 1. 62 31 .54 43.61 39.83 46.57 50.99 50.41 44 .95 52.59 55.30 54 .28 54 .25 54 .39 53.7'3 56. 37 55.7 9 54 .7( '19. 93 35.43 49.79 51.41 45.07 418.63 50. 93 .1 *7 57 43. 10 43.04 49.55 8.7s 51.69 50.80 50.06 57.11 59.60 59.85 55. 85 52.27 53.62 56.73 44 .21 43.40 46.541 4I5. 94 58.65 58.5'1 '72. 25 62.99 46.87 5: 50 42 91 0. 20 4~2. C62 34 .8 4 A 2AAr AAAA C AAAA C2 AAAA C2 AAAA C AAAA C2 AAAA C2 AAAA 0 AAAA C AAAA 0 AAAA 11 AAAA C AAAA C2 AAAA 'C AAAA 0 AAA 1 AAAA C AAAA C AAAA 0 AAAA 1! AAAA C2 AAAA C2 A.AAA C AAAA C AAAA C AAAA 0 AAAA 11 AAAA C AAAA '2 AAAA 0 AA.AA S2 AAAA Sf AAAA C2 AAAA C AAAA C2 AAAA C AAAA 02 AAAA 01 AAAA CI AAAA '2 AAAA C AAAA '2 AAAA '2 AAAA 02 AAAA 01
AAA
AAAA '2 AAAA C2
AAAA
AAAA 1: AAAA C; AAAA 02 AAAA 0 AAAA S AAAA If
AAA
AAAA C AAAA '2 AAAA '2 AAAA C2 AAAA 1C P.AAA 0 AAAA C AAAA AAAA A.AAA C AAAA 0 AAAA 0: AAAA 17 AAAA '2 AAAA '2 AAAA 0 AAA 11 AAAA C AAAA 0
IIAA
AAAA C AAAA '2 AAAA 0
AAA
WO 99/28347 PCT/AU98/00998
ATOI
ATOI I ATOll ATOll
ATOM
ATOHl ATO I ATOll ATOI I
ATOM
ATOM
ATOI I
ATOI
ATOHl ATOl
ATOH
ATOI I ATO I
ATOH
ATOll ATOI I ATOM1 ATOIl ATO I ATOll ATOI I ATOI I
ATOII
ATOI I ATOI I ATOI I ATOIl ATOll ATOI I ATOll ATOI I ATOll ATOI I
ATOH
ATOI I
ATOI
ATO I
ATOHM
ATOI I
ATOM
ATON
ATOI I ATO I ATOI I ATOI I ATOI I
ATOI
ATOI I ATOMl ATOMl ATOI I ATOI I ATO I ATOI I ATOll ATOI I ATOI I ATOI I
ATOH
ATOi I ATOll ATOI I ATO I
ATOM
ATOIl
ATOH
ATOI I ATOI I
ATOII
ATOl ATOl
ATOH
ATOll ATOI I ATOI I
ATO
ATOC
ATOi; ATOI I 2275 2276 2277 22/9 2280 2281 2282 2283 2284 2285 2286 2287 2289 2290 2291 2293 2291 2295 2296 2297 2299 2300 2303 2306 2307 2308 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2322 2323 2324 2325 2326 2327 2328 2329 2330 2332 2333 2334 2335 2337 2338 2339 2340 23-11 23-12 2343 2344 2346 2347 2348 2349 2350 2351 2353 2354 2355 2356 2357 2359 2360 2363 2366 2367 2368 2370 2371 2372 2373 2374 2375 2377 2378 2379 23/58 238 51.279 29.875 75.0!8 1.00 2.
23 50.669 30.864 75.500 L.00 42.51 239 51.051 29.488 73.832 1.00 42.62 239 49.949 29.959 73.024 1.00 41.87 239 50.457 30.907 71.931 1.00 44.86 239 51.099 32.125 72.561 1.00 12.05 239 52.467 32.086 72.815 1.00 39.41 239 53.092 33.152 73.415 1.00 43.27 239 50.376 33.230 72.923 1.00 44.15 239 50.972 34.310 73.536 1.00 46.22 239 52.339 34.243 73.779 1.00 50.49 239 53.013 35.289 74.387 1.00 55.47 239 49.232 28.813 72.315 1.00 15.54 239 49.922 27.810 72.021 1.00 46.66 240 47.895 28.990 72.126 1.00 410.62 240 47.177 27.892 71.426 1.00 38.78 240 45.675 28.127 71.452 1.00 39.77 240 45.116 28.944 72.588 1.00 43.37 240 4.13.573 28.957 72.683 1.00 38.60 210 43.114 29.683 71.455 1.00 53.98 240 43.123 31.015 71.530 1.00 48.07 240 43.513 31.562 72.668 1.00 47.65 240 42.788 31.778 70.533 1.00 51.03 240 47.627 27.737 69.979 1.00 31.72 240 47.937 28.730 69.302 1.00 32.37 2411 47.779 26.542 69.549 1.00 27.95 241 48.182 26.269 68.183 1.00 30.41 241 49.678 25.940 68.151 1.00 34.83 241 50.235 25.653 66.773 1.00 26.84 211 50.165 26.567 65.753 1.00 25.31 2-11 50.785 24.417 66.573 1.00 27.38 2.11 50.676 26.232 64.509 1.00 37.24 241 51.294 24.101 65.320 1.00 38.45 241 51.281 25.010 64.281 1.00 21.17 241 47.382 25.089 67.621 1.00 35.77 241 47.543 24.013 68.186 1.00 36.77 2-2 46.738 25.301 66.468 1.00 32.30 242 45.964 24.269 65.805 1.00 35.43 242 46.953 23.144 65.472 1.00 37.98 242 47.867 23.415 64.314 1.00 38.63 242 47.207 23.965 63.075 1.00 39.27 242 46.380 23.205 62.517 1.00 412.79 242 47.354 25.109 62.626 1.00 36.36 242 44.752 23.771 66.600 1.00 34.36 242 44.390 22.611 66.511 1.00 28.53 243 44.135 24.589 67.449 1.00 36.94 243 43.048 24.154 68.303 1.00 34.57 243 43.428 23.107 69.319 1.00 37.76 243 42.474 22.473 69.746 1.00 43.00 244 44.637 22.636 69.611 1.00 39.53 241 144.797 21.536 70.566 1.00 40.85 244 44.774 20.271 69.764 1.00 26.76 244 46.C12 19.885 69.028 1.00 43.19 244 47.019 18.983 69.498 1.00 39.55 244 47.998 18.906 68.489 1.00 36.50 244 47.186 18.254 70.692 1.00 32.18 244 46.421 20.308 67.779 1.00 43.37 244 47.595 19.727 67.469 1.00 38.89 244 49.150 18.128 68.620 1.00 39.01 244 48.336 17.478 70.815 1.00 43.98 244 49.322 17.425 69.784 1.00 42.50 244 45.998 21.517 71.509 1.00 42.98 241 46.253 20.501 72.146 1.00 42.70 2 5 46.888 22.485 71.435 1.00 44.16 245 48.160 22.472 72.095 1.00 46.47 245 49.203 21.602 71.367 1.00 47.30 245 49.985 22.309 70.203 1.00 4.8.97 245 51.129 21.552 69.819 1.00 39.28 245 51.586 21.665 68.444 1.00 50.86 215 52.629 21.044 67.895 1.00 46.73 215 53.344 20.236 68.653 1.00 50.15 53.072 21.126 66.638 1.00 41.69 2I5 48.771 23.863 72.271 1.00 46.01 2S5 48.394 24.793 71.541 1.00 47.44 "46 49.625 23.881 73.317 1.00 42.08 246 50.246 -5.199 73.628 1.00 43.48 246 51.695 25.217 73.183 1.00 -13.38 '46 52.476 24.239 73.320 1.00 42.51 216 50.102 25.392 75.138 1.00 48.91 246 48.386 25.049 75.797 1.00 43.68 27 52.121 26.288 72.564 1.00 41.21 147 53.417 26.468 71.982 1.00 36.51 7 53.569 26.357 70.444 1.0 36.87 247 53.089 24.988 '0.02 1.00 32.-1 24 53.129 27.602 69.729 1.00 28.2 mAAA C AAAA O AAAA ii AAAA C AAAA C AAAA C AAAA C AAA C AAAA C AA4AA C AAA O AAAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C1 AAAA C AAAA N AAAA 0J AAAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA C ,AAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA II AAAA C AAAA C RAAA C AAAA C AAAA O AAAA O AAAA C AAAA O AAAA 0 AAAA CI AAAA C AAAA C AAAA II AAAA C AAAA 0 AAAA C AAAA C AAAA C AAAA C T"VV AAAA C AAAA I AAAA C AAAA C tAAA C AAAA C AAAA O AAAA I AAAA C AAAA C AAA C AAAA C AAAA II AAAA C AAAA II AAAA I1 PAAA C AAAA O AAAA II AAAA C AAAA C AAAA 0 AAAA C ,AAA II AAAA C AAAA C AAA C AAAA C iAAAA C ATOll 2380 CG2 VAL WO 99/28347 PCT/AU98/00998 ATCOi I ATO! I ATOllI ATOI I
ATOM
ATol
ATOH'
AToll ATOl
ATCVI
ATOI I ATOI I AT OI ATOI I AT Oi
ATOII
ATOI I KaTO I ATOil AT 01I ATrom~
ATOM
ATOll ATOll AT Oi
ATOM
AT Oi ATOil ATO! I ATOl ATOll ATO! I AT0O1l AT 01- ATOll1 ATOil ATOMl ATOil ATOllI ATOll ATOil ATOM4 ATOllI ATOll AT0ll ATOll ATCll ATOI l ATOll ATOI l ATOMl AT01ll AT01ll AT01 l ATOI I ATollI ATOllI AT01ll
ATOM
ATOlM AT01ll
ATOM-
AT01ll ATollI ATOI I AT01 I ATOlI ATOI I ATOI I
ATOMI
AT01ll
ATOM-
ATOll ATollI AT01ll ATroi I ATOlI ATOllI AToll ATOll ATOMl AT'OlI ATOll AT01lI ATOlM 2381 2382 '383 2385 2386 2387 2388 2389 2390 2391 2392 2394 2395 2396 2397 2398 24100 2 '101 2404 2410'7 2408 2409 2411 24 12 24 13 2414 2415 24 17 24 18 2421 2423 2424 2425 2 42 6 2427 2428 2429 2430 2432 2433 24341 2435 2-136 2.137 2439 2440 2441 2442 2443 2 4-15 24 46 2 147 2448 24 4 9 2452 2453 2454 245'6 2457 2458 2459 24C0 2461 2 462 2463 2465 24C6 2-1G7 2468 2469 2.470 2 47 1 2.17-2 2474 2.-1-75 2 4 76 2478 2.479 2480 2482 2483 2 48 4
'AL
VAL
ASP
ASP
AS P AS P
ASP
AS P
ASP
AS P
ARG
ARG
ARG
ARG
ARG
ARG
ARG
ARG
ARG
ARI'
ARG
AS P
ASP
AS P AS P AS P AS P AS P AS P PHI7 EIIlE
PHE
PHlE PHlE
PHE
PilE
PHE
PHlE
PHE
T HE
CYS
075 CY S 075 075
CYS
ALA
ALA
ALA
ALA
ALA
ASH
ASH
ASI I
ASI
ASH
ASI I
ASHI
ASII
I LE I LE
ILE
I LE
ILE
ILE
ILE
ILE
LEU
LEU
LEO
LEU
LELI
LEI
LEU
LEU
S 17R
SER
SER
SER
SER
SER
ALA
ALA
ALA
ALA
53. '69 53 .230 5529 F5.895 57 .091 58. 126 59. 067 58.167 56. 315 56.292 56.545 56 .950 5 7. 22 3 57.594 57 .814 56.658 55.0G32 55.642 54.0(41 58. 13-1 58.086 59.149 C0. 287 61.740 62.421 63 .124 62.272 59. 881 GO1.291 59. 116 5 8. 457 57. 4C8 506.701 57.101 55.559 56. 414 541.847 55. 294 57.624 57.811 56.731 55.895 56. 827 56.552 54 903 53. 562 57.8'72 58.6C87 59.s529 00. 147 ID9 6517 60. 5416 63. 468 C2. 607 59. 907 00. 552 58.6G12 57.828 56.329 55. 477 55.778 54 .479 58 127 58. 196 58. 290 58.680 58. 175, 56. 671 56. 310 55.965 G0. 193 CIO. CO91 6 0. 942 C2. 352 C2 .924 63. 381 60'. 973 C-4.127 033 62 57C3 24/58 28,770 /12.5'40 '27.820 72.711 201573.098 28.94C6 73. 953 271.997 13.394 27.795 74.187 27.395 72.313 29.883 71.839 29.288 70.772 31.163 71.918 32.057 70).900 33.485 71.491 34.42.1 70.326 35.811 70.843 36.150 71.689 36.823 71.101 37.118 69.801 37.118 71.9'16 31.685 '10.010G 31. 923 68 .7 97 30.974 70.408 30.739 C69 606C 30.726 70.154 32.122 70.081 32.682 69.17r, 32.928 71.071 29.536 68.771 29.443 A; .610 2 8 .60S9G 0. 299C 2-.601 68 489 26.7456 09. 2 5 25.80! A8.385 2.1.479 68.,263 26.1113 67.606 23.597 G7.424 25.
37 2 66.856 24.070 66.715 28.290 67.338 28.010 66.144 29.225 67.713 29.870 66.728 30.598 65.747 30.534 64.536 30.7'78 67.379 31.5,44 C6.459 31.256 66.285 32.071 65.415 33.088 66.172 31.10A7 5-1 .539 31.?35 G3 .640C 69.859 64.707 2 9. 073 63.920 28.4091 6..84-7 29.635 65.031 29.8-10 64 .081 30.321 66.14.1 27.95c- C3.135 26.965 62.804 28.13C 02."76 27.1071 62.131 27.322 C2.304I 26.595 (1.246 26.675 63.553 27.317 C .1 000) 2C.886 00.51 25.70Q 0,0.252- 27.900 S9.918 27. 76-i 58.10 29.C12 L7.799? 29. 19; 57.86.1 30.654 517.045 28.222 5(.928 27.622 58.355 27.511 57.24S 27.559 S9.430 27.529 59.53-1 27.318 W0.955 §790 GI1('7 I 2C.. 4 97 58 .010 c 2(.731 59. 2.1IS 25.399 320, 24.488 S 7 .3.13 Z3.039 57.56-Ij 24.9C4 55.921 1.00 39 37 1.00 38. 80 1.00 1l5.21 1.00 40.i9 1.00 42.63 1.00 58.81 1.00 53.06 1.00 C9.51 1.00 36.99 1.00 39.70 1.00 30.72 1.00 36.17 1.00 21.29 1.00 24.96 1.00 21.23 1.00 39.75 1.00 39.35 1.00 25.41 1.00 44.04 1.00 40.63 1.00 44.79 1 .00 41.87 1. 00 46. 90 1.00 53.11 1.00 71.49 1.00 58.53 1.00 70.30 1.00 41.22 1.00O 39.06 1.00 36.13 1 .00 34 .88 1.00 29.82 1.00 4 1. 50' 1.00 30.66 1.00 37.78 1.00 29.30 1.00 36.09 1.00 36.21 1.00 39.28 1.00 30.27 1.00 35.13 1.00 38.80 1.00 44.73 1.00 43.20 1.00 35.65 1.00 39.03 1.00 41.53 1.00 40.39 1.0'0 3C.07 1.00 42.88 1. 0) 47 .4 2 1.00 38.7S 3.00 42.94 1.00 48.09 1 .00 49.54 1.00 61.38 1.00 48.38 1.00 53.72 i.7-0- 51.19 1.00 57.77 1.00 53.28 1.00 50.41 1.00 51.95, 1.00 40.59 1.00 38.97 1.00 52C 1.00 53.96 1.00 .19.90 1.00 63.68 i.00 516.80, 1.00 59.11 1.00 43.31 1.00 55.88 1.00 66.23 1.00 _70c.29 1.00 6-1.61 1.00 69.23 1.00 62.45 1 .0CI 56.18 1 .0 70.777 1.00 72.50 1.00 7,1.61 1.00 76.34 1. 00 80C. 82- 1.00 78.21 '7 AAAA 0 APAA1 AAAA C ?AAA C AAAA C AAAA 0 AAAA 0 AAAA C AAAA 0 AAA 11 AAAA C AAAA C AAAA C AAAA C AAAA 11 AAAA C AAAA 11 AAAA 11 ?AAkA 0 AAAA i0 AA4AA C1 AAAA C AAAA C AAAA 0 AAAA 0 AAAA 0 AAAA 0 AAAA 0 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C2 AAAA 0 AAA 11 AJ\AA C AAAA C AAAA 0 AAAA C AAAA S
AAA
AAAA C AAAA C AAAA C NA.A 0 AAAA '7
AAAAC
?.FAC
AAAA 0 A.AAA C) AAAA 0 AAAA i1 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C .\AAA AAAA C AAAA C AAAA C7 AAAA C AAAA C AMAA C AAAA 0 AAA !i AAAA C AAAA C AA-.-A 0 kA.AA C A-RAA 0I AAAA C
AAA
WO 99/28347 PCT/AU98/00998 25/58 ATOI 2485 ALA 258 62980 24.139 55.02 1.0) 79r60 AAA O ATOM 2486 II LU 259 62.069 26.109 55. 651 .00 79.05 AAkA ATOI1 2488 CA GL1 259 61.742 26.621 54.3, 1 .00D 83.84 AP.AA ATOII 2489 C 1 GLU 259 60.2:6 26.457 5 .1.135 1. 0 86.99 AAAA C ATOil 2490 C, GLU 259 59.687 5.-049 54.314 1.00 89.38 AAAA ATOl 2491 CD GLU 259 58.364 25.032 55.057 1.00 97.77 APA 2 ATOM 21492 OEl GLU 259 58.080 24.088 55.838 1.00101.45 AAAA C' ATOH 24I93 OE2 GLIU 259 57.598 26.002 51.837 1.00 94.58 AAAA O ATOM 2494 C GLU 259 62.117 28.078 54.083 1.00 85.43 AAAA C ATOH 2-195 O GLU 259 62.059 29.009 54.903 1.00 88.01 AAAA O ATOM 2496 11 SER 260 62.298 28.338 52.799 1.00 84.66 AAAA 11 ATOM 2498 CA SER 260 62.725 29.625 52.254 1.00 84.03 AAAA C ATOM 2499 C SER 260 63.753 29.269 51.173 1.00 87.24 APAA C ATOl1 2500 OG SER 260 63.306 29.419 19.835 1.00 93.65 AAAA O ATOH 2502 C SER 260 61.558 30.466 51.789 1.00 80.84 AAAA C ATO-1 2503 O SER 260 61.496 30.889 50.635 1.00 81.31 AAAA 0 ATOM 2504 11 SER 261 60.617 30.785 52.685 1.00 78.56 AAAA 11 ATOM 2506 CA SER 261 59.423 31.540 52.308 1.00 72.13 AAAA C ATOM 2507 CB SER 261 58.179 31.297 53.170 1.-0 67.30 AA C ATOM 2508 O SER 261 57.436 30.334 52.451 1.00 74.7-1 AAA C0 ATOM 2510 C SER 261 59.683 33.032 52.318 1.00 66.90 AAAA C ATOH 2511 O SER 261 60.018 33.588 53.334 1.00 63.24 AAAA O ATOl 2512 M ASP 262 59.364 33.659 51.204 1.00 65.30 AAAA 11 ATOMI 2514 CA ASP 262 59.358 35.071 50.915 1.00 58.55 AAAA C ATOl 2515 CB ASP 262 59.268 35.285 19.400 1.00 64.85 AAAA C ATOM 2516 CG ASP 262 59.389 36.713 48.931 1.00 76.42 AAAA C ATOl 2517 0D1 ASP 262 59.473 37.708 49.701 1.00 79.81 AAAA 0 ATOM 2518 OD2 ASP 262 59.404 36.873 47.671 1.00 80.46 AAAA O A poii 2519 C ASP 262 58.121 35.706 51.529 1.00 56.88 AAAA C ATOM1 2520 0 ASP 262 57.851 36.918 51.510 1.00 52.4 AJAAA C ATOMH 2521 I SER 203 57.259 34.8 49 52.118 1.00 53.13 AAA 1! ATOl 2523 CA SER 263 56.047 35.35252.734 1.00 52.81 AAAA C ATOI 2524 CB SER 263 55.020 34.245 52.885 1.00 46.60 AAA C ATOM 2525 0- SER 263 55.149 33.348 51.791 1.00 66.80 AAAA O ATOll 2527 C SER 263 56.310 35.965 54.117 1.00 49.52 PAA C ATOll 2528 SER 263 57.396 35.737 54.709 1.00 42.33 AAAA 0 ATOl 2529 11 GLU 264 55.320 36.783 54.540 1.00 38.93 AAAA II ATOMl 2531 CA GLU 264 55.362 37.222 55.921 1.00 36.70 AAAA C ATOll 2532 CB GLU 264 54.359 38.337 56.208 1.00 43.71 AAAA C ATOI 2533 CG GLU 264 54.575 39.482 55.213 1.00 37.74 AAAA C ATO 2534 CD GLU 264 55.3741 40.632 55.793 1.00 34.36 AAAA C ATOMl 2535 OE1 GLU 264 55.493 410.600 57.034 1.00 41.55 AAAA O ATOM 2536 OE2 GLU 264 55.832 41.576 55.146 1.00 39.60 AAAA 0 ATOl 2537 C GLU 264 55.098 36.056 56.827 1.00 35.84 AAA C ATOM 2538 O CLU 264 54.368 35.151 56.355 1.00 39.60 AAAA C ATOl 2539 11 GLY 265 55.801 35.938 57.962 1.00 35.64 AAAA i ATOl 2541 CA GLY 265 55.671 34.690 58.727 1.80 40.30 AAAP. C ATO-1 2542 C GLY 265 54.622 34.716 59.829 1.00 39.51 AAAA C ATOH 2543 0 GLY 20G5 53.951 35.699 60.135 1.00 37.20 AAAA 0 ATOII 25-14 II PIlIE 2GG 54.537 33.569 60.516 1.-D 35.75 AAAA I! ATOll 2546 CA PIlE 266 53.-37 33.434 61.625 7.00 33.70 AMAA C ATCHl 2547 CE PHE .6 53.92- 32.155 62.3961.00 28.20 AAAA C ATOl 25-8 CC PHIE 216 53.356 30.958 61.671 1.00 37.07 AAA 7 ATOH 2549 CD1 PHE 266 53.760 30.618 60.377 1.00 34.12 AAAA ATOl 1553 C2 PHE 266 52.383 30.195 62.313 1.00 25.65 AAA C ATOM 2551 CE1 PHE 266 53.225 29.506 59.760 1.00 37.72 AA C ATOl 2552 CE2 PHE 266 51.879 29.094 61.672 1.30 24.63 AAAA C ATOH 2553 C2 PHE 266 52.260 28.708 60.402 .00 23.58 AAA C ATOM 2554 C PHIE 266 53.571 34.570 62.608 1.00 35.82 AAAA C ATOM 2555 O PHIE 266 54.446 35.372 62.979 1.00 39.23 AMA 0 ATOl 2556 11 VAL 267 52.360 3-1.763 63.161 1.00 37.10 AA 2 ATOM 2558 CA VAL 267 52.118 35.812 64.113 1.00 36.09 AAAA C ATOil 2559 CB VAL 267 51.315 36.974 63.567 1.00 39.01 AAAA C ATOll 2560 CGI VAL 267 51.626 37.601 62.230 1.00 31.10 PA"A 7 ATOM 2561 CG2 VAL 267 49.990 36.4100 63.570 1.00 36.88 APA 2 ATOll 2562 C VAL 267 51.506 35.260 65.400 1.00 33.55 AAA C ATOM 2563 O VAL 267 51.202 34.098 65.515 1.00 32.41 AAAP C ATOII 2564 II ILE 268 51.539 36.088 66.4'7 1.00 35.98 AAAA i; ATOM 2566 CA ILE 268 50.867 35.573 67.681 1.00 39.79 AAP C ATOMH .2567 CS ILE 268 51.791 35.232 68.84-9 1.00 31.17 AAAA C ATOl 2 568 CG2 ILE 268 50.922 35.253 70.150 1.00 32.66 AAAA C ATOl 2569 CG1 ILE 268 52.403 33.866 68.724: 1.00 23.56 AAA C ATOl 2570 CD1 ILE 268 53.421 33.546 69.806 1.00 25.93 AAAA C ATOI1 2571 C ILE 268 49.806 36.608 68.060 1.00 42.44 PAPA C ATOII 2572 O ILE 268 50.116 37.767 68.327 1.00 39.99 AAAA O ATOl 2573 i HiS 269 48.528 36.292 67.864 1.00 44.26 PAAA i; ATOI 2575 CA HIS 269 47.491 37.320 68.1,3 1.00 44.28 AAA C ATOll 2576 C IS 269 46.885 37.876 66.901 1.00 45.48 PAAA C ATOl 2577 CG HIS 269 45.915 38.986 67.079 1.DO 54.33 AAAA C ATOII 2578 CD2 HIS 269 44.551 39.014 67.96 1.f-00 46.61 AA ATOIl 2579 1101 IlS 269 46.356 40.2890 67.3, 1.00 51.86 AP ATOl 2591 CE1 llS 269 45.282 41.057 67.437 1.00 55.17 AA ATOl 25E2 ::E2 IlS 269 4-1.175 40.324 671.39 1..1 46.97 AA ATO 2584 C HIS 269 46.423 36.740 69.71 .00 -5.54 -A ATOI 2585 o IIS 69 -16.076 35.55 9.7 1.00 42.94 AA C WO 99/28347 PCT/AU98/00998 ATOI I ATOllI ATOll ATOI I ATO! I ATollI ATOI I ATOll ATOll ATOllI ATOllI
ATOII
ATOM
ATOll ATOI I A'rch
ATOI
ATO! I ATOll ATOI l ATOI I
ATOII
ATCIlI ATOll
ATOM
ATOIll ATOI I ATOllI
ATOII
ATlOlI ATOI I
ATOII
ATOI I AT OIl
ATOII
ATOll ATOI I ATOll ATOM4 ATOll
ATOM
ATOMl ATOI I ATOI I ATOMl ATroi I ATOll
ATOI
ATOII
AZTOII
ATOII
ATOll ATOI I ATOI I ATOI I ATOI l
ATOM-
ATOlM ATOll ATOllI ATOI I ATOT I ATOll ATOI I
ATOM
ATOllI ATOI I
ATOII
ATOI I ATollI
ATOM
ATOI I ATO! I ATO I1 AT Oil AT OIl ATOllI
ATOM
ATOI I ATloI I ATOI I ATOil
ATOM
ATOf I 2588 2509 2590 2591 '593 25941 2595 2597 2598 2600 2602 2603 2604 2607 2608 2609 2610 2C612 2613 26141 2615 217 2624 2625 26126 2628 2629 2630 2631 2632 2633 2636 2637 2638 26 '13 26544 264 5 26.16 2 6478 2652 2653 2654 2655 2656 2657 2658 2645 9 2660 2661 2662 2664 2665 2 C66 26168 266c9 267 0 267 2 2673 2647 4 267 5 2677 2678 2679 2680 2691 2682 2683 268 4 44.94.8 43. 573 42.919 -11 .7 37 413. 407 4 5. 226 4 4. .357 4 6.47 46. 839 4 6. 818 46.775 4'7.0C-15 47.108 .15. 752 ,15. 778 44.413 4 3.5',.15 4.223 '18. 2 11 ,18. 445 4 8. 9 42 50.046 49.321 ,18.713 51.098 52.337 49. 373 -18 .586 47.13F6 *16G. 92 3 'IS. 47'1 415. 659 4 9.4126G 50.167 4 9. 37 8 50. 041 419. 618 49.329 49.275 49. 941 48.451 49. 721 50. 526 -18.566 4 8.22 2 47. 387 4 7.154 -18. 35"9 4 9. 356 .18. 2 42 -1 7 44 4 .16 G7 60 -17 4 c5 46.718 4S. 2 05 44 76C0 47 .0'39 4 8. 62 44 .380 -14.8241 4 2. 94 6 412. 445 4 3. 6C,5 42 .11,7 4 3.0683 41. 370 40. 915 39.280 39. 320 41. 03 4 21 .22 40'. 775 4 0. 9 A8 42. 248 42. 249 ,13. 213 44 .506 44 38 43. 958 4 4. 142' .12 ?9 4 3. 4 1 931 42 1 11 37. 52C 37. C25 37 .014 38.393 38.379 39.-194 35. GG7 34.7827 35.379 34 .117 32. 998 31 865 3 3. 2 92 32.092 31. 737 30.600 30. 528 31.345 29. 696 22.324 33. 447 31.237 31.187 30. 810 29.712 30. 148 29. 825 31. 74 9 31 351l 31.861 33.379 33. 921 35.658 31.900 32.880 31 .353 31.834 30. 765 31. 274 30.190 29.151 30.436 33. 195 33.831 33.754 35. 080, 31. 884 36. 269 37.198 36. 595 38.411 35'. c-35S 35.449 37.235 38.089 37 .938 37.511 39.537 40. 083 38.261 38. 778 38.185 38. 635 3 8.670 r 39. 116 40.195 38.845 3 9. 720 39.572 38.778 41.209 41 .740 ,11 .962 43.406 43.890 45. 097 12Z. 983 43. 411 412. 644 42. 792 413.702 41.992 .13. 901 4 2. 16C2 4 3. 11' 26/58 ,0.339 '70. 2 9-1 6 9. 8 3 70.652 '71 .L91 71 .576 71. 924 -72.506 71 .537 72. 039 70.251 69. 371 C8. 876 C7.839 67.149 C7.533 C-6. 286 -8.335 671. 896 68. 138 67.188 65. 883 65. 831 67.529 656. 260 C4 9-33 C-3. 720 623.847 C63. 691 A4 .6C77 C64.754 6-2 608 62 .672 61 .428 60. 232 59.242 57 .864 561.812 56. 910 55.799 59.720 59.064 60.056 59.571 58.245 57 .650 57 .460 b6.2943 57.911 60.54-'2 61 .444 60r-. 500 611. 332 G60. 99 4 59.93C C61 .111 61I 64 5 61 .993 63.311 611 .899 63.2(67 64 .153 C-0.7 81 60.6(31 60 1413 59. 140 58. 975 57.785, S9.173 LI8. 059 60O. 247 59.868 60. 4 79 60.7 72 60. 7.12 61 262 6 2 .52 3 63.637 64 .6c3.) 63.7121 (,5.6C78 G 1 .7 5 65.7441 1.00 49.82 1 .0 4J'8.03 1 .00 63.63 1.00 80.82 1 .00 90.92 1.00 86.49 1 .00 44.66 1 .00 45.5-1 1.00 -11.63 1.00 37.20 1 .00 39.15 1.00 46.56 1.00 41 .49 1.00 -13.56( 1.00 37 .58 1 .00 45.30 1.00 36.92' 1.00 '18.41 1.00 44 .10 1.00 40.32- 1.00 3-7 .04 1.00 38.83 1.00 40.27 1.00 42.1.6 1 .00 4 0. 86 1.00 40.21 1.00 39.79 1.00H 33.71D 1.00 36. 68 1.00O 29.11 1.00 36.51 1 .00 .10.0", 1.00 22.47, 1.00 39.35 1.00 41.00 1.00 12.55 1.00 37.69 1.00 34.01 1.00 56.40 1.00 66.46 1.00 67.24 1.00 78.29 1.00 35.41 1.00 35.95 1.00 41.70 1.00 43.96 1.00 4 2.40C- 1.00 53.84 1.00 61.37 1.00 67t.32 1.00 45.10, 1.00 39.74 1.00 45.06 1.00 38.69 1.00I 46 .11 1.00 5 2.70 C 1.00 '49.43 1.00 45.56 1.00 52.86 1.00 54.e.3 1.00 57.20 1.00 55.82- 1.00 55.61 1.00 55.518 1.00 52.55 1.00 48.76 1.00 .19.35, 1.00 52.03 1. 00 4-7.62 1.00 68.16, 1.0 5C S5.40 c 1.00 55.40 1.00 55.32 1.00 48.56 1.00 55.98 1.00 56.00 1.00 55.4" 1.00 52.94 1.00 61.20 1.00 53.66 1.00 60.47 1 .0 D C109t 1 .00 64 .71l 1 .00 6.3 .1 1.00 58.8p AAAA AAAA '7 AAAA C7 AAAA 0 N\AA 0 AAAA C AAAA 0 AAAA 11 AAATA C AAAA C AAAA 0 -AA 1 AAAA C7 AAAA C A.AAA C A.AAA C AAAA 0 AAAA 0 AAAA C7 AAAA 0 AAA 11 AAAA C AAAA C AAAA 0 AAAA C AAAA S AAAA 11 AAAA C7 AAAA 17 AAAA S AAAA C AAAA C AAAA 0 AAAA 1; AAAA C AAAA C AAAA c AAAA C AAAA 0 AAA N, AAAA C AAAA 0 AAA 11 AAAA C AAAA C AAAA C AAAA C7 AAAA 0 AAAA C .AAAA '7 AAAA 0f AAA CI AAAA '7 AAAA 0 AAAA 0 A.AAA S7 AAAA If AAA CI AAAA C AAAA C7 AlAAA C AAAA C7 AAAA 11 AAAA C7 iAAA C AAAA 0 AAAA '7 'A.AA 0 ,VAA I I AAAA (7 AAAA C AAAA 0) AAAIf AAAA C AAAA '7 AAAkA C7 AAAA '7 AAAA '7 AAA C7 A.AAA '7 AAAA '7 WO 99/28347 PCT/AU98/00998 ATOI I ATOil ATOI I ATOI I ATOI I ATOI I AT01 I AT01ll ATOI I ATOMl AToll1
ATOM
ATOM
ATOM
AT0l-1 ATO14
ATOM-
ATO1M
ATOM
ATOMl AT01ll
ATOM
AT01ll ATOll ATOM4
ATOM
ATOM
AT Oil AT01ll AT O-l ATOil ATOil AT01ll ATOil ATOI I AT01lI AT Oi AT01ll AT01l1 ATOI I AT01ll AT01lI
ATOM~
AT01ll AT01ll AT01ll AToll
ATOM
ATOI I ATOI I AT01ll ATOI I ATOll ATOI I ATOI I ATOll AT01ll ATOll ATOMl ATOll ATOlI ATOll AT~qll ATOll ATOI I ATOI I ATOllI ATOI I AT01lI AT01ll AT01ll AM Il AT01ll ATOI I ATOI I ATOI I ATUll ATOM1
ATOM-
ATOlM AT01ll
ATOH
ATOM
ATo Oi
ATOM
2C85 i1lhi 2686 0 PilE 26,8 7 11 ILE 2689 CA ILE 2690 -P ILE 2691 C-32 ILE 262 -1 ILE 2693 £01 ILE 2694 C ILE 2695 0 ILE 2696 11 ARG 2698 CA ARC 2699 CB ARC 2700 CG ARG 271CD ARC 2702 HIE ARG 2704 £2 ARG 2705 IlHi ARC 2708 ilH2 ARC 2711 C ARG 2712 0 ARG 2713 11 ASH 2715 CA ASH 2721 C ASH 2722 0 ASIl1 2716 CB ASH 2717 CC ASH 2718 001 ASI 719 1D2 ASH 2723 1 i CIA 2725 C A C L7 2726 C GCLY 27 27 0 G LYi 2728 HI SER 2 730 CA SER 2731 CB SER 2732 00 SER 27341 C SER 2735 0 SER 2736 11 GLHl 2738 CA CLII 2739 £2 GLII 2740 CG GLII 274Il CD CLII 2742 OEI CLII 2743 IIE2 CLII 2746 C CLII 2747 0 CLII 2748 11 SER 2750 CA SER 2751 C2 SER 2752 OC SER 275-1 C SER 275 0 SER 2756 1 I IET 2758 CA MET 2759 CB I IET 2760 CC H-ET 2761 SID HET 2762 CE MTET 2763 C H-ET 2764 0 lILT 2765 11 TYR 27C7 CA TYR 2768 £2 TYR 2769 C-3 TY R -770 £01 TYiR 2-771 CEl TYR 2772 £02' TYR 2-773 CE2 TYR 47. £Z TY R 2 77 5 OH TY R 2-777 C TYR 2778 0 TYR 2779 11 CYS 2781 CA CYS 2782 C CYS 2783 0 CYS '784 £2 CYS 2785 SC CYS 27 86C I i ILE 2788 CA ILE 27A9 CB ILE 2790 £32 ILE 2791 CGI. ILE 2 7/5 8 0 13. 217 G0. 2-1 C 1. 00 48. Q0 45.738 42.395 59.327 1.20 38.81 dG. 67 0 .13. 9 90 60.557 1 .0i-0 49.55 -171. 9,07 -13.984 971 1.00 iS5 C, 4-.188 80.799 1.00 30.25 48.041 46.494 5t'.507 1.00 24.60 -19.092 45.022 57.795 1.00 38.71 -9.i91 46-.043 56.669 1.00 33.38 49.1--81 413.889 60.673 1.00 44.30 ,19.078 44 .4417 G .75 1 1.00 1I8.49 50.126 .13.153 60.298 1.00 48.68 51.396 .394 61.048 1.00 39.30 52.300 42.200 60.286 1.00 41.10 52.295 40.696 60.515 1.00 29.19 53.078 39.986 59.451 1.00 29.85 52.823 38.545 59-104 1.00 29.39 51.962 38.024 58.646 1.00 37.61 51.065 38.846 57,944 1.00 31.41 51.651 36.722 58.5,96 1.00 31.97 51.9.15 4.1.498 61.190 1.00 42.27 51.931 45.228 60.1.73 1.00 43.42 52.362 4.1.886 C2.122 1.00 39.49 52.733 46.311 62.571 1.00 42.07 54.078 416.656 61.929 1.00 41.64 54.431 47.798 61.742 1.00 39.01 52.734 .16.760 64.032 1.00 37.33 53.917 .16.028 C4.611 1.00 50.21 54.609 45.104 64.192 1.00 44.30 54.323 416.432 65.842 10 24 .5-1.931 45.C99 61.562 1.00 40.10 55.971 45.815 r0.593 1.00 26.91 56.091 44.468 59.848 1.00 33.12 55.584 .13.331 60.187 1.00 29.51 56C.915 4'1.619 56.766 1.00 26.53 57.109 43.385 57.975 1.00 32.67 57.944 413.681 56.757 1.00 33.19 58. 283 42.480 56.014 1.00 31.95, 57.750 42.310 58.836 1.00 34.57 58.700 42.495 59.607 1.00 44.29 57.227 .11.148 58.940 1.00 34.41, 57.738 .10.005 59.634 1.00 35.25 59.139 39.610 59.083 1.00 27.97 59.037 39.234 57.664 1.00 26.61 58.539 37.963 57.130 1.00 21.25 58.192 37.023 57.845 1.00 28.18 58.492 37.838 55,.782 1.00 27.55 57.773 40.286 61.111 1.00 30.25 58.163 39.4115 61.908 1.00 32.78 57.0'-21 -11.217 61.624 1.00 32.49 S6.696 -11.322 63.043 1.00 28.98 5C.024 42.675 63.313 1.00 35.79 515.639 4.2612 6-4.701 1.00 36.61 5I6S 0.8 63.442 1.00 28.96 54.993 39.776 62.553 1.00 31.16 55.774 29.720 64.621 1.00 32.51 54.87-5 38.697 C5.105 1.00 34.53 55.507 37.823 G6.153 1.00 30.31 56.571 36.872- 65.680 1.00 40.50 56.977 35.623 66.881 1.00 31.65 55.745 34.315 C6.508 1.00 30.47 53.557 39.286 6,5.703 1.00 35.55 52.630 38.512 66.014 1.00 38.37 53.380 40.565 C5.742 1.00 29.54 52.3C3 .41.358 66.297 1.00 38.81 9117 42.589 67.042 1.00 36.72 53.570 -12184 (8.351 1.00 41.94 514.932 41.780 68.350 1.00 37.79 15.58 1.6 6.03 1.00 32.60 52.987 42.157 69-570 1.00 39.93 13.5-:1 41.750 70.748 1.00 36.16 54.e22 .11.355 70.693 1.00 38.85 5518 093 71 1.00 43.41 51.361 41.955 65.270 1.00 45.54 51.733 42.-20 64.2Z7 1.00 47.10 50.071 11.698 65.537 1.00 44.68 49.017 42.205 64.685 1.00 47.20 48295 43.434 65.194 1.00 46.06 47.892 43.5150 66.343 1.00 49.45 47.973 .11.103 C-1.483 1.00 43.441 4S.766, 39.715 63.683 1.00 45.49 49-136 44-153 64.365 1.00 -16.82 J-.399 .15.6C51 C-1.75,1 1.00 50.64 4 q.26 46.932 64 .77 Q 1. 00 39.19, 49.291 4C6.885 .1S.861 1.00 44.39 -892 ;7.0 9 5 63.402 1,00 44.25 -,AA.A C1 AA.A 0i NAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C MAAA 0 AAAA 1'1 A-AAA C AAAA C AAAA C AAAA C AAA 11 AAAA C 1*1 I AAAA 11 AAAA C AAAA 0 AAA 11 AAAA C AAAA C AAAA 0 AAAA C AAAA C AAAA 0 AA I 1 i A I I AAaA C AAAA C AAAA 0 AAAA I I AAAA C AAAA C AAAA 0 A-AAA C AAAA 0 AAkAA I I AAAA C AAAA C AAAA C AAAA C AAAA 0 AA II AAAA C AAAA 0 ?.AAA I I AAAA C PAAA C A.AAA 0 AAAA C AAAA 0 4 A I I AAAA C AAAA C AAAA C AAAA S AAAA C AAAA C AAAA 0 AAA I I AAAA C AAAA C NAAA C AAAA C )IAAA C AAAA C AAAA C AAA C AAAA 0 AAAA C AAAA 0 WAAIlI A.AAA C AAAA C AAAA 0 AAAA C AAAA S .IAAA I I AAAA C C.pl AAAA C AAAA C WO 99/28347 PCT/AU98/00998 AToll AT CH- ATOI I
ATOII
ATOI I ATOlI ATOMl ATOI I ATOlI ATOllI ATOI I ATOI I ATOll ATOI I
ATOM
ATOllI
ATOM
ATOM
ATOI
ATOII
ATOMl ATCll ATOll ATOllI ATO1 I
ATOM
Ar! -i ATollI AT'Il ATOllI ATOI I
ATOM
ATOI I ATOllI ATOI I ATOI I
ATOM
ATOM
ATO!Il
ATOI
ATOMl ATOll ATOI I ATOll ATOll
ATOM
ATOM
ATOM
ATOI I ATOI I ATO! I ATOll ATO] I
ATOII
ArO[
ATOII
ATOllI ATOll AToll ATOMl AToll ATOll ATOllI ATOllI
ATOM
ATOII
ATOll
ATO!
ATOM
ATOI I ATOI I ATOI I ATOllI ATOI I ATOMl ATOM1
ATOM
ATOll ATOll
ATOI
ATO] I ATOI I ATC1I
ATOII
ATOM
27 92 2794 2795 2796 2797 2798 2799 2800 2801 2802 280.1 2805 2806 2807 2808 2809 2811 2812 2813 2814 2815 28171 2818 2819 2820 2821 2822 282 3 2824 2825 2827 28219 2830 -831 2832 2833 2834 2835 2836 2837 2838 2839 2840 28411 2843 2844 2845 2846 2847 2853 2858 2859 2860 2861 2?8 62 2864 2865 2866 2-8(77 28e6 8 2869 287 1 2872 2873 28741 2875 2876 2877 2878 2979 2881 2882 2883 2884 2885 2886 2887 2888 '711 I LF '7 1 LE: 0O ILE i I PRO CID PRO CA PRO '22 PRO CO, PRO
PRO
O PRO I I CY S CA '7YS C CYS 0 CY S C7 B CTS S G CY S I I ALA CA ALA *71B ALA '7 ALA O ALA I I GLY C A GLT C GLY O GLY I I PRO C7D PRO CA PRO C72 PRO C G PRO C FRO O PRO I I CYS CA CYS C CYS O CY S *7B CYS so3 CY S I I PRO C71D PRO CA PRO C7B PRO CG PRO C PRO O PRO I I LY S CA LYS C72 LY S CG LYS C D LYS C E LYS' t IS LS I LY S o LY S I I VA L CA VAL C7B VAL '701 VAL '702 V1AL c7 VAL O) VAL t I CY S C A CYS C CY S O CY S '78 C7YfS SG; CYS 11 c LU CA GLI' CS B GU CG GLU CD0 GLI2 051 G LU 052 'OLL' C 'SLL 0 GLL' I I 5LLI CA GLJ '72 GLU CG; GLi C D G LU 051 GLU 05E2 GUl '7 LU 0 GLU 49. 2 3 .1 -16. 24 F 46. 1 C5 45 150 4 5.009S 43. 958 43. 170 413. 533 44.2S3 1 053 4 3. 607 43. 811 43. 219 43. 744 4 3. 22?9 44.408 42.009 41.391 42. 311 40. 971 41 121 4 0. 153 39.640 39.895 40. 4 08 39. 561 38. 92 8 39. 958 39 488 38.470 41 480 42.14? 42.039 43. 4C4 44 .109 43. 621 43.665 43.5011 45.310 46. 087 416.055 47. 267 47 .454 46. 341 46. 37 2 46.310 46.484 45.176 45. 346G 4 4 C.13 44 .388 43. 662 46G. 964 46. 413 48. 150 48.8602 50. 2 9-2 51.008 50. 495 4 8 .52 6 -18. 913 4 7 91 0 47.G45 48.594 4 8 52- 4 6.19 l6 415.,-70 49. 123 s0.114 51. 603 51.760 51. 999 53. 011 51 .14 7 50.0 96 50.162- 49.867 49.672 4 8. 295 47.339 45.9 3 0 45. 438 45. 249 50. ecco 51. 9 11 418. 56k -16. 003 4 5. 526G 46.1-07 46. 804 4 6. 920 47 78.1 .17 .117 47 .870 48.788 4 7.62 1 -1 B 4 64 49. 848 50. 814 '171.686 46.460 50. 031 51.386 52.45S9 51.770 52.717 50. 920 51.049 4 9.686 4 8. 819 49. 5-10 5o. 561i 4 8 344' 48.603 419. 687 48.306 419. 323 47 .135 46. 953 '47 .303 47.030 4'5.54 4 45. 115 473. 876C 4 8.168 48. 212 48. 965 .8.361 46. 969 45.2874 47.073 45.958 4 5.226C 4 3. 901 43.413 4 2. 027 4 2. 031 4 G. 479a 47 .383 4S. 9841 46r. 4 62 46. 729 47.200 47.7 94 4 5. 4 10 44 291 1'1. 816 -14. 735 44 968 .16.152 414. 630 44. 360 43. 921 43. 932 ,14 .006 '13.487 11. 992 4 1.51 l4 41.290 4 2. 66C2 41. 5G2 ,I2.7 9-1 4 1.5'83 41. 59C 42.6C63 42. 152 411.5'71 42. 269 41. 307 .11 .9621 28/58 G3. 103 633. 83 6-1 .305 C' .0839 C3.6C75 64.81 62.525 C2. 737 G61. 408 60.254 60. 3,15 59.785 59. 0.16G 58.563 60O. 8541 C0. 804 C1.393 59. 3'10 58.7-7, 57.416 56. 7 69 7.-190 55. 497 54. 637 54 .777 .53. 3 G9 53.4 90 860 54. 997 55.073 55.2'4 8 53.908 52. 820 55. 669 57. 371 513. 9 67 'I5. 194 52.787 53. 281 54.628 52.010 52.5-46 50. 712 .19.812 ,19.595 4 8.92 0 .18. 378 47 .737 4 47 8 8 4 32 47 .7 -,6 48B. 054 4 6. 87-,1 47.074 4 5 .79 6 4 S 1 4 1 837 46 c. 06c0 4 47.'18 43. 739 42. 583 42.3 13 43. 330 -1 .1 5 1 4 2. 07 5 41.034 A4159 5 4 3. 01 4 4 3. C9 7 13.697 4 0. 19 1 .10. 708 38. 904 38.094 37.4.58 3 e. 03 1 38G. 1195' 37 .179) .2 -33 37. 1 *60 1.00 32.'0 1 .00 50. "I 1 .00 46.6.I 1.00 511.86, 1 .00 51.05 1 .00 51.40 1.00 49.0v' 1.00 53.73 2 .00 51.68 1 .00 51.92 1 .00 50.66 1.00 57.90 1 .00 59.59 1 .00 60.87 1.00 57. 59 1 .00 51.12 1 .00 65.871 1.00 71.19 1 .00 63.82 1 .00 69. 17 100 64. 70C 1.00 71.30 1.00 72.66 1 .00 7.1.20 1.00'. 75.04 1.00 71.8 100 7 2.1i5 1.00 68.23 1.00 72. 57 1 .00 '74. 0 1 1.00 65. 78 1.00 6~ 2 1 .00 63.85 1.00 54.47 1.00 54 .56 1.00 541.83 1.00 47.65 1.00 16. 12 1.00 49.83 1.00 48. 14 1.00 43.67 1 .00 44 .08 1 .00 51.38 1.00 38.86 1 .00 42.85 1.00 38.30 1.00 42.62 1.00 34 .28 1.00 4j. .45 1.00 48.31 1.00 48.517 1 .00 63. 7r 1.00 48.72 1.00 4 6. 09 1.00 ll.115 1.00 44.52 51.52 1.00 43.071 1.00 49.50 1 .00 -14 .59c 1 OC 43.70 1.00 47.98 1.00 55.19 1.00 57.64 1 .00 60.23 1.00 68.37 1.00 -70.31 1.00 58.1E 1.00 62.85 1.010 67.851 0--.0C1 67.46 0 .01 67.94 0.0 c .67C7 0.1 7.65 1.00 64.12 1.00 65.08 1.00 67.37 1.00 7.1.63 1.00 71.71 1.00 84.54 1.00- 87.56 1.00 89.13 100 93. 19c 1 .00 76C,.10 1 .00 7.1. 7
AAAA
.r xAA 0 AAAA C AA.AA C XAAA C AAAA C AAAA C AAAA 0 WAl1 AAAA C7 AAAA C AAAA 0 A.M.A C AAAA S AAAA IJ AAAA C AAAA C AAAA C AAAA 0 Wil AAAA C7 AAAA C A.AAA 0 A\aAA 11 AAAA C AAAAr A.M.A C A.M.A C AAAA C AAAA 0 WAll 1 AAAA C AAAA C AANAA 0 AAAA C AAAA S WAAl1 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 WAAl1 AAAA C AAAA C AAAA C AAUAA C
AAAAC
AAAA 1I AAAA C: AAAA 0 WAA 11 WAA C .MA C WAA C WAA C WAA C WAA 0 WAAl1 AAAA C AAAA C WAA 0 WAA C7 AAAA S WAAA 1 WAA C7 IATAA C WAA C
WAC
AAAA '0 WAA 0 WAA C WAA 0 WAAAl1 WAA C kwA. C WAA C7 A.M.A C W AA 0 AAAA 0 AAAA C7 AAAA 0 WO 99/28347 PCT/AU98/00998 ATOll ATO! I AT Of I
ATOII
ATOl Arol I ATOll ATOI I
ATOII
ATOI I ATOllI
ATOI!
ATOI
AToll ATOl I ATOI I ATOll ATOllI ATOll
ATOII
ATOM
ATOM
A TOll
ATOM
ATOI I ATOI I
ATOM
AT01 -I ATOI i Alal
ATOM
ATOI I ATOI I ATOllI ATOll ATOllI ATOll ATOll ATot I ATOll ATOMl
ATOM
ATOI
ATOM
ATOI I ATOI I ATOI I ATOMl
ATOI
ATOllI ATOI I ATOI I ATOI I ATOI I ATOllI ATOI I Arol I
ATOM
AtollI ATOllI Atoll ATOllI ATOllI ATOll ATOll AtollI ATOI I ATOI I ATO1I At01lI ATOI I ATOI I ATOI I ATOI I ATOll AtollI AtollI ATOI I
ATOM~
ATOll AtollI ATOllI ATrOi I ATOI I ATOI I 289 2 51 283 29804 2895 2906 29:20 9290 294 2910 2911 2914 2915 '23 2917 2918 2923 292 2931 2933 2938 2939 2940 29411 294 5 2 94 7 2949 2950 2 951 2953 2954 2955 2956 29518 2965 2967 2968 2 96 9 2 97 0 2 97 1 2972 2 9734 2076 2977 297 8 2981 '982 2985 2986 2993 -994 "007 932 307 51. 758 50.7(2 310 52.276 53. 381 51 .291 51. 4791 50. 4 67 51.208 50. 313 50.740 50.938 51 .381 50.703 52.000 51. 934 53. 022 54 .419 55.257 -5.708 54 64 9 50.5'62 50. 010 4 9. 9'7 9 49. 834 47.392 47. 514 47.4 12 -16. 675 4 5.4 56 45.043 43.60] 43.390 42.7V3 42 .758 ,14 .391 44 .074 43. 895 42 .86 2 43. 161 41. .909 44 .032 41.468 4 1.162- 40. 684 39. 363 39. 120 37.655 39. 89r, 39. 847 38.33,1 38.1 32 37.971 36. 991 37.546 37.761 38.525 37.1541 35. 58 9 34.729 3 5 .2 7 34.053 3.11 34.37/3 33. 998 34 802, 33. 0-01 32. 8-19 31 36 31. 024 30. 927 33. 492 34 .029 33. 4C8 34 .029 33. 616B 32 4 03 33. 339 35 .5'41 12L6C 39. 65-5 38. 380 37 937 36. 891 36. 23-1 36.7i.0 4 0. 737 4i1. 268l S1 181 42 .32 8 -12.253 42-. 22 7 42. 191 413.227 4 .1 .5541 4,3.669 43.862 44 .700 46. 053 46. G03 46. 837 48.084 4 8 .215 4 8. 840 46. 716 47.369 46. 661 4 7 .3 9 48 8413 .18.742 4 6.37 9 4 5.4'I15 46C,.7 19 45". 926C 45.880 .1 5 4 1 41 .0 39 43. 448 41. 954 46.570 47.763 45'. 772 46.328 46.015 45.710 44.791 4 5. 8;1 44.680 4 6. 706 46. 453 47.39C .17 .596 4 6. 930' 48 073 4 6.7 729 47. 875 45. 678 45. 842 4 5. 152 43. 671 4 3. 034 4 3. 176 45'. 337 4 5. 007 44 .683 4 3.20]G 412. 514 818 4-4. 305 44..34 0 413.6i,93 45. 823 -13.088 43. 141 4 2.011i 4 0. 7 52 1 40. C04 3 8. 071 29/58 34.9710: 3 3. 32. 896 3 3.252S- 31 .7 782' 34 .666 14 613 33. 888 3 3. 50O4 30. 5-27 29,.314 28.261 28. 929 33. 70C'3 34.718 33.180 33. -592 33. n0' 33. 56-I 33. 374 31 924 3 1 06 7 3 3.5SE25 3 1 .43i 32.323 32.r9 30.21 30. S7 30. 561 32. 2-34 3] .177 33.211 341. 904 35. 223 35.08C6 36 .32 4 3C. 23( 32.E48 32.680 31 610' 30.733 286.635 29. 139 3 1.117' 30'. "91 31 .732 32-.27 m 3 3. 46 2 35. 739 31. 186 30.759 30. 52.
28. 12 8 -8.302 29. 34 8 30 .45-9 31 .08)3 32 .28- 33. S3' 33. a45 3b. r- I 35.3,3 36. 69!1 35. 319 365. 70 4 34 .878 35 2:8 3-1.31-I 3S. 323 1 00 1.00 1 00 0 .01 1 .01 1 .00 1.00 1 .00 1 00 1 .00 1 .00 1 .00 1 .00 1.00 I .00O 1 .00 1 .00 1.00 1.00 .00 1.00 1 00 1.00 1 .00 1 .00 1 .00 1 00 1 .00 1.00 1 .00 1.00 1.00 1 .00 1.00) 1.00 1.00 1.00 1.00 1.00) 1 .00 1 00 1 .00 1.00 1.00 1 .00 1 .0CI 1 .00) 1 .00 1 .00 1.00 1 .00 1. 00 1.00 1 .00 1 00 1.00 1 C00 1 C00 1 .00 1 0 0 1 .00 1 .C0 1 .00 1.00 1 00 1 00 1 .00O 75. 90 79. 95 87. 28 83.39 83 .665 83.73 75. 97 76. 54 78.'2 79.78 94.52 92.78 97.10 84 .87 73.85 '76 .08 6 9. C 4 718. 88 85. 84 97 .07 97.80 67 97 64.46 64 .56 61.971 63.64 61. 82 62. 05 551.66 54. 67 56.82 57.50O 59. 50 57.31 57. .22 51 .21 47 23 47 .67 51.89 54 .81 66. 29 55.18 1.1 49.2-, 50. 18 46.67 55'. 72 4 1.3I 45. 37 37 14 540.10o 56. 35 59.45 65. 64 72.60 66.86C 59.39 61 OC.
61I 171 55.73 4 .22 5.89 5-7.87, c-6. 17 64 3- 64.39 6 9.57 65. 60 65.27 62.65 C 3. 92 61 .82 "74 kaAA I-I AA.A c A'AAA .AAA 0 tAAA 0 AAAA C AIAAA if ~AAA C AAAA C AAAA C AAAA C AAAA 0 AAAA I I AAAA 1 \AAA C2 AAArA C AAAA C: AAAA C A~AAA IC AAAA 0 XOkAA AAAA C A.AAA AAAA C AAAA C NAAA 0 AAkAA I-I AAAA C AAAA C AAAA C AAAA '2 AAAA '2 AAA 11 AAAA C AAAA 0 AAA 11 AAAA C AAAA C AAAA 0 0 .AAA C AAAI. 0 NI.AA 01 tAAIk -c -2A A'AAA C '\AAA 0 ,-.AAA 11 ;AAA 0 AAAA CI AAiAA C AAAA 0 lAAA 0 AAAA 0 ?AAA 0 AAAA 11
AAAA
AAA C
C
Aw 0 AAALA 0 AAAA 11 TAAA C WO 99/28347 PCT/AU98/00998 ATOMl 711-011 ATO I ATOi I ATO ll
ATOII
ATO il
ATOI
ATOI
ATOll
ATOI-
ATOll
ATOII
ATOI I ATOll AT'Oll ATOI I
ATOI
ATOI I ATOll
ATOI
ATOIl ATOHl
ATO[
ATOI
ATOI I ATOfl I ATOI-l ATOI I ATOI I ATOf
ATOII
ATOM
ATOll ATOI I ATOIl ATOI I
ATOI
ATOI I
ATOM
ATOI I ATOll
ATOH
ATO
ATOll
ATOM
ATO I
ATOM
ATOf I ATOIl ATOll ATOi I ATOI I ATOI I ATO1 I ATOI l ATOll ATO I ATO11 ATOI I ATOl A.TOll ATOI I ATOil ATOI I ATOI I ATOI I ATOl I ATOMl ATOI I ATO I ATOI I ATOI I ATOll
ATOM
ATOI1 I ATOI I ATOI I ATOI I ATO I ATO I ATOi I ATOi I ATON I iATOI I 2998 2099 3001 3002 3003 3005 3006 3007 3009 3010 3011 3012 3013 3015 3016 3017 3018 3019 3020 3023 3024 3025 3027 3028 3029 3030 3031 3032 3033 3034 3036 3037 3038 3039 3040 3041 3042 3043 3045 3046 304 7 3048 3049 3050 3053 3054 3055 3057 3058 3059 3060 3062 3063 3064 3065 3066 3067 3069 3070 3071 3073 3074 3075 3076 3078 3079 3080 3081 3082 3083 3084 3085 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3099 3100 36.21 36.071 37.500 37.785 37. 298 38.077 39.293 37.310 37.750 36.833 37.689 37.702 37.361 37.185 36.857 36.624 35.265 34.256 35.356 38.380 30.2 94 39.562 40.846 41.950 -11.740 43.123 12.486 41 .118 41 S 17 4 0. 7 4 0 40. 907 4 0.440 41.091 41 .005 42.557 10.209 40.344 39.267 38.4 2 37.373 36.611 35.337 35.362 34.218 39.367 40.262 39.092 39.855 41.126 41.584 -11 71 9 42. 938 42. 924 42. 105 43.458 43.325 43.994 44.16.1 44.623 45.245 43.432 45.154 45. 277 46.021 47.114 -18. 473 49.586 48.39.1 49.55 -17.265 47.406 47.120 4' .312 46.1266 46.403 -16.186 46. 917 46.447 -17.136 46 .924 48.682 49.024 49.223 50.064 52.50 C'.339 41.593 .1.793 42.537 43.859 42.573 -12.522 413.362 4-1.184 45.409 43.4187 44.120 42.205 41.380 39.956 38.9-17 39.080 38.807 39.509 41.413 41.855 41.062 41.175 40. 960 39.641I 38.482 37.105 42.509 42.5,11 43.639 a I 938 46.085 46.163 47. 552 45.709 45.008 45.969 44.106 44.128 43.089 42.854 42.064 40. 969 42.632 44.030 43.196 44 928 44.928 45.773 46.198 46.124 46.845 48.307 49.148 46.822 45.222 48. 718 50.161 50.324 49.087 50.517 50.802 52.016 49.963 50.511 50.577 50.905 51.623 52.010 49.642 48. 429 F50.238 -9.334 49. 437 48.471 47.125 48.892 46.139 47.919 46.570 49.673 50.826 48.751 49. 963 48.091 30/58 36. 206 34.332 3-1. 21 32. 900 32.933 35.387 35.520 36.111 37. 191 37.269 38.538 39.599 38.523 39.713 39.293 40.383 ,11.048 10.391 ,12.308 40. 653 41.804 40. 153 40.826 39.772 39.050 39.185 38.231 41.471 42.612 40.887 41.531 ,10.623 39.238 38.692 39.403 42.881 43.661 43.112 44 .343 44.250 45. 522 45.291 44.718 45.764 45.594 45.782 46.546 47.790 417.812 48.889 46.676 46.528 416. 91 C 46.503 45.096 4 4.24 8 47.58) 47.811 19.2614 49.63-I 50.193 46.84 46.717D 46.254 45.4-15 46.183 I5. 163 47.294 48.029 4 8 0:18 -1-1.229 44.469 43.042 41 880 40.9877 39.736 39. 951 38.525 39.023 37.551 37.787 11. 280 40. 966 -1I .379 -10. 83 -1.519 1.00 66.41 1.00 63.28 1.00 58.72 1.00 52.20 1.00 48.04 1.00 58.91 1.00 59.86 1.00 55.86 1.00 57.17 1.00 54.23 1.00 62.05 1.00 60.30 1.00 67.91 1.00 70.72 1.00 74.48 1.00 89.82 1.00 92.69 1.00 98.57 1.00 92.51 1.00 72.63 1.00 68.92 1.00 75.18 1.00 71.85 1.00 82.00 1.00 91.16 1.00106.72 1.00 97.56 1.00 67.68 1.00 69.73 1.00 62.95 1.00 62.31 1.00 54.93 1.00 53.48 1.00 51.31 1.00 58.43 1.00 GO.30 1.00 58.72 1.00 59.62 1.00 63.50 1.00 62.52 1.00 56.83 1.00 68.77 1.00 70.37 1.00 63.77 1.00 60.97 1.00 57.29 1.00 57.62 1.00 60.63 1.00 61.78 1.00 60.16 1.00 60.03 1.00 54.20 1.00 53.48 1.00 56.413 1.00O 53.33 1.00 66.22 1.00 49.83 1.00 52.29 1.00 52.84 1.00 59.82 1.00 60.00 1.00 48.91 1.00 46.90 1.00 46.87 1.00 45.10 1.00 43.60 1.00 47.17 1.00 34.03 1.00 41.94 1.00 42.88 1.00 42.99 1.00 41.19 1.00 42.98 1.00 39.15 1.00 38.03 1.00 39.68 1.00 37.31 1.00 36.52 1.00 45.74 1.00 39.92 1.00 48.78 1.00 51.39 1.00 50.22 1.00 51.49 1.00 58.64 AAAA O AAAA 11 AAAA C AAAA C AAAA 0 AAAA C AAA O AAAA IH AAAA C AAAA C AAAA C AAAA O PAA II AAAA 11 AAAA C AAAA C AAAA AAAA 0 AAAA 14 AAAA C AAAA 0 AAAA 1 AAAA C AAAA C AAAA C AAAA S AAAA C AAA C AAAA. O AAAA 11 AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAA C AAA C W~A C AAAA C AAAA O AAAA 11 NWA CI AAAA C AAAA C AAAA 0 AAAA C eAAAA C AAAA C AAAA 0 AAAA C AAAA S AAAA 11 AAAA C AAAA C AAAA O AAAA C AAAA 0 AAA I AAAA C AAAA C AAA C NAAA C AAAA C AAAA C AAAA It AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAA C AAAA 11 AAAA C AAPAA C AA C WRA c PAPA 03 WAA C AAAA C WVVA C PAAA C WVA C PAPA C WArL C WA C WO 99/28347 PCT/AU98/00998 ATOll
ATOH
ATOH
ATOi I ATO I
ATOH
ATOI
ATOll ATOIl ATOl
ATOI
ATOl-1 ATOl ATOll ATONl
ATOH
ATOHl
ATOI
ATOIl
ATOII
ATOM
ATOH
ATOll ATO I ATO i ATOHl ATO i ATO i A'O0I' ATOl ATOMl
ATOH
ATOMl
ATOM
ATOl
ATOM
ATOll ATOMl
ATOM
ATOM
ATOM
ATOl ATOll ATOll ATOI I
ATOM
ATOl ATO I
ATOI
ATOII
ATOI I
ATOM
ATO I ATOl ATOI I ATOI I ATOI I ATOll ATOll
ATOIM
ATOll
ATOH
ATOl
ATOMI
ATOH
ATOI I ATOi ATOl ATOl-1 ATOl
ATOH
ATOI I ATOlM ATOl ATOl ATOI I
ATOI
AT01 I
ATOM
ATOI I ATO I ATO I ATOl ATOIl ATOI I 3101 3102 3103 3104 3108 3109 3110 3112 3113 3114 3115 3117 3118 3119 3120 3121 3124 3125 3126 3128 3129 3130 3131 3132 3133 3134 3135 3137 3138 3139 3140 3141 3142 3143 3144 3146 3147 3148 3149 3150 3151 3152 3153 3155 3156 3157 3158 3159 3162 3163 3164 3166 3167 3168 3169 3170 3171 3172 3173 3175 3176 3177 3178 3179 3181 3182 3185 3188 3189 3190 3192 3193 3194 3195 3196 3198 3199 3200 3201 3203 3204 3205 3206 3207 3210 53. 25-1 54.528 55.400 56.260 50.895 50.901 50.760 50.647 49.845 49.858 49.286 48.467 49.185 50.624 50.954 51.425 47.038 46.736 46.090 44.691 43.751 43.768 42.864 43.283 44.352 44.509 43. 933 13.367 43.958 43.301 43.501 43.844 41.872 41.562 41.029 39.606 38.885 37.413 39.550 39.479 38.959 38.867 38.569 38.014 38.960 38.668 37.845 39.290 36.666 36.462 35.641 34.332 33.788 32.362 34.737 34.346 33.271 32.726 32.919 31.910 32.262 33.729 34.102 34.361 34.011 33.409 34.256 30.492 29.664 30.208 28.878 28.835 28.479 29.316 27.298 26.986 25.568 24.801 25.243 23.886 23.714 24.403 25.598 23. 604 23.790 48.997 4-18.257 48.951 47.889 48.464 ,17. 2 .15 49.397 49.038 50.161 51.307 49.813 50.750 50.942 51.4126 52.331 50.769 50.207 49.015 51.1143 50.860 51.530 50.995 51.924 19.565 51.377 52.545 50.516 50.869 49.894 49.960 51.319 48.834 50.568 49.365 51.566 51.241 52.085 51.612 51.895 53.152 51.367 52.489 50.273 50.283 49.499 49.493 .18.711 50.350 49.581 48.409 50.213 49.537 49.826 49.355 49.224 419.687 50.032 51.136 49.181 -19.567 48.903 418.932 49.289 48.040 47.838 48.852 46.674 19.233 50.115 47.953 47.484 45.980 48.058 48.019 48.685 49.385 49.303 50.267 48.146 48.017 16.689 45.544 45.595 44.508 49.160 31/58 41 .981 41.617 .10.592 39.938 39.391 39. 127 38.502 37.080 36.427 36.881 35.289 34.543 33.211 33.357 34.156 32.530 34.357 34.119 34.413 34.151 35.153 36.598 37.417 36.669 32.758 32.460 31.901 30.625 29.585 28.221 27 .627 27.367 30.7105 30.779 30.862 31.044 32.076 32.195 33.452 34.337 29.6889 29,200 29.094 27.737 26.1797 25.310 24.784 24 .467 27.755 27.398 28.315 28.460 29.876 30.047 30.915 32.317 27.476 27.635 26.550 25.573 2 41.24 0 23.918 22.500 21 .777 20.496 19.843 19.877 26.021 26.239 26.234 26.601 26.633 27.953 28.855 28.039 2-'.272 29.763 29.596 30.3,16 30.908 31.6214 30.928 30.625 30.683 31.931 1.00 59.15 1.00 63.49 1.00 68.12 1.00 71.97 1.00 45.70 1.00 49.55 1.00 39.68 1.00 39.44 1.00 39.49 1.00 31.92 1.00 41.47 1.00 45.72 1.00 42.50 1.00 42.26 1.00 34.77 1.00 30.62 1.00 50.37 1.00 50.17 1.00 47.13 1.00 42.53 1.00 42.84 1.00 38.65 1.00 38.12 1.00 38.7.4 1.00 39.10 1.00 40.71 1.00 36.10 1.00 43.10 1.00 42.29 1.00 40.89 1.00 46.64 1.00 .18.76 1.00 41.12 1.00 40.08 1.00 41.13 1.00 36.90 1.00 34.77 1.00 34.66 1.00 33.64 1.00 48.21 1.00 34.03 1.00 35.89 1.00 35.25 1.00 40.34 1.00 50.50 1.00 59.29 1.00 64.541 1.00 45.83 1.00 47.63 1.00 44.40 1.00 54.13 1.00 59.07 1.00 61.98 1.00 54.04 1.00 60.43 1.00 68.57 1.00 59.45 1.00 56.22 1.00 59.69 1.00 73.93 1.00 74.44 1.00 82.97 1.00 86.49 1.00 89.93 1.00 93.67 1.00 87.24 1.00 75.31 1.00 81.52 1.00 84.11 1.00 87.51 1.00 92.410 1.00 94.03 1.00 96.61 1.00 96. 1 1.00 99.74 1.00103.11 1.00105.51 1.00106.64 1.00105.41 1.00106.92 1.00109.14 1.00112.30 1.00117.94 1.00113.7' 1.00105.84 AAAA C AAAA C AAAA C AAA II AAAA C AAAA O AAA II AAAA 'C AAAA 'C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA O AAAA 11 AAAA C AAAA O AAAA I AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA 4 AAAA C AAAA C AAAA C AAAA O AAAA 11 AAAA C AAAA O AAA li AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA I11 AAAA C AAAA C AAAA C AAAA C AAAA I11 AAAA C AAAA II AAAA I11 AAAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA O AAAA I11 AAAA C AAAA C AAAA 0 AAAA II AAAA C AAAA C AAAA C AAAA 0 AAAA I AAAA C WO 99/28347 PCT/AU98/00998 ATO]l ATOI I ATOI I ATOHl
ATOI-I
ATOII
ATOIl ATOI I ATOll
ATOIM
ATOH
ATOM
ATOI I ATOI I ATO I
ATOM
ATO I
ATOH
ATOM
ATOI-
ATOI
ATOH
ATOl
ATOH
ATOll
ATOH
ATOH
ATOH
ATOI I
ATOHM
ATOH
ATOI
ATOFi ATOI I
ATOH
ATOll
ATOH
ATOHl ATO I ATOI I
ATOH
ATO I ATO4
ATOM
ATOH
ATOll
ATOH
ATO I ATOI I
ATOI
ATOHi ATOI l ATOI I ATOI I ATOl ATOI I
ATOH
ATOI I ATOI I ATOHl ATOll
ATOH
ATOMl
ATOH
ATOM4
ATOI
ATOI I ATOI I ATOll ATOI I ATOI I ATOHl ATO lI ATO I ATOI I ATO llI ATOI I ATOI I ATOI I
ATOM
ATOI I ATO ll ATOI I ATOHl ATOI I
ATOM
3211 3212 3214 3215 3216 3217 3218 3221 3222 3223 3225 3226 3227 1 3228 3229 3230 3231 3232 3234 3235 3236 3237 3238 3240 32411 3242 3244 3245 3246 3248 3249 3250 3251 252 3253 3254 3255 3256 3258 3259 3260 3261 3262 3263 3264 3265 3267 3268 3269 3270 3271 3272 3273 3274 3275 3277 3278 3279 3280 3281 3284 3285 3286 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3300 3301 3302 3303 3304 3305 3306 3307 3309 3310 3311 AS] I ASi ASiO AS] I
ASIO
ASIIH
AS]I
ASiH
ASIH
ILE
ILE
ILE
ILE
ILE
I LE
ILE
ILE
ALA
ALA
ALA
ALA
ALA
SER
SER
SER
SER
SER
SER
GLUI
GLU
GLU
GLU
GLU
GLU
GLU
GLU
GLU
LEU
LEU
LEU
LEU
LEOU
LEU
LEU
LEU
GLU
GLU
GLU
GLU
GLU
GLU
GLU
GLU
GLU
ASIIH
ASll ASI I ASi]
SAS]
SASIIH
ASIH
ASH
PHE
PHE
PHE
PHE
1 PHE 2 PHE L £PHE
SPHE
PHE
PHE
PHE
lIET
HET
HIET
I lET I lET
IIET
I ET
HET
GLY
GLY
GLY
GLY
338 339 339 339 339 339 339 339 339 340 3,10 340 340 3410 340 340 340 341 341 341 341 341 342 342 342 342 342 342 343 343 343 343 343 343 343 343 343 344 344 344 344 344 344 344 344 345 345 345 345 345 345 345 345 345 346 346 346 346 346 346 346 346 347 347 347 347 347 347 3,147 347 347 3.17 347 348 318 3480 348 348 348 348 3408 3.19 349 3.49 319 23.544 24.290 24.529 23.252 22.777 22.715 22. 441 25.697 25. 520 26.897 0.136 29.040 28.1941 29.726 28.897 28.783 29.472 28.409 28.892 28.068 28.786 28.910 28.204 27.910 26.426 26.145 28.487 29. 119 28.373 29. 00 28.595 27.118 26.898 27.209 26.123 30.525 31 273 31.022 32.415 32.760 32.687 33.22,1 33.401 32.963 34.0,79 32.166 32.555 31.592 32.267 31.324 30.614 31.237 32.706 33. 501 32. 151 32. 285 31.024 31.110 31.188 31.155 33.532 33.636 3,1.419 35.5.10 35.123 34.457 33.090 35. 1.-18 32.425 3..512 33.152 36.712 37.770 36.482 37.500 37.402 37.426 37.566 38.4-108 37.368 38.210 36.296 35.998 36.980 37.033 32/58 50.3,15 31.739 48.762 33.099 49.740 34.159 49.915 3.1.945 51.351 35.003 51.931 36.088 51.932 33.859 419.237 35.007 48.390 35.886 49.527 34.510 49.101 35.138 48.3541 34.151 47.252 33.489 .419.158 33.070 49.634 31.915 50.357 35.706 51.099 31.997 50.739 36.915 52.008 37.450 53.201 37.006 51.968 38.970 52.935 39.690 50.877 39.386 50.601 40.780 50.667 .11.112 51.271 42.361 49.196 .10.965 48.966 41.964 .18. 409 39.905 47.109 39.820 ,16.300 38.616 ,46.105 38.316 45.121 37.169 4,13.911 37.310 45.517 36.082 47.319 39.804 46.787 I0.637 48.237 38.966 48.596 38.839 49.697 37.808 49.397 36.311 50.577 35.519 48.127 35.905 49.130 40.174 48.739 40.551 49.959 40.822 50.591 42.061 51.714 -12.478 52.607 43.4186 53.371 441.376 54.320 .13.976 53.078 .15.595 49.652 43.255 49.913 44.13.4 48.462 43.20 47.403 44.173 46.498 14.095 45.292 45.006 45.352 46.224 44.092 44.444 46.580 .13.870 45.336 .13.905 47.173 43.066 46.411 42.506 45.854 4 .1170 44.534 41.142 44.438 40.982 43.351 41.267 .13.224 40.951 42.130 .41.249 42.051 41.095 47.375 4.2.440 46.820 -12.354 48.676 -12.319 49.630 .11.964 50.096 40.493 48.933 39.471 49.448 37.732 50.999 37.791 50.831 42.867 51.772 -12.901 50.783 43.683 51.965 44.504 52.189 45.620 53.299 16.156 1.00103. 97 1.00105.4-17 1.00107.10 1.00109.15 U.01107.52 0.01107.-49 0.01107.46 1.00106.33 3.00108.82 1.00101 .36 1.00 97.43 1.00 93.63 1.00 99.38 1.00 85.50 1.00 92.53 1.00 95.32 1.00 97.86 1.00 89.89 1.00 88.45 1.00 6i4.56 1.00 85.37 1.00 86.09 1.00 84.24 1.00 82.05 1.00 85.51 1.00 86.02 1.00 76.62 1.00 71.76 1.00 76.23 1.00 7.1 .59 1.00 78.62 1.00 85.33 1.00 92.76 1.00 96.41 1.00 98.55 1.00 77.75 1.00 75.73 1.00 75.65 1.00 72.36 1.00 64.33 1.00 50.12 i.00 57.00 1.00 51.62 1.00 69.74 1.00 69.12 1.00 63.10 1.00 65.42 1.30 55.59 1.00 68.78 1.00 81.31 1.00 85.60 1.00 88.79 1.00 63.31 1.00 60.06 1.00 62.25 1.00 63.82 1.00 61.66 1.00 58.73 1.00 o 69.11 I 1.00 51.10 1.00 63.71 1.00 65.65 1.00 63.23 1.00 61.39 1.00 61.38 1.00o 65.57 1.00 75.25 1.00 77.15 1.00 75.55 1.00 72.86 1.00 72.74 1.00 57.70 1.00 59.92 1.00 50.56 1.00 42.86 1.00 31.72 1.00 33.42 1.00 44.79 1.00 59.57 1.00 45.88 1.00 13.33 1.00 45.30 1.00 49.19 1.00 52.77 1.00 53.43 AAAA O A.AA I] AAAA C AAAA C AAAA C AAAA O AAAA H1 AAAA C AAAA 0 AAAA 1I AAAA C AAAA C AAAA C AAAA C AAAA C AAJkAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA O AAAA It AAAA C I.AAA C AAAA O AAAA C AAAA O AAAA H AAAA C AAAA C AAAA C AAAA C AAAA O AAAA O AAAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA H- AAAA C AAAA C AAAA C AAAA C AAAA O AAAA O AAAA C AAAA O AAAA 1; AAAA C AAAA C AAAA C AAAA 0 AAAA II AAAA C AAAA O AAAA I AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O( AAAA 11 AAAA C AAAA C AAAA C AAAA S AAAA C AAAA C AAAA O .AAAA II AAAA C ;-AAA C AAAA O WO 99/28347 PCT/AU98/00998 ATOrt
ATOI
ATO I
ATOH
ATO1 AT01 I
ATOM
ATOH
ATOH
ATOH
ATOH
ATOH
ATOll
ATO-
ATO I
ATOH
ATOM
ATOI 1 ATO I ATOI I ATO I ATOI I ATOI I ATOll
ATOH
ATO 1
ATOH
ATOI i
ATO
ATOI 1 Aroi I ATO1 1 ATOI I AT O1M
ATOH
ATOH
ATOI
ATOI I
ATOH
ATOM
ATOM
ATO I ATOM4
ATOM
ATOil
ATOH
ATOll ATOll
ATOH
ATOI I ATOI I ATOI I
ATOI
ATOI I ATOl ATOl
ATOI.
ATOHl ATOl-1
ATOH
ATO1 ATOll
ATOH
AT01 I ATO I
ATOH
ATOH
ATOI I ATOll-1 ATOI I ATOHl ATOI I ATOll ATOl-1 ATOlI AT01-' ATOI 1 ATOHl ATOI I ATOI I ATOI I
ATOH
ATOI I ATOl I ATOI I
ATOH
3312 3314 3315 3316 3317 3318 3319 3320 3321 3323 3324 3325 3326 3327 3328 3329 3330 3332 3333 3334 3335 3336 3337 3338 3339 3340 33-12 33,13 3344 33145 3346 3347 3348 3350 3351 3352 3353 3354 3355 3356 3358 3359 3360 3362 3363 3364 3365 3367 3368 3369 3370 3372 3373 3374 3375 3376 3377 3378 3379 3380 3382 3383 3384 3386 3387 3388 3389 3390 3391 3392 3394 3395 3396 3397 3398 3399 3.103 3404 3405 34107 3408 34'09, 9 3410 3411 34.112 350 350 350 350 350 350 350 350 351 351 351 351 351 351 351 351 352 352 352 352 352 352 352 352 352 353 353 353 353 353 353 353 354 354 354 354 354 354 354 355 355 355 355 355 355 355 356 356 356 356 357 357 357 357 357 357 357 357 357 357 357 357 358 358 358 358 358 358 358 359 359 359 359 359 359 359 359 359 360 360 360 360 360 360 360 37.791 38.735 38.873 37.871 37.705 38.24 7 40.144.1 40.931 40.446 41.729 41.814 43.121 41.535 41.172 42.031 41.367 43. 002 43.381 .43. 907 42.912 43.034 43.881 42.330 44.502 ,141 .798 45.342 46.512 47.759 ,17.766 48.988 46.828 46.843 47.074 47.586 46.725 47.347 45.293 49.043 49.366 49.972 51.392 52.374 52.273 52.210 51.746 52.463 51.127 51.358 50. 505 50.364 49.910 48. 982 49.557 49.473 48.333 48.352 50.639 50.706 49.552 49.726 47.582 417.458 ,16. 593 45.197 44.211 42.815 44.748 4 .760 -144.792 44.387 ,13. 998 4. 845 44.340 45.0.0 45. 958 45.416 42.423 42.056 41.602 40.164 39.297 37. 887 39.769 39.423 39.888 51 .159 51.256 49. 949 50. 020' 418. 680 51.106 51.727
I
51.962 51. 677 52.088 51.912 52.416 50.418 50. 351 53.533 54 .358 53.866 55.2-11 55353 55.769 54 834 55.2 1 53.799 55.751 56. 951 54-1 .838 55.236 55.540 55.261 54 844 51 .233 53.003 54.855 54 .092 5-1 .390 53.896 53.849 54.510 55. 718 53.561 53.914 52.799 51 .744 52.194 54.339 55.3341 53.704 54.073 55.204 56.261 55. 004 55.973 56.343 55.219 842 53.779 54.465 53.402 53.068 51.997 55.368 54.127 56.216 55.798 56. 502 55.883 56.437 56.1941 57.358 55.188 55. 419 54.707 54 .473 55. 317 54 102 53. 937 54.979 53. 791 55.974 55.742 56.804 56. 277 57. 111 56.037 55.837 33/58 45.925 021 .47.83.1 19. 031 49.700 50.038 46.685 -17. 618 .145.372 44.873 .13.352 42.757 43.058 41.581 -15. 178 44.626 -146. 015 .16.248 4.17.678 .18.735 49. 947 50.765 50.009 45. 31-4 45. 18 44.852 44 .078 44.911 -46. 387 44. 310' 42.957 -43. 172 41 716 40.651 39.407 36.123 39.678 40.388 40.288 40.431 -40.28-41 40.653 39.695 42.039 38.851 38 697 37.870 36.470 35. 955 36.615 34 800 34.205 32.8055 31.812 S31.077 30.175 31 .606 30.720 30. 007 29.166 34.150 34 .088 33.814 33.639 34.610 34.484 36.043 32.234 31.8885 31.461 30.1 7 29.174 .770 26.750 25.986 24 .680 29.939 30. 006 29. 572 29.33 i 3 .048 932 32 1] 32.491 2 .834 1 0 56.17 S00 58.041 S.o0 .49.00 1.00 50.79 1.00 52 92 1.00 56.11 1.00 61.34 .00 63.52 1.00 57.89 1.00 48.69 1.00 48.19 1.00 40.01 1.00 36.87 1.00 36.46 1.00 46.80 1.00 42.87 1.00 50.61 1.00 51.20 1.00 52.12 1.00 65.55 1.00 71.49 1.00 66.09 S.00 76.07 1.00 47.43 1.00 40.38 1.00 43.54 1.00 43.71 1.00 45.01 1.00 30.8,1 I.0; 42.55 1.00 41.41 1.00 39.19 1.00 36.31 1.00 43.97 1.00 .40.86 1.00 36.72 1.00 35.35 1.00 44.56 1.00 43.32 1.00 43.83 1.00 44.85 1.00 42.40 1.00 45.30 1.00 38.13 1.00 43.84 1.00 44.26 1.00 41.16 1.00 37.81 1.00 38.07 1.00 34.65 1.00 38.47 1.00 38.03 1.00 31.44 1.00 33.04 1.00 32.86 1.00 32.83 1.00 34.28 1.00 32.51 1.00 37.26 1.00 35.85 1.00 38.55 1.00 36.11 1.00 40.98 1.00 38.90 1.00 49.15 1.00 33.12 1.00 29.20 1.00 35.64 1.00 34.58 1.00 36.00 1.00 41.27 1.,0 37.40 1.00 45.19 1.00 43.40 1.00 ,13.56 1.00 47.98 1.00 412.14 1.00 40.40 1.00 37.16 1 .00 40.02 1.00 38.10 1.00 39. 42 1.00 28.5-1 1.00 33.16 1.00 39.49 .A-AAA AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA O AAAA C AAAA C AAAA C .AAAA C AAAA C .,AAA 0 AAAA CI AAAA O AAAA 'i AAAA C AAA C AAAA C AAAA C AAAA O AAAA O AAAA C 2:-jkA 0 AAAA I AAAA C AAA C AAAA C AAAA C AAAAk C 0 AAAA II A AA C AAAA C
C
AAAA C AAAA C AAAA O ?AAAA Hl AAA C AAAA C AAAA O AAAA C AAAA C AAAA O AAAA 11 AAAA C AAAA C .AAAA O rAAA 0 AAAA i .AAAA C AAA C AAAA C .,AAA C AAAA C IAAA C .AAAA C ;AAA 0 AAAA C AAAA O AAAA 11 AAAA C AAAA 0 AAA C AAAA C .AAAA C AAAA O ,"-AAA II ,:AAA C AAAA c AA C AAA C 7. ,AA C ;.AAA' C A 0 r-A I I AAAA C .?,AkA '2 .AAA C AAAA C .:A-AA C AAAA C WO 99/28347 PCT/AU98/00998 AT01ll AT01lI ATOI I
ATOM
AT01ll AT01ll AT01lI AT0I I ATOtI AT OI
ATOM-
AT01 I ATOll ATOI I
ATO!
ATO!
ATOllI AToi i ATC1I
ATOM
ATOM1 ATOM1 ATO1I1 AT01ll ATOMl
ATOM
AT01I ATOll
A:TOII
TO0 I ATO1I ATO! I ATOI I AT01ll ATOI I AT01ll ATOll
ATOM
AT01ll AT01ll
ATOM
ATOM.
ATOM
AT0ll ATO? I ATOI I ATOI I ATOI I AT01ll ATOI I AT01lI
ATO!
ATO!
ATOI I ATO! I AT0ll ATOI I
ATO-I
ATO1I1 ATOI I ATOI I ATO1I ATOi I ATO1I1 ATOI I ATollI AToll1 AT01 l AT01ll ATO: I ATOI 1 ATOI I ATC1Il ATOI I ATODI I ATOI I AT01lI AT01ll ATOI I AT01lI APOIFc~ I ATO1I
ATOI
AT01ll AT0ll 34 13 3114 3-116 3417 3418 3419 3420 3.123 34126 3429 34 30 3431 3433 34134 3.135 34136 3.13-1 3,139 3442 3443 3444 3446 3447 3448 3.150 34151 3454I 3455 3,156 3457 34158 3459 3460 3.I11 3-162 3464 3,166 3467 3468 3469 3470 3472 3473 34'74 3475 3 476G 3477 3478 34'7 9 3481 3482 3483 3484 3485 3466 34187 3489 3490 3491 3493 3494 3495 3497 3498 3499 3500 3501 3502 3503 3504 3506 3507 3508 3510 3511 3512 3514 3E15 35'-16 35 1 7 3518 35 19
CA
CBI
CD
HIE
Cz 111-1 111-12 0
CA
CB
CG
CD2
CEI
1152 0 11I
CA
CB
C
C
0
CB
CG
CE 1 CD2
IJE
CA
CBI
C
0 11
CA
CBI
CG
CD1 C 02 0
CA
C 1 I1
CA
0-
CA
01
CA
CA
CB
cc;
ID
CA
ce 00
CA
co C D
COD
C E
ILE
ARc;
ARG
ARc; ARc; ARc;
ARG
ARG3 ARc;
ARG
ARc; ARc; ills
HIS
Ills ill s is Hils Ill s ills ills
HIS
SER
SER
SER
SER
SER
SLR
HIS
HIS
Ills His
HIS
HIs Ills Ills
HIS
HIS
ALA
ALA
ALA
ALA
ALA
LEU
LEU
LEU
LEU
LEOT
LI).U
I.EUL
LEU
AL
VAL
VAL
VAL
VAL
VAL
VA L
SER
SE'
SER
SER
SER
SEP
LEO
LEOU
LEU
LEU
I LELI
ILEIJ
LEU
LEIJ
SER
SER
SER
SER
SER
S5R
SHE
PHE
5115
FHE
1 FHE 2 PHE 1 PHE 360c 36 1 361 361 361 361 361 361 362 362 3 62 3 62 3C2 362 362 363 363 3C3 363 3-53 364 36-1 364 36-1 364 364 364 364 364 365 365 365 3655 365 366 36 6 366 366 3C6 3(6 3E.7 3G7 367 36(7 367 368 368 368 369 369 369 369 379 37 0 370 370 370 370 3701 371 37 1 37 1 3-71 271 39. 567) 39.4-72 '10.783 410.805 41.943 4I 1 .47 3 42.-297 4 3.61 2 411.834 38.382 3 8. 336G 3 7.5'14 36.372 37 .000 37 .849 38.049 38.628 39. 256 38. 923 35. 295 34. .686 35. 222 34 .402 35.231 35.713 33. 005 32.653 3 2 24 3 30. 954 2 9. 8701 29. 2971 30.485 31 .493 31.870 32 7 T08 32.194 32.992 29. 949 29. 211 2 9.67 8 29.318 28.576 30.158 30. 415 31.885 32.740 34.192 32.118 2 9.97 4 30. 305 2 9.5 2 1 29. 07 2 27 .557 26. 923 26. 697 29.923 29. 965 30.591 31. 487 30. 658 31.300 32.590 32 .35S2 33. 6 31 34 .716 36.073 36.325 3'7. 6G9 36G. 2 0 7 34 64 5 35.569 33. 437 33.089 31. G7 3 3 0.77 1 33.060 33. 228 32. 967 3 3. 2 23 33. 72-I 34 GO'5 33. 371 35.498 S G. 94 2 S4.721 54.782 ,,4.213 54.203 53. 357 974 50. 962 .07 4 49. 719 53. 866 52.661 541. 312 53. 555 52.300 52.610 53.765 5.6716 52.247 53.515 53.113 52. 030 53.875 53.456 53.837 52.558 54 .072 5 5. 0-4 0 ,3 .5771 1;.173 53. 937 54.899 53. 699 54.182 55 02 5.33 53.393 54.2-74 52.819 52.488 51.133 53.473 53.206 54 .517 55. 24 3 55. 241 54 .037 54.373 53.305 56.687 ,7 .2 48 S'7.27 5 58.727 60.073 57 .949 59. 518 60.751 58.818 59. 4C5 59.706 60.298 58.,1'I 7 57.299 5 9. 0)12 53). 121 58.7 36 59. 428 57 .384 58i. 036 57 .700 58. 401' 58. 431 59.052: 58.061 57. 08~ 56. 94: 55. 931 54 .64: 53. 591 S3. 6-2 2.80' S2. 84 3 4/ 58 27.235 25.7141 25. 148 23.266 23. 1160 23.2636 23.631 25.40 24.373 23.885 23.266 22.084 21.411 2-1. 469 20.465 20.408 24 .913 24. 795 26.013 27.139 28. 400 28. 816 27.046 27. 694 2.058 57 17 2 280 241.348 23.338 23.156 21.810 27.427 28.621 29.150 29.768 30. 726 29.762 30. 968 31.350 31.667 32.0,43 32.834 30.896 2 9. 84 9 32 .015' 31. 940 32. 376C 32. 511 31.365 32.845 32. 7 20C 33.75-7 34.742 36. 000 37.091 35. 179 34. 976G 35.831 36.'74 35.784 34 .27 1 34.154 33.619 37.821 38.595 38.285 39. C90 39.816 39. 261 540.412 3 41.596 639. 792 3 40. 356 639. 297 9 38. 01 2 7 37 .76.1 5 37.00-I 2 36. 570 1 .00 1 .00 I 00 1 .00 1 00 1.00 1 .00 1.00 1 .00 1.00 1 .00 1 .00 1 .00 1.00 1 .00 1 coo 1.00 1. 00 1.00 1 .00 1 .00 1.00 1 .00 1.-00 1 .00 1 .00 1 .00 1 .00 1.00 1. 00 1 .00 1 .00 1.00 1.00 1.00 1.00 1 .00 1 .00 1.00C 1 .00 1 .00 1.00 1 00 1.00 1. .0 1 .00 1.00 1.00 1 .00 1. 00 1.00 1 .00 00 I '30 1 .00 1.0.) 1.40 1.00 I Of0, I 00C 1.~0 1 O 1 Ic i DO 1 1 Or I '3 37. .32 3I 1.3-I 11.24 47. 92 50.39 51.36 50. 97 51.-62 54 .112 42.06 38. 93 4 6. 19 -19. 34 40C. 94 42.78 '18. 32 43.59 46.01 49.22 50.32 41.31 4I6.96 52.19 53.73 41.72 53.C6 -18.7,7 51.44 49.83 51.51 44.83 28. 57 38.62 4 1 .4-1 47.53 44 .41 40.28 44 .70 45.28 40.80 42.21 ,13.78 51.52 51.77 51 .17 46.36 48.40 43.66 4.4-1.1 48.80 .11 .69 34 .00 414 .90 4-I .75 48.72 52 .3C.
55.32 64.86B 52.76 48.99 53.86 60.15S 55. 91 -45. 96 *53. 97 I39.77 62 .52 59.33 56. 26 I53.88 5* 5. 50 69. 12 147 .97 4 1.93 I45.48 4 6. 29 4 43. 53 -56. -1S D53. 92 3) 59. SO AXAAA 0 WAA1 AA.AA C AAAA C AAAA C AAAA C WAAA 1 AAAP C WAAAl1 WAAAl1 AAAA C AAAA 0 WAAAl1 AAAA C AAAA C AAAA C AAAA C WAA Ii AAAA C AAA ;I AAAA C AAAA 0 AAAA 11 AAAA C AAA C AAAA 0 AAAA C AAAA 0
WAJAA!
AAAA -C AAAA r- AAAA C AAAA C AAAA C AAA 1; AAAA C AAAA C AAAA 11 WAA 1 AAAA C AAAA C AAAA C AAAA 0 WAAAl1 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 kAAA Pi AAAA C AAAA C AAAA C AAAA C
AAAAC
AAAA0 WAA I-1 AAAA C AAAA C AAAA 0 AAAA C XM.A 0 WAAAl1 AAkAA C WAA C- WAA C WAA C AAAA C- WAA C AAAA 0 W1AA :1 WAA C AAAA C WAA 0 WAA C WAA 0 WAAl1 WAA C WAA C AAA C AA.AA C WAA C WAA C WO 99/28347 ATOI I ATOI I ATOI I ATOll ATOI I ATOllI ATOI I
ATOM
ATOI I AT OM ATOMl ATollI ATOllI ATOI I ATOllI
ATOI
ATO! I
ATOI
ATOllI
ATO!
ATOII
ATOM1 ATollI ATOI I AT(Y l ATOllI AT OH ATOil ATOllI ATOllI ATOI I ATol AT Ol ATOll ATOllI ATroi I ATOllI ATOlI
ATOM
ATOM
ATOI I ATOllI
ATOMA
ATollI ATOllI
ATOII
ATOI
ATOI I ATOI I A'rci ATCOI I ATOllI ATOI I
ATOI!
ATOI I ATOI I
ATOI
ATOllI
ATOII
ATOll ATOMl ATOlI ATOMl
ATOM
ATOI I ATOlI ATOil
ATOM
ATOll ATO? I ATollI ATOI I ATO) I ATOI I ATOI I ATOI I ATOllI ATOll ATOI I ATOI I ATOI I ATOI I ATOI I ATOI I ATOi I 352 ?0 3521 3522 3523 3524 3526 352 7 3528 3529 3530 3531 3532 3533 3535 3536 3537 3538 353 9 354 0 354 4 35415 35416 3548 3549 3550 3551 3552 3555 3556 3557 3559 3560 3561 3562 35C3 3564 3565 3566 3568 3569 3570 3571 3572 357 4 3575 3578 3581 3582 3583 3585 3S86 3587 3588 3589 3590 3591 3592 3594 3595 3596 3597 3598 3599 3600 3601 3603 3604 3605 3606 3607 3608 3609 3610 3612 3613 3C14 3615 3617 3618 3619 3C20 3-,2 1 3C2 2 36A2 3 362 4 £02 £110 CT; Pii C £141 O PHE I LEL CA LOUI CB LEU CG LOU CD1 LEU CD2 LELU C LEU 0 LELI III LYS CA LYS CB LYS CG LYS CD LYS CE LYS lIZ LYS C LYS
LYS
I I ASH CA ASH CB ASH CG ASH 001 ASH 11112 ASH c ASH 0 ASH I I LEU CA LOU CO LOU C-3 LEU £01 LEU CD2 LOEl C LELU O LOU H1 ARG CA ARG CB ARG CG ARC CD ARG lIE ARG CZ ARC, 141-i ARG I1112 ARC C ARG
ARC
IH LELU CA LEt' CB LOEl CG L.EU CDl LEU CD2 LOU
LEU
O LEU I I ILE CA ILE CO ILE £02 ILE CCL ILE CDl ILE C ILE
ILE
11 LOUI CA LELU CO LEU CG LEU CDI LOL £02 LOU' C LELU
LOU
IH GLY CA GLY C CLY 0 3LY I I GLLI CA GLU CB CLU CG CLI CID GLU 001 CLUI 002 CIL.' C G LU
GLLU
34 -J-1 35. 119 34. 654 35.005 35.633 36. 928 38. 171 38.411 38.853 39.260 36. 715 37.2M 35. 970 3 5. 5271 34.546 33. 645 32.529 31.674 31.083 365.646 36. 636 37.657 38.765 39.080 38.009 37.892 37.160O 4 0.043 41.031 .10. 0 9 41. 305 41 .099 42.396 43.135 42.030 -11 .71 2 41.151 42.801 43.320 43. 706 44 .288 44 .286 4 5. 377 46. 618 46. 966 47.571 -14 556 4 4.7.-16 4 5. 37?5 46G. 5 26 4 7 .5 96C 48.80( 50.031 4 9. 010 -17.043 46.868 47.448 48.042 47.342 48. 115 4 5.871 44 .999 49.524 49.801 50. 454 51 .866 52.1575 52. 2341 52. 926 52.6C16C 12. c 53. 576 52. 17 5 S2. 931 54.Z49 55. 024: 5I..549 55.849 5G .055 551.4 02 56. 050 56. 1 -30 56.379 5A.07 8 S-71._-I( 35/58 5,1..1 C 35.817 53.716 35.579 54.467 10.895 53.592 41.728 55.305 40.510 55.395 41.109 55.812 40.276, 5.1.800 39.114 55.643 37.934 53.657 39.565 56.392 42.2-13 57.507 42.364 5586 .43.192 56.509 44.415 55.521 45.077 5C.162 46.119 56.955 15.441 57.687 46.460 58.933 45.899 56.863 45.366 57.960 45.907 55.986 15.513 5C.352 46.410 55.154 47.314 54.978 48.396 53.972 49.096 55.965 48.578 56.892 45.786 57.223 46.479 56.893 44.43B 57.371 43.795 57.359 42.288 57.422 11-159 56.112 41.689 57.796 40.041 58. 751 44 .245 59.773 43.877 58.814 44.982 60.155 45-131 60.222 46.928 58.907 47.415 58.817 48.944 57.926 49.410 58.380 49.598 59.64l5 19.383 57.548 50.012 60.544 44.633 C1.728 44.465 59.578 44.219 59.942 43.379 C0.41 1 14 .32 9 59.577 44.667 60.157 43.95-1 59.C96 46.179 59.022 -12.311 57.'788 42.286 59.675 41.199 58.976 40.042 59.303 38.724 58.696 371.574 58.862 38.829 59.S15 37.7165 59.381 40.003 60.595 40.040 58.423 40.067 58.712 40.341 57.531 41.054 57.363 12.554 56.187 13.217 58.625 -13.300 59.01T9 39. 083D 39.788 39.139 58.423 37.972 58.715 3(.702 58.155 36.C62-4 58.657 35.803 57.033 37.272 56.386 37.243 S5.310 38.323 55.7'79 39.63C 55.192 083 53.966 40.890 5..014 41 .7 55.784 35.859 55.52 35.34E 1.00 56.49 1.00 56.39 1.00 54 .84 1.00 52.23 1.00 50.17 1.00 46.25 1.30 44.82 1.00 36.78 1 .00 45.04 1.00 35.55 1.00 42.26 1.00 38.37 1.00 4l7.06G 1.00 50.19 1.00 56. 7 4 1 .00 59.6C4 0.01 60.17 0.01 60.45 0.01 60.38 1.00 49.72 1.00 42. 42 1.00 54 .43 1.00 59.92 1.00 63.16 1.0)0 64.53 1.00 66.40 1.00 52.88 1.00 62.35 1.00 63.08 1.00 58.341 1.00 54.73 1.00 56.41 1.00 54I.12 1.00 37.88 1.00 40.97 1.00 52.37 1.00 52.11 1.00 55.16 1.00 55.45 1.00 58.68 1.00 69.10 1.00 81.17 1.00 84 .46 1.00 85.64 1.00 81.81I 1.00 94.15 1.00 50.16 1.00 44.25 1.00 50.99 1.00 49.40 1.00O 64.72 1.00 70.76 1.0)0 63.32 3.00 68.60 1.00 46.33 1.00 45.17 1.00 45.12 1.00 49.10 1.00 46.36 1.00 34.36 1.00 38.59 1.00 37.18 1.00 49.87 1.00 44.72 1.00 49. 97 1.00 48.48 1 .00 48. 44 1.00 50.28 1.00 39.89 1.00 42.89 1.00 50.94 1 .00 54 .23 1 .00 48. 67 1 .00 49. 94 1.00 52 .70 1 .00 49. 94 1 .00 512 .51 1.00 52.33 1.90 45.22 1 .00 512 .91 1 .00 42.11 1.00 40.20 1.00 51 .32 1 .0-0 55.86 1 .00 54 .61 PCT/AU98/00998 AAA-A C AAAA CA AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C A.M.A C AAAA C AAA 1 AAAA C AAAA 0 AAA 1 A.AAA C PAAA C AAAA C AAAA 0 AAAA 11 AAAA C7 n.AAA 0 AAAA C AAAA C AAAA C A.M.A C AAAA 0 AAAA C AAAA £4 AAAA C AAAA C
AAA
AAAA C1 A.M.A CI AAA I1 AAAA C AAAA 0 AAA 11 AAAA C AAAA C ,%AAA C AAAA C AAAA C AAAA C AAAA 0 AAA 11 AAAA C A.MA C
AA.M.
AAAA C AAAA C A.AAA C AAAA 0 A.M.A 11 AAAA C- AAAA C AAAA C AAAA C A.AAA C A.M.A C A.AAA 0 WAAAl1 AAAA C AAA C- AAAA 0 AAA 11 AAAA C AAAA C AAAA C AADAA C AAAA 0 ?AAAA AP.AA C AAAA 0 WO 99/28347 PCT/AU98/00998 3 6/5 8 ATM 1 3 G2 5 11 1 382 5.1.980 1_5. 19 3_5 57 00 5 3. 5 G AAAk 1 ATOM 3627 CA GLLO 382 5b. 091 55. C18 3 3. 76 G 1 .00 48.1IS AAAA C ATOM4 3628 CR GLIA) 382 55.051 53.550 3 3. 53 2 1 00 35.27 AAAA C AT01 1 3629 CG GI 3FI2 54 .739 53.225 32. 051 1.00 4 9. 69 AAAA C AT01 l 3630 CD GLU 382 4 .67 6 51.719 31.807 1.00 56.45 AAAA C AT0ll 3631 OE1 GLU 382 55.062 50.924 7 C,5 1.00I 61.66 AAAA 0 AT01l1 3632 OE2 GLU 382 54.261 51.201 30.745 1.00 57.69 AAAA 0 AT01l1 3633 C GLU 382 54 006 55". 732 32. 973 1.00 50.84 AAAA C ATOl 36341 0 GLU 382 53.097 56.282 33. 596 1 .00 19.44 AAAA 0 AT0ll 3635 11 GLII 383 54 .347 56. 256 31.780 1.00 52. 25 AAI I ATOl 3637 CA GUII 383 53.498 57.153 31. 01 C 1.00 40.15 AAAA C AT0ll 3638 CB GLUI 383 53.914I 58.609 31.155 1.00 28. 50 AAkAA C ATOl 3C39 CG GUI 1 383 54.489 58.909 32. 54 2 1.00 31.10 AAA C ATOl 3 6410 CD GUI 1 383 54.950 6i-. 301 32. 752 1.00 33.19 AT'AA C ATOl 364 1 OE1 GUAI 383 55.186 60.8,10 31.6C83 1.00 40.341 AAAA 0 ATOM 364 2 IIE2 GUII 383 55. 04 3 60.9413 33. 934 1.00 36.30 I\AAA I i ATOI4 3645 I: GLM: 383 53.4 2C 56. 74 4 2 9. 563 1 .00) 10. 15 AAAA C AT0ll 36.16 0 GLII 383 541.131 55.858 2P. 139 1.00 4 3. 45 AAAA 0 ATOI i 3C64.7 11 LEU 384 52.375 57. 195 280. 86 0 1.00 42. 54 ANAA I I ATll 364 CA 2t 3. 525 7 56 8 89 27.4,l 13 1.00 4 3. 2.1 ?AAJ.A AT01ll 3650 CB LEU 384I 50.81:1 57.011 26. 94 9 1.00 43.79 M.AA C ATOM 3651 CG LELI 384 49. 818 56.235 271.861 1.-00 41 .21 AAAA C AT01l1 3652 CDI LEU 381 48.611 57. 095 28. 221 1.00 33.99 AAAA C ATOI4 3653 CID2 L17U 364 4 9. 405D 54.968 27 .1,19 1.00 33.20 AAAA C ATOlt 3654 C LEU 384 53.204 57.809 2 6.6G72- 1.00 40.51 AAAA C AT01l1 3655 0 LOU 384 53.582 58 .872 2-7. 177 1.00 29.66 ?A.AA 0 ATOll 3656 11 GL'J 385 53.659 57.319 25.531 1 .00 45. 22 AAAA 11 ATOll1 3658 CA GLLO 385 54 .410 58.116 24.5S70 1.00 49. 98 AN'A C ATOll1 3659 CB G LL 385 54 .424 47 5 23. 174 1.00 60. 5n ?.AAA C ATOll1 3660 CO GLU 3835 55. 04 5 56.095 23 .106 1I. 00 68.76 MxIA. C ATOM 3661 CD GLU 385 54.195 5.1.951 23. 592 1.00 72.0-,7 AAAA C ATOI 1 3662 001 GLLO 385 53. 150 55.213 24.244 1.00 81.88 ?A6AA 0 ATOM1 3663 002 G L 385 54.565 53.786 23.301 1.00 73.13 AAAA 0 ATOMl 3664 C GLL' 385 53.828 59.515 2-1.4 50 1.00 47. 41 AAAA C ATOl1 3665 o GIL' 365 52.635 59.706 24.184 1.00D 54.43 AAkA 0 ATOI4 3666 1-1 CLY 386 54.614 60.470 24. 902 1.00 43.69 AAAA 11 ATOMl 3668 CA GI.± 386 54.181 61.870 24. 897 1.00 40.31 AAAA C ATOM 3669 C GLY 386 54.286 62.449 26.308 1.00 40.65 AAAA C ATOl 3670 0 GLY 386 53.930 63. 615 26. 491 1.00 39. 75 AAAA 0 ATOl 3671 I1 ASII1 3 87 54 .441 61.537 27 .272 1.00 40.75 AAAA 11 ATOH 3673 CA ASH 387 54.479 61. 912 28. 675 1.00 49. 18 AAAA C AT01l1 3674 CB ASH 387 55.500 63. 084 28. 874 1.00 44.41 AAAA C ATOll 3675 Cr. ASHI 387 56.925 62. 541 28.-722 1.00 61.51 AAAA C ATOMl 3676 ODi AS[ I 387 57.199 61.313 28.6C77 1. 00 57.85 AAAA 0 ATOll1 3677 1152 ASII1 387 58.063 63.251 28. 592 1.00 61.96 A.AAA I1 AT0ll 3680 C ASH 307 53.095 62.100 29.299 1.00 48 .46G AAAA C ATOMI 3681 0 ASH1 387 52.836 62. 891 30.218 1.00 48. 99 AAAA 0 ATOl 3682 11 TYR 388 52.2141 61. 116 29.058 1..0-0 46.29 AAAA 11 ATr(ll~ 3684 CA TYR 3818 50. 84C6 61. 199 29. 54 0 1.00 45.09 ?JAA C ATOl1 36595 CB TYR p3F8 -19. 823 C0. 957 28 .JA9 9 1.00 4 0.11U AAP,- C "roll 3686 CO TYR 388 4 9.92 5 -2 056 237.37 3 1 .00 42_4. Nk.A C AT01ll 3,-8-7 CDI TYR 389 50.3-13 C-1.8654 26. 064 1. 00 44.38 A AAA C AT01lI 3688 CEl TlYR .399 5 0. 4Q1 62.8P85 25.1J 57 1. 00 35.51 aAAA C AT01ll 3689 CD2 TY R 388 49.625 f,3. 356 27.709 1.00 44.67 ;*.AAA C ATOMl 3690 CE2 TYTR 388 4 9.6;9)9 64 .428 26.830) 38. 14 AAAA C ATOM 3691 CZ TYR 388 50.087 64.148 25. 555 1.00 41 .27 AAAA C ATOll1 3692 O11 TYR 388 50,151 65.181 24 .604 1.00 50.18 AA 0 ATOl 3694 C TYR 388 50.563 60. 288 30.714 1.00 41.-88 6AAA C ATOl 3695 0 TYR 388 50 727 59.092 30.511 1.00 32. 99 AAAA 0 ATOl1 3696 11 SER 389 50.020 60.917 31.763 1.00 45.42 AAAA I I ATOM 3698 CA SER 389 49.591 60.131 32. 931 1.00 50.13 AAAA C AT01l1 3699 CB SER 389 49.798 60. 894 3.1.261 1.00 45.571 AAAA C AT01 1 3700 00 SER 389 51.185 60.899 34.50.1 1.00 51.-11 AAPA 0 ATOli 3702 C SER 389 48.097 59.813 32.804 1.00 48.11 AAAA C ATOll1 3703 0 FE R 389 47. 68C 58. 792 33. 336 1.00 49 .25S AAAA 0 AT01ll 3704 11 PHlE 390 .17.321 650.685 32. 196 1.00 42.56 AAAzk 11 ATOll1 3706 CA 2118 390 .15.867 60. 595 3 2. 1461 1 .00 40. 76 AAAJ\ C ATOll 3-707 CB PHI. 390 45.241 61.581 33.139 1.00 4 4.80 AAAA C ATOI l 37 08 CG 2110 390 .13.76.) 61.358 33. 328 1.00 40.53 AAAA C ATOM1 3709 CD1 PHE 390 4 3.'4I06 6 0. 2 73 34 .086' 1. 00 40.80 AAA C AToll 3710 CD2 PlE 290 -12.768 62. 157 32.748 1 .00f 35.59 AA.A C AT01ll 3711 CEl PHlE 390 42.0I50 59. 985 34,.312 1. 00 47. 09 AAAA C AT01ll 3712 CE2 PHlE 390 41.4541 61. 824 32 965 1.00 4 4.50 AAAA C ATOMl 3713 CZ PHlE 390 4 1. 063 60.745 33.739 1.00 34 .54 AAAA C ATOll 3714 C PHlE 390I 4 5 .372 60.829 30. 720 1.00 38. 54 AAAA C ATOl1 3715 0 PHlE 390 15.5,12 61. 918 30. 126 1 .00 4 0.269 APA.A 0 AT01ll 3716 11 T';R 391 44 .819 59.818 30. 09C 1.00 3 3.4 .S ;AAA H ATOH 3718 CA TYR 391 4.459C 59.782 28.663 1.00 38.58 AAAA C ATOM 3719 CB TY R 391 45. 579 58. 871 27. 972 1 .00D 38. 95 TAAA C AT0ll 3720 CG TY R 391 45.76C0 59. 006 503 1.00 44 .54 AAJ\ C AT Ill 3-721 CMl 'lY 3 91 .18259.15 26 115 2 1 .00I 47.1i 1 MA C ArOll 37122 CUl T'YE 3-1 4'7 5 .9 993 24. 7 22 1 .00 46. 03 z Caj\'- ATOll1 37 23 C0 D' Y' 36c.1 *I14 .92-7 58. 39. 25 5(31 1. 00 4 6. 9- IPJJ.J C ATOll1 3724 CE2 TYCR 391 .15.157 58. 560 24 212 1.00 47.4E. .AAA C ATOll 3725 CZ TY R 391 4 6.2_?07' 59. 35r, 2'3 .El30 1.300 45. 84 ;!AAA C WO 99/28347 PCT/AU98/00998 AT Oi AT0 Oi AToi ATOll ATOI i ATOI4 ATOMl ATOll AT Oil ATOil AT0ll AT 0ll AT01ll
ATOM
ATOI I ATOI I ATO! 1 ATO! I AT01ll ATOll AT01lI AT01lI
ATOM-
ATOI I
ATOM-
ATOH-
AT Oi ATOMl ATOll ATOiI1 ATOll ATOI I AT01ll AT01ll ATOI I ATOI I ATOI I ATOll ATOll ATOll ATOl
ATOK
AT014
ATOM
ATOM-
ATCI 1I ATOI I AT O.l ATOI I AToll ATOI I AT 01 1 ATOI I ATOll ATOllI ATOll ATOlli ATOll ATOlI ATO1I1
ATOM
ATOI I ATUll AT01ll AT0I I AT01ll AToll1 ATOI I AT01ll AT01 I ATOll ATOI I
ATOM
ATOI l ATOI I
ATOH
ATOll AT0O.l AToll, AT01ll ATloI I AT01 1 ATollI ATOI I ATOI I 3*726 3-728 3729 3*730 3732 3733 3734 3735 3"1 36 3737 3738 3 74 0 3741 3742 3743 3714 37.15 37 16 3717 374 9 3750 3751 3752 3753 3754 3755 3756 3758 37159 3760 3761 3762 3765 37 66 376-7 3)7G9 3770 3-771 3772 3-773 3774 3777 3778 3779 3781 3782 378 3 3784 3785 378 8 3'78 9 37 90 3792 37 93 37941 3795 3796 3797 37 98 3799 3801 3802 3803 3804 3605 3806 3809 3810 3811 3813 3814 3815 3816 3817 3818 3821 392 2 3823 3025 3826 3827 3 8 28 3 e29 3830 3.931
T'YR
T'YR
TYR
VAL.
VAL
VAL
VAL
VAL
VAL
VAL
LELO
LEU
LEU
LEO
LELI
LELI
LEU
LEO
As P
ASP
ASP2
ASP
ASP
ASP
ASP
ASP
ASH
ASI I
ASHT
ASH
ASI I AS1h
ASH
ASH
GLI I GLIl GLI I 13L I '3Lll
GLII
GLI)
GLil GLiI
ASH
ASI I
ASH
ASI
ASI
A LZ II ASI I
I
LEU
LEU
LET.
LEO
LEU
LEO
LEU
LELI
G LlI
GLII
GLII
GLIT
GULII
GLII
GLl
'SLII
GLlI ,3LI1I -31,11 G L;I
'SLIT
G L::
GSLI
GSLII
GSLI;
LEU
LEU
LZU
LEOl IL E
LE:-
LEO
LEU
46. 374 43.1941 .12. 841 412. 41'/ 40. 958 -10. 075 38.61l2 40.666 40. 531 40. 508 4 0. 299 38. 9-18 -11.200 .11 02 3 41.128 42.078 38. 821 38. 760 38.015 36.888 37. 445 36.466 36.7 50 35. 311 35. 936 35. 831 35.299 34. 305 341 .804 35. 992 36. 013 X7. 07 5 32. 932 32. 749 32.073 30. 771 29.848 30. 173 2 9. 817 28. 835 30.628 29. 87 4I 29.-107 29. 717 28. 783 27.969 27 .231 26.S591 2 7 .2518 2 9. 3 67 28. 519c 30. 682 31. 3i2 32.927 3 3. 606 33. 417 35.070 30. 923 31.422 30. 24 1 29.688 28. 236 27. 235 25. 941 25.097 2856 30.490 30.528 31 058 31. 938 31. 215 30. 7 17 30.C7 8 30. 906 30. 3-11 33.113 3 3. 107' 34.073 35.135 36. 37 9 36. -38 37. C-58 36. 919 34 86 34 .258 37/58 5 9. 4 92 _22. 48i1 L58.,232 20. 34 9 58. 103 2e.730 60. 151E 27."'178 59.87,1 2 7.60C,3 (50.880 28.440 650.46,; 28.4"12 61.043 29.841 60.092 26.182 61.277 25.804 59.113 25.383 5r.259 2 3 .9-7 7 59.036 23.096 58.649 21.586 5.879 70.753 57.589 21.244 58. 3 75 2 3. 492 S7.173 23.79 SP.973 212.-1;55 5l8.2115 21 .8T.Ih 5 7.0D73 21 .120 5 6. 47-7 20. 156G 55.573 19.333 56.948 20.180 57.619 23.021 56.385 23.212 E8.495 2.4 58.158 24.776 59.512 26.212 SA3. 394 26. 7 96 58. '109 553 58.816 2 4 .541 59.982 2.4.882 58.055 23.877 58.582 23.421 57.567 22.744 57.405 21.257 55.S91 2 0.8e4 0 55.421 21.312 -5411 19.971 59.224 24.458 60.287 241.113 58.681 25.633 5,18 26 .6C32 57.959 27.093 57.430 25.860 58.304 -E.229 1,5. 175 5. .431 59. 945 00 S .9 0 00 0 60rl.558 2 9. 170c 60. 388 2 9. 1,19 (0.283 30.460 58.939 31.13-5 60.608 30.62 61.99" 29.353 C2.909 28.681 62.225 30.4-60G 63.558 30.796 63.331 31.262 63.962 30.316 63.146 30.3-10 63.455 31.191 62.158 29.4-40 641.2S2 31.888 65.477 32.068 C3.389 32.73.1 63.948 33.-756 624.314 35.049 63 .15(l 35.8971 63.430 37.369 C4.502 37.962 0 2 .14 4 3R.222 63.008 34 .052 (61.7183 3 3.9S1.;2 63.580 34.751 62.844 35.331 63.803 35.260O CA..2 3' :23 6 5. 32 33.6-77 63 .6 32960--1 C1.357 -3 61.299 36.692 1 .00; 44 1.O00 39.74 1.00 38.49 1.00 37.07 1.00 39.52 1.-DO 41.12 1.00 37.96 1 .00 33.19 1.00 31.08 1.00 34 .71 1.00 34.62 1 .00 38. 12 1.00 42.498 1 .00 26.48 1.00 2 6. 57 1.00 29 .9 8 1 .00 39.15 1 M 37 .80 1 .00 43.38 1.00 441.77 1.00 44.00 1. 00 17.1-1 1.00 521.91 1.00 4 9. 27 1.00 43.17 1.00 43.51 1 .00 39.90 1.00 4G.32 42. 96 1.00 36. 92 1 21.65 1.00O 27.87 1.00 40. 44 1.00 37 .06 1.00 4 6.7 4 1.00 52.93 1 .00 52. 29 1.00 46.42 1. C0 55.21 1.00 61.17 1 .00r 55.7 9 1 .00 48.64 1.0.0 51.63 1.00 -18. 95 1.00 51.72 1.00 35.94 1.00 4 9.081 1 .0-0 49.32 1.W0 43.31 1.0 53.33 1 52.12 1.00 48.47 1.00 41.81 1.0'0 40.35 1.00 39.03 1 .0C0 52.35 1 .00 49.891 1.00 58.76 1.00 60.1' 3 1.00 59.55 1 .00 73.0)7 1.00 78.39 1.00 71.78 1.0 9.88 1 .00 54 19 1 .00c 51. 96 1.00 50.44 1.00 53.83 1 .00 54 .97 I"1 58. 99 1.0-0 65.82 1 .00 68.10 1. 00 55.35, 1.00 52.09 1.00 511.80 1 0 4 9. 58 1.0)0 49.S7 1.0c0 17. 94 *o46.61 1.0 39.09 .1 C.
51.21 .O 0.
AAAA 02 AAAA 11 NAA C AAAA C2 AAAA C AAAA 02 AAAA 0 AAAA C AAAA C AAAA C2 AAAA C2 AAAA 0 AAAA AAAA 0 AAAA -7
TAAAA(C
AAAA 0 AAkAA 0 AAAA C AAAA 0 AAAA I I .AAA C2 AAAA 0~ .AAA 1.1 AAAA 0 AlAAA C AAAA C AAAA C AAAA 02 AAAA I(I AAAA 0 vAA I I AAAA C AAAA CI AAAA C AAAA 02 AAAA C aAAA 0 AAAA H AAAA C2 :,AAA 0 AA.AA C2 AAAA C2 A.AA (2 AA.AA (2 AAAA C2 AAAA (2 AAAA 0 AAAA II AAAA C AAAA (2 AAAA (2; 7,AAA 0 AAAA CI AAAA (2 TWA 0I AAAA (2I AAAA C AAAA C AAAA I(2 PAAA 0 AARAA CI A-AAA C2 ,aJ\AA (7 .MAA (2 7MAA 02 WO 99/28347 PCT/AU98/00998 ATOI I AT Oi ATOI I AT01l AT0Cli AT OI ATOI I AToll AT OI ATOI I
ATOM
.ATOI I AT Oil AT Oil ATOI I AToll ATOI I AToi i
ATOII
ATC'lI AT01 I ATO I
ATOII
AToll ATOI I AT OIlI
ATOM
ATOI I ATOI I ATOI I ATOI I
ATOII
ATOM
ATroIi ATOMl ATOI I ATollI
ATOH
AT01ll ATOllI
ATOM
AT0ll AT01ll ATOll ATOI I ATOf I
ATOI
ATOM
ATCI I ATf OI
ATOII
ATOlI .rATOllI ATOI I ATOIl I ATOllI
ATOM
ATOI I ATO! I ATOll ATOllI ATOI I
ATOM
ATOI I AT OI
ATOM
ATOlM ATOI I ATOil AT Cii I ATOI I
ATOII
ATOllI AT OI ATOllI AT01lI ATOI I ATOIlI ATOI I ATOI I
ATOII
ATOI I ATOI I ATc'i ATODI I 38032 38341 3835 3836 3837 3838 3839 3840 3841 3843 3844 3845 3846 3847 3848 3850 3851 385El2 3853 3854 3855 3856 3857 3859 3860 3861 3862 3863 3864 3865 3866 3868 3869 3870 3871 3872 3873 3875 3876 38 7 7 3878 3879 3880 3881 3882 3884 3885 3886 3887 3888 3890 3993 3 8 9 1 3896 38 97 3900 3903 3904 3905 3907 3908 3909 3910 3911 3914 3915 3 91 C 3918 3*19 3920 3921 3922 3923 3924 3925 3 927 3928 3929 3931 3932 3933 3934 3 93 6 35. 297 34.975 36.2'79 36. 971 37.981 38.286 38.6413 36.719 37.488 39. 212 39.546 39.8920 3 4 .22 3 34.408 33. 503 32.9417 31 .918 30.853 31 .177 29. 693 34 .005 34.245 34 .149 35. 412 35.859 36. 504 37.-294 37 .688 37.7C,3 36.460 37.165 38.477 38.471 38.860 35.034 35.387 34.281 33. 771 32 .352 32.274 33.306 31.130 33.730 34.245 33.239 33. 176r 31. 9413 34 445 34. 470 35.433 3C.5'41 36.165 35. -157 35. 362 3 6. 281 37.56 4 38. 169 38.309 37.880 37. 989 38. 958 40.311 40. 938 41. 986 41.813 43.028 41 257 4 1.251 42 .0411 42.9 42.153 42. 992 43.4-88 0 c4 44.-1 51 44.141 4 5. 28 1 4 6. 588 4 7. 4 54 46C. 87 0 4 8.909, 4 7. 426C 47. 38E2 4 8 .9077 .18. 8917 G63. 14 0 63.090 G62. 953 5897 61 917 60.517 59.467 59.160 c61. 19 9 59. 857 64 .389 65.44 9 64 .418 65. 668 C5. 34 3 66.17 67 .6C25 65 979 66.6C07 6C6.672 67.588 68.588 69.4109 68 .509 67 .34C 66. 813 66.710 68 .622 67 .617 65. 6G2 65.573 C5. 051.
69. 517 70.7109 69.063 69. 861 70.365 71.612 72.285 71 .854 68. 906 69.224 67.709 66. 671 65". 80 5 (5.840 6. B 23 C6.: 073 65. 1510 62. 9510 61 688 60. 66.- 60. 583 61i 4 41 59. 616 C5.74 9 65.081 635. 556 66.240 67 .24 2 C8.429 66 .821 64 .468 03.374 C. 793 63.872 63.250 6. 205 r2. 44, 64 599 65.809 63. 90 3 64 .462 6 4 676 C5. 746 C6,. 103 6 3. 565' 62.35-4 64 .245 63 562 38/58 37 .690 39. 097 39.933 39.737 38.784 39.002 37.7641 ,10.459 40.032 38. 24 9 3 7 .026 37. 263 39.429 38.808 40.551 41 .068 42.151 42. 306 42. 297 42. 4 54~ 41 .607 42. 811 40. 846C 41.291 40.063 39.047 39. 322 38.081 4 0.50C6 37. 694 371. 111 37 982 40.392 39.133 42. 420 42. 504 43.393 44 .496 44 .262 43.409 43.207 ,42. 955 45.693 4C .743 45.460 46.451 46.133 4 459 471.185 45 .577 4 5 400 44 .297 44 .921 44.113 44. .607 4 4 .27 9 43. 469 44 .770 415. 04 8 44 .410 45".4 53 45. 173 46.388 45.947 46G. 24 0 4 25S3 44 .654 4 3. 650 4 2. 9 47 4 1. 7,68 40. 704 4 1. -I9l7 39.486 42. 485 42.370 42 .424 4 2. 131 43.385 44 .157 .13. 162 4 1.218 41 317 4 288 39. 291 1.00 54.58 1 .00 59.76 1.00 59. 56 1.00 58. 17 1.00 53.18 1.00 56.61 1.00 43.25 1.00 53.50 1.00 57,.66 1.00 51. 44 1.00 53.69 1.00 50.75S 1.00 64.09 1.00 61.98 1.00 68.85 1.00 67.83 1.00 72. 19 1.00 73. 08 1.00 71 .67 1.00 75.08 1.00 66.63 1.00 67. 18 1.00 69.29 1.00 77.11 1.00 79.10 1.00 82.59 1.00 84 .82 1.00 84.56 1.00 80. 95 1.90 83. 37 1.00 80.33 1.00 85.91 1.00 86.36 1.00 85.05 1. 00 81.60 1.00 84. 57 1.00 84 .45 1.00 87.48 1.00 88.04 1.00 92.54 1 .00 94 .82 1.00 95.26 1.00 87.80 1.00 92.18 1 .00 84. 46 1 .00 82. 87 1.00 76. 32 1.00 85.77 1.00 89.38 1.00) 83.74 1.01) 79. 60 1. 030 77 .84 7 .00r 81.91 1. 00 86. 97 100 86. 94 1 .00 92. 14 1.00 97.06 1.00 96.33 1.00 76.72 1.00 77.47 1.00 75.75 1.03 73.79 1.00 74.46 1.00 82.51 1.00 90.33 1 .00 84 .46 1.00 65. 97 1.00 63.82 100 61.41 100 60.90 ±00 62. 98 1.0 5 7 7 1 .00 54.06 1.00 55.74 1.00 61.19 1.00 60.64 1.00 63.74 1.00 60.44 1.00O 67.08 1.00 74 .29 1. 00 48. 56 1.00 56.62 10 5.99 1 .00I 53. 97 1 .00 53. 2 9 AAAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAN(. C AAAA CI AAAA 11 AAAA C
AAAAC
AAAA C AAAA 0 AAA 0i AAAA 11 AAAA C AAAA C AAAA 0 AAAA 0 AAAA 0 AAAA 0
IIA
AAAA C1 AAAA C AAAA C AAAA c AAAA C AAJIA C AAAA C AAAA Ci AAAA ti AAAA C AAAA C AAAA C AAAA C AAAA Ii AAAA 11 AAAA C AAAA C AAAA C AAAA 0 AAAA 0~ AAAA 0 AAA 0 AAAA 11 AAAA 'C AAAA C AAA.A C AAAA 0i AZAAA li
AAAA
AAAA C
AAAA
AAA
AAAA 1C
AAA
AAA NI AAAA C AAAA 0: AAAA C) AAAA C1 AAAA C AAAA C AAAA C AAA 0i AAAA C1 AAAA C AAA C' AAAA 11 AAAP. C AAAA C AAAJ' 2 AAAA C AAAA C AAAA 0 AAWA li AAAA C~ AAAA C AAAA 0 AAAA C ;%AAA C AAAA~ 0
WAA;
C
WO 99/28347 PCT/AU98/00998 ATOf I ATOMl AT01 I ATollI AToll1
ATOM
AT01ll AT01ll
ATOM
ATOMl ATOM1 AT01ll
ATOM
ATOMl AT01-l ATOll ATOI I ATOM1 AT01ll AToll1 ATollI AT0 OI ATOI I ATOI I AT01lI AT01ll AToll ATOI I ATOll ATOI I ATOI I AToll AToll1
ATOM
ATollI ATollI ATOll
ATOM
ATO1i ATOlM
ATOM
ATOHl
ATOM
ATOM
AT01lI
ATOM
ATOll
ATOM-
ATOM
ATOI I
ATO!
AToll ATO1I
ATODI
ATrOlI AT01ll AT01ll
ATOM-
ATOI I ATOM1 ATO! I ATO! I
ATOM
ATOMl ATOll ATOI I ATOI I AT OI ATOM1 AT0 OI AT O1l AT01lI AT01ll ATOI I AT01 I ATOI I AT O1l
ATOM
AT Oil AT Oil AT OH ATOI I ATOI I AT01 I ATOI I 39371 3938 3939 39-10 3941 3942 3943 3945 39,16 3947 3949 3 950 3951 3953 3954' 3955 3956 3957 3959 3960 3961 3962 3964' 3965 3966 3967 3968 3969 3973 3974 3975 3 977 3978 3979 3980 3981 3982 3983 3984 3986 3987 3988 3989 3990 3991 3992 3993 3994' 3996 3997 3998 -1000 -100 1 4 002 -4003 .1004 -1005 4006 4007 '1008 -1009 -1010 4012 '4013 4014 4015 -1016 4018 4019 .1020 -1021 '4022 4023 4024 4025 4 026 4027 4028 4030 -1031 4032 -1033 4034 4103'7 -1038 CB ILE C 32 ILE CGI ILE CD1I LiE c I LE 0 ILE 11 SER CA SER CBl SER 00 SER C SER O- SER 1.1 ALA CA ALA CB ALA
ALA
ALA
if GLI' CA GLY C
GLY
GLY~
11 LYS CA LYS CB LYS CG LYS CD LYS CE LYS 11Z LYS C LYS O LYS If HIET CA METr CB IlIET CG M ET SD H-ET CE H-ET C MET 0 IHET I I TY R CA TYR CB TYR CG TYR CDl TrYR CEl TYR CD2 TYR CE2 TYR C 7 TYR O0H TYR C TYR o TYR I I PE 'A PHE F-1i E CG PHlE CMl PHE C02 PHE CEI PME CE2 PE C Z PE C PE 0 PEE I i ALA CA ALA CB ALA C ALA 0 ALA I I PHlE CA PHlE COB PHlE C-3 PHlE CDl PME C02 PHlE CE1 PH-E CE2 PHlE C Z PHlE C PHlE 0 PHlE HI ASI I CA ASH CB ASH CG ASI: 001 ASI 1102 AS] C AS11 0) ASh 48.-109 -19.216 46G. 911 16.322 50.319 50.656 51.073 52.434 53.07] 53.756 53.326 54.08] 53.254 54 064 55.334 53. 301 52.495 53. 675 53.057 52.017 51.684 51.385 50.289 50.884 51.198 52.288 52. 785 52. 426 -19. 110 4 9. 077 48. 091 46. 890 45.629 45.836 44.511 4-1 00C2 46. 623 46. 963 45.893 4 5.355 46.156 45.583 45.730 45.196 44 .884 44.379 44.535 44 .053 43.853 43. 376 43.068 41 64 4 40.772 40.675 4 1 .5 52 39.638 41.402 39.486 40. 358 41.251 41.375 40.55I 40. 015 41.090 38. 8 37 38. 871 37. 829 36G. 74 2 37 .157 37.832 39. 221 37.- 006 39.783 37. 572 38. 964 35. '162 35.352 35. 459 34 .477 35c. 183 36. 407 36. 42 G 3-7 541 33. 432' 33. 6 17 63. 85-1 63. 121U 63.489 6:3. 547 64 .0183 65. 179 63. 182 63. 502 62. 210 62 .536 63 910 64 .8-76 63. 124 63. 4 02 62.520 63. 07 8 62 .16U 63.690 63.454 64. 524 65. 370 64 .406 65.317 66.358 65.855 66. 691 66.15] 67.032 64 .576 63.3371 65.353 64 .734I 65. 186 65.880 65.636 67 .366 65.064 66.137 64 .169 64 .387 63. 471 63.430 64 .501 64. 429 62.321 62. 241 63.292 63. 361 64 065 62. 974 64. 971 64 .7C'1 65. 657 65. 264 C5. 68 S 64..117 65.291 64 .023 64 .454 64.730 65.762 C-3. 713 63.793 C3. 562 62. 846 61 .628 63.398 C-2 .621 61 .430 61i 909 61.- 987 62. 3-15 G2 .4 96 62.-833 G2. 928 62.14C 60. 991 63. 024 62. 960 63. 276 62 4 01 61 1,17 C3. 101 C4. 069 65. 233 39/5 8 37 864 36. 806 37.729 36.338 39. 568 39.291 -10.270 -10.689 41 218 42. 434 39. 523 39.527 38. 438 37. 281 37.365 35.994 35.998 34.895 33.607 33. 294 34 .114 32.138 31.759 30. 833 29. 429 28.765 27.-4-11 26.284 31.115 31.036 30. 7'71 30. 186 30.949 32. 273 33. 517 33.690 28 '728 28.247 28. 104 26. 765 25. 831 24.423 23. 511 22.253 24.005 22.722 21.872 20. 552 26. 698 27.135 2 6. 100 25.io1 26. 7 30 28. 17, 29.332 28. 54 4 32. 440 29. 84 5 30. 801 24.440 23. 812 23.936 22.607 21.555s 22.366 22. 557 2 1. 618 21.070 20.180 18.912 18.751 17.87-,1 17?. 567 1C. 725 16.549 22 126 22. 215S 23.049 24. 112 25.4-49 25. 654 25.-714 7 32 23.8635 24 .2 Z-7 1.00 49. 81 100- 30.86 1.00 10.83 1 .00 38.5'1 1.00 55. 38 1.00 57.59 1 .00 54. 2C 1.00 54 .46 1.00 55.78 1.00 6 7.12 1 .00 55.52 1.00 551.04 1.00 50. 12 1.00 50.01 1.00 34 9 1.00 48 .71 1.00 48 .81 1.00 47. 92 1.00 51.7 5 1.00 52.77 1.00 53.23 1.00 516.31 1.00 52.19 1.00 50. 94 1 .00 54 .39 1.00 53.96 1.00 56.01 1.00 66.36 1.00 50.04 1.00 49. 77 1.00 48. 34 1.00 416.77 1 .00 1 2 7C.
1.00 40. 91 1.00 56.20 1.00 35.91 1 .00 40.40 1.00 34.81 1 .00 38.49 3.00 39.50 1.00 32.02 1.00 39-148 1.00 39.29 1.00 34 .56 1.00 36.81 1.00 38.80 1.00 44 .20 1.00 58.10 1.00 44 .18 1.00 42.19 1.00 '15.84 1.00 45.87 1.00 .17.19 1.00 43.44 1.00 38.43 1 .00 5,1. 21 1 .00 46.44 1.00 4 6. 63 1.00 44 .68 1 .00 44 .64 1.00 47.69 1.00 43.06 1.00 39.21 1.00 30.88 1 .00 41 .77 1.00 36.08 1 .00 410. 41 1.00 '40.03 1 .00 '15.5.1 1 54. 18 .1 .00 4 9.23 1 .00 47.65 1.00 4 .(r 51.1i0 1.00 144.0C1 1 .00 41 65 1 .00 38.35 1.00 45.35 1 .00 46.86 1.00 43.60 1.00 47.9,-.
1 .30 4 4. e3 1 .0-0 371.1-0 1.00 47?.81- 1.00 38.',5 ,AA C: AAAAr CI AAAA C AAAA C AAAA C AAAA 0 WAAIlI AAAA C AAAA C AA.AA 0 AAAA C AAAA 0 AAA 11 AAAA C AAAA C AAA-A. C AAAA 0 WAAl1 AAAA C AAAA C AAAA 0 AAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C WAAl1 AAAA C AAAA 0 WvZA 1l A.AAA C AAAA C AAA.A C AAAA S AAAA C AAAA C AAAA 0 WAA 11 AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AlAAA C AAA 0 WAAIl AlA~a. '2- AAAA C AAAA C ;!-AAA C AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 AAA 11 AAAA C AAAA C AAAA C AAAA 0 WAAl1 A.AAA C AAAA C AAk C 7-AAlA c AAAA C ?IAAA C AAAA C .\AAA C WAA C WAA 0 WAA 11 WAA C WAA C ,AAAA C AA-D 0 tWtA AAAA Cr AAAA 0 WO 99/28347 PCT/AU98/00998 40/58
ATOM
ATO: I ATOI I ATOMl AT Oili ATOl
ATOM
ATOI I ATroi i ATOl ATOMl ATOI I
ATOM
ATOI I
ATOM
ATOI I AToll
ATOM
ATOll ATOllI ATOHl
ATOM~
ATOI I AT Oll ATOI I
ATOM
ATOM
ATOll1 ATOll ATOI I
ATO-
ATOMl ATOll AToll AT 01-
ATOM-
ATOI I ATOllI
ATOM
ATOM
ATOMl ATOll AT0l-1 ATOll ATOI I ATOll1 ATOlM AToll1 ATOI I ATOI I ATOll ATOI I ATOI I ATOI I Arol i ATOllI ATOI I AT01lI ATO 01 ATOlI AToll ATOI I ATOll
ATOM
AT01lI ATOI I
ATOM
ATOI I ATOI I ATOMl ATOI I ATOlI ATollI
ATOH
ATOI I ATOI I ATOI I ATOll AT01ll ATOI I ATOI I ATOI I ATOI I ATOI I A 1'I11 -I '739 4040 404 1 4042 4043 40144 4045 4046 4 04 B 4049 4050 4051 4052 -1053 4057 41058 4059 41061 4062 4063 4 064 4065 4066 4 067 4068 4070 4071 4072 407- 4 C7 4 4075 4077 4078 40C7 9 4080 4081 4082 4083 4085 1086 4 087 4089 4 090 4091 4093 4094 4095 .1096 40)97 4098 4099 4 100 4101 -4103 4 1)4 41 05 41 106 4 10*7 4108 4109 4110 4 112 *1 113 4114 '1115 4116 4 117 1118 4 119 41l20 4 122 4123 4 12 4 4 12'6 4 127 4128 .1129 4130 4132 4133 4 136 1 1 .1C.
4 14 1 -14 3 I I PRO
PRO
CA PRO C a PRO CG PRO C PRO O PRO I I LYS C.7 LYS CBI LYS C-3 LI'S C E LY'S C LYS O LYS CA LEO CB1 LEO CIS LEU CDl LELI C D2 LEU c LEO 0 LEO HI CYS CA CY S C C'S O CY S C2I CYS SC, CY1S I VAL CA VAL CB VAL C'G VAL CG2 VAL C VAL
VAL
I I SER CA SER C B SER 0(1 SER C SER 0 SER I I GLO CA GLLI C B GLO CO G LO CD GLU OEI GLU.
OE21 GLO C GLU '511 I I I LE CA ILE CBIL 1E C G2 1LE CII LiE CD1 ILE c ILE O ILE 11 TlYR CA TYR C B TYR C G TYR CDIl TYR CEI TY R CD2 TY R CE2 TYR C :TYR OH T" R C TYR O TlYR I ARG CA ARG C B ARG CG ARG C D AR'S lIE ARO CZ AR:-; I1H1 ARG I1H2 AR:-; C AR'G Z ARG
NIET
CA IlET 32. 453 32. 213 31.463 30. 731 30.947 30.577 30. 223 30.320 28 556 28.209 26.743 26.030 25.949 30.158 29.582 31.425 32.261 33.463 34 .390 33. 821 35.825 32.709 33.696 31.995 32.3,12 33.771 341.288 31. 249 35. 943 36. 641 36. 715 35. 962 36.1ic' 37.180 35.090 35.091 33.68.1 34.088 35.1515 36.332 34 .965 35.384 34.594 33. 115 32.785 32.729 32.501 36. 8707 37. .671 37.265 38. 631 38. 759c 40.2517 37. 9C68 38.038 39.498 40. 5921 38. 987 39.7219 39.180 39.538 38. 6S3 38.953 40.810 4 1.15 4 0. 221 40.56.1 39.779 40. 6541 38.819 38. 747 37.348 3-7.3-15 37.270 37. 698 36. 835 35. 610 37.021Z 39.'718 4 -637 39. 5.11 40. 43-7 63. 777 62. 423 64.776 641.084 C2. 623 65.284 66.486 64 '87 64 908 6 3. 7 21 62. 810 C3. 3741 G-1.748 CS. 482 65.478 65.859 66.162 65.250 C5.7-4 8 65.362 65. 27 6 67.585 67. 861 68.488 69. 916 JO 119 69.665 70). 641 71. 303 70. 953 7 1 .14 9 72.022 71.413 7 3.365 711. 711 71.724 72.361 72. 927 73.499 74.860 71.972 72.328 70. 771 69. 753 68.4'85 68.560 68. 560 C7. 522 69 .686 69.4.85 69. 696c 619.26 60.038 68.933 68. 915 67 .719 67.5 70.166C 70. 01l7 71.384 72.543 73.822 74 .006 7 3. 821 73.977 '1.401 57 5 74 .359 '7 4.54 "12. 6 34 713. 321 72.0,43 71.748 '71 .815 73. 279 73.472 "13. '59 -12 872 73. 371 70. 986 6~8. 7 03 22.372 22.605 21.446 23.3735 23. 744 24 .774 2 5. 8C5 2 6. 360 251.196 L-1 .99G 24. 021 27. 071 28.152 26. 862 28. 017 28.2371 2 9.370 30.734 29. 123 27.878 27.201 28. 492 28.406 28.910 29. 831 2 9. 214 28. 086, 28.102 28.358 27.310 21'.925 27. 239 2 9.757 30.388 3 0. 2 67 31.599 31.864 32.098 32. 701 33.573 32. 618 33. 585 33. 2,1I0 33.537 35.023 35'. 722 35. 517 23-4 207 3.16305 31.7P9 26C3 28.225 32. 323 3 2. 867- 32. 200 32.719 327.099 30.639 29.599 28. 270 28 93 7 34. 241 34. 758 34 .90'7 3 6. 35 6 36. 898 38.-130 3S. 860 40.258 41 .2E9 40.867 2 42- 5(67 8 77 37.62 36-. 305S 36G. C52 4-7.86 1.00 44 .11 1.00 '17.85 1.00 44 .86 1.00 43.01 1.00 51 .16c 1.00 '18.54 1.00 52.90 .1.00 58.82 1.00 52. 93 1.00 70.55 1.00 73.79 1.00 77.06 1 .00 64 9 1.00 57 .43 1.00 55.2" 1.00 55.95 1.00 57.07 1.00 49.16 1.00 68.27 1.00 60.66 1 .00 60. 35 1 .00 56.29 1 .00 59. 98 1.00 58.76 1 .00 60.39 1.00 62.59 1.00 64 .45 1.00 68.23 1.00 81.03 1.00 65.31 1 .00 65.49 1.00 66.66 1.00 62. 49 1.00 60.92 1.00 G5. 9S 1.00 64.51 1.00 67.67 1.00 66.85 1.00 61.16 1.00 67.05 1.00 64.21 1.00 63.66 1 .00 58.75 1.00 63.39 1.00 68.67 1.00 66.59 1.00 72.33 1.00 81.62 1.00 70(. 97 1.00 61.63 1.00 62.03 1.00 6 1..2 C 1.00 61.09 1.00 59.32 1.00 45.93 1.00 57.66 1.00 53.48 1.00 61.90 1.00 61.28 1.00 65.31 1.00 68.10 1.00 71.02 1.00 75.98 1.00 77.60 1.00 75.72 1.00 75.95 1 .00 74 .81 1.00 78.51 1.00 8 5.4 0' 1.00 63.72 1.00 58.26 1 .00 65. 53 1.00 68.15 1.00 '73.32 1.00 82.99 1.00 88.39 1.00 92. 48 1.00 94.93 1.00 87 .4 0 1.00 95.17 1.00 67.75 1 .00 66.74 1.00 63.87 1.00 64.4'.- AA iI AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 0 ZAAA I I AAAA C AAAA C AAAA C AAAA C ,%A.AA C AAAM HI AAAA C AAAA 0 A.M.A 11 AAAA C AAAA C liALAA C AAAA C A-AAA C '-AAA C AAAA 0 AAAA 11 AAAA C AAAA C A-DAA 0 AAAA C )aAAA S AAAA 1-1 A.AAA C AAAA C ?.AAA C AAAA C AAAA C AAAA 0 AAA 1 AAAA C A.M.A C A.M.A 0 AAAA C AAAA 0 AAAA 11 AAAA C AAAA C LAAA C AAAA C AAAA 0 A?.AA 0 A AAA C AM. C' z IIA 1 AA.AA C A~AAA C AAAA C AAAA C AAAA C A.AAA C .MAA 0 AAAA 11 -AM.A C NkAA C AAAA C AAAA C AAAVA C zaAAA C AAAA C
PAAA
AAsAA C' kLAkA C AA.AA 0 A.AAA 11 LAMA C AAAA C APAA C AA.A C A.M.A 11 AAAA C IIA 1 AAA I I AMA C r'AAAv 0 ->JPAA 11
,AAA
WO 99/28347 PCT/AU98/00998
ATOII
ATOiI ATOI I ATOI I ATOI I ATOllI ATOI I ATOI I ATOI I ATOI I ATOI I ATOlI ATO1I AT01lI
ATOT
ATOM
A'Ot I ATOMl
ATOM
ATOM
ATOM4- Al01l1 AT01 ATrOll
ATOM-
ATO1I ATO1 I ATll ATOI I AT1OI I AT01lI AT01ll ATOI I ATOll
ATOM
ATrcll~
ATOH
ATOI I
ATOM
ATOJ I
ATOM
ATOM
ATOM.
ATOll
ATOM
ATOM
ATOM
ATOll AToll1 ATOIlI ATOI I AT 01I ATOI I AT01I ATO 01 AT01I AT01lI AToI I ATOr ATOI I ATOIl ATollI ATOI I AT01lI ATOM1 ATOMl ATOI I ATOI I ATroi i AToll
ATOM
ATOM~
ATOM
ATOM4- AToll ATOI I AToll1 Alrol ATOI I ATOI I ATOI I
ATOM
ATOI I ATOI I ATOI I -414 4 41-46 .41,17 41.49 4150 .415.2 4153 4 155 .4156 '4157 '1159 4160 4 162 .4163 41C4 .416c6 4 167 4169 4172 417 4 -177 -1178 4180 .4 191 4182 4184 4185 -4186 4187 4189 4190 4191 41 92 4194 4195 4 196 4198 .1199 4200 -4201 4 4 Z0, 4 2 4 16 42 17 4218 4219 4221 -4222 .1225 41227 4231 12 3-1 -42-35 423C 4238 -1239 .4242 ,1243 4247 _;42.4-8 4215 0 -4211 CBI IIET C3 hIET SO IlETr CE I IET C M ET O I IET I i G.L CA G4.0 CO3 'ILl CIS GIL.I C D GUI1 OIl1 CLI 0412 GLU C GLU 61,0 I I GLI CA GL1' CB 61.0 CO: 61.1 C D GLU OE1 '31.0 0412 GI,'J1 C GLL' O 61.1 SI VAL CA VAL, C B VAL CG I VAL C642 VAL C7 VAL 0 'IAL I4 I THR CA TIIR CB TimR 061 TIIR CG2 TIIR C T44R 0 TIIR II CLY C A GLY C GLY 0 GLY I4I T4IR CA THR C B T4IR 0631 T4IR CG2 T14R C rHR O THR I4I LY S CA LYS C!3 LYS CG LYS "CL LY S "CE LYS lI Z LYS C LYS 0 LYS I I G LY CA 6 LY C CLY (D 'SLY I I ARC CA ARC G B ARC CG ARC CI) ARC HE1 ARG C Z ARC IIHI ARC IIH? ARG C ARG 0 ARG I I GLIi CA 631.11
GLII
CG GLII C D GLII 0411 CLII 44412 6L44 C GLIl
GUCI
I I ALA C A ALA, C B A LA 4 0.23T! -11 .254 40.829 -41 .582 41 .891 *12. 530 .42. 331 4 3. 622 704 44.121 .44 .623 44.718 4.4.905 4 4 .016 .15. 133 43.178 43.50OS 42 .4 r,8 41. 191 3 9. 52 1 4 0. 080 43.675 44.728 42.C70 .42.711 41 .411 4 1 5.47 -4 0.203 43. 939 .44 667 44 .282 45. 335 45. 199 44. 913 .44.108 46.701 47 714 46.836 48. 102 48.800 ~49. 983 48. 112 48.731 46. 600 48.208 48. 590 4 9. 003 418.089 .17. 927 47. 114 4G. 677 4 5. 832 .14.3 Rs38 43.667 4 9. 249 4 9. 996 49. 517 51.733 52. 684 51. 445 52 .34 3 '12 .617 51.847 52. 061) 52 244 52. 326 52.2,58 L2. 468 51.760 52.195 50.732 -49. 959 48.457 4 7. 669 47 .623 47 .71.
471.477 SO. 326 510. 227 50.474 50. G-43 5J1. 104 67.!2 66. 4 26 64. 925 681 69. 170 68. 99: 69. 811 70.469 71 .506 70. 967 72. 14 9 73. 22-1 72.050 '71.219 71.083 72 .120 72. 873 73. 916 73.956 75. 00C4 7'4 928 75. 941 7.1.886 71 .858 71 .095 S0. 129) 69. 2 17 68. 2141 70.073 -39.2"53 69. 165 68.5$06 (7.516 66. 565 67.2,83 65 .5,2 6 68.184 67 490 6 9. 496 '70. 164 69. 864 '70. 254 69. 3871 69. 169 6B. 027 68.385 66.659 70. 4 15 70C. 543 71.-4 81 72. 75-7 73 708 74.938 75. 942 75.475 76. 4 31 73 .396 73. 986 7 3.4 '4 3 7 4 16-, 73. 20-1 73.650 711 .908 70. 945' 6 9. 74 0 r69.6G9r5 68.314 68.39 5 67 .357 66.1 147 (7 .59C 70.4 46 69 424 71.114 7 0. 646G 10. 87S 69.576 69.028 67. 822 6,9. 9071 71.359 7 2 .56c9 70. 55114 _?I.14e 70.1Ile 41/5 8 35. '?151 3S. 971 35. 1.12 36. 137 37 .653 35. 510 3..401 33.0418 32. 2-12 874 31 .042 36.781.
37. 280 38. 485 38. 840 38. 032 38. .432 3 9. 505 37.583 39.6G32 .10. 2 51 39. 926 -41. 001 40. 972 42.104 4.018 -42.03- 39. 988 39. 936 38.736 37.503 38. 901 39. 930 40. 024 39. 83S 39.7419 3 B.42I1 38.245 37 .380 36.076C 35.411 35. 731 3C6.019 35 220 3-4 .070 35. 822 3'S. 154 36. 034 3' 265 36 01 4 36. 182 37. 100 34 .7S2 35.541 33 1-21 33.0C14 32.389 31 .822 32. 43 6 31.831 32.7.16 34.-003 34 .595 36. 030 36.831 36. 395 318 128 3 0. 5 ,11 3 0. 01 2 30. 04 3 10. 91-4 30.6C07 30.868 31 .584 .C27 -7 5 3 C-6.5'7$ 1."0 1 -40.18 1.00 64.6$ 1.00 65.88 1.01 65.78 1.00 69.16 1.00 69.58 1.00 76.91 1.00 82.02 1.00 86.82 1.00 88.26 1.00 71.29 1.00 74.29 1.00 72.93 1.60, 72.86 1.00 81.36 1.00 83.34 1.10 9-7. 32 1.00 97.34 1.00 99.95 1.00 71.46 1.00 78.49 1.00- 66.34 1 .00c 62.49 1.00 60.38 1.00 52.32 1.00 50.79 1 6 0.74 1.00 62.37 1 .0f-0 60.67 1.00 56.36 1.00 50.92 1.00 47.03 1.00 54.38 1.00 60.55 1..00 60.61 1.00 60.65 1.00 59.47 3.00 64.78 1.00 62.70 1.00 63.79 1.00 65.09 1.00 C6.87 1.00 62.2 1. 00 68.714 1.00 66.14 1.00 C18.05 1.00 67.37 1-071.08 1. r; 69.23 4.2 77.26 I .0OF 87.1 1.00 93.8-1 1.00 73.01 1.C-0 7'4.60 1.00 73.33 1. 00 71.39 1.00 71.20 1.00 72.70 1 00 72.99 1.00 74.12 1.0 6D 9.4 4 1.0 0 63.34 1.00 67.64 1 .03 62 C' 1.00 59.21 1.00) 60. 57 1.00 73.'_0 1.-00 74.73 1 .00 74.601 1.00 75.13 1.00 68.73 1. C0 12 1.00 -70,98 !.T7 78.66 1 81.S4 ~AAJ\ C kAAA C AAAA S AAAA C ;,rAAA C .rv.AA 0 ka.M.A C AAAA C t AAA C A,0AA C AAAA 0 AAAA 0 AAAA C AAAA 0 AAAA I4I AAAA C AAAA C AAAA C .'\AAA C AAAA 0 AAAA 0 AAAA C AAAA 0 AAAA II AAAA C AAAA C AAtAA C AAAm C AAAA C AAAA 0 AAAA I I A.M.A C AAAA C AAAA 0 AA.AA C AAAA C AAAA 0 AA. 14 A.M.A C AAAA C AAAA 0 AAAA I44 AAAA C AAAA C AA.M.A 0 AAAA C AAAA C AAAA 0 AAMA 4II ,aJAA C ;-JA.A C A.AAA C AAAA C A.M.A C AAAA I4I AA AA C AAAA 0 44A AAAA C AAkAA C AAAA 0 44A AAAA C AAAA C AAAA C AAAA C A.M.,A I I AAAA C AAAA I I AAAA I4I AAPA C AAAA 0 44A AAAA C AAAA C AAAA C AAAA C A.M.A 0) AAAA I4I AAAA C aJ'AA 0 AAAA I4I TAAAA C kAA C WO 99/28347 PCT/AU98/00998 ATOI l ATOllI ATOI I ATOI I ATOI I
ATOH
ATOI I ATOllI ATOI I ATOI l ATOll AT OM ATOllI
ATOMI
ATOll
ATOM-
ATOM
ATOll ATOM1 AT Oil ATO14 ATOI I AT Oil ATOllI ATOI I ATOllI AT011l ATOIll ATOt ATOI I ATOI I ATOI I ATOllI ATOI I
ATOH
ATOll AToll
ATOM-
ATOllI ATOlM ATOMl ATOll ATOMl ATOll ATOll AToll ATOll ATOI I ATOllI ATOllI AToll ATOI I ATOI I ATOllI ATollI
ATOM
ATOI I ATOllI ATroi I ATOI I ATOllI ATOI I ATOI I ATOI I ATOI I ATOI I ATOllI ATOll ATOllI ATOI I ATOI I ATOllI ATOI I ATOllI ATO OI ATOI I ATOI I ATOllI ATOI I ATOM1- AT Oi ATOI I ATOI I ATOil ATO! I 4 2 IL3 -1 56 4 257 4 2 58 12 5 9 I1 60 42'61 42 c 5 4266 4 26C7 4269 4270 4271 4272 4274 42715 4 27 6 4 277 4278 42' 79 4280 4281 4 2 83 42841 4 285 12 286c 4 28'7 -128 8 .1289 4290 '12 92 ,1293 '1294' 41295 4 2 96 41299 41300 41301 4303 -1304 4305 41307 .1308 4309 4310 -1312 4313 4314 4315 -1316 -1318 4 319 -1322 4325 4326 4327 4329 ,1330 41331 -1332 4333 4 336 4337 4338 4 34 C, 4341 4342 -1343 4 34 4 4347 ,1348 ,1349 4351 4352 41353 4354 4356 4357 4358 4359 4 360Q 4 3';1 .13C62 C d 0
CAI
CBI
,G
CD
CE
C
O
CA
CA
0
CA
CB
CG
001 0 D-
CA
02 011
CA
C8 CG2 001 1102
C
0 11
CA
GB
06D2
C
0
CA
CB
CO
00
CA
CB
CGB
CD
C:
IIH
cA 08 112
CA
CB
CG
O
CO
00 11
CA:
4413 4-13 -144 444 444 -1 4-4 444 4 -14 445 445 445 445 446 4146 4146 446 446 446 44 6 446 -1-17 447 4-17 4 '17 447 447 44-7 4.17 448 4-18 4148 4 '18 448 448 448 4 '18 449 44 9 449 449 449 44 9 44 9 450 450 450 450 4S0 4 50 4 r") 4 50
-ISO)
450 450 451 451 411 4 51 451 451 451- 4152 -152 -1S 2 ,152 4152 4 52 4S2 -153 453 4153 453 4514 454 4 54 454 -1 54 45 4 -1541 -1514 19. 2S9 48. 398 -18. 914 47 .559 47 426 46. 673 45. 883 46.390 45.368 46.659 45.4'28 47 .214 46.368 45. 803 44.- 963 46.300 45. 914 46. 754 48.21 3 48.693 49.091 441.438 43.610 44 .0-13 4 2 .652 -12 .505 41 .0330 43. 211 43. 468 -12.027.
41. 718 41.625 41.013 41.283 40.415 39.287 40. 990 39. 518 38.816 39. 071 37. 682 37.497 37.913 38.354 36.920 35. 750 37 .539 36.887 37 .845 38.385 39.487 7 OC' -11 .544 41 .176 4 2. C601 36. 267 35. 186 36.800O 36. 1071 36. 725 38. 243 38.779 38.707 35.849 35. 330 3 6. 126 35.769 36. 9417 37 936 37.646 39. 153 3-1 603 34 .78-5 33. 444 32.313 31. 500 30.302 31.910 31 266 31.739 32. 348 32. 36B 31 368 33. 417 2 9. 762 42/58 71.706 24.952 77.1 25.830 72.052 23.713 72.524 23.482 -73.997 23.128 74.731 24.2,11 ?3.841 25.186 73.7866 26.614 73.090 27.473 71.779 22.508 71.901 22.635 70.734 21.916 69.786 21.208 68.844 22.260 67.993 21.940 68.981 23.492 68.174 24.6412 68.552 25.873 68.169 25.801 C-7.385 2 4 946 68.595 2.9 68.274 25.0316 67.369 25.127 69.527 25.226 C9.822 25.510 70.502 26.877 70.663 27.182 69.C21 2-7.932 70.32? 29.237 591 24 .364 '71.772 24.423 (9.915 23.307 70,642 22.202 69.982 20.863 68.786 20.577 68.977 20.113 67.622 20.871 70.824 22.402 69.974 22.939 71.917 21 7 64 72.351 21.901 '73.845 22.169 74.485 20.943 7-1.352 23.310 72.053 20.628 72.381 20.473 '71.304 19.757 70.935 18.507 71.179 17.377 69.975 16.C45 70.51 15.696 70.719 IC.48S 69.757 16.882 6.8.5.72 16.466 70.001 17.61') 69.553 18.557 69.303 17.992 68.583 19.324 67.311 19.434I 66. 12 7 18 760;( 66.143 18.'161 66.279 19.855 65.976 17.506 66.854 20.869 65.'750 21.,096 67.668 21.851 67.485 23.229 67 .873 2.3 66.736 24.295 65.633 Z4.735 671.098 23.85 68.385 23.688 69.C29 23.657 67.813 23.985 68.658 '24.296 69.269 23.174 C9.603 23.276 69.109 21.910 C9.5,13 20.690 68.818 19.401 67.430 19.738 6 6.6C2 18.454 66:.C37 1 0031.1' 69.30j1 .676 1. 00 83.73 1.00 83.87 1.00 86.20 1.00 85.88 1.00 83.99 1.00 93.60 1.00 95.14 1 .00 97.04 1.00 97.22 1.00 84 .20 1.00 85.63 1. 00 78.85 1.00 75.06 1.00 72.30 1 .00 74.90 1.00 67.97 1.00 62.81 1 .00 55.24 1.00 54 .07 1.00 -15.08 1.00 50. 12- 1.00 58.07 1.00 55.59 1.00 54 .13 1.00 54 .09 1 .00 48. 92 1.00 -41.02 1 .00 52. 36 1 .00 48.47 1.00 53.06 1 .00 56.08 1.00 53.171 1 .00 54.61 1.00 49.17 1 .00 49. 40 1.00 52.34 1.00 52.49 1.00 56. 44 1.00 55.83 1.00 58.52 1.00 58.62 1.00 55. 90 1.00 68.89 1.00 59.06 1.00 56.82 1.00 60.87 1 .00 55. 7C 1.00 54 .66 1 .00 48.33 1.00 54 .81 1.00 44. 92 1 .00 52.49 1.00 39.08 1.00 41. 07 1 .00 45.18 1.00 56.82 1.00 58.15 1.00 56.68 1.00 50.27 1.00 48.54 1.00 60.51 1.00 53.45 1.00 54 .88 1.00 52. 97 1.00 49.71 1 .0 5c11.98 1.00 55. 88 1.00 5-1.62 1 .00 60.96 1.00 51.30 1.00 56. 75 1.00 58. 11 1.00 55.07 1.00 55.08 1.00 59-17 1.00 64.95 1.00 65.71 1.00 6-7.44 1.00 63.63 1.00 53.71 1.00 49.50) -100 54.61 '01 54.1 0 .0 65.-4Il AAAA AAAA C1 AAAA C AAAA C A.AAA C AAAA C AAAA C AAA If AAAA C AAAA 0 A.AAA C A.AAA 0 AAAA C AAAA C AAAA 0 AAAA 0 A.AAA C AAAA 0 AAA I i AAAA C AAAA C AAAA C AAAA C AAAA C AAAA 2: AAAA 0 WAA1 AAAA C AAAA C AAAA C AAAA 0 WAAAIl
AAAAC
AAAA 0 WA 1 AAAA C AAAA C AAAA 0 AAAA C AAAA C AAAA C AAA 1; AAAA C
AAAA
AAAA C AAAA
WA
AAAA
AAAA 1: AAAA 0i
WAAAA
AAAA C AAAA C AAAA 0 AAAA 0i AAA Ci AAAA C AAAA 1: AAA C: AAAA C
WAAC
AAAA C AAAA i0 WAA r' AAAA C WAA 1.
AAAA
WA-
AAAA 0
WA-
AAAA
AAAA C AAAA AAAA C WO 99/28347 PCT/AU98/00998 AT01I AT01 I AT1 OI AT01 I AT O-l ATO? I
ATO!I
ATOM
ATOlM AT01ll
ATOM
AT01lI
ATOM
ATOMl ATOMl ATOMl AT01ll ATOMl
ATOM
AT O1l ATOI I AT 01- AT 01- AT OI ATOI I
ATOM
AT01ll AT Oil ATOI I AT0I I ATQIll ATOI I AT01 I
ATOM
ATOM
ATollI ATOMl ATOllI ATOMl ATOI I
ATOM
AToll AT01lI ATOll AToll1
ATOM'
AT011 AT01ll AT01ll ATOll AT0I I ATOI I AT01ll ATOI I ATOI I ATOI I AT01ll ATOI I ATOI I AT01lI ATOll AToll1 ATOI I AT01ll ATOI I AT01lI AT CII ATOllI ATO! I ATOI I AT 01 ATOI I ATOI I ATOI I ATOI I AT01 I ATOI I AT01ll AToll1 ATOI I ATOI I ATOI I ATOI I AT0I I ATOI I 4363 -361 41366 '1367 -1368B 41369 41370 4 372 41373 4376 4379 4380 4381 4383 4384 4385 4386 4387 4389 4 390 '1391 4393 '1394 4395 .1397 '1398 4399 4 CO0 4-101 41402 4. 1011 4405 4406 '1407 14 107 4522 4524 41526 4528 4529 4530 4534 4536 4538 45,'10 45'4 2 ,1IS15 4548 45'4 4 4550 -1552 .1554 -1."56 4557 4 5582 4564 4C6 .1561C,8 4569 4572 4575 4 57 1 .1576 -157 8 41579 -1582 ,1584 ,1586 .1588 41590 41593 41592 4597 4603 4 604 '1605 46C09 1 i1 4613 4615 .461 7 -162 0
GLI'
I I ARG CA ARC CDI ARC CG ARC CD ARC lIE ARG CZ ARC 111-1 ARG 11112 ARC C ARG
ARG
I I ALA CA ALA CB ALA C ALA 0 ALA 11 SER CA SER COJ SER OC SER C SER 0 SER I I CYS CA CYS C CYS 0 CYS CB CYS SC CTS I I ALA CA A LA C B ALIA C ALA
ALA
OT ALA Cl I [AG C 2 11 AG 112 JIAC C 7 [lJAG 07 1 AG C* 8 AG C 3 HAC 03 IIAG C 4 I-JAG 04 IIAC C5 IIAG C6 MIAC 06 MAC 05 11AG Cl1 IIAG C2 HAG 12 11IAG C 7 1IIAC 07 hJAG C 8 1lAG C 3 HIAG 03 IIAG C 4 I-AG 04I 1MAC C 5 IAG C 6 HAG 06 l AG 05 1IIAG Cl 17..C C2 RIC 02 E'1.C C3 EFL'C 03 FULC C 4 FLIC 041 FULC CS RI'C cc, E'C.
05 F7.'C Cl l AG C2 IIAG 112 l AG C7 IIA'3 07 MAC C8 HAG C3 HAG 03 l AG (7l lJAG 04 1lAG C 5IAG
HAG
27.843 27.775 27.301 27.802 28.890 2 7. 2 25 27. 213 26.423 27. 499 26. 947 27. 832 26. 802 27.706 25. 653 25.4'31 23. 991 23. 4 22 26.4'18 26. 45O 27.197 28. 287 27. 94 9 27.065 29.527 30. 8441 28.60O7 28. 4 115 27 .046 28.826 29. 080 28.855 59.581 59. 961 58. 7313 58.400 58.879 57.323 60.725 61 .41 7 61 .873 62. 661 61.359 62.465 62.745 60. 625 33.054 31.64- 30.70C'9 29. 912 29. 928 20. 975 31.150 20. 979 32.117 31. 596 33.589 34 490 34. 906 33. 942- 34 544 35. 179 35. 153 34 .252 34.69] 33.871 34.598 3 3. 92 1 314. 27 9 35. '0.12 31. 57 5 31 .267 32.480 32. 401 31.373 33. 679 31.050 30. '113 30. 035 2 9. 9,-3 30.4'98 2 9. 461 70.009 68. 107 67. 997 66.733 6 5. 912: G4 .740 63.638 62.4 412 61 997 61. 23 6 7. 934 67.025 68.87l9 68. 906 68. 147 70.379 71.-219 70.720 72.095 2 17 73. 294 72.510 71. 957 73.531 73. 960 75.205 128 74 .171 73.032 76. 306 77.,572 78. 149 77. 461 78 556 76. 301 7.102 7.338 7.699 9. 020 9.774 9.390 6.225 6.725 5.869 4.821 5.529 5.321 6.364 6.648 15. 24 9 14 .527 13. 5.84 13. 406 12. 694 16.675 16.555S 17.6C17 18. 919 11.4.77 17. 996 18. 739 16.120 19. 954 21.173 21.169 22. 284 23. 613 2.274 23.297 20. 894 20.768 20. 150 19.813 21. 207 21.642 21 953 21.835 22. 401 2 2 14 2.3.517 21.654 20.238 19.6C47 43/58 2133 21 .371 652 19. 924 19.240 2 0. 05: 2 0. 189 19.538 21.003 22. 7 56 22. 961 23.623 24. 9.1 25.939 25.371 25.202 25. 939 26.358 26 .836 26. 060 27.4'37 28.530 2-7. 11-7 27. 972 2 8. 7 57 29.6C06 27 H'9 27.490 29. 11 C 2 8 .9 96 30.601 31.154 31.054 61. 119 59.697 58. 920 58.999 59. 726 58.043 59.0835 57. 930 C0. 064 59. 484 61.474 62.495 63.354 61. 9119 72.938 7 3.11 2 72. 54 1 73.099 74.222- 72.39-1 73.4-118 '74.196 '74. 171 73.891 73. 725 74 .7,12 75. 671 73. 583 76. 083 75".4.63 74.021 75. 945 75. 596 77.4112 78. 115' 78.040 79. 512 177.42$ 7.4. 910 -74 .437 73.6C90 72.381 71.881 .787 7c5.146 '75. 108 7G. 560 ,.793 -76. 937 1.00 66.4I5 1.00 69.33 1 .00 73.38 1.00 74 .27 1 .00 79.54 1 00 86. 31 1 .00 88.60 1.00 84.5"1 1 .00 87.36 1.00 67.35 1.00 66.26 1.00 66.52 1 .00 72.01 1 .00 61i. 8.1 1.00 '75. 25 1.00 81.30 0.50 71.91 0.50 69.64 0.50O 73.30 0.50 '73. 31 0.50 69.27 0.50 67.32 0.50 70.44 0.50 72.57 0.50 72 .5'4 0.50 63 0.50 75.38 0. 50 72.18 50 70.13 0.S0 70.05, 0.50 70.57 0.50 70.13 0.50 69. 96 0.50 68. 22 1.00 88.13 1 .00 91.94 1.00 92.72 1.00 96. 97 1.00 98.62 1.00100.60 14.00 94 .77 1.00 98.511 1.00 96.01 1.00 99.20 1.00 95.13 1.00 93. 66 1.00 92.13 1.00 91.92 1.00 43.58 1.00 43.62 1.00 42.16 1.00 40.84 1 .30 40.10 1.00 35.47 1.00 45.40 1.00 45. 99 1.00 50. 36 1.00 53.97 1 .00C 48. 50 1.00 48. 34 1.00 57.11 1.00 48.58 1.00 81.45 1.00 86.35 1.00 92.91 1.00 86.79 1 .00 87 .8 3 1.00 86.67 1.00 87 .06 1.09 85.8e5 1.00 83.371 1 .00 82. 43 1.00 64 .68 1 .00 69.57 1.00 71.25 1.00 73. 86 1.00 74 .80 1.00 76.00 1.00 72.71 1.0) 7 1 .03 1 .00 75S.71 1 .00 76C,.79 1.00 _75.45 !.00 75.64 AAAA 0 _Il 1 AAAA C AAAA C AAAA C AAAA C AAAA N4 AAAA C AAAA 11 AAA 11 AAA)A C AAAA 0 AAAA 11 AAAA C AAAA C AAAA C AAAA 0 AAAA Ni AAAA C AAAA C AAAA 0 AAAA C AAAA 0 AAAA 1 AAAA C AAAA C AAAA 0 AAAA C AAAA S AKAA I I AAAA C AAAA C AAAA C AAAA 0 AAAA 0 AAAA C AAAA C AAA 11 AAAA C AAAA 0 AAAA C AAAA C AAAA 0 AAAA C AAAA 0 AAAA C AAAA C AAAA 0 AAAA 0 AAAA C AAAA C AAAA I! AAAA C AAAA 0
AAAAC
AAAA C AAAA 0 AAAA C AAAA 0 AAAA C AAAkA C A.AAA 0D AAAA 0 AAAA C AAAA C AAAA 0 AAAA C AAAA 0 AAAA C AAAA 0 AAAA C AAAA C ATAAA 0 AAAA C AAAA C AAA I I AAAA C AAALA 0 AAAA C AAAA C AAAA 0 -?AAA C AAAA 0 AAAA C AAAA C WO 99/28347 PCT/AU98/00998
ATOII
ATOII
ATOII
ATOPl ATOll ATOlI ATOI I
ATOP!
ATC14 I ATOI -I ATOll AT01lI AT01 l AT OI ATOll ATOI I ATOlI ATOI I AToll AT OH ATOll AToll AT01ll ATOll ATQll ATOI I AToll ATOMl AT01 l ATOI I
ATOM-
ATOI I AT OI AT01ll ATOll
ATOI
ATOI I ATOllI
ATOM-
ATO! AT01 l
ATOM
AToll
ATOM
ATOT I ATOllI ATOlI ATOllI
ATOM
ATOI I AT 01 AT01I
ATOII
ATOII
ATCHl ATOI I ATOI I ATrOll
ATOII
ATOll1 ATOI I ATO1I AT01lI ATOI I ATOI-l A'roi I ATOllI ATOI I
ATOII
AT0OI AT01 I AT0ll ATO1I AT01ll ATOI I ATOI I ATOT I AT01ll AT01lI ATOllI ATol I
ATOII
ATOI I ATOI I
ATOM-
.1C 2 3 4619 ,1625 46C27 4 62 9 4631 4 632 4633 41637 4 63 9 4 64 1 46.13 4C45 4651 4 6471 4 653 4655 4657 -1 C59 4661 4665 4667 4669 4l671 4672 4675 4678 4C79 -1681 4682 4685 C 687 4689 4691 4C93 4696 .46 95 4700 4702 4704 4706 4707 4708 4712 471.1 4716 4718 4719 4 72 2 4725 4721 ,1 -2'2 4729 47 30 4733 47-35' 41 736 4738 4719 4743 -1746 .1-2 17,18 .1750 47,51 4754l 4756 4758B 4760 4762 4765 4768 47641 4408 4409 4410 4413 4415 1416 4,118 -1-119 4420 lIAG IlAG I JAG
HAG
JIAG
NIAG
IlAG I JAG I AG l IAG I JAG lIAG I AG IlAG IlAG I AG IlAG IlAC; IlAG
HAG
I JAG I lAG 1 AG IlAG l AG I I AG I AG II AG IlAG l A,:
FIIC
FULC
FU C 173C FLI C
PLIC
FUC
FLIC
Fu c
FUT'
l AG
H-AG
IlAG l AG I lAG I AG
HJAG
[JAG
11 AG l AG
I!AG
iIlAG II A,:
HIAG
I AllI I AllI IlAl HIAI I I IAN I I W lI I Alli I INl I INl I IAl IlWlI MAl I INAI HAI I I INl I
I
I IN I 1.17,11 I IAl I 1AM I AllI IhAll
ALA
ALA
A LA
.ALA
ALA
ALA
ALA
ALA
A LA 30. 5141 4 9. 92 7 50.538 4 9. 662 49.299 49. 541 418. 52 6 51. 967 52.535 52.643 54. 0(57 52.039 52. 746 52. 088 50. 671 55. 375S 56.601 57.106 51,235 56. 849 57.838 57.608 58. 64~ 0 56.8,13 57.826 55. 847 55.190 54 .829 53.830 53.642 54 .861 5 3. 4 2 1 53. 381 52. 24 5 51.061 52. 455 51.462 5 2.56l 7 58.034 58.977 58. 9518 57. 85C 56. 892 58. 202 58. 901 59. 698 5 9. 64l5 59.7S4 59.056 60. 116 6 1. 16C0G 58. 853 1 035 60. 920 5 9.9C241 G62. 2 16 62 .02D8 64.085 6 2. 7 97 63. 4 58 62. 990 61. 443 62. 594 62. 41 7 63. 378 60. 977 60. 941 GO. 3.11 CO. 199 5 9. 9 68 60 23 9 61 .916 40. 017 40. 393 4 0. 696 411.033 38.3.19 37. 68 4 3 7 36. 306 44/58 19.238 .1.
19.42S 75.8071 11.058 81.926 11.751 89.100 12.898 89.4593 13.021 90.759 12.26,7 91.586 14.239 91.102 12.134 88.802 12.761 89.9149 10.771 88.50C, 10.834 88.441 10.160 87.218 8.852 86.934 7.704 87.302 9.918 87.503 46.143 6C.863 46.993 C66.8-;1 47 .015 6 5. -;51 ,18.143 ,l..74Ir 49.101 65.234 48.134 C3.394 416.491 C7.844 47.461 68.031 -16.263 C69). 17 2 45.800 '70.134 45.130 6e.959 44.720: 70.239 .15.551 71 .193 4 5.5 9 9 68.043 46.395 71.203 47.121 72-.534 46.8'16 73.2411 48.429 '71.757 49.515 72.637 48.255 70.809 .17.904 '71.544 47.086 69.828 46.723 C8.781 45.889 '70.781 46.760 71.149 46.225 72.186 44.7087 72.509 44.183 72.903 44.744 72.885 42.814 73.323 47.250 73.291 416.917 74.385 4B.,188 -12 C54 49.4C4 '73.694 48.958 71.332 49.692 70.525 50.390 71.080 41.78E V70. 530 49.984 73.959- 51.4l97 7 .1 .2.3 51.584 75.2721 5.2.0317I8'2 53.337 75.3113 51.161 75.932 51.5,95 76.171 419.685 75.511 48.905, 7C,.595 -18.969 77.885 49.40,7 '75.200 541.401 '71. 67 2 55.C79 75.,1C9 5C,.709 75.348 66.163 1,.-193 57.447 76,.148 56.204 741.11-1 56.1,71 7,1.178 54.802 '73.474 54.490 72.091 55.4C9 71.138 5.S.62 73.16C3 1. 4 9 1C.374 74.702 17.001 75.108 18.103 74.46] 1..624 -7.1.108 16.-)33 .4.752 16.610 75.2641 1-1-161 '76.731 1",."769 7S.030 16.849 1.00 .5 1 .00 .44 1.00 96.51 1.00 99.92 1.00101.79 1 .00103.63 1 .00105.48 1.00105.0-1 1.00101.03 1.00100.80 1. 00101.1IS 1.00101.35 1.00100.16, 1.00 99.75 1 .00101 .54 1.00 98.59 1.00 418.45 1.00 50.42 1.051.50 1.00 55.62 1.00 43.70 1.00 49.62 1.00 47.76 1.00 48.47 1.00 50.06 1.00 50.11 !.G0 53.92 1.00 56.25 1 .00 S S.4 5 1.00 121.11 1.00 59.23 1.00 55.141 1.10 58.39 1.00 56.30 1.00 (51.211 1.00 63.74 1.00 62.20 1.00 59.15 1.00 64.68 1.00 37.00 1.00 40.30 1.00 36.82 1.00 44.21 1.00 51.50 1.00 46.02 1.00 3.4.50 1.00 35.84 1.00 38.52 1.00)T 3. 44 1.00 36.94 1.00 36.14 1 -Jr 43.49 1.00 34.98 1.00 53.37 1.00O 56.72' 1 .C 62.11 1.00 60. 70C 1.70I 60.7 C' 1.00 55.46 1.02 5C I7.16' 1. 00 52.!C 1.00 50.32 1.00 51.02 1.00 53.33 1.00 72.61 1.00 76.29 1.00 74.98 1.00 78.65 1.00 79.16C I.00 78.7') 1.00 78.93 1.00 76.89 1.70 74.73 1 .00 71.39 1 .00 74 9-7 1.30o 82. -Df 91.42 1.00 96.11 1.00 88.43 1.008.8 1.-M 21 1 9 .2 1.710 86.84 1.00 91.39 AAAJ\A C, AAA 0 /%AAA C AAAA C WAAl1 AAAA C AAAA 0 AAAA C: AAAA C AAAA 0 AAAA C A.A.M 0 AAAA 'C AAAA C AAAA 0 AAAA 0 AAAA C AAAA C AAAA 11 -kAAA C AATAA 0 AAAA C AAAA C AAAA 0 AAAA C AAAA 0 AAAA C WAA C1 AAAA 0 ,-.AAA 0 AAAA C AAAA C AAAA 0 AAAA C AAAA 0 AAAA C AAAA 0 AAAA C AAAA C AAAA 0 AAAA C AAAA C WAA HI AAAA C AAAA 0 AAAA C AAAA C AAAA 0 A-AAA C AAAA 0 WAA C WAA c AAA 0 A.M.A 0 A.M.A C XtA.k C WAA 0 WAA C AAAA 0 WAA C WAA 0 WkA C.
WAA C WAA 0 AAAA 0 WAA C WAA C WAA 0 WAA C WAA 0 WAA C AAAA 0 AAAA C AAAA C AAAA 0 WAA 0 6828 C 8822 C 2888 0 13B8B 11 BBBB C 2828 If 8888 C 8202 c BBBB C WO 99/28347 PCT/AU98/00998 Axroi AT01 AT01ll ATO! I ATOMl AT01ll ATOll ATO1I AToll ATOI I AT 01-I ATOI I
ATOM-
ATOM-
AT01ll ATOll ATOMl ATO! I AT01ll ATrOI i
ATOM
ATOMl ATOI I
ATOM
ATOI I ATrOM~ ATOI I ATOI I AT01 l AT01 I ATO! I ATCll ATOI I ATroi i ATO1I1
ATOM
AT01ll AT0 OI AToll1
ATOM
ATOMl ATOI I AT01ll AT01ll AT01ll
ATOM
ATOll ATOI I AToll1
AT'OM
AToll ATollI ATO! I
ATOM
AT01ll ATOI I
ATOI
ATO! I
ATOM
ATOI I ATOI I AT01ll ATO! I ATOI I AToll1
ATOM
AT 01- ATOI I ATOI I ATOI I AT01lI A.T0Oi ATOM1- AToll1 AT OM AT Oil ATOI I AT Oil ATOI I ATOI I ATOI I ATOI I ATOI I AT01I AT01-1 44 .22 '4 24 125 4 '126 44127 44128 .1-129 4432 '1433 4434 4436 4437 41 38 4439 4440 144 41 4- 146 4 4 '17 44,1I9 4,150 4-151 4-152 ,1453 4 454 4455 4456C 4 458 4 1 5,9 4. )GO 161C 44632 4463 '14164 4465 4467 4I 168 -1469 4,471 ,1472 4473 4 47 5 4476 -1-17 7 4478 4479 4480 4.1 81 4 482 4I-1 83 185 4 -1 8C 4487 4'188 .1-18 9 -1490 44 91 -I192 .1493 4.195 4496 .1,97 -1-1 98 *14 99 .1500 -1501 4502 45 04 4,505 41506 .1507 .150-)8 4509 -1510 4I511 4513 451ll4 4 515 4516 4517 4520 4 521 4521 4 77 C' G3LII GLI I
GLII
LY S LY S LY S
LYS
LYiS LY S
LEUS
LEU
LELU
LEU
LELO
LELI
LEI
LEOT
T Lil I [IF, I LE I LE
ILE
IE
SER
SER
SER
SER
SER
G LI G LU
GLU
GLL!
'2 LU '3LU C LU G LU G LL' AS P
ASP
A ASP AS P
ASP
ASP
LEU
ILEU
LU
LELI
LEI'
LEU
ASH
ASI 1
ASH
ASHI
1 ASHI 2 ASHI
ASHI
ASH
ASHI
SUL?]
15. 4 1: 36. 135 34.832 34.~47 1 34.277 34 .067 35. 011 32.792 34 .7 55 3 3.736C 35.849 35. 982 37. 377 38.287 39.413 39. 985 41. 252 35".7 79 3 5. 879 35.530 35.193 31 .256 32.7-79 32 405 32 .433 3 6. -12 1 3 6. 46C5 37 .345 3e. 507 38.4 9'1 37. 76C9 3 9. 8?7C 39.888 39 .623 39.158 -10.9011 'Ii .898 41.969 43. 190 4 3. 2 94 4 3. 510 44.246 ,15.624 46.547 46. 221 47.370 -18. 315 47 .480 4C. 27 2 4 6. 768 9S5 46.129 4 5. 303' 4IS. 64 5 416. 3 9-" 45'. 76G8 .17 .637 45.7 35 4 6.-I 21 44 .748 4 4.4 46C -12. 947 42.047 -12. 114 4 1. 15-1 44. 9671 45. 933 6S) 46.722if S. 746G 4 4.324 16C. C72 4 8 C, 1 7 48. 860 4 8. 30C 4 9. 4 97 '19. 734 51.191 52. 082 51. 459 40. 3507 4 9 91 4 S SI1C' 37. 23 4 45/58 17.619 C 7,5. 301 ill.561 75. 16C- 14 915' '7C.492 24.22-I 7'7.627 15.220 79.003 14.626 '19.7771 14.381 79.328 14.398 73.947 1-.005 73.508 13.456 73.188 13.908 71.990 13.089 71.930 12?.480 '73.128 12.494 72.968 11.471 741.310 11.027 74.136, 10.262 710.701 13.872 '70. 74.1 15.092 69.585 13.199 68.356 13.896 67.529 13.039 67.860 12.875 69.15-1 13.595 C7.707 11.395 67.509 14.229 66.709 15.165 6'7.54 3 13.2C62 G-.8 22- 13.367 65. 39.7 12. 7 65.319 11.5241 6-1 .766 12.756, G3.291 12.404 67.645 12.608 C68.568 11.942 67.499 12. 887 68.335 12.2039 69.753 121.747 70.035 13.376 67.711 12.240 66.601 12.740 68.389 11.604 67.874 11.509 68.683 10.5,98 70.162 10.568 71.0.45 10.983 '70. 4 04 11.4.72 72.289 10.897 G7.773 12.896 66.747 13.32G 68.738 13.732 68.73C 15.169 69.887 15-729 '7.232 17.159 '71.5-45 17.1-7 72.610 17. 327,- /1.4 52 17.0265 67.-136 15.841 67.018 16.761 66.C61 11-47-I C5.347 15.932 6,1.977 15.699 66 .008 16.267 66.563 17.387 66.399 15.492 G4.211 15.238 63. 04 2 11.C34 64.513 1-1.163 63.42- 13.528 63.677 12.024 62.788 11.226 -33.243 11.514 62.9671 9.7I66 C3.3551 14.210 62.5602 13.838 64.318 15.063 G4.424 15.855 C5.910 6.8 66. 105 16.5 89S C5.342 16.178 v7128 171. 4CC 63. 617 713 62 .18-I 37 264 (-1.012 1 0:1 -7.808 6 5. 46A5 1.70O 93.79 07.01 89?. 69 I 9 87.19 0.01 92.',4 1.00 99. 93 1.00103.59 1.00103.27 1. 00108.0OC' 1.00 85.31 1 .00 83. 41 1.00 82. 1.00 73.49 1 .00 73.13 1.C 76I. 33 1 .00 80.62 01 76. 66 0.01 76. 20 1.00 67.70 1 .00 69. 99 1 00 61.47 1.00 59.03 1.00 55.20 1 .00 61.941 1.00 44 .78 1 .00 44..63 1.00 59.73 1 .00 57.22 1.00 56.211 iC")j 52.58 1.00 50.27 1.00 11.85 1.00 39.78 1.00 30.43 1.00 53.49 1.00 18.33 1.00 50.86 1.00 49.78 1.00 46.06 1.00 83.03 1.00 50.57 1.00 46.55 1.00 52.16 1.00 59.12 1.00 59.71 1.00 76.75, 1.00 80.53 1.00 91.67 1.00 86.00 1.00 56.50 1.60 49.83 1.00 58.37 1.0Q 59. 3C 61.32 1C"7 79.21 1 .72 86.09 1.00 92.00 1.00 96.51 1.00 58.84 1.00 61.93 1.00 516. 57 1.00 551.61 1.00 51.22 1.00 45.27 1.00 56.45 55.11 1.00 58.91 1.00 57.00 1.00 57.39 1 .00 6.1.03 1.00 62.69 1.00 53.71l 1 .0'O 51.88 1.01007.47 1 .00108.287 E8BS C 131328 C2 2888 0 2888 0 8888 C 8828 C 2BB C 8888 C 11888 1I 2888 C 8888 C 2828 C 13888 0 8888 C 8288 C 0888 0 2288 I-I 8888 C 8888 0 8888 C 8288 0 8882 I I 28813 C 2822 C 2222 C 8882 0 8888 0 8880 0 0888 I I 13880 0 8288 0 13828 I I 2888 C 8888 0 8822 0 8888 0 13881 I I 88813 C 8822 0 8888 I I 8888 C 8888 C 8882 0 0826 C, D-000 S WO 99/28347 PCT/AU98/00998 46/58 ATOll 41771 01Q SUL 4 93 38. 152 -791 r. 3 1S 1.-090112.-6,5 DODD 0 ATOl I 17 C SUIL ;93 37.611 8 73 r l.i010 1.00110.21 DODD (1 ATO 1 4.773 03 SUL -193 36.533 555 65. 85C, 1.00109.93 DODD 0 ATOlI 4.1 041 SUL -193 36.333 -8.-978 G3 9 1.00107.58 DODD 0 ATOl 1 .477S S SW. -194 56.567 19.753 66.302 1.00109.81 DODD S ATOll 4776 01 SUlL 1941 L6. 597 19. 128 C-7. 659 1 .00107.90 DODD 0 ATOll1 4777 02 SUlL 4 94 57.964 20.027 65.795 1.00112.59 DODD 0 ATCll 4 7'78 03 SUlL 494 55,749 .006 66.267 1 .00111.35 DODD 0 ATrOl 1 4779 04 SUlL 4941 55.886 18. 792 65.3-79 1.00109.86 DODD 0 ATOI 1 4780 S SVlL 4195 34 .533 11.2410 7 5. 722 1.00114.67 DODD S ATOl I .1i7 81 01 SL'L .195 35. 2741 12.213 76C.5S95 1.00111.38 DODD 0 ATOM .1-f82 02 SUlL 495 35. 47 6 10.329 74 .974 1.00113.60 DODD 0 ATollI 4783 03 SUL .195 33 5 52 11.860 .7 48 1.00112.77 DODD 0 ATOI4 4784 0.1 SL'L 4 95 33.773 10.278 76.6C04 1.00113.18 0000 0 ATOM 4785 S SL'L 496 35.466 24..8.14 519.093 1.00 50.73 DODD S ATOl .14786 01 SUlL 496 35.613 24 .843 6 0. 6 07 1.00 62.519 0000 0 ATollI 4787 02 SUL 4 9C 36.0072 23.581 58. 671 1.00 '48.59 DODD 0 ATOll 1788 03 SUlL -196 35.880 26.084 58.1155 1.00 56.7.1 DODD 0 ATOll J- 78 9 04 SLUL 496 33. 958 2.953 59. 034 1.00 59.34 DODD 0 ATOMI 4790 S SLIL 4 9- 47.653 -2.303 70.199 1.00 68.98H DODD S ATOM .1791 01 SUlL -497 .17.849 -1 .058 70096 1 I. 00 68.52 DODD 0 ATOll 4792 02 SUlL 497 18.59-1 509 C9. 072 1.00 70. 94 0000 0 ATOll 47193 03 SL'L .197 416.18-7 3 93 69.810 1.00 73.47 DODD 0 ATOllI .179.1 04 SUlL 4 97 4 7.7 99 -3.446 1.129 1.00 71 .33 DODD 0 ATOllI 4795 S SUlL 498 56. 527 35. 758 7 5. 513 1.00 71 .48 DODD S ATOl .14796 01 SUlL -198 55.870 35.013 7.6 C,2 1 1.00 72. 97 D000 0 ATOll 4797 02 SUlL .l198 57 759 34.99C "--5.1367 1.00 6-9. 11 000000 ATOll1 4798 03 SUlL -199 56. 619 37 .237 75.785 1.0)0 72.45 DODD 0 ATOll 147 99 0. SI!L .196t 55. 623 35.809 -14.230 1.00 7 2. 71 DODD 0 ATOll -1800r IS SIlL 4 99 4 0.63 9 2. 36 6 0. 499 1.-D0 7.1.04 DODD S ATOll1 4801 0 1 SUlL -19 9 -10.2Z'18 ^2C. 03 9 0 45 1 .00 7 6. 00 DODD 0 ATOll .192 02- Sul. -1 99 42. 089 27 .601 69. 835 1.30O 75. 15 DODD 0 ATOll1 4803 03 SUlL .199 39. 823 218.,167 70.098 1.00 '77 .27 DODD 0 ATOll -18c04 04 SUL 4 199 -10.424 17 .2.145 68.018 1 .00 751.70 DODD 0 ATOll 480$ S SUlL 500 14.996 53.228 20.568 1.00 83.89 DODD S ATOll1 4806 01 SUlL 5C0 45. 080 54 .400 21.461 1.00 84.79 DODD 0 ATOll 4807 02 SUlL 500 46.109 52.266 20.827 1.00 90.38 DODD 0 ATOll 4808 03 SUlL 500 45.032 53.674 19.135 1.00 92.23 DODD 0 ATOM 4809 0-1 SUlL 50C)0 43.762 52.396 20.723 1.00 91.61 DODD 0 ATOll .1810 OW NAT 501 2 9. 970 6.90,1 7 7. 7 13 1.00 34 .84 DODD 0 ATOll 48E13 014 NAT 502 42.522 18. 998 78. 232 1.00 55.27 DODD 0 ATOM 41816 014 VAT 5L0 3 37.561 21.003 67.518 1.00 41.63 DODD 0 ATOll 1 .4819 0OW WAT 504 50.446 5. 72 1 63.485 1.00 57.3-7 DODD 0 ATOM~ 1822 OW NAT 505 56. 6G8 2.1.85,1 '72. 729 1.00 57 .34 0000 0 ATOll 1825 ON VA)T 506 50.605 5-7.6C95 22.727 1.00 54.26 0000 0 ATOll 4828 014 VAT 507 55.123 37.781 61 .2 04 1.00 43.71 DODD 0 ATOl1 4831 OW NAT 508 17.4 14 -9.070 '74.793 1.00 48.79 DODD 0 ATOl 4 834 014 NAT 509? -14 .263 20. 885 6-3. 811 1 .00 28.64 DODD 0 ATOll 4 837 OW VIAT 10 45 .0)85S 19.108B 84 .433 1. 00 49.09 DODD 0 ATOll1 4 840 C- NMAT 51 i1 33.1,37 1 -27 115 1.00 60.39 DODD 0 ATOll1 4843 ON MAT 512 19.2179 4.902 254 1.00 55.23 000000 ATOll 4 846 ON 01 AT 5 13 11 .50 -2.93 996 1.,00 57. 51 DODD 0 ATOllI 4949 0O4 NAT 5 14 2 4.59 11 17 .207 56.665 1.00 56.36 DODD 0 ATOll1 4852 OW NAT 515 56. 947 34 .9141 62. 552 1 .00 36.47 000000 ATOll .148 55 014 NAT S1 I 5,18.092 39. 983 66. 234 1.00 30.34 DODD 0 ATOll1 4858 ON I4AT 5 17 48 .30C,8 4 0. 7 26 5C6.768B 1.00 81.69 DODD 0 ATOll 1 -4861 ONI NAT 518 25. 776 2.3515 85.630 1.00 66.34 0000 0 ATOll1 .186.1 ON NIAT 5119 30.64 4 68,108 30.765 1 .00 82.28 DODD 0 ATOl 4867 ON lIAT 52-0 38.739 54 .257 4 3. 611 1.043. 4. 0000 0 ATOl1 4870 OW NIAT 51 22.886 4 .470 C-1.8e71 1.20 48.71 DODD C0 ATOl1 4873 ON NAT 52 30.939 50. 24 9 19.364 1.00 54 .00 1D000 0 ATOllI -187 6 ON MAT 523 32.413 9.0C61 -12 .4.11 1 .00 44.45 000000 ATOll1 4879 OW NIAT 524 11.019 .2.560 55 .6553 1. 00 43. 40 DODD 0 ATOll1 4882 ON) NAT 5125 541.268 51.393 37 .51 3 1.00 55.10 DODD 0 ATOll1 1985 O14 WAl 5216 3-7.130 13.590 'Al.39-7 1.00 .16.4 9 000000 ATol 888 CC- NAT 52-7 42.585 1-'.214 84 472 1 .00I 351.95, 0000 0 ATOl1 .1891 ON NAT 52--8 4 3.6C61 G1 .633 10-150 1.00 41.05 DO00 0) ATOllI 4891 ON NAT 529 27 .980 19.86C2 53.34B 1.00 54.59 D0D0 0 ATOl1 4897 ONI NAT 5.3 0 59.527 38.520 6.1.116 1.00 37.96 DODD 0 ATOl1 4900 ONq NAT 531 2 2. 451 1.0416 57 437 1.00 59.31 DODD 0 ATOlM 4903 ON 1-liT 532 30.380 16.12 3 10. 205 1.00 4 0. 39 0000 0 ATOllI 4906 011 t AT 533 46.8 3, 27 .8 88 CS.85-1I 1.00 52. 3-1 DODD 0 ATOM .1909 ON NAT 534 39. 446 4 9. 001 4 5.37 9 1 .00 416.05 DODD 0 ATOlI 4912 ON NAT 535 46. 992 51 .272 50,.722 1.00 52. 62 000000 ATOll .14915 ON NIAT E36 .14. 26C3 19q. 776C 73. 0172 1.00 4 0.6G1 DODD 0 ATOll 4918 ON1 NAT 5 37 33.6C70 58. 861 20. 848 1.00 51.-56 DODD 0 ATOll -14921 014 NAT 5 38 52.4C9 21.639 73.804I 1.00 61.98 000000 AT01l1 4924 014 WAT 539 49. 985 44 .871 3-7 3 24 1 .00 45.45 DDDD 0 AToll 4927 ON NAT 5-10 24 .074 -1.791 0077 1.00 40.40 DODD 0 ATOll 4930 ON NAT FI4I1 3 5. 207 0.714 79.039 1.00 51. 34 DODD 0 ATOll 1933 01W W-AT 1 31 .231 -1.176 C62.362 1.00 48. 33 DODD 0 ATOll1 4936 014 VIAT E13 4 1 .7 156 55. 2 )0 1.0-0 60. 67 DODD 0 AToll 4039 014L NATr 4 4 48. 564 37.3351 72. G12 71.69 DODD 0 ATOll1 4942 ON NAT 4 5 4 9. 501 40.030 A7 58' 1 .01 44.-8p8 DODD 0 ATOll1 4945 ON NAT 4 6 54.11 7.,9317 G-0.018 1 .00 49. 91 DODD 0 WO 99/28347 PCT/AU98/00998 47/58 30. -1 4 05P3 10, I.0H 84 .1: 310 32. 7 '9 G90.-848 1 5 C 7
ATOI
ATU
EN-D
-18 01 IA LDDD 0 DODD Face I Cleft I Face 2 Face left ace 2Cleft 2 1 ac Face 3 (I32D)lNIOR 25E2613S 262D (61) 32L 8DH (6G) 5P 256L 263S 264E 59R 58FH 28Y (27G) 26E 2551 ,?7Q (8R 91 5L 4Y266F- 27 (2821 (6l 90 5
F
56 A01:53E 242E 241 F (274M) 305E 30' 3 0 2 C) 3 19
M
300K 318Q C (322G) 32 1 Q 347F 31 OT 9K 312D (316S 313S 335R i 115K I E(88V) 83Y 80K 79W (1 40V) 112 58N108R 138Y 272E 240R 270D 298 II0I 336R 314V 344
V)
~43E 338N Wc 2 79S (280G) 346Q FIi.u r e 2 0 00 WO 99/28347 PTA9/09 PCT/AU98/00998 49/58 (a) (b) .00 kDa .04 0 2- 3 150 Elu tio n V olu m e (m I) Figure 3 WO 99/28347 PTA9/09 PCT/AU98/00998 50/58 (a) .4
E
.3C/,
E
.2 0
C)
0.0 0.00 8 0 120 1 60 2 00 E lu tia n V o Iu m e (m 1)
(C)
(b) 12'3 4 2 Figure 4 WO 99/28347 WO 9928347PCT/A U98/00998 51/58 Li 150 Cys rich Loop 255- 265 303 313 L2 Figure WO 99/28347 PCT/AU98/00998 2/58 IGFIR LI1 IR L ILLY P EGFR LI 1 L E EGFR L2 311 IR L2 310 IGFiR L2 300 v IIG r I L LI S KA E DY RS 42 V IIE G al L L MF KT R pE0F A D 48 VVfLGNLEI TYVORN Y D 51 S I SG6D L I PVAFR(7)PP LD P 0 367 V I INGS I I NI RGGN NL AA E LE 355 ISG IE NK RRGN NI A S EL E 345 Y R FPPXT VI T YL L FRVAGLESLGDL tpJ~r RGWXL.FY YAL F AMTNL KD GL 100 LSFIKL I D LRYGESKOFNL IR !LP NYA I F LK ELGL106 LIIKIGEV G YVLI AL NT VERI PLENLOI j aG JYYENISYAL vL8 N YD NK GL 106 L 01 LK VK EI T GF LL I AWPENRTDL HAFENL EI R AT Ka 3 QOFSLA SL NI SLGL 426 NLGL E SGYLKERSYALVSLS FFRKLRI R E 7L IN Y 3F Y LDNONL R WO 41a N F AG L G HSHALVSLS F v R E QL I~4P V PJQN Q 1 WD 403 YNLRNI TRO RI ZN PLC LSTVD, S LI D A VS NY V '0 PIKP K G D 150 NLMNITAGS RI EKNNELC LATIO $AS LO SV ED HIVLKDONEEGD 157 K(2)PMRNLEI L HGAVFNALNViQ RV SDLNMSMDF N HL GSCOK 166 RSLKEI SOGOV I SGNKNLC ANTI N KK F 67 SGQKT I S R GENS KA 477 S K HNL TI1 OG KF HYNPKLC 521 HKMEE SGTKGROERND LK T D K ASCEN 470 W DHRNL 7 KA xrAF NP K VSEI YRE GTKGRQSK D ATRN 0 ERA S ES 460
IGFIFI
R
EGFR 02 EGPR 04 150 D L KPMIEKTTINNEYNYR C T N HR C 0 K 157 D I A K K T N PATVINGQFVERCWTH S OK 185 KODP S P N G S M
[;WWGAGEENUCCQKLTKI
480QV H L SP EG W PEPRO V Module I 183 100 189 se Cf IVS rtgr T OCV Ok 615 C T C ~G K AACT E N[N LEjfiT GWF-1A PONOTA V j1HFYA CVrP P I~N 237 IVCTIJCHSGC AC SEC QGCPDDPTKP CRNFyLGICI JC P PIP244 ILS.L.QJ1~JS ORC~RGKSPSE DC NOCA AGCTIGPR ESOL 1 ICK CpLA ~~klF E 1g1r I Trc ~~JQM .JGRG PDC 0 IAH I S 0 IEHI KO OF57 modls~ 2 M0~ie 3 Modi~s 4 r !VEGwaFD1vDRDFVIA NL S A ES S DS EG VI~~~Q75 YY~iFQ WR CV NFSFP IILHHKCKNSRROGCH N ENKCIP28 MLYNPTTYMDVNPEGKYSFG ATICIK K ~P R U? module 5 £IS R-1 6 OSM YmLC P ELE M P 299 El~s M BIT MISSN r LICT PC4P C P A~D 5EMeJE nGVRK KK JEGa JR 310 module a McdueO 7 module a Figure 6 WO 99/28347 WO 9928347PCT/A U98/00998 53/58 Figure 7 WO 99/28347 WO 9928347PCT/AU98/00998 54/58 Figure WO 99/28347 WO 9928347PCT/AU98/00998 55/58 Figure 9: Sequence Alignment of hIGF-1R. hIR and hIRE ectodomains.
Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.
Symbol Comparison table: GenRunData:PileUoPep.Cnp CompCheck: 1254 GapWeight: GapLengthWeight: 0. 1 Name: Name: Name: Higf lr Hi r Hir r Higf lr Hi r Hi rr Higf lr Hi r Hi rr Higflr Hi r Hirr Higf lr Hi r Hirr Higf lr Hi r Hi rr Higf lr Hi r Hirr Higf lr Hi r Hir r Hi gf 1 r Hi r Hirr Hi g fir Hir Hir r Len: 972 CheCk: 1781 Weight: Len: 972 CheCk: 2986 Weight: Len: 972 CheCk: 9819 Weight: 1.00 1.00 1.00
EICGP
HLYPGEVC. P
MNVC.P
RFPKLTVITE
SFPKLIMITD
S FPRLTQVTD
NLKDIGLYNL
HLKELGLYNL
HLRDVALPAL
PPK. ECGDLC DDNEECGDI C LG. EECADVC
GIDIRNDYQQ
GMDI RNNLT.
SLDIRSEVAE
YLLLFRVAGL
YLLLFRVYGL
YLLLFRVYGL
RNITRGAIRI
MNTITRGSVRI
GAVLRGAVRV
PGTMEEKPM.
PGTAKGKTN.
PG VLGAAGE P LKRLENCrVI EGYLNILLIS LHELENCSVI EGHLQILLMF LRQLENCSWV EGHLQILLMF ESLGDLFPNL TVIRGWKLFY ESLKDLFPNL TVIRGSRLFF ESLRDLFPNL A'IIRGTRLFL K. .AEDYRSY
KTRPEDFRDL
TATGED FRGL NYALVI FEMT NYALVI FEMV
GYALVIFEMP
EKNADLCYLS
EKNNELCYLA
EKNQELCHLS
CEKTT INNEY
CPATVINGQF
CkKTTFSGH-T TVDWSLI LDA
TIDWSRILDS
TIDWGLLQPA
VSNNYIVGNK 143 VEDNYIVLNK 149 PGANHIVGNK 145 4
NYRCWTTNRC
VERC"WTHSHC
DYRCWTSSHC
Q;04CPSTCGK 191 QKVCPTICKS 198 QRVCPCPHG. 193
RACI'ENNECC
HGCrAEGLCC MACrARGECC
HPECLGSCSA
HSECLGNCSQ
HTECLGGCSQ
P DNDTACVAC RHYYYAGVCV PDDPTKCVAC RNFYLDGRCV PEDPRACVAC RHLYFQGACL PACPPNTYRF 241 ETCPPPYYHF 248 WACPPGTYQY 243 PSGFIRNGSQ 287 PSGYTMNSSN 298 PSGFTP.NSS. 287 4 4
EGWRCVDRDF
QDWRCVNFSF
ESWRCVTAER
CAN'ILSAES.
CQDLHHKCKN
CSLHSVPG.
4 4 SMYCI ?CEGP LLCrPCLGP SI FCHKCEGL
MNIASELENF
NNLAAELEA
YULE PQLQHS
YSFYVLDNQN
YS FYALDNQN
YTLY-VLDNQN
CPKVCEEEKK
CPKVCHLLEG
CPKECKV. .G MGLI EVVTGY
LGLIEEISGY
LGLVETITGF
LQQLWDWDHR
LRQLWDWSKH
LQQLGSWVAA
SDSEGFV
S RPQGCHQYV
RASTFG
T KTI DSVT SA EKTI DSVTSA
TKTIDSIQAA
VKIRHSHALV
LKIRRSYALV
LKIKHSFALV
NLTIKAGKO4Y
NLTITQGKLF
GLTIPVGKIY
I HDGECMQEC
IHNNKCIPEC
IHQGSCLAQC
QMLQGCrIFK GNLLINIRRG 337 QELRGCrVINGSLIINIRGG 347 QDLVGCrHVE GSLILNLRQG 335
SLSFLKNLRL
SLSFFRKLRL
SLGFFKNLKL
FAFNPKLCVS
FHYNPKLCLS
FAFNPRLCLE
I LGEEQLEGNI i RGETLEIGN I RGDAMVDGN El YRMEEVTG
EIHKMEEVSG
HI YRLEEVTG WO 99/28347 PTA9/09 PCT/AU98/00998 56/58 Hig fir Hir Hi rr Higf lr Hir Hi rr Higfilr Hi r Hir r Hi g fir Hi r Hir r Hig fir Hi r Hi rr Higfir Hi r Hirr Higf 1: Hi r Hir r Higf lr Hi r Hir r Higfilr Hi r Hi r Higfilr Hi r Hir r
TKGRQSKGDI
TKGRQERNDI
TRGRQNKAEI
RDLISFTVYY
RDLLGFMLFY
RDLLS EIVYY
EPGILLHGLK
H PGWLMRGLK
EPGVTLASLK
NTRNNGERAS
ALKTNGDQAS
N PRTNGDRAA KEAP FKNVTE
KEAPYQNVTE
KES PFQNATE
PWTQYAVYVK
PWTQYAI FVK
PWTQYAVFVR
!End of 1-462 fragment CESDV LHFTS TTTSKNRIII TWHRYRPPDY CENEL LKFSY IRTSFDKILL RWEPYWPPD' CQTRT LRFVS NVTEADRILL RWERYEPLEA
YDGQDACGSN
FDGQDACGSN
HVGPDACGTQ
AVTLTMVEND
TL .VTFSDER
AITLTTEEDS
P PsLPNGNLS P PS DPNGNIT P PTQRNGNLT
EVTEN'PKTEV
DSQKHNQSE.
DGDPEAEME.
SWNMVDVDLP
SWTVDI DP P
SWNLLDVELP
HI RGAKS ElL RTYGAKSDI I PHQGAQS PIV
YYIVRWQRQP
HYLVFWERQA
YYLVLWQRLA
PNKDV
LRSNDPKSQN
L..SRTQ
YI RTNASVPS
YVQTDATNPS
YLRTLPAAPT
QDGYLYRHNY
EDSELFELDY
EDGDLYLNDY
532 547 530 582 596 580
IPLDVLSASNSSSQLIVKWN
VPLDPISVSNSSSQIILKWK
VPQDVISTSNSSSHLLVRWK
4 CSKD. KIPIR CLKGLKLPS R
CHRGLRLPTS
KQAEKEEAEY
ILKELEESSF
P PLEAQEAS F AA. TYNIT
AAFPNTSSTS
GPLRLGGNSS
MHEAEKLGCS
NQDTPEERCS
NHAAHTVGCS
NPNGLI LMYE
EPNGLIVLYE
DPNIGLI LKYE
QATSLSGNGS
RATS LAGNGS RAT SLAGNGS
KYADGTIDIE
TWS. PPFESE N. NDPRFDGE RKVFEN FLHN RKT FEDYLHN
QKKFENFLHN
DPEELETEYP
VPTSPEEHRP
DFEIQEDKVP
ASN FVFARTM
VAAYVSARTM
AAT FVFARTM IKYGS .QVED
VSYRRYGDEE
IKYRRLGEE-A
WTDPVFFYVQ
WTEPTYFYVT
WTDSVAFYIL
CGGEKGPCA
YEDSAGECCS
SDCCP
C PKTEAE
PKTDSQ
CQHPPPGQVL
SIFVPRPERK RRDVMQVANTTMSSRSRNTT WVFVPRPSRK RRSLGDVGNVTVAVP .TV AITIPISPWK VTSINKSPQR D.SGRHRRAA FFES RVDNKE F. EKVVNkKE
.RE
PAEGADDI PG P EAXADDIVG
PHREADGIPG
QRECVSRQEY
LHLCVS RKH F TVLCVS RLRY AKTGYEN FlH DYLDVP SNIA GP EEEDAGGL
RTVISNLRPF
SLVISGLR-IF
RAVLS GLR.HF P VT WEP RPEN PVTHEI FENN KVAWEAS S N
RKYGGAKLNR
ALERGCRLRG
AKFGGVHLAL
TLYRIDIHSC 776 TGYRIELQAC 786 TEYRIDIHAC 764 SIFLKWPEPE 826 VVHLMWQEPK 836 SVLLRWLEPP 814 LNPGNYTARI 875 LSPGNYSVRI 886 LPPGNYSARV 864 WO 99/28347 PTA9/09 PCT/AU98/00998 57/58 21 Fab 0 0 C1 o 1 2 3 4 5 6 7 8 9 10 1112 13 1415 16 17 181920 Elution Volume (ml) Figure WO 99/28347 WO 9928347PCT/AU98/00998 58/58 Schematic interpretations of EM images Projection along: Sape y axis z axis x axis hIR
U
MR!
83-7 i 18-44/83-14C 83-7/18-44
MR/
83-7/83-14 Figure 11 23. A computer-assisted method according to claim 21 or claim 22, which further includes the step of selecting one or more chemical structures from step which interact with the receptor site of the molecule in a manner which prevents the binding of natural ligands to the receptor site.
24. A computer-assisted method according to any one of claims 21 to 23, which further includes the step of obtaining a compound with a chemical structure selected in steps and and testing the compound for the ability to decrease an activity mediated by the receptor.
A computer-assisted method according to claim 21, in which the method is used to identify potential compounds which have the ability to increase an activity mediated by the receptor molecule.
26. A computer-assisted method according to claim 25, further including the step of obtaining a molecule with a chemical structure selected in steps and and testing the compound for the ability to increase an activity mediated by the receptor.
27. A computer-assisted method according to any one of claims 21 to 26, in which the molecule of the insulin receptor family is the IGF-1R.
28. A computer-assisted method according to any one of claims 21 to 26, in which the molecule of the insulin receptor family is the insulin receptor.
0' 29. A method of screening of a putative compound having the ability to 0 modulate the activity of a receptor of the insulin receptor family, including the "000." steps of identifying a putative compound by a method according to any one of claims 1 to 28, and testing the compound for the ability to increase or decrease an activity mediated by the receptor.
A method according to claim 29, in which the test is carried out in vitro.
31. A method according to claim 29, in which the test is a high throughput 32. A method according to claim 29, in which the test is carried out in vivo.
33. A method according to claim 29, in which the test is carried out in vivo.
34. A method according to claim 1 substantially as hereinbefore described with reference to any one of the Examples or Figures.
Dated this thirteenth day of May 2002 Commonwealth Scientific and Industrial Research Organisation Patent Attorneys for the Applicant: F B RICE CO
C
e e
Claims (19)
1. A method of designing a compound able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, including the step of assessing the stereochemical complementarity between the compound and the receptor site of the molecule, wherein the receptor site includes: amino acids 1 to 462 of the receptor for IGF-1, having the atomic coordinates substantially as shown in Figure 1; a subset of said amino acids, or; amino acids present in the amino acid sequence of a member of the insulin receptor family, which form an equivalent three-dimensional structure to that of the receptor molecule as depicted in Figure 1.
2. A method according to claim 1, in which the compound is selected or modified from a known compound identified from a database.
3. A method according to claim 1, in which the compound is designed so as to complement the structure of the receptor molecule as depicted in Figure 1.
4. A method according to any one of claims 1 to 3, in which the compound has structural regions able to make close contact with amino acid residues at the surface of the receptor site lining the groove, as depicted in Figure 2.
5. A method according to any one of claims 1 to 4, in which the compound has a stereochemistry such that it can interact with both the L1 and L2 domains of the receptor site.
6. A method according to any one of claims 1 to 4, in which the compound has a stereochemistry such that it can interact with the L1 domain of a first monomer of the receptor homodimer, and with the L2 domain of the other monomer of the receptor homodimer.
7. A method according to any one of claims 1 to 4, in which the interaction of the compound with the receptor site alters the position of at least one of the WO 99/28347 PCT/AU98/00998 48 L1, L2 or cysteine-rich domains of the receptor molecule relative to the position of at least one of the other of said domains.
8. A method according to claim 7, in which the compound interacts with the p sheet of the L1 domain of the receptor molecule, thereby causing an alteration in the position of the L1 domain relative to the position of the cysteine-rich domain or of the L2 domain.
9. A method according to claim 7, in which the compound interacts with the receptor site in the region of the interface between the L1 domain an the cysteine-rich domain of the receptor molecule, thereby causing the L1 domain and the cysteine-rich domain to move away from each other. A method according to claim 7, in which the compound interacts with the hinge region between the L2 domain and the cysteine-rich domain of the receptor molecule, thereby causing an alteration in the positions of the L2 domain and the cysteine-rich domain relative to each other.
11. A method according to any one of claims 1 to 10, in which the stereochemical complementarity between the compound and the receptor site is such that the compound has a Ki, for the receptor side of less than
12. A method according to claim 11, in which the Ki, is less than
13. A method according to any one of claims 1 to 12, in which the compound has the ability to increase an activity mediated by the receptor molecule.
14. A method according to any one of claims 1 to 12, in which the compound has the ability to decrease an activity mediated by the receptor molecule. A method according to claim 14, in which the stereochemical interaction between the compound and the receptor site is adapted to prevent the binding of a natural ligand of the receptor molecule to the receptor site. WO 99/28347 PCT/AU98/00998 49
16. A method according to claim 14 or claim 15, in which the compound has a K 1 of less than
17. A method according to claim 16, in which the compound has a K, of less than 10' 0 M.
18. A method according to claim 17, in which the compound has a K, of less than
19. A method according to any one of claims 1 to 18, in which the receptor is the IGF-1R. A method according to any one of claims 1 to 18, in which the receptor is the insulin receptor.
21. A computer-assisted method for identifying potential compounds able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, using a programmed computer including a processor, an input device, and an output device, including the steps of: inputting into the programmed computer, through the input device, data comprising the atomic coordinates of the IGF-1R molecule as shown in Figure 1, or a subset thereof; generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic coordinates of the IGF-1R site as shown in Figure 1, or a subset thereof, thereby generating a criteria data set; comparing, using the processor, the criteria data set to a computer database of chemical structures; selecting from the database, using computer methods, chemical structures which are structurally similar to a portion of said criteria data set; and outputting, to the output device, the selected chemical structures which are similar to a portion of the criteria data set.
22. A computer-assisted method according to claim 21, in which the method is used to identify potential compounds which have the ability to decrease an activity mediated by the receptor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU15521/99A AU749992B2 (en) | 1997-11-27 | 1998-11-27 | Method of designing agonists and antagonists to IGF receptor |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPP0585A AUPP058597A0 (en) | 1997-11-27 | 1997-11-27 | Receptor agonists and antagonists |
AUPP0585 | 1997-11-27 | ||
AUPP2598 | 1998-03-25 | ||
AUPP2598A AUPP259898A0 (en) | 1998-03-25 | 1998-03-25 | EGF receptor family agonists and antagonists |
AU15521/99A AU749992B2 (en) | 1997-11-27 | 1998-11-27 | Method of designing agonists and antagonists to IGF receptor |
PCT/AU1998/000998 WO1999028347A1 (en) | 1997-11-27 | 1998-11-27 | Method of designing agonists and antagonists to igf receptor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002301372A Division AU2002301372A1 (en) | 1997-11-27 | 2002-10-04 | Method of designing agonists and antagonists to IGF receptor |
Publications (2)
Publication Number | Publication Date |
---|---|
AU1552199A AU1552199A (en) | 1999-06-16 |
AU749992B2 true AU749992B2 (en) | 2002-07-04 |
Family
ID=27152206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU15521/99A Expired AU749992B2 (en) | 1997-11-27 | 1998-11-27 | Method of designing agonists and antagonists to IGF receptor |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU749992B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990000562A1 (en) * | 1988-06-30 | 1990-01-25 | Pierre Demeyts | Insulinomimetic and insulin receptor binding site peptides |
-
1998
- 1998-11-27 AU AU15521/99A patent/AU749992B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990000562A1 (en) * | 1988-06-30 | 1990-01-25 | Pierre Demeyts | Insulinomimetic and insulin receptor binding site peptides |
Also Published As
Publication number | Publication date |
---|---|
AU1552199A (en) | 1999-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7020563B1 (en) | Method of designing agonists and antagonists to IGF receptor | |
Brown et al. | Structure and functional analysis of the IGF‐II/IGF2R interaction | |
US8301398B2 (en) | Structure of the insulin receptor ectodomain | |
US20080025983A1 (en) | Methods of screening based on the EGF receptor crystal structure | |
US6795776B1 (en) | Crystallographic structure of the androgen receptor ligand binding domain | |
US20110112037A1 (en) | Crystal structure | |
US20150198619A1 (en) | Structure of insulin in complex with n- and c-terminal regions of the insulin receptor alpha-chain | |
US20070281365A1 (en) | Crystal Structure of Erbb2 and Uses Thereof | |
US8338573B2 (en) | Crystal structure of CD147 extracellular region and use thereof | |
Mckern et al. | Crystallization of the first three domains of the human insulin‐like growth factor‐1 receptor | |
AU749992B2 (en) | Method of designing agonists and antagonists to IGF receptor | |
US9147036B2 (en) | Crystal structure | |
Hoyne et al. | Properties of an insulin receptor with an IGF-1 receptor loop exchange in the cysteine-rich region | |
Ybe et al. | Nuclear localization of clathrin involves a labile helix outside the trimerization domain | |
EP1301536B1 (en) | Modulation of tetraspanin function | |
EP2468766B1 (en) | Structure of the insulin receptor ectodomain | |
AU2002317635A1 (en) | Methods of screening based on the EGF receptor crystal structure | |
AU2003265744A1 (en) | Crystal structure of erbb2 and uses thereof | |
NEIL | Copyright zyxwvutsrqponmlkjihgfedcb | |
WO2005005611A2 (en) | Crystals and structures of protein kinase chk2 | |
WO2012162856A1 (en) | Crystal of cytokine receptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |