AU2017200537A1 - Human IL-23 antigen binding proteins - Google Patents
Human IL-23 antigen binding proteins Download PDFInfo
- Publication number
- AU2017200537A1 AU2017200537A1 AU2017200537A AU2017200537A AU2017200537A1 AU 2017200537 A1 AU2017200537 A1 AU 2017200537A1 AU 2017200537 A AU2017200537 A AU 2017200537A AU 2017200537 A AU2017200537 A AU 2017200537A AU 2017200537 A1 AU2017200537 A1 AU 2017200537A1
- Authority
- AU
- Australia
- Prior art keywords
- seq
- antigen binding
- chain variable
- variable region
- binding protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Peptides Or Proteins (AREA)
Abstract
Antigen binding proteins that bind to human IL-23 protein are provided. Nucleic acids encoding the antigen binding protein, vectors, and cells encoding the same as well as use of IL-23 antigen binding proteins for diagnostic and therapeutic purposes are also provided.
Description
1001710702 2017200537 27 Jan 2017
HUMAN IL-23 ANTIGEN BINDING PROTEINS CROSS-REFERENCES TO RELATED APPLICATIONS
This application is a divisional of Australian application no. 2014202591, which is a divisional of 2010315557, the entire disclosures of which are incorporated herein by reference.
This application claims the benefit under 35 U.S.C. 119(e) of United States patent application number 61/254,982, filed October 26, 2009 and United States patent application number 61/381,287, filed September 9, 2010, which are incorporated herein by reference.
BACKGROUND
Ibtarfeukm 23 (11-23), a heterodlmenc cytokma, is· & pdtodt Inducer of prcHdftsmmalory cytokioes, tL-23 is misled to the tieterodimerto cytokine Interleukin 12 {IL-12) bold sharing a c«nn»n p40 subunit. in IL-23, a unique pi9 subunit is covertly bound to the p40 subunit. to 11-12, me ydkjue Subunit is p3$ {Oppmann at si., Immunity. 2000« 13: 713-715), The 11,,-23 hetarodmenc protein is secreted, Like 8.-12» IL-23 ss expressed by antigen presenting cels (such as dendritic cells end macrophage®) in response to activation stimuli such as CD40 ligation, Toti-like receptor agonists and pathogens. 8.-23 bants a heierodimerto receptor comprising: an IL-12RP1 subunit (which Is shared w4h the 8.-12 receptor) and « unique receptor subunit, IL-23R. The 8.-12 receptor consists of il-12Rpii end IL-12R&2. IL-23 binds its betprodimanc receptor and signets through JAK2 and Tyk2 to activate ST AT:, 3, 4 arid 5 (Parham et aL, j. Immunol. 2002, 188:5899-703). The subunits of the receptor are predominantly co-expressedl on activated or memory T cells and natural killer cells: and also at lower levels on dsndnbc cells, monocytes, macrophages, rnlctogiie, korteinoeyias and synovial fibroblasts. IL-23 and IL-12 set on different T ceil subsets and play substantially different roles In vivo. IL-23 acts on activated and memory T ceils and promotes survival and expansion of tie Ϊ ceil 7 €&li(:predtx:i^ cytokines : 6M-CSF. IL-23 also sets on natural killer cells, dendritic ceils and macrophages to induce pro-inflammatory cytokine expression. Unlike IL-23, IL-12 induces the differentiation of naive CD4+ T cells into mature Thl IFNy-producing effector cells, and Induces NK end cytotoxic T ceil function by stimulating (FNy production. T'h t cells ctovee by IL-12 wem previously thought to be the pathogenic T autoimmune diseases. however, more recei§i:inie of
Inflammatory bowel disease, useriasis. Inhsmmatory arthritis and multiple sclerosis, in which toe tldraibifiibitA Of SL-12 vetibilftlis were evaluated have nptLl 12, Is the key driver in aut^mmune/int'iemmatofy disease (Ahem et at., Irrsmun. Rev. 2008 223::147-159: Cua et ai„ Nature 2003 421:744-748: Yago et aL« Arthritis Res and Tber. 2007 9(5); R98). it *s believed that 11-12 plays a offbeat role m the development of protective innate and adaptive immune responses to many tntrssslluter pathogens and viruses end in tomor immune sumaiitonoe. See Kastslein, et at,, Annual Review of Immunology, 2007« 25: 221-42: Liu, et aL«. Rheumatology, 218)7, 46(8): 1266-73; Bowman et sL Current Opinion In Infectious Diseases, 2006 10:245-62; Fieectsl and Casanova, Eur. J, Immunol. 2003 33:.1461-4: Meeran et a!.. fvtoL Cancer Ther. 2006 5: 825-32: Lengowski et sL Nature 2006 442: 481-S. As. such. IL-23 specific inhibition (sparing IL-12 or the 1 shared p40 subunit) should have a potentially superior safety profile compared to dual inhibition of IL-12 and IL-23. 2017200537 27 Jan 2017
Therefore, use of IL-23 specific antagonists that inhibit human IL-23 (such as antibodies that bind at least the unique p19 subunit or bind both the p19 and p40 subunits of IL-23) that spare IL-12 5 should provide efficacy equal to or greater than IL-12 antagonists or p40 antagonists without the potential risks associated with inhibition of IL-12. Murine, humanized and phage display antibodies selected for inhibition of recombinant IL-23 have been described; see for example US Patent 7,491,391, WIPO Publications W01999/05280, W02007/0244846, W02007/027714, WO 2007/076524, W02007/147019, W02008/103473, WO 2008/103432, W02009/043933 and 10 W02009/082624. However, there is a need for fully human therapeutic agents that are able to inhibit native human IL-23. Such therapeutics are highly specific for the target, particularly in vivo. Complete inhibition of the in vivo target can result in lower dose formulations, less frequent and/or more effective dosing which in turn results in reduced cost and increased efficiency. The present invention provides such IL-23 antagonists. 15
SUMMARY
Antigen binding proteins that bind IL-23, particularly native human IL-23, are provided. The human IL-23 antigen binding proteins can reduce, inhibit, interfere with, and/or modulate at least one 20 of the biological responses related to IL-23, and as such, are useful for ameliorating the effects of IL-23 related diseases or disorders. IL-23 antigen binding proteins can be used, for example, to reduce, inhibit, interfere with and/or modulate IL-23 signaling, IL-23 activation of Th17 cells, IL-23 activation of NK cells, or inducing production of proinflammatory cytokines.
Also provided are expression systems, including cell lines, for the production of IL-23 antigen 25 binding proteins and methods of diagnosing and treating diseases related to human IL-23.
Some of the antigen binding proteins that bind IL-23 that are provided comprise at least one heavy chain variable region comprising a CDRH1, a CDRH2 and a CDRH3 selected from the group consisting of: a CDRH1 that differs by no more than one amino acid substitution, insertion or deletion from a CDRH1 as shown in TABLE 3; a CDRH2 that differs by no more than three, two or one amino 30 acid substitutions, insertions and/or deletions from a CDRH2 as shown in TABLE 3; a CDRH3 that differs by no more than three, two or one amino acid substitutions, insertions and/or deletions from a CDRH3 as shown in TABLE 3; and comprising at least one light chain variable region comprising a CDRL1, a CDRL2 and a CDRL3 selected from the group consisting of: a CDRL1 that differs by no more than three, two or one amino acid substitutions, insertions and/or deletions from a CDRL1 as 35 shown in TABLE 3; a CDRL2 that differs by no more than one amino acid substitution, insertion or deletion from a CDRL2 as shown in TABLE 3; a CDRL3 that differs by no more than one amino acid substitution, insertion or deletion from a CDRL3 as shown in TABLE 3. In one embodiment is provided isolated antigen binding proteins comprising: a CDRH1 selected from the group consisting of SEQ ID NO: 91,94, 97, 100, and 103; a CDRH2 selected from the group consisting of SEQ ID NO:92, 40 95, 98, 101, 104, 107, and 110; a CDRH3 selected from the group consisting of SEQ ID NO: 93, 96, 99, 102, and 105; a CDRL1 selected from the group consisting of SEQ ID NO: 62, 65, 68, 71, and 74; 2 a CDRL2 selected from the group consisting of SEQ ID NO:63, 66, 69, 72, 75, and 78; and a CDRL3 selected from the group consisting of SEQ ID NO:64, 67, 70 and 73. In another embodiment is provided isolated antigen bindings protein of comprising: a CDRH1 selected from the group consisting of SEQ ID NO: 91, 106, 109, 112, and 115; a CDRH2 selected from the group consisting of SEQ ID NO: 113, 116, 118, 120, 121, and 122; a CDRH3 selected from the group consisting of SEQ ID NO: 108, 111, 114, 117, and 119; a CDRL1 selected from the group consisting of SEQ ID NO: 77, 80, 83, 85, 86, 87, 88, 89 and 90; a CDRL2 is SEQ ID NO: 81; and a CDRL3 selected from the group consisting of SEQ ID NO: 76, 79, 82 and 84. In another embodiment is provided an isolated antigenbinding protein of that comprises at least one heavy chain variable region and at least one light chain variable region. In yet another embodiment is provided an isolated antigen-binding protein as described above that comprise at least two heavy chain variable regions and at least two light chain variable regions. In yet another embodiment is provided an isolated antigen binding protein wherein the antigen binding protein is coupled to a labeling group.
Also provided are isolated antigen binding proteins that bind IL-23 selected from the group consisting of a) an antigen binding protein having CDRH1 of SEQ ID NO:129, CDRH2 of SEQ ID NO:132, CDRH3 of SEQ ID NO:136, and CDRL1 of SEQ ID NO:123, CDRL2 of SEQ ID NO:81, and CDRL3 of SEQ ID NO: 76; b) an antigen binding protein having CDRH1 of SEQ ID NO:131, CDRH2 of SEQ ID NO: 134, CDRH3 of SEQ ID NO:137 and CDRL1 of SEQ ID NO:124, CDRL2 of SEQ ID N0126 and CDRL3 of SEQ ID NO:128; c) a) an antigen binding protein having CDRH1 of SEQ ID NO:130, CDRH2 of SEQ ID NO:133, CDRH3 of SEQ ID NO:99 and CDRL1 of SEQ ID NO:68, CDRL2 of SEQ ID NO:69, and CDRL3 of SEQ ID NO:67; and d) an antigen binding protein having CDRH1 SEQ ID NO:91, CDRH2 SEQ ID NO: 135, CDRH3 SEQ ID NO:138 and CDRL1 SEQ ID NO:125, CDRL2 SEQ ID NO:127, and CDRL3 SEQ ID NO:64.
Also provided are isolated antigen binding proteins that bind IL-23 comprising at least one heavy chain variable region and at least one light chain variable region, selected from the group consisting of: a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 99-113 of SEQ ID NO:31; and a light chain variable region comprising amino acid residues 23-36, 52-58 and 91-101 of SEQ ID NO:1;a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 99-110 of SEQ ID NO:34 and heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-110 of SEQ ID NO:36; and a light chain variable region comprising amino acid residues 23-36, 52-62 and 97-105 of SEQ ID NO:4 ; a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-114 of SEQ ID NO:38; and a light chain variable region comprising amino acid residues 23-34, 50-61 and 94-106 of SEQ ID NO:7; a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-114 of SEQ ID NO:40; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 94-106 of SEQ ID NO:9; a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-114 of SEQ ID NO:42; and a light chain variable region comprising amino acid residues 23-34, 50-61 and 94-106 of SEQ ID NO:11; a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 98-107 of SEQ ID NO:44; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO: 13; a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100- 3 109 of SEQ ID NO:46 or SEQ ID NO:153; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID N015; a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100-109 of SEQ ID NO:48; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:17; a heavy chain variable 5 region comprising amino acid residues 31-37, 52-67 and 101-109 of SEQ ID NO:50; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:19; a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 98-107 of SEQ ID NO: 52; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 98-107 of SEQ ID NO:21; a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100-109 of 10 SEQ ID NO:54; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:23; a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100-109 of SEQ ID NO:56; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:25; and a heavy chain variable region comprising amino acid residues 31-37, 52-57 and 100-109 of SEQ ID NO:58; and a light chain variable region comprising amino acid 15 residues 24-34, 500-56 and 89-97 of SEQ ID NO:27. 2017200537 27 Jan 2017
Provided herein is an isolated antigen binding protein that binds IL-23 comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region sequence differs by no more than 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions, additions and/or deletions from a heavy chain variable region sequence as shown in TABLE 2; and 20 wherein the light chain variable region sequence differs by no more than 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions, additions and/or deletions from a light chain variable region sequence as shown in TABLE 1.
Also provided is an isolated antigen binding protein that binds IL-23 selected from the group consisting of a) a heavy chain variable region of SEQ ID NO:140 and a light chain variable region of 25 SEQ ID NO: 30; b) a heavy chain variable region of SEQ ID NO:141 and a light chain variable region of SEQ ID NO:61; c) a heavy chain variable region of SEQ ID NO:142 and a light chain variable region of SEQ ID NO:4; and d) a heavy chain variable region of SEQ ID NO:143 and a light chain variable region of SEQ ID NO:139.
Also provided is an isolated antigen binding protein comprising a heavy chain variable region 30 comprising of an amino acid sequence having at least 90%, 95%, 96%, 97%, 98% or 99% sequence identity to SEQ ID NO:31, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56 and 58; and a light chain
variable region comprising an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 1, 4, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27. In another embodiment is an isolated antigen binding protein comprising a heavy chain variable region selected from the group consisting of SEQ 35 ID NO: 44, 46, 48, 50, 52, 54, 56, 58 and 153, and a light chain variable region selected from the group consisting of SEQ ID NO:13, 15, 17, 19, 21, 23, 25, and 27. In yet another embodiment is an isolated antigen binding protein comprising a heavy chain variable region selected from the group consisting of SEQ ID NO: 31, 34, 36, 38, 40 and 42, and a light chain variable region selected from the group consisting of SEQ ID NO: 1, 4, 7, 9 and 11. 4
Also provided is an isolated antigen binding protein that binds IL-23 comprising a heavy chain variable region and a light chain variable region selected from the group consisting of: a) a heavy chain variable region of SEQ ID NO:31 and a light chain variable region of SEQ ID NO:1; b) a heavy chain variable region of SEQ ID NO:34 or 36 and a light chain variable region of SEQ ID NO:4; c) a heavy chain variable region of SEQ ID NO:38 and a light chain variable region of SEQ ID NO: 7; d) a heavy chain variable region of SEQ ID NO:40 and a light chain variable region of SEQ ID NO:9; e) a heavy chain variable region of SEQ ID NO:42 and a light chain variable region of SEQ ID NO: 11; f) a heavy chain variable region of SEQ ID NO:44 and a light chain variable region of SEQ ID NO:13; g) a heavy chain variable region of SEQ ID NO:46 or SEQ ID NO:153 and a light chain variable region of SEQ ID NO:15; h) a heavy chain variable region of SEQ ID NO:48 and a light chain variable region of SEQ ID NO:17; i) a heavy chain variable region of SEQ ID NO:50 and a light chain variable region of SEQ ID NO: 19; j) a heavy chain variable region of SEQ ID NO:52 and a light chain variable region of SEQ ID NO:21; k) a heavy chain variable region of SEQ ID NO:54 and a light chain variable region of SEQ ID NO:23; I) a heavy chain variable region of SEQ ID NO:56 and a light chain variable region of SEQ ID NO:25; and m) a heavy chain variable region of SEQ ID NO:58 and a light chain variable region of SEQ ID NO:27.
Also provided is an isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contacts 30, 31, 32, 49, 50, 52, 53, 56, 92 and 94 of SEQ ID NO:15, wherein the residue contacts have a difference value of greater than or equal to 10 A2 as determined by solvent exposed surface area. Within one embodiment the residue contacts comprise residues 31-35, 54, 58-60, 66, and 101-105 of SEQ ID NO:46..
Also provided is an isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contacts 31-34, 51, 52, 55, 68, 93 and 98 of SEQ ID NO:1, wherein the residue contacts have a difference value of greater than or equal to 10 A2 as determined by solvent exposed surface area. Within one embodiment the residue contacts comprise residues 1, 26, 28, 31, 32, 52, 53, 59, 76, 101, 102 and 104-108 of SEQ ID NO:31.
Also provided is an isolated antigen binding protein that binds human IL-23, wherein when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5 A or less from residues 32-35, 54, 58-60, 66 and 101-105 of SEQ ID NO:46, as determined by X-ray crystallography. In one embodiment the antigen binding protein is 5 A or less from residues 31-35, 54, 56, 58-60, 66 and 101 -105 of SEQ ID NO:46.
Also provided is an isolated antigen binding protein that binds human IL-23, wherein when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5 A or less from residues 30-32, 49, 52, 53, 91-94 and 96 of SEQ ID NO:15, as determined by X-ray crystallography. In one embodiment the antigen binding protein is 5 A or less from residues 30-32, 49, 50, 52, 53, 56, 91-94 and 96 of SEQ ID NO:15.
Also provided is an isolated antigen binding protein that binds human IL-23, wherein when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5 A or less from 5 residues 26-28, 31, 53, 59, 102 and 104-108 of SEQ ID NO:31, as determined by X-ray crystallography. In one embodiment the antigen binding protein is 5 A or less from residues 1, 26-28, 30-32, 52, 53, 59, 100, and 102-108 of SEQ ID NO:31. 2017200537 27 Jan 2017
Also provided is an isolated antigen binding protein that binds human IL-23, wherein when 5 said antigen binding protein is bound to human IL-23, said antigen binding protein is 5 A or less from residues 31-34, 51, 52, 55, 68 and 93 of SEQ ID NO:1 as determined by X-ray crystallography. In one embodiment the antigen binding protein is 5 A or less from residues 29, 31-34, 51, 52, 55, 68, 93 and 100 of SEQ ID NO:1.
Also provided is an isolated antigen binding protein as described above, wherein the antigen 10 binding protein is an antibody. In one embodiment is provided an isolated antigen binding protein wherein the antibody is a monoclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, a chimeric antibody, a multispecific antibody, or an antibody fragment thereof. In another embodiment is provided an isolated antigen binding protein wherein the antibody fragment is a Fab fragment, a Fab' fragment, a F(ab')2 fragment, a Fv fragment, a diabody, or a single chain 15 antibody molecule. In yet another embodiment is provided an isolated antigen binding protein wherein the antigen binding protein is a human antibody. In still another embodiment is provided an isolated antigen binding protein wherein the antigen binding protein is a monoclonal antibody. In another embodiment is provided an isolated antigen binding protein wherein the antigen binding protein is of the lgG1 -, lgG2- lgG3- or lgG4-type. In yet another embodiment is provided an isolated 20 antigen binding protein wherein the antigen binding protein is of the lgG1- or lgG2-type.
An isolated nucleic acid molecule encoding an antigen binding protein as described above, is also provided. In one embodiment is provided an isolated nucleic acid molecule wherein at least one heavy chain variable region is encoded by an isolated nucleic acid molecule selected from the group consisting of SEQ ID NOs:32, 35, 37, 39, 41,43, 45, 47, 49, 51, 53, 55, 57, 59 and 152 and at least 25 one light chain variable region is encoded by an isolated nucleic acid molecule selected from the group consisting of SEQ ID NOs:2, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28. In another embodiment is provided a nucleic acid molecule wherein the nucleic acid molecule is operably linked to a control sequence. In another embodiment is provided a vector comprising a nucleic acid molecule as described above. In yet another embodiment is provided a host cell comprising the 30 nucleic acid molecule as described above. In another embodiment is provided a host cell comprising the vector described above. In yet another embodiment is provided an isolated polynucleotide sufficient for use as a hybridization probe, PCR primer or sequencing primer that is a fragment of the nucleic acid molecule as described above or its complement.
Also provided is a method of making the antigen binding protein as described above, 35 comprising the step of preparing said antigen binding protein from a host cell that secretes said antigen binding protein.
Also provided is an isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises a residue contact within residues 46-58, a residue contact within residues 112-120, and a residue contact within 40 residues 155-163 of the human IL-23p19 subunit as described in SEQ ID 140:145, wherein the 6 residue contact has a difference value greater than or equal to 10A2 as determined by solvent exposed surface area. In one embodiment is provided wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve or thirteen residue contacts within residues 46-58, one, two, three, 5 four, five, six, seven, eight, nine or ten residue contacts within residues 112-120, and one, two, three, four, five, six, seven, eight or nine residue contacts within residues 155-163 of the human IL-23p19 subunit as described in SEQ ID NO:145. In another embodiment is provided wherein the covered patch formed when the antigen binding protein binds to human IL-23 comprises a residue contact within residues 121-125 of the human IL-23p40 subunit as described in SEQ ID NO:147. In a related 10 embodiment is wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises one, two, three, four or five residue contacts within residues 121-125 of the human IL-23p40 subunit as described in SEQ ID NO:147. Within another embodiment is provided wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contacts 46, 47, 49, 50, 53, 112-116, 118, 120, 155, 156, 159, 160, and 163 of SEQ ID 15 NO:145. In another embodiment is provided wherein the covered patch formed when the antigen 2017200537 27 Jan 2017 binding protein is bound to human IL-23 comprises residue contacts 46, 47, 49, 50, 53, 112-118, 120, 155, 156, 159, 160, and 163 of SEQ ID NO:145. Within another embodiment is provided wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residues 46, 47, 49, 50, 53-55, 57, 58, 112-116, 118-120, 155, 156, 159, 160, 162 and 163 of SEQ ID NO:145. 20 In a related embodiment is provided wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contact 122 of the human IL-23p40 subunit as described in SEQ ID NO:147. In another related embodiment is provided wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contacts 122 and 124 of the human IL-23p40 subunit as described in SEQ ID NO:147. In yet another related 25 embodiment is provided wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contact 121-123 and 125 of the human IL-23p40 subunit as described in SEQ ID NO:147. In a further related embodiment is provided wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contact 121-123, 125 and 283 of the human IL-23p40 subunit as described in SEQ ID NO:147. 30 Also provided is an isolated antigen binding protein that binds human IL-23, wherein when said antigen binding protein is bound to human IL-23 said antigen binding protein is 5A or less from a residue within residues 46-58, from a residue within residues 112-123, and from a residue within residues 155-163 of the human IL-23p19 subunit as described in SEQ ID NO:145, as determined by X-ray crystallography. In one embodiment, when the antigen binding protein is bound to human IL-23, 35 the antigen binding protein is 5A or less from one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve or thirteen residues within residues 46-58, from one, two, three, four, five, six, seven, eight, nine or ten, residues within residues 112-123, and from one, two, three, four, five, six, seven, eight or nine residues within residues 155-163 of the human IL-23p19 subunit as described in SEQ ID NO:145. Within another embodiment when the antigen binding protein is bound to human IL-23 the 40 antigen binding protein is 5A or less from residues 46-50, 113-116, 120, 156, 159, 160 and 163 of SEQ ID NO:145. Within another embodiment when the antigen binding protein is bound to human IL- 7 23, the antigen binding protein is 5A or less from residues 46-50, 112-120, 156, 159, 160 and 163 of SEQ ID NO:145. Within a related embodiment when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5A or less from residues 46-50, 53, 112-120, 156, 159, 160 and 163 of SEQ ID NO:145. Within another embodiment when the antigen binding protein is bound to human 5 IL-23, the antigen binding protein is 5A or less from residues 46-50, 53-55, 58, 113-116, 120, 121, 2017200537 27 Jan 2017 156, 159, 160, 162 and 163 of SEQ ID NO:145. Within a related embodiment when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5A or less from residues 46-51, 53-55, 57, 58, 112-116, 118-121, 123, 155, 156, 159, 160, 162 and 163 of SEQ ID NO:145. Within a further embodiment when the antigen binding protein is bound to human IL-23 the antigen binding 10 protein is 5A or less from a residue within residues 121-125, of the human IL-23p40 subunit as described in SEQ ID NO:147, as determined by X-ray crystallography. With a related embodiment when the antigen binding protein is bound to human IL-23, said antigen binding protein is 5 A or less from residues 122 and 124 of SEQ ID NO:147. Within another embodiment when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5 A or less from residues 121-123 and 15 125 of SEQ ID NO:147.
Also provided is an isolated antigen binding protein as described above, wherein the antigen binding protein has at least one property selected from the group consisting of: a) reducing human IL-23 activity; b) reducing production of a proinflammatory cytokine; c) binding to human IL-23 with a KD of < 5x10-8 M; d) having a Koff rate of < 5x10-6 1/s; and d) having an IC50 of < 400 pM. 20 A pharmaceutical composition comprising at least one antigen binding protein as described above and pharmaceutically acceptable excipient is provided. In one embodiment is provided a pharmaceutical composition further comprises a labeling group or an effector group. In yet another embodiment is provided a pharmaceutical composition wherein the labeling group is selected from the group consisting of isotopic labels, magnetic labels, redox active moieties, optical dyes, biotinylated 25 groups and predetermined polypeptide epitopes recognized by a secondary reporter. In yet another embodiment is provided a pharmaceutical composition wherein the effector group is selected from the group consisting of a radioisotope, radionuclide, a toxin, a therapeutic group and a chemotherapeutic group.
Also provided is a method for treating or preventing a condition associated with IL-23 in a 30 patient, comprising administering to a patient in need thereof an effective amount of at least one isolated antigen binding protein as described above. In one embodiment is provided a method of wherein the condition is selected from the group consisting of an inflammatory disorder, a rheumatic disorder, an autoimmune disorder, an oncological disorder and a gastrointestinal disorder. In yet another embodiment is provided a method wherein the condition is selected from the group consisting 35 of multiple sclerosis, rheumatoid arthritis, cancer, psoriasis, inflammatory bowel disease, Crohn’s disease, ulcerative colitis, systemic lupus erythematosus, psoriatic arthritis, autoimmune myocarditis; type 1 diabetes and ankylosing spondylitis. In still another embodiment is provided a method wherein the isolated antigen-binding protein is administered alone or as a combination therapy.
Also provided is a method of reducing IL-23 activity in a patient comprising administering an 40 effective amount of at least one antigen binding protein as described above. In one embodiment is 8 provided a method of reducing IL-23 activity, wherein said IL-23 activity is inducing production of a proinflammatory cytokine. 2017200537 27 Jan 2017
BRIEF DESCRIPTION OF THE DRAWINGS FIGURE 1A: Results of STAT-luciferase reporter assay using recombinant human IL-23. All 5 antibodies completely inhibited recombinant human IL-23 FIGURE 1B: Results from STAT-luciferase reporter assay using native human IL-23. Only half of those antibodies that completely inhibited recombinant human IL-23 were able to completely inhibit native human IL-23
10 DETAILED DESCRIPTION
The present invention provides compositions, kits, and methods relating to IL-23 antigen binding proteins, including molecules that antagonize IL-23, such as anti-IL-23 antibodies, antibody fragments, and antibody derivatives, e.g., antagonistic anti-IL-23 antibodies, antibody fragments, or antibody derivatives. Also provided are polynucleotides, and derivatives and fragments thereof, 15 comprising a sequence of nucleic acids that encodes all or a portion of a polypeptide that binds to IL-23, e.g., a polynucleotide encoding all or part of an anti-IL-23 antibody, antibody fragment, or antibody derivative, plasmids and vectors comprising such nucleic acids, and cells or cell lines comprising such polynucleotides and/or vectors and plasmids. The provided methods include, for example, methods of making, identifying, or isolating IL-23 antigen binding proteins, such as anti-IL-23 antibodies, 20 methods of determining whether a molecule binds to IL-23, methods of determining whether a molecule antagonizes IL-23, methods of making compositions, such as pharmaceutical compositions, comprising an IL-23 antigen binding protein, and methods for administering an IL-23 antigen binding protein to a subject, for example, methods for treating a condition mediated by IL-23, and for antagonizing a biological activity of IL-23, in vivo or in vitro. 25 Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and 30 protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present invention are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory 35 Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001) and Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992), and Harlow and Lane Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The 40 terminology used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein 9 are those well known and commonly used in the art. Standard techniques can be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients. 2017200537 27 Jan 2017
All patents and other publications identified are expressly incorporated herein by reference in 5 their entirety for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with information described herein.
The polynucleotide and protein sequences of the p19 subunit of human IL-23 (SEQ ID NOs: 144 and 145), the shared p40 subunit (SEQ ID NOs:146 and 147), the human IL-23 receptor hererodimeric subunits IL-12RP1 (SEQ ID NOs: 150 and 151) and IL-23R (SEQ ID NOs: 148 and 10 149), are known in the art, see for example, GenBank Accession Nos. AB030000; M65272, NM_005535, NM 144701, as are those from other mammalian species. Recombinant IL-23 and IL-23 receptor proteins including single chain and Fc proteins as well as cells expressing the IL-23 receptor have been described or are available from commercial sources, (see for example, Oppmann etal., Immunity, 2000, 13: 713-715; R&D Systems, Minneapolis. Minnesota; United States Biological, 15 Swampscott, Massachusetts; WIPO Publication No. WO 2007/076524). Native human IL-23 can be obtained from human cells such as dendritic cells using methods known in the art including those described herein. IL-23 is a heterodimeric cytokine comprised of a unique p19 subunit that is covalently bound to a shared p40 subunit. The p19 subunit comprises four α-helices, “A”, “B”, “C” and “D” in an up-up-20 down-down motif joined by three intra-helix loops between the A and B helices, between the B and C helices and between the C and D helices, see Oppmann et al., Immunity, 2000, 13: 713-715 and Beyer, et al., J Mol Biol, 2008. 382(4): 942-55. The A and D helices of 4 helical bundle cytokines are belived to be involved with receptor binding. The p40 subunit comprises three beta-sheet sandwich domains, D1, D2 and D3 (Lupardus and Garcia, J. Mol. Biol., 2008, 382:931-941. 25 The term “polynucleotide" includes both single-stranded and double-stranded nucleic acids and includes genomic DNA, RNA, mRNA, cDNA, or synthetic origin or some combination thereof which is not associated with sequences normally found in nature. Isolated polynucleotides comprising specified sequences may include, in addition to the specified sequences, coding sequences for up to ten or even up to twenty other proteins or portions thereof, or may include operably linked regulatory 30 sequences that control expression of the coding region of the recited nucleic acid sequences, and/or may include vector sequences. The nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide. The modifications include base modifications such as bromouridine and inosine derivatives, ribose modifications such as 2’,3’-dideoxyribose, and internucleotide linkage modifications such as phosphorothioate, 35 phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phoshoraniladate and phosphoroamidate.
The term “oligonucleotide" means a polynucleotide comprising 100 or fewer nucleotides. In some embodiments, oligonucleotides are 10 to 60 bases in length. In other embodiments, oligonucleotides are 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 nucleotides in length. Oligonucleotides 40 may be single stranded or double stranded, e.g., for use in the construction of a mutant gene. Oligonucleotides may be sense or antisense oligonucleotides. An oligonucleotide can include a 10 detectable label, such as a radiolabel, a fluorescent label, a hapten or an antigenic label, for detection assays. Oligonucleotides may be used, for example, as PCR primers, cloning primers or hybridization probes. 2017200537 27 Jan 2017
The terms “polypeptide" or “protein" means a macromolecule having the amino acid sequence 5 of a native protein, that is, a protein produced by a naturally-occurring and non-recombinant cell; or it is produced by a genetically-engineered or recombinant cell, and comprise molecules having the amino acid sequence of the native protein, or molecules having one or more deletions from, insertions to, and/or substitutions of the amino acid residues of the native sequence. The term also includes amino acid polymers in which one or more amino acids are chemical analogs of a corresponding 10 naturally-occurring amino acid and polymers. The terms “polypeptide" and “protein" encompass IL-23 antigen binding proteins (such as antibodies) and sequences that have one or more deletions from, additions to, and/or substitutions of the amino acid residues of the antigen binding protein sequence. The term “polypeptide fragment" refers to a polypeptide that has an amino-terminal deletion, a carboxyl-terminal deletion, and/or an internal deletion as compared with the full-length native protein. 15 Such fragments may also contain modified amino acids as compared with the native protein. In certain embodiments, fragments are about five to 500 amino acids long. For example, fragments may be at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 50, 70, 100, 110, 150, 200, 250, 300, 350, 400, or 450 amino acids long. Useful polypeptide fragments include immunologically functional fragments of antibodies, including binding domains. In the case of an IL-23 antigen binding 20 protein, such as an antibody, useful fragments include but are not limited to one or more CDR regions, a variable domain of a heavy or light chain, a portion of an antibody chain, a portion of a variable region including less than three CDRs, and the like. “Amino acid" includes its normal meaning in the art. The twenty naturally-occurring amino acids and their abbreviations follow conventional usage. See, Immunology-A Synthesis, 2nd Edition, 25 (E. S. Golub and D. R. Gren, eds.), Sinauer Associates: Sunderland, Mass. (1991). Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as [alpha]-, [alpha]-disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids may also be suitable components for polypeptides. Examples of unconventional amino acids include: 4-hydroxyproline, [gamma]-carboxyglutamate, [epsilon]-N,N,N-trimethyllysine, [epsilon]-N-acetyllysine, 30 O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, [sigma]-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention.
The term “isolated protein" refers to a protein, such as an antigen binding protein (an example 35 of which could be an antibody), that is purified from proteins or polypeptides or other contaminants that would interfere with its therapeutic, diagnostic, prophylactic, research or other use. As used herein, “substantially pure" means that the described species of molecule is the predominant species present, that is, on a molar basis it is more abundant than any other individual species in the same mixture. In certain embodiments, a substantially pure molecule is a composition wherein the object 40 species comprises at least 50% (on a molar basis) of all macromolecular species present. In other embodiments, a substantially pure composition will comprise at least 80%, 85%, 90%, 95%, or 99% of 11 all macromolecular species present in the composition. In certain embodiments, an essentially homogeneous substance has been purified to such a degree that contaminating species cannot be detected in the composition by conventional detection methods and thus the composition consists of a single detectable macromolecular species. 2017200537 27 Jan 2017 5 A “variant" of a polypeptide (e.g., an antigen binding protein such as an antibody) comprises an amino acid sequence wherein one or more amino acid residues are inserted into, deleted from and/or substituted into the amino acid sequence relative to another polypeptide sequence. Variants include fusion proteins. A “derivative" of a polypeptide is a polypeptide that has been chemically modified in some manner distinct from insertion, deletion, or substitution variants, e.g., via conjugation 10 to another chemical moiety.
The terms “naturally occurring" or “native" as used throughout the specification in connection with biological materials such as polypeptides, nucleic acids, host cells, and the like, refers to materials which are found in nature, such as native human IL-23. In certain aspects, recombinant antigen binding proteins that bind native IL-23 are provided. In this context, a “recombinant protein" is 15 a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as described herein. Methods and techniques for the production of recombinant proteins are well known in the art.
The term “antibody" refers to an intact immunoglobulin of any isotype, or a fragment thereof that can compete with the intact antibody for specific binding to the target antigen, and includes, for 20 instance, chimeric, humanized, fully human, and bispecific antibodies. An antibody as such is a species of an antigen binding protein. Unless otherwise indicated, the term “antibody” includes, in addition to antibodies comprising two full-length heavy chains and two full-length light chains, derivatives, variants, fragments, and muteins thereof, examples of which are described below. An intact antibody generally will comprise at least two full-length heavy chains and two full-length light 25 chains, but in some instances may include fewer chains such as antibodies naturally occurring in camelids which may comprise only heavy chains. Antibodies may be derived solely from a single source, or may be “chimeric," that is, different portions of the antibody may be derived from two different antibodies as described further below. The antigen binding proteins, antibodies, or binding fragments may be produced in hybridomas, by recombinant DNA techniques, or by enzymatic or 30 chemical cleavage of intact antibodies.
The term “functional fragment" (or simply “fragment") of an antibody or immunoglobulin chain (heavy or light chain), as used herein, is an antigen binding protein comprising a portion (regardless of how that portion is obtained or synthesized) of an antibody that lacks at least some of the amino acids present in a full-length chain but which is capable of specifically binding to an antigen. Such 35 fragments are biologically active in that they bind specifically to the target antigen and can compete with other antigen binding proteins, including intact antibodies, for specific binding to a given epitope. In one aspect, such a fragment will retain at least one CDR present in the full-length light or heavy chain, and in some embodiments will comprise a single heavy chain and/or light chain or portion thereof. These biologically active fragments may be produced by recombinant DNA techniques, or 40 may be produced by enzymatic or chemical cleavage of antigen binding proteins, including intact antibodies. Fragments include, but are not limited to, immunologically functional fragments such as 12
Fab, Fab', F(ab')2, Fv, domain antibodies and single-chain antibodies, and may be derived from any mammalian source, including but not limited to human, mouse, rat, camelid or rabbit. It is contemplated further that a functional portion of the antigen binding proteins disclosed herein, for example, one or more CDRs, could be covalently bound to a second protein or to a small molecule to 5 create a therapeutic agent directed to a particular target in the body, possessing bifunctional therapeutic properties, or having a prolonged serum half-life. 2017200537 27 Jan 2017
The term “compete” when used in the context of antigen binding proteins (e.g., neutralizing antigen binding proteins or neutralizing antibodies) means competition between antigen binding proteins as determined by an assay in which the antigen binding protein (e.g., antibody or 10 immunologically functional fragment thereof) under test prevents or inhibits specific binding of a reference antigen binding protein (e.g., a ligand, or a reference antibody) to a common antigen (e.g., an IL-23 protein or a fragment thereof). Numerous types of competitive binding assays can be used, for example: solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see, e.g., Stahli et al., 1983, Methods in 15 Enzymology 92:242-253); solid phase direct biotin-avidin EIA (see, e.g., Kirkland et al., 1986, J. Immunol. 137:3614-3619) solid phase direct labeled assay, solid phase direct labeled sandwich assay (see, e.g., Harlow and Lane, 1988, Antibodies, A Laboratory Manual, Cold Spring Harbor Press); solid phase direct label RIA using 1-125 label (see, e.g., Morel etal., 1988, Molec. Immunol. 25:7-15); solid phase direct biotin-avidin EIA (see, e.g., Cheung, et al., 1990, Virology 176:546-552); and direct 20 labeled RIA (Moldenhauer et al., 1990, Scand. J. Immunol. 32:77-82). Typically, such an assay involves the use of purified antigen bound to a solid surface or cells bearing either of these, an unlabelled test antigen binding protein and a labeled reference antigen binding protein.
Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antigen binding protein. Usually the test antigen binding 25 protein is present in excess. Antigen binding proteins identified by competition assay (competing antigen binding proteins) include antigen binding proteins binding to the same epitope as the reference antigen binding proteins and antigen binding proteins binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antigen binding protein for steric hindrance to occur. Usually, when a competing antigen binding protein is present in excess, it will inhibit specific 30 binding of a reference antigen binding protein to a common antigen by at least 40%, 45%, 50%, 55%, 60%, 65%, 70% or 75%. In some instance, binding is inhibited by at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% 98%, 99% or more.
The term "epitope" or "antigenic determinant" refers to a site on an antigen to which an antigen binding protein binds. Epitopes can be formed both from contiguous amino acids or 35 noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. Epitope determinants may include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl or sulfonyl groups, and may have specific three dimensional structural 40 characteristics, and/or specific charge characteristics. An epitope typically includes at least 3, 4, 5, 6, 13 2017200537 27 Jan 2017 1000375217 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35 amino acids in a unique spatial conformation. Epitopes can be determined using methods known in the art.
As used herein, except where the context requires otherwise, the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised”, are not intended to exclude other additives, components, integers or steps.
Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment, or any form of suggestion, that this prior art forms part of the common general knowledge in Australia or any other jurisdiction or that this prior art could reasonably be expected to be ascertained, understood and regarded as relevant by a person skilled in the art. IL-23 Antigen Binding Proteins
An “antigen binding protein” as used herein means a protein that specifically binds a specified target antigen; the antigen as provided herein is IL-23, particularly human IL-23, including native human IL-23. Antigen binding proteins as provided herein interact with at least a portion of the unique p19 subunit of IL-23, detectably binding IL-23; but do not bind with any significance to IL-12 (e.g., the p40 and/or the p35 subunits of IL-12), thus “sparing IL-12”. As a consequence, the antigen binding proteins provided herein are capable of impacting IL-23 activity without the potential risks that inhibition of IL-12 or the shared p40 subunit might incur. The antigen binding proteins may impact the ability of IL-23 to interact with its receptor, for example by impacting binding to the receptor, such as by interfering with receptor association. In particular, such antigen binding proteins totally or partially reduce, inhibit, interfere with or modulate one or more biological activities of IL-23. Such inhibition or neutralization disrupts a biological response in the presence of the antigen binding protein compared to the response in the absence of the antigen binding protein and can be determined using assays known in the art and described herein. Antigen binding proteins provided herein inhibit IL-23-induced proinflammatory cytokine production, for example IL-23-induced IL-22 production in whole blood cells and IL-23-induced IFNy expression in NK and whole blood cells. Reduction of biological activity can be about 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%,95%, 96%, 97% 98%, 99% or more.
An antigen binding protein may comprise a portion that binds to an antigen and, optionally, a scaffold or framework portion that allows the antigen binding portion to adopt a conformation that promotes binding of the antigen binding protein to the antigen. Examples of antigen binding proteins include antibodies, antibody fragments (e.g., an antigen binding portion of an antibody), antibody derivatives, and antibody analogs. The antigen binding protein can comprise an alternative protein scaffold or artificial scaffold with grafted CDRs or CDR derivatives. Such scaffolds include, but are not limited to, antibody-derived scaffolds comprising mutations introduced to, for example, stabilize the three-dimensional structure of the antigen binding protein as well as wholly synthetic scaffolds comprising, for example, a biocompatible polymer. See, for example, Korndorfer et al., Proteins: Structure, Function, and Bioinformatics, (2003) Volume 53, Issue 1:121-129; Roque etal., Biotechnol. Prog., 2004, 20:639-654. In addition, peptide antibody mimetics (“PAMs”) can be used, as well as scaffolds based on antibody mimetics utilizing fibronection components as a scaffold. 14 2017200537 27 Jan 2017 1000375217
Certain antigen binding proteins described herein are antibodies or are derived from antibodies. Such antigen binding proteins include, but are not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies, antibody mimetics, chimeric antibodies, humanized antibodies, human antibodies, antibody fusions, antibody conjugates, single chain antibodies, and fragments thereof, respectively. In some instances, the antigen binding protein is an immunological fragment of an antibody (e.g-., a Fab, a Fab’, a F(ab’)2, or a scFv). The various structures are further described and defined herein.
14A
Certain antigen binding proteins that are provided may comprise one or more CDRs as described herein (e.g., 1, 2, 3, 4, 5, 6 or more CDRs). In some instances, the antigen binding protein comprises (a) a polypeptide structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide structure. The polypeptide structure can take a variety of different forms. For 2017200537 27 Jan 2017 5 example, it can be, or comprise, the framework of a naturally occurring antibody, or fragment or variant thereof, or may be completely synthetic in nature. Examples of various polypeptide structures are further described below.
An antigen binding protein of the invention is said to “specifically bind" its target antigen when the dissociation equilibrium constant (KD) is < 10-8 M. The antigen binding protein specifically binds 10 antigen with “high affinity" when the KD is < 5 x 10-9 M, and with “very high affinity" when the the KD is < 5 x 10-10 M. In one embodiment the antigen binding protein will bind to human IL-23 with a KD of <5x10-12 M, and in yet another embodiment it will bind with a KD <5x10-13 M. In another embodiment of the invention, the antigen binding protein has a KD of < 5 x 10-12 M and an Koff of about <5x10-6 1/s. In another embodiment, the Koff is < 5x10-71 /s. 15 Another aspect provides an antigen binding protein having a half-life of at least one day in vitro or in vivo (e.g., when administered to a human subject). In one embodiment, the antigen binding protein has a half-life of at least three days. In another embodiment, the antibody or portion thereof has a half-life of four days or longer. In another embodiment, the antibody or portion thereof has a half-life of eight days or longer. In another embodiment, the antibody or antigen binding portion 20 thereof is derivatized or modified such that it has a longer half-life as compared to the underivatized or unmodified antibody. In another embodiment, the antigen binding protein contains point mutations to increase serum half life, such as described in WIPO Publication No. WO 00/09560.
In embodiments where the antigen binding protein is used for therapeutic applications, an antigen binding protein can reduce, inhibit, interfere with or modulate one or more biological activities 25 of IL-23, such inducing production of proinflammatory cytokines. IL-23 has many distinct biological effects, which can be measured in many different assays in different cell types; examples of such assays and known and are provided herein.
Some of the antigen binding proteins that are provided have the structure typically associated with naturally occurring antibodies. The structural units of these antibodies typically comprise one or 30 more tetramers, each composed of two identical couplets of polypeptide chains, though some species of mammals also produce antibodies having only a single heavy chain. In a typical antibody, each pair or couplet includes one full-length “light” chain (in certain embodiments, about 25 kDa) and one full-length “heavy” chain (in certain embodiments, about 50-70 kDa). Each individual immunoglobulin chain is composed of several “immunoglobulin domains”, each consisting of roughly 90 to 110 amino 35 acids and expressing a characteristic folding pattern. These domains are the basic units of which antibody polypeptides are composed. The amino-terminal portion of each chain typically includes a variable region that is responsible for antigen recognition. The carboxy-terminal portion is more conserved evolutionarily than the other end of the chain and is referred to as the “constant region” or “C region". Human light chains generally are classified as kappa and lambda light chains, and each of 40 these contains one variable region and one constant domain (CL1).z Heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon chains, and these define the antibody's isotype as 15
IgM, IgD, IgG, IgA, and IgE, respectively. IgG has several subtypes, including, but not limited to, lgG1, lgG2, lgG3, and lgG4. IgM subtypes include IgM, and lgM2. IgA subtypes include lgA1 and lgA2. In humans, the IgA and IgD isotypes contain four heavy chains and four light chains; the IgG and IgE isotypes contain two heavy chains and two light chains; and the IgM isotype contains five 5 heavy chains and five light chains. The heavy chain constant region (CH) typically comprises one or more domains that may be responsible for effector function. The number of heavy chain constant region domains will depend on the isotype. IgG heavy chains, for example, each contains three CH region domains known as CH1, CH2 and CH3. The antibodies that are provided can have any of these isotypes and subtypes, for example, the IL-23 antigen binding protein is of the lgG1, lgG2, or 10 lgG4 subtype. If an lgG4 is desired, it may also be desired to introduce a point mutation (CPSCP->CPPCP) in the hinge region as described in Bloom et al., 1997, Protein Science 6:407) to alleviate a tendency to form intra-H chain disulfide bonds that can lead to heterogeneity in the lgG4 antibodies. Antibodies provided herein that are of one type can be changed to a different type using subclass switching methods. See, e.g., Lantto et al., 2002, Methods Mol. Biol. 178:303-316. 2017200537 27 Jan 2017 15 In full-length light and heavy chains, the variable and constant regions are joined by a “J” region of about twelve or more amino acids, with the heavy chain also including a “D” region of about ten more amino acids. See, e.g., Fundamental Immunology, 2nd ed., Ch. 7 (Paul, W., ed.) 1989, New York: Raven Press. The variable regions of each light/heavy chain pair typically form the antigen binding site. 20 Variable Regions
Various heavy chain and light chain variable regions (or domains) provided herein are depicted in TABLES 1 and 2. Each of these variable regions may be attached, for example, to heavy and light chain constant regions described above. Further, each of the so generated heavy and light chain sequences may be combined to form a complete antigen binding protein structure. 25 Provided are antigen binding proteins that contain at least one heavy chain variable region (VH) selected from the group consisting of VH1, VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15 and VH16 and/or at least one light chain variable region (VL) selected from the group consisting of VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, and VL16 as shown in TABLES 1 and 2 below. 30 Each of the heavy chain variable regions listed in TABLE 2 may be combined with any of the light chain variable regions shown in TABLE 1 to form an antigen binding protein. In some instances, the antigen binding protein includes at least one heavy chain variable region and/or one light chain variable region from those listed in TABLES 1 and 2. In some instances, the antigen binding protein includes at least two different heavy chain variable regions and/or light chain variable regions from 35 those listed in TABLES 1 and 2. The various combinations of heavy chain variable regions may be combined with any of the various combinations of light chain variable regions.
In other instances, the antigen binding protein contains two identical light chain variable regions and/or two identical heavy chain variable regions. As an example, the antigen binding protein may be an antibody or immunologically functional fragment that comprises two light chain variable 40 regions and two heavy chain variable regions in combinations of pairs of light chain variable regions and pairs of heavy chain variable regions as listed in TABLES 1 and 2. Examples of such antigen 16 binding proteins comprising two identical heavy chain and light chain variable regions include: Antibody A VH14/ VL14; Antibody B VH9/ VL9; Antibody C VH10/ VL10; Antibody D VH15/ VL15; Antibody E VH1/ VL1, Antibody F VH11/ VL11; Antibody G VH12/ VL12; Antibody H VH13/ VL13; Antibody I VH8/ VL8; Antibody J VH3/ VL3; Antibody K VH7/ VL7; Antibody L VH4/ VL4; Antibody M 5 VH5/ VL5 and Antibody N VH6/ VL6. 2017200537 27 Jan 2017
Some antigen binding proteins that are provided comprise a heavy chain variable region and/or a light chain variable region comprising a sequence of amino acids that differs from the sequence of a heavy chain variable region and/or a light chain variable region selected from TABLES 1 and 2 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each 10 such sequence difference is independently either a deletion, insertion or substitution of one amino acid. The light and heavy chain variable regions, in some antigen binding proteins, comprise sequences of amino acids that have at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequences provided in TABLES 1 and 2. Still other antigen binding proteins, e.g., antibodies or immunologically functional fragments, also 15 include variant heavy chain region forms and/or variant light chain region forms as described herein.
The term “identity" refers to a relationship between the sequences of two or more polypeptide molecules or two or more polynucleotides, as determined by aligning and comparing the sequences. “Percent identity" means the percent of identical residues between the amino acids or nucleotides in the compared molecules and is calculated based on the size of the smallest of the molecules being 20 compared. 17 2017200537 27 Jan 2017 TABLE 1
Exemplary Variant Light Chain Region Sequences FR1 CDRL1 FR2 CDRL2 FR3 CDRL3 FR4 VL1 QSVLTQPPSVSGAPGQRVTISCTGSSS/VTGAGyDV'HWYQQVPGTAPKLLlYGSGNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSyDSSLSGlWFGGGTRLTVL SEQ ID NO:1
Vl2 QSVLTQPPSVSGAPGQRVTISCrGSSSN/GAGyDVHWYQQLPGTAPKLLlYGSNNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSyDSSLSGIWFGGGTKLTVL SEQ ID NO:3
Vl3 QAVLTQPSSLSASPGASASLTCT/.RSG/NyGTyR/YWYQQKPGSPPQYLLRYKSDSD/CQQGSGVPSRFSGSKDASANAGILLISGLQSEDEADYYC/W/lVHSSASVFGGGTKLTVL SEQ ID NO:4
Vl4 QAVLTQPSSLSASPGASASLTCrLRSG/NyGryR/yWYQQKPGSPPQYLLRyKSDSDKQQGSGVPSRFSGSKDASANAGILLISGLQSEDEADYYCM/WHSSASVFGGGTKLTVL SEQ ID NO:4
Vl5 QPVLTQPPSASASLGASVTLTCT/.NSGySDyKV'DWYQQRPGKGPRFVMRyGTGG/VGSK'GDGlPDRFSVLGSGLNRYLTIKNIQEEDESDYHCGADHGSGSNFVyVFGTGTKVTVL SEQ ID N07 VL6 QPVLTQPPSASASLGASVTLTCT/.SSGySDyKV'DWYQQRPGKGPRFVMRV'GTGG/VGSKGEGlPDRFSVLGSGLNRYLTIKNIQEEDESDYHCGADHGSGNNFV'YVFGTGTKVTVL SEQ ID NO:9
Vl7 QPELTQPPSASASLGASVTLTC7/.SSGySDyKV,DWYQLRPGKGPRFVMRV,G7GG7VGSKGEGIPDRFSVLGSGLNRSLTIKNIQEEDESDYHCGADHGSGSNFVyVFGTGTKVTVL SEQ ID NO:11
Vl8 DIQLTPSPSSVSASVGDRVTITCRASQG/AGIVLAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQADSFPP7FGGGTKVEIK SEQ ID NO:13
Vl9 DIQMTQSPSSVSASVGDRVTITCRASQWSSIfVLAWYQQKPGKAPSLLIYAASSLQSGVPSRFSGSVSGTDFTLTISSLQPEDFATYYCQQANSFPFTFGPGTKVDFK SEQ ID NO:15 VL10 DIQMTQSPSSVSASVGDRVTITCRASQGSSSWFAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPFTFGPGTKVDIK SEQ ID NO:17 VL11 DSQMTQSPSSVSASVGDRVTITCRASQG/SSIVFAWYQQKPGQAPNLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQANSFPF7FGPGTKVDIK SEQ ID NO:19
Vl12 DIQMTQSPSSVSASVGDRVTITCRAGQWSSIVLAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQArSFPLTFGGGTKVEIK SEQ ID NO:21
Vl13 DIQMTQSPSSVSASVGDRVTITCRASQGFSGIVLAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPF7FGPGTKVDIK SEQ ID NO:23
Vl14 DIQLTQSPSSVSASVGDRVTITCRASQWSSIVFAWYQQKPGKAPNLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPADFATYFCQQANSFPFTTGPGTKVDVK SEQ ID NO:25
Vl15 DIQMTQSPSSVSASVGDRVTITCRASQGSSS1VFAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPF7TGPGTKVDIK SEQ ID NO:27
Vl16 DIQMTQSPSSLSASVGDRVTITCRASQG/RNDLGWYQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSyPP7TGQGTKVEIE SEQ ID NO:29 2017200537 27 Jan 2017 TABLE 2
Exemplary Variant Heavy Chain Region Sequences FR1 CDRH1 FR2 CDRH2 FR3 CDRH3 FR4 VH1 QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAWWYDGSNEYYADSWCGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGYrSSWYPDAFD/WGQGTMVTVSS SEQ ID NO:31
Vh2 QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAV7M/YDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGYSSSM/YPDAFDA/VGQGTMVTVSS SEQ ID NO:33
Vh3 QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAV7SFDGSLKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARER7T£.SGSYFDYWGQGTLVTVSS SEQ ID NO:34
Vh4 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWLSWSHDGS//CYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARER7TLSGSYFDYWGQGTLVTVSS SEQ ID NO: 36
Vh5 EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSY/SSRSSr/Y/ADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARR/AAAGGFHYYYALDVWGQGTTVTVSS SEQ ID NO:38
Vh6 EVQLVESGGGLVQPGGSLRLSCAASGFTFSrYSMNWVRQAPGKGLEWVSY/SSSSSTRYHADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARR/AAAGPWGYYYA/WDWVGQGTTVTVSS SEQ ID NO: 40
Vh7 EVQLVESGGGLVQPGGSLRLSCVVSGFTFSSFS/WNWVRQAPGKGLEWVSY/SSRSSr/YYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARR/A4AGPI4'GYYYA/WDVWGQGTTVTVSS SEQ ID NO: 42
Vh8 QVQLQESGPGLVKPSETLSLTCTVSGGSISTYYWSWIRQPAGKGLEWIG/./YTSGSTNYNPSLKSRVTMSLDTSKNQFSLRLTSVTAADTAVYYCARDRGYYYGVDVWGQGTTVTVSS SEQ ID NO: 44
Vh9 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGH/HYSGNrYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAK/VRGFYYGMDVWGQGTTVTVSS SEQ ID NO: 46 VH10 QVQLQESGPGLVKPSQTLSLTCTVSGGSINSGGYYVVSWIRQHPGKGLEWIGY/YYSGSSYYNPSLKSRVTISVDTSQNQFSLKLSSVTAADTAVYYCARDRGHYYG/WDVWGQGTTVTVSS SEQ ID NO:48 VH11 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGY/YYSGSrYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDRGHYYG/WDVWGQGTTVTVSS SEQ ID NO:50
Vh12 QVQLQESGPRLVKPSETLSLTCTVSGDSISSYFIVSWIRQPPGKGLEWLGY/YYSGSrNYNPSLKSRVTISIDTSKNQFSLKLSSVTAADTAVYYCTRDRGSYYGSDYWGQGTLVTVSS SEQ ID NO:52
Vh13 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWTWIRQHPGKGLEWIGY/YYSGNrYYNPSLKSRITISVDTSKNQFSLSLSSVTAADTAVYYCARNRGYYYG/WDVWGQGTTVTVSS SEQ ID NO:54
Vh14 QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYVVSWIRQHPGKGLEWIGY/YYSGSrYYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYYCAKNRGFYYG/WDVWGQGTTVTVSS SEQ ID NO: 56
Vh15 QVQLQESGPGLVKPSQTLSLTCTVSGGSINSGGYYWSWIRQHPGKGLEWIGY/YYSGSSYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDRGHYYG/WDVWGQGTTVTVSS SEQ ID NO:58
Vh16
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG/MHWVRQAPGKGLEWVAL/lVYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARENrW/YYNYG/WDVWGQGTTVTVSS SEQ ID NO: 60
For these calculations, gaps in alignments (if any) must be addressed by a particular mathematical model or computer program (i.e., an “algorithm”). Methods that can be used to calculate the identity of the aligned nucleic acids or polypeptides include those described in Computational Molecular Biology, (Lesk, A. M., ed.), 1988, New York: Oxford University Press; Biocomputing Informatics and 5 Genome Projects, (Smith, D. W., ed.), 1993, New York: Academic Press; Computer Analysis of Sequence Data, Part I, (Griffin, A. M., and Griffin, H. G., eds.), 1994, New Jersey: Humana Press; von Heinje, G., 1987, Sequence Analysis in Molecular Biology, New York: Academic Press; Sequence Analysis Primer, (Gribskov, M. and Devereux, J., eds.), 1991, New York: M. Stockton Press; and Carillo et a!., 1988, SIAM J. Applied Math. 48:1073. 2017200537 27 Jan 2017 10 In calculating percent identity, the sequences being compared are aligned in a way that gives the largest match between the sequences. The computer program used to determine percent identity is the GCG program package, which includes GAP (Devereux et at., 1984, Nucl. Acid Res. 12:387: Genetics Computer Group, University of Wisconsin, Madison, Wl). The computer algorithm GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be 15 determined. The sequences are aligned for optimal matching of their respective amino acid or nucleotide (the “matched span", as determined by the algorithm). A gap opening penalty (which is calculated as 3x the average diagonal, wherein the “average diagonal” is the average of the diagonal of the comparison matrix being used; the “diagonal” is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is 20 usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see, Dayhoff et a/., 1978, Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al., 1992, Proc. Natl. Acad. Sci. U.S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm. 25 Recommended parameters for determining percent identity for polypeptides or nucleotide sequences using the GAP program are the following: Algorithm: Needleman et al., 1970, J. Mol. Biol. 48:443-453; Comparison matrix: BLOSUM 62 from Henikoff et al., 1992, supra·, Gap Penalty: 12 (but with no penalty for end gaps), Gap Length Penalty: 4, Threshold of Similarity: 0. Certain alignment schemes for aligning two amino acid sequences may result in matching of only a short region of the 30 two sequences and this small aligned region may have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide.
The heavy and light chain variable regions disclosed herein include consensus sequences 35 derived from groups of related antigen binding proteins. The amino acid sequences of the heavy and light chain variable regions were analyzed for similarities. Four groups emerged, one group having kappa light chain variable regions, (VH9/ VL9, VH10/ VL10, VH11/ VL11, VH13/ VL13, VH14/ VL14 and VH15/ Vl15) and three groups having lambda light chain variable regions: lambda group 1 (VH5/ VL5, Vh6/ Vl6 and VH7/ VL7), lambda group 2 (VH3/ VL3 and VH4/ VL4), and lambda group 3 (VH1/ VL1 and 40 Vh2/ Vl2). Light chain germlines represented include VK1/A30 and VK1/L19. Light chain lambda 20 germlines represented include VL1/1e, VL3/3p, VL5/5c and VL9/9a. Heavy chain germlines represented include VH3/3-30, VH3/3-30.3, VH3/3-33, VH3/3-48, VH4/4-31 and VH4/4-59. As used herein, a “consensus sequence" refers to amino acid sequences having conserved amino acids common among a number of sequences and variable amino acids that vary within given amino acid 5 sequences. Consensus sequences may be determined using standard phylogenic analyses of the light and heavy chain variable regions corresponding to the IL-23 antigen binding proteins disclosed herein. 2017200537 27 Jan 2017
The light chain variable region consensus sequence for the kappa group is DX1QX2TQSPSSVSASVGDRVTITCRASQGX3X4SX5WX6AWYQQKPGX7APX8LLIYAASSLQSGVPSR 10 FS GSXgSGTX^FTLTISSLQPXuDFATYX^CQQANSFPFTFGPGTKVDX^K (SEQ ID NO:30) where Χϊ is selected from I or S; X2 is selected from M or L; X3 is selected from G or V and X4 is selected from S, F or I; X5 is selected from S or G; X6 is selected from F or L;X7 is selected from K or Q; X8 is selected from K, N or S; Xg is selected from G or V; X10 is selected from D or E, Xn is selected from E or A; X12 is selected from Y or F; and X13 is selected from I, V or F. 15 The light chain variable region consensus sequence for lambda group 1 is QPX1LTQPPSASASLGASVTLTCTLX2SGYSDYKVDWYQX3RPGKGPRFVMRVGTGGX4VGSKGX5GI PDRFSVLGSGLNRX6LTIKNIQEEDESDYHCGADHGSGX7NFVYVFGTGTKVTVL (SEQ ID NO:61) where X! is selected from V or E; X2 is selected from N or S; X3 is selected from Q or L and X4 is selected from I or T; X5 is selected from D or E; X6 is selected from Y or S; and X7 is selected from S 20 or N.
The light chain variable region consensus sequence for lambda group 3 is QSVLTQPPSVSGAPGQRVTISCTGSSSNX^AGYDVHWYQQXsPGTAPKLLlYGSXsNRPSGVPDRF SG SKSGTSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTX4RLTVL (SEQ ID NO:139) where Χί is selected from T or I; X2 is selected from V or L; X3 is selected from G or N and X4 is selected 25 from R or K.
The heavy chain variable region consensus sequence for the kappa group is QVQLQESGPGLVKPSQTLSLTCTVSGGSIX^GGYYWXsWIRQHPGKGLEWIGXs^YSGXsXeYYNP SLK SRX7TX8SVDTSXgNQFSLX10LSSVTAADTAVYYCAX11X12RGX13YYGMDVWGQGTTVTVSS (SEQ ID NO:140) where X! is selected from N or S; X2 is selected from S or T; X3 is selected from Y 30 or H and X4 is selected from Y or H; X5 is selected from S or N; X6 is selected from S or T; X7 is selected from V or I; X8 is selected from I or M; X9 is selected from K or Q; X10 is selected from K or S, Xu is selected from R or K; X12 is selected from D or N; and X13 is selected from H, F or Y.
The heavy chain variable region consensus sequence for lambda group 1 is EVQLVESGGGLVQPGGSLRLSCX^zSGFTFSX^SMNWVRQAPGKGLEWVSYISSXgSSTXgYX^D 35 SV KGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARRIAAAGXeXgX^YYYAXuDVWGQGTTVTVSS (SEQ ID NO:141) where X1 is selected from A or V; X2 is selected from A or V; X3 is selected from T or S and X4 is selected from Y or F; X5 is selected from S or R; X6 is selected from R or I; X7 is selected from Η, Y or I; X8 is selected from P or G; X9 is selected from W or F; X10 is selected from G or H and Xu is selected from M or L. 21
The heavy chain variable region consensus sequence for lambda group 2 is 2017200537 27 Jan 2017 QVQLVESGGGWQPGRSLRLSCAASGFTFSSYX1MHWVRQAPGKGLEWX2X3VISX4DGSX6KYYAD SV KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARERTTLSGSYFDYWGQGTLVTVSS (SEQ ID NO: 142) where Xi is selected from G or A; X2 is selected from V or L; X3 is selected from A or S and 5 X4 is selected from F or H and X5 is selected from L or I.
The heavy chain variable region consensus sequence for lambda group 3 is QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNX1YYADSV KG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGYX2SSWYPDAFDIWGQGTMVTVSS (SEQ ID NO: 143) where X! is selected from E or K and X2 is selected from T or S. 10
Complementarity determining regions
Complementarity determining regions or “CDRs" are embedded within a framework in the heavy and light chain variable regions where they constitute the regions responsible for antigen 15 binding and recognition. Variable domains of immunoglobulin chains of the same species, for example, generally exhibit a similar overall structure; comprising relatively conserved framework regions (FR) joined by hypervariable CDR regions. An antigen binding protein can have 1, 2, 3, 4, 5, 6 or more CDRs. The variable regions discussed above, for example, typically comprise three CDRs. The CDRs from heavy chain variable regions and light chain variable regions are typically aligned by 20 the framework regions to form a structure that binds specifically on a target antigen (e.g., IL-23). From N-terminal to C-terminal, naturally-occurring light and heavy chain variable regions both typically conform to the following order of these elements: FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The CDR and FR regions of exemplary light chain variable domains and heavy chain variable domains are highlighted in TABLES 1 and 2. It is recognized that the boundaries of the CDR and FR 25 regions can vary from those highlighted. Numbering systems have been devised for assigning numbers to amino acids that occupy positions in each of these domains. Complementarity determining regions and framework regions of a given antigen binding protein may be identified using these systems. Numbering systems are defined in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed., US Dept, of Health and Human Services, PHS, NIH, NIH Publication 30 No. 91-3242, 1991, or Chothia & Lesk, 1987, J. Mol. Biol. 196:901-917; Chothia et al., 1989, Nature 342:878-883. Other numbering systems for the amino acids in immunoglobulin chains include IMGT® (the international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 2005, 29:185-203); and AHo (Honegger and Pluckthun, J. Mol. Biol. 2001, 309(3):657-670). The CDRs provided herein may not only be used to define the antigen binding domain of a traditional 35 antibody structure, but may be embedded in a variety of other polypeptide structures, as described herein.
The antigen binding proteins disclosed herein are polypeptides into which one or more CDRs may be grafted, inserted, embedded and/or joined. An antigen binding protein can have, for example, one heavy chain CDR1 (“CDRH1”), and/or one heavy chain CDR2 (“CDRH2”), and/or one heavy 40 chain CDR3 (“CDRH3”), and/or one light chain CDR1 (“CDRL1”), and/or one light chain CDR2 (“CDRL2”), and/or one light chain CDR3 (“CDRL3”). Some antigen binding proteins include both a 22 CDRH3 and a CDRL3. Specific embodiments generally utilize combinations of CDRs that are non-repetitive, e.g., antigen binding proteins are generally not made with two CDRH2 regions in one variable heavy chain region, etc. Antigen binding proteins may comprise one or more amino acid sequences that are identical to or that differ from to the amino acid sequences of one or more of the 5 CDRs presented in TABLE 3 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each such sequence difference is independently either a deletion, insertion or substitution of one amino acid. The CDRs in some antigen binding proteins comprise sequences of amino acids that have at least 80%, 85%, 90%, 91%, 92, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to CDRs sequence listed in TABLE 3. In some antigen binding proteins, the CDRs 10 are embedded into a “framework" region, which orients the CDR(s) such that the proper antigen binding properties of the CDR(s) is achieved. TABLE 3
Exemplary CDRH and CDRL Sequences
Exemplary CDRL Sequences CDRL1 CDRL2 CDRL3 TGSSSNTGAGYDVH GSGNRPS QSYDSSLSGWV SEQ ID NO: 62 SEQ ID NO:63 SEQ ID NO: 64 TGSSSNIGAGYDVH GSNNRPS MIWHSSASV SEQ ID NO:65 SEQ ID NO:66 SEQ ID NO:67 TLRSGINVGTYRIY YKSDSDKQQGS GADHGSGSNFVYV SEQ ID NO:68 SEQ ID NO:69 SEQ ID NO:70 TLNSGYSDYKV VGTGGIVGSKGD GADHGSGNNFVYV SEQ ID NO:71 SEQ ID NO:72 SEQ ID NO:73 TLSSGYSDYKV VGTGGIVGSKGE QQANSFPFT SEQ ID NO:74 SEQ ID NO:75 SEQ ID NO:76 RASQGFSGWLA VGTGGTVGSKGE QQATSFPLT SEQ ID NO:77 SEQ ID NO:78 SEQ ID NO:79 RASQVISSWLA AASSLQS QQADSFPPT SEQ ID NO:80 SEQ ID NO:81 SEQ ID NO:82 RASQVISSWFA LQHNSYPPT SEQ ID NO:83 SEQ ID NO:84 RASQGSSSWFA SEQ ID NO:85 RASQGISSWFA SEQ ID NO:86 RAGQVISSWLA SEQ ID NO:87 RASQGIAGWLA SEQ ID NO:88 RASQGIRNDLG SEQ ID NO:89 Exemplary CDRH Sequences CDRH1 CDRH2 CDRH3 SYGMH VIWYDGSNEYYADSVKG DRGYTSSWYPDAFDI SEQ ID NO:91 SEQ ID NO:92 SEQ ID NO:93 SYAMH VIWYDGSNKYYADSVKG DRGYSSSWYPDAFDI SEQ ID NO:94 SEQ ID NO:95 SEQ ID NO:96 TYSMN VISFDGSLKYYADSVKG ERTTLSGSYFDY SEQ ID NO:97 SEQ ID NO:98 SEQ ID NO:99 2017200537 27 Jan 2017 23 2017200537 27 Jan 2017 SYSMN VISHDGSIKYYADSVKG RIAAAGGFHYYYALDV SEQ ID NO:100 SEQ ID NO:101 SEQ ID NO:102 SFSMN YISSRSSTIYIADSVKG RIAAAGPWGYYYAMDV SEQ ID NO:103 SEQ ID NO:104 SEQ ID NO:105 SGGYYWT YISSSSSTRYHADSVKG NRGYYYGMDV SEQ ID NO:106 SEQ ID NO:107 SEQ ID NO:108 SGGYYWS YISSRSSTIYYADSVKG NRGFYYGMDV SEQ ID NO:109 SEQ ID NO:110 SEQ ID NO:111 SYFWS YIYYSGNTYYNPSLKS DRGHYYGMDV SEQ ID NO:112 SEQ ID NO:113 SEQ ID NO:114 TYYWS HIHYSGNTYYNPSLKS DRGSYYGSDY SEQ ID NO:115 SEQ ID NO:116 SEQ ID NO:117 YIYYSGSTYYNPSLKS DRGYYYGVDV SEQ ID NO:118 SEQ ID NO: 119 YIYYSGSSYYNPSLKS ENTVTIYYNYGMDV SEQ ID NO:120 SEQ ID NO:6 YIYYSGSTNYNPSLKS SEQ ID NO:121 LIYTSGSTNYNPSLKS SEQ ID NO:122 LIWYDGSNKYYADSVKG SEQ ID NO: 90
Provided herein are CDR1 regions comprising amino acid residues 23-34 of SEQ ID NOs: 7 and 11; amino acid residues 24-34 of SEQ ID NOs: 9, 13, 15, 17, 19 21, 23, 25, 27 and 29; 5 amino acid residues 23-36 of SEQ ID NOs: 1, 3 and 4; amino acid residues 31-35 of SEQ ID NOs:31, 33, 34, 38, 40, 44, 52 and 60 and amino acid residues 31-37 or SEQ ID NOs: 46, 48, 50, 54, 56 and 58. CDR2 regions are provided comprising amino acid residues 50-56 of SEQ ID NOs: 9, 13, 15, 17, 19, 21, 23, 25, 27 and 29; amino acid residues 50-61 of SEQ ID NOs: 7 and 11; amino acid 10 residues 52-62 of SEQ ID NO:4; amino acid residues 50-65 of SEQ ID NOs: 31, 33, 44 and 52; amino
acid residues 50-66 of SEQ ID NOs: 36, 38, 40, 42 and 60; amino acid residues 52-58 of SEQ ID NOs: 1 and 3 and amino acid residues 52-67 of SEQ ID NOs: 46, 48, 50, 54, 56 and 58. CDR3 regions comprising amino acid residues 89-97 of SEQ ID NOs: 13, 15, 17, 19, 21, 23, 25, 27 and 29; amino acid residues 91-101 of SEQ ID NOs: 1 and 3; amino acid residues 94-106 15 of SEQ ID NOs: 7, 9 and 11; amino acid residues 98-107 of SEQ ID NOs: 44 and 52; amino acid residues 97-105 of SEQ ID NO: 4; amino acid residues 99-110 of SEQ ID NOs: 34 and 36; amino acid residues 99-112 of SEQ ID NO: 112; amino acid residues 99-113 of SEQ ID NOs: 31 and 33; amino acid residues 99-114 of SEQ ID NOs: 38, 40 and 42; amino acid residues 100-109 of SEQ ID NOs: 46, 48, 54, 56 and 58; and amino acid residues 101-019 of SEQ ID NO; 50; are also provided. 20 The CDRs disclosed herein include consensus sequences derived from groups of related sequences. As described previously, four groups of variable region sequences were identified, a kappa group and three lambda groups. The CDRL1 consensus sequence from the kappa group consists of RASQX1X2SX3WX4A (SEQ ID NO:123) where X, is selected from G or V; X2 is selected from I, F or S; X3 is selected from S or G and X4 is selected from F or L. The CDRL1 consensus 25 sequence from lambda group 1 consists of TDOiSGYSDYKVD (SEQ ID NO:124) wherein X, is 24 selected from N or S. The CDRL1 consensus sequences from lambda group 3 consists of TGSSSNXtGAGYDVH (SEQ ID NO:125) wherein X! is selected from I or T. 2017200537 27 Jan 2017
The CDRL2 consensus sequence from lambda group 1 consists of VGTGGX.|\/GSKGX2 (SEQ ID NO: 126) wherein X1 is selected from I or T and X2 is selected from D or E. The CDRL2 5 consensus sequence from lambda group 3 consists of GSXtNRPS (SEQ ID NO:127) wherein X^ is selected from N or G.
The CDRL3 consensus sequences include GADHGSGX^FVYV (SEQ IDN NO:128) wherein X1 is S or N.
The CDRH1 consensus sequence from the kappa group consists of SGGYYWXt (SEQ ID 10 NO:129) wherein X1 is selected from S or T. The CDRH1 consensus sequence from lambda group 1 consists of X^SMN (SEQ ID NO: 131) wherein X-, is selected from S or T and X2 is selected from Y or F. The CDRFI1 consensus sequence from lambda group 2 consists of SYX^FI (SEQ ID NO:130), wherein X! is selected from G or A.
The CDRFI2 consensus sequence from the kappa group consists of
15 X1IX2YSGX3X4YYNPSLKS (SEQ ID NO:132) wherein X, is selected from Y or H; X2 is selected from Y or H; X3 is selected from S or N and X4 is selected from T or S. The consensus sequence from lambda group 1 consists of YISSX^STX^XsADSVKG (SEQ ID NO:134) wherein X1 is selected from R or S, X2 is selected from I or R, X3 is selected from I, FI or Y. The consensus sequence from lambda group 2 consists of VISX^GSXzKYYADSVKG (SEQ ID NO:133) wherein X, is F or H and X2 is L or 20 T. The CDRFI2 consensus sequence from lambda group 3 consists of VIWYDGSNXiYYADSVKG (SEQ ID NO:135) wherein X1 is selected from K or E.
The CDRH3 consensus sequence from the kappa group consists of XiRGX^YGMDV (SEQ ID NO:136) wherein X1 is selected from N or D and X2 is selected from Η, Y or F. The CDRH3 consensus sequence from lambda group 1 consists of RIAAAGX1X2X3YYYAX4DV (SEQ ID NO:137) 25 wherein X1 is selected from G or P; X2 is selected from F or W; X3 is selected from H or G and X4 is selected from L and M. The CDRFI3 consensus sequence from lambda group 3 consists of DRGYXtSSWYPDAFDI (SEQ ID NO:138) wherein X-, is selected from S or T.
Monoclonal Antibodies
The antigen binding proteins that are provided include monoclonal antibodies that bind to IL-30 23. Monoclonal antibodies may be produced using any technique known in the art, e.g., by immortalizing spleen cells harvested from the transgenic animal after completion of the immunization schedule. The spleen cells can be immortalized using any technique known in the art, e.g., by fusing them with myeloma cells to produce hybridomas. Myeloma cells for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme 35 deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). Examples of suitable cell lines for use in mouse fusions include Sp-20, P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XXO Bui; examples of cell lines used in rat fusions include R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210. Other cell lines useful for cell fusions are U-266, 40 GM1500-GRG2, LICR-LON-HMy2 and UC729-6. 25
In some instances, a hybridoma cell line is produced by immunizing an animal (e.g., a transgenic animal having human immunoglobulin sequences) with an IL-23 immunogen; harvesting spleen cells from the immunized animal; fusing the harvested spleen cells to a myeloma cell line, thereby generating hybridoma cells; establishing hybridoma cell lines from the hybridoma cells, and identifying a hybridoma cell line that produces an antibody that binds an IL-23 polypeptide while sparing IL-12. Such hybridoma cell lines, and anti-IL-23 monoclonal antibodies produced by them, are aspects of the present application.
Monoclonal antibodies secreted by a hybridoma cell line can be purified using any technique known in the art. Hybridomas or mAbs may be further screened to identify mAbs with particular properties, such as the ability to inhibit IL-23-induced activity.
Chimeric and Humanized Antibodies
Chimeric and humanized antibodies based upon the foregoing sequences are also provided. Monoclonal antibodies for use as therapeutic agents may be modified in various ways prior to use. One example is a chimeric antibody, which is an antibody composed of protein segments from different antibodies that are covalently joined to produce functional immunoglobulin light or heavy chains or immunologically functional portions thereof. Generally, a portion of the heavy chain and/or light chain is identical with or homologous to a corresponding sequence in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For methods relating to chimeric antibodies, see, for example, US Patent No. 4,816,567; and Morrison et al., 1985, Proc. Natl. Acad. Sci. USA 81:6851-6855. CDR grafting is described, for example, in US Patent Nos. 6,180,370, 5,693,762, 5,693,761, 5,585,089, and 5,530,101.
One useful type of chimeric antibody is a “humanized" antibody. Generally, a humanized antibody is produced from a monoclonal antibody raised initially in a non-human animal. Certain amino acid residues in this monoclonal antibody, typically from non-antigen recognizing portions of the antibody, are modified to be homologous to corresponding residues in a human antibody of corresponding isotype. Humanization can be performed, for example, using various methods by substituting at least a portion of a rodent variable region for the corresponding regions of a human antibody (see, e.g., US Patent Nos. 5,585,089, and No. 5,693,762; Jones et al., 1986, Nature 321:522-525; Riechmann et al., 1988, Nature 332:323-27; Verhoeyen et al., 1988, Science 239:1534-1536),
In certain embodiments, constant regions from species other than human can be used along with the human variable region(s) to produce hybrid antibodies.
Fully Human Antibodies
Fully human antibodies are also provided. Methods are available for making fully human antibodies specific for a given antigen without exposing human beings to the antigen (“fully human antibodies”). One specific means provided for implementing the production of fully human antibodies is the "humanization" of the mouse humoral immune system. Introduction of human immunoglobulin (Ig) loci into mice in which the endogenous Ig genes have been inactivated is one means of producing 26 fully human monoclonal antibodies (mAbs) in mouse, an animal that can be immunized with any desirable antigen. Using fully human antibodies can minimize the immunogenic and allergic responses that can sometimes be caused by administering mouse or mouse-derivatized mAbs to humans as therapeutic agents. 2017200537 27 Jan 2017 5 Fully human antibodies can be produced by immunizing transgenic animals (usually mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production. Antigens for this purpose typically have six or more contiguous amino acids, and optionally are conjugated to a carrier, such as a hapten. See, e.g., Jakobovits et at., 1993, Proc. Natl. Acad. Sci. USA 90:2551-2555; Jakobovits et at., 1993, Nature 362:255-258; and 10 Bruggermann et at., 1993, Year in Immunol. 7:33. In one example of such a method, transgenic animals are produced by incapacitating the endogenous mouse immunoglobulin loci encoding the mouse heavy and light immunoglobulin chains therein, and inserting into the mouse genome large fragments of human genome DNA containing loci that encode human heavy and light chain proteins. Partially modified animals, which have less than the full complement of human immunoglobulin loci, 15 are then cross-bred to obtain an animal having all of the desired immune system modifications. When administered an immunogen, these transgenic animals produce antibodies that are immunospecific for the immunogen but have human rather than murine amino acid sequences, including the variable regions. For further details of such methods, see, for example, WIPO patent publications W096/33735 and W094/02602. Additional methods relating to transgenic mice for making human 20 antibodies are described in US Patent Nos. 5,545,807; 6,713,610; 6,673,986; 6,162,963; 5,545,807; 6,300,129; 6,255,458; 5,877,397; 5,874,299 and 5,545,806; in WIPO patent publications WO91/10741, W090/04036, and in EP 546073B1 and EP 546073A1.
The transgenic mice described above contain a human immunoglobulin gene minilocus that encodes unrearranged human heavy ([mu] and [gamma]) and [kappa] light chain immunoglobulin 25 sequences, together with targeted mutations that inactivate the endogenous [mu] and [kappa] chain loci (Lonberg et at., 1994, Nature 368:856-859). Accordingly, the mice exhibit reduced expression of mouse IgM or [kappa] and in response to immunization, and the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgG [kappa] monoclonal antibodies (Lonberg et al., supra.· Lonberg and Huszar, 1995, Intern. Rev. 30 Immunol. 13: 65-93; Harding and Lonberg, 1995, Ann. N.YAcad. Sci. 764:536-546). The preparation of such mice is described in detail in Taylor et al., 1992, Nucleic Acids Research 20:6287-6295; Chen et al., 1993, International Immunology 5:647-656; Tuaillon et al., 1994, J. Immunol. 152:2912-2920; Lonberg et al., 1994, Nature 368:856-859; Lonberg, 1994, Handbook of Exp. Pharmacology 113:49-101; Taylor et al., 1994, International Immunology 6:579-591; Lonberg and Huszar, 1995, Intern. Rev. 35 Immunol. 13:65-93; Harding and Lonberg, 1995, Ann. N.Y Acad. Sci. 764:536-546; Fishwild et al., 1996, Nature Biotechnology 14:845-85. See, further United States Patent No. 5,545,806; No. 5,569,825; No. 5,625,126; No. 5,633,425; No. 5,789,650; No. 5,877,397; No. 5,661,016; No. 5,814,318; No. 5,874,299; and No. 5,770,429; as well as United States Patent No. 5,545,807; WIPO Publication Nos. WO 93/1227; WO 92/22646; and WO 92/03918. Technologies utilized for producing 40 human antibodies in these transgenic mice are disclosed also in WIPO Publication No. WO 98/24893, 27 and Mendez et al., 1997, Nature Genetics 15:146-156. For example, the HCo7 and HCo12 transgenic mice strains can be used to generate anti-IL-23 antibodies. 2017200537 27 Jan 2017
Using hybridoma technology, antigen-specific human mAbs with the desired specificity can be produced and selected from the transgenic mice such as those described above. Such antibodies 5 may be cloned and expressed using a suitable vector and host cell, or the antibodies can be harvested from cultured hybridoma cells.
Fully human antibodies can also be derived from phage-display libraries (such as disclosed in Hoogenboom et al., 1991, J. Mol. Biol. 227:381; Marks et al., 1991, J. Mol. Biol. 222:581; WIPO Publication No. WO 99/10494). Phage display techniques mimic immune selection through the 10 display of antibody repertoires on the surface of filamentous bacteriophage, and subsequent selection of phage by their binding to an antigen of choice.
Bispecific or Bifunctional Antigen Binding Proteins A “bispecific," “dual-specific" or “bifunctional" antigen binding protein or antibody is a hybrid antigen binding protein or antibody, respectively, having two different antigen binding sites, such as 15 one or more CDRs or one or more variable regions as described above. In some instances they are an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Multispecific antigen binding protein or “multispecific antibody” is one that targets more than one antigen or epitope. Bispecific antigen binding proteins and antibodies are a species of multispecific antigen binding protein antibody and may be produced by a variety of methods including, but not 20 limited to, fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai and Lachmann, 1990, Clin. Exp. Immunol. 79:315-321; Kostelny etal., 1992, J. Immunol. 148:1547-1553.
Immunological Fragments
Antigen binding proteins also include immunological fragments of an antibody (e.g., a Fab, a Fab’, a F(ab’)2, or a scFv). A “Fab fragment” is comprised one light chain (the light chain variable 25 region (VL) and its corresponding constant domain (CL)) and one heavy chain (the heavy chain variable region (VH) and first constant domain (CH1)). The heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule. A “Fab' fragment” contains one light chain and a portion of one heavy chain that also contains the region between the CH1 and CH2 domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab' fragments to 30 form an F(ab')2 molecule. A “F(ab')2 fragment" thus is composed of two Fab' fragments that are held together by a disulfide bond between the two heavy chains. A “Fv fragment" consists of the variable light chain region and variable heavy chain region of a single arm of an antibody. Single-chain antibodies “scFv" are Fv molecules in which the heavy and light chain variable regions have been connected by a flexible linker to form a single polypeptide chain, which forms an antigen binding 35 region. Single chain antibodies are discussed in detail in WIPO Publication No. WO 88/01649, U.S. Patent Nos. 4,946,778 and No. 5,260,203; Bird, 1988, Science 242:423; Huston et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:5879; Ward et al., 1989, Nature 334:544, de Graaf et al., 2002, Methods Mol Biol. 178:379-387; Kortt et al., 1997, Prot. Eng. 10:423; Kortt etal., 2001, Biomol. Eng. 18:95-108 and Kriangkum et al., 2001, Biomol. Eng. 18:31-40. A “Fc" region contains two heavy chain 28 fragments comprising the CH1 and CH2 domains of an antibody. The two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains. 2017200537 27 Jan 2017
Also included are domain antibodies, immunologically functional immunoglobulin fragments containing only the variable region of a heavy chain or the variable region of a light chain. In some 5 instances, two or more VH regions are covalently joined with a peptide linker to create a bivalent domain antibody. The two VH regions of a bivalent domain antibody may target the same or different antigens. Diabodies are bivalent antibodies comprising two polypeptide chains, wherein each polypeptide chain comprises VH and VL domains joined by a linker that is too short to allow for pairing between two domains on the same chain, thus allowing each domain to pair with a complementary 10 domain on another polypeptide chain (see, e.g., Holliger et al., Proc. Natl. Acad. Sci. USA 90:6444-48, 1993 and Poljak et al., Structure 2:1121-23, 1994). Similarly, tribodies and tetrabodies are antibodies comprising three and four polypeptide chains, respectively, and forming three and four antigen binding sites, respectively, which can be the same or different. Maxibodies comprise bivalent scFvs covalently attached to the Fc region of IgG,, (see, e.g., Fredericks et al, 2004, Protein 15 Engineering, Design & Selection, 17:95-106; Powers et al., 2001, Journal of Immunological Methods, 251:123-135; Shu et al., 1993, Proc. Natl. Acad. Sci. USA 90:7995-7999; Hayden et al., 1994, Therapeutic Immunology 1:3-15).
Various Other Forms
Also provided are variant forms of the antigen binding proteins disclosed above, some of the 20 antigen binding proteins having, for example, one or more conservative amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in TABLES 1 and 2.
Naturally-occurring amino acids may be divided into classes based on common side chain properties: hydrophobic (norleucine, Met, Ala, Val, Leu, lie); neutral hydrophilic (Cys, Ser, Thr, Asn, Gin); acidic (Asp, Glu); basic (His, Lys, Arg); residues that influence chain orientation (Gly, Pro); and 25 aromatic (Trp, Tyr, Phe).
Conservative amino acid substitutions may involve exchange of a member of one of these classes with another member of the same class. Conservative amino acid substitutions may encompass non-naturally occurring amino acid residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. These include peptidomimetics and 30 other reversed or inverted forms of amino acid moieties. Such substantial modifications in the functional and/or biochemical characteristics of the antigen binding proteins described herein may be achieved by creating substitutions in the amino acid sequence of the heavy and light chains that differ significantly in their effect on maintaining (a) the structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the 35 molecule at the target site, or (c) the bulkiness of the side chain.
Non-conservative substitutions may involve the exchange of a member of one of the above classes for a member from another class. Such substituted residues may be introduced into regions of the antibody that are homologous with human antibodies, or into the non-homologous regions of the molecule. 29
In making such changes, according to certain embodiments, the hydropathic index of amino acids may be considered. The hydropathic profile of a protein is calculated by assigning each amino acid a numerical value (“hydropathy index”) and then repetitively averaging these values along the peptide chain. Each amino acid has been assigned a hydropathic index on the basis of its 5 hydrophobicity and charge characteristics. They are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5). 2017200537 27 Jan 2017
The importance of the hydropathic profile in conferring interactive biological function on a 10 protein is understood in the art (see, e.g., Kyte et al., 1982, J. Mol. Biol. 157:105-131). It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, in certain embodiments, the substitution of amino acids whose hydropathic indices are within ±2 is included. In some aspects, those which are within ±1 are included, and in other aspects, those 15 within ±0.5 are included.
It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functional protein or peptide thereby created is intended for use in immunological embodiments, as in the present case. In certain embodiments, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity 20 of its adjacent amino acids, correlates with its immunogenicity and antigen binding or immunogenicity, that is, with a biological property of the protein.
The following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5±1); alanine (-0.5); histidine (-0.5); cysteine 25 (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (- 2.5) and tryptophan (-3.4). In making changes based upon similar hydrophilicity values, in certain embodiments, the substitution of amino acids whose hydrophilicity values are within ±2 is included, in other embodiments, those which are within ±1 are included, and in still other embodiments, those within ±0.5 are included. In some instances, one may also identify epitopes from primary amino acid 30 sequences on the basis of hydrophilicity. These regions are also referred to as “epitopic core regions.”
Exemplary conservative amino acid substitutions are set forth in TABLE 4. TABLE 4
Conservative Amino Acid Substitutions
Residue Sub Residue Sub Residue Sub Residue Sub Ala Ser Gin Asn Leu He, Val Thr Ser Arg Lys Glu Asp Lys Arg, Gin, Glu Trp Tyr Asn Gin, Gly Pro Met Leu, lie Tyr Trp, 30
His Phe Asp Glu His Asn, Gin Phe Met, Leu, Tyr Val lie, Leu Cys Ser lie Leu, Val Ser Thr Thr Ser
Residue = Original Residue Sub = Exemplary Substitution A skilled artisan will be able to determine suitable variants of polypeptides as set forth herein using well-known techniques. One skilled in the art may identify suitable areas of the molecule that 5 may be changed without destroying activity by targeting regions not believed to be important for activity. The skilled artisan also will be able to identify residues and portions of the molecules that are conserved among similar polypeptides. In further embodiments, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure. 2017200537 27 Jan 2017 10 Additionally, one skilled in the art can review structure-function studies identifying residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a protein that correspond to amino acid residues important for activity or structure in similar proteins. One skilled in the art may opt for chemically similar amino acid substitutions for such predicted important amino acid residues. 15 One skilled in the art can also analyze the 3-dimensional structure and amino acid sequence in relation to that structure in similar polypeptides. In view of such information, one skilled in the art may predict the alignment of amino acid residues of an antibody with respect to its three dimensional structure. One skilled in the art may choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues may be involved in important 20 interactions with other molecules. Moreover, one skilled in the art may generate test variants containing a single amino acid substitution at each desired amino acid residue. These variants can then be screened using assays for IL-23 activity, (see examples below) thus yielding information regarding which amino acids can be changed and which must not be changed. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine 25 the amino acid positions where further substitutions should be avoided either alone or in combination with other mutations. A number of scientific publications have been devoted to the prediction of secondary structure. See, Moult, 1996, Curr. Op. in Biotech. 7:422-427; Chou ef a/., 1974, Biochem. 13:222-245; Chou etal., 1974, Biochemistry 113:211-222; Chou etal., 1978, Adv. Enzymol. Relat. Areas Mol. 30 Biol. 47:45-148; Chou et al., 1979, Ann. Rev. Biochem. 47:251-276; and Chou etal., 1979, Biophys. J. 26:367-384. Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins that have a sequence identity of greater than 30%, or similarity greater than 40% often have similar structural topologies. The recent growth of the 35 protein structural database (PDB) has provided enhanced predictability of secondary structure, 31 including the potential number of folds within a polypeptide's or protein's structure. See, Holm et al., 1999, Nucl. Acid. Res. 27:244-247. It has been suggested (Brenner et al., 1997, Curr. Op. Struct. Biol. 7:369-376) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, structural prediction will become dramatically 5 more accurate. 2017200537 27 Jan 2017
Additional methods of predicting secondary structure include “threading” (Jones, 1997, Curr. Opin. Struct. Biol. 7:377-387; Sippl et al., 1996, Structure 4:15-19), “profile analysis” (Bowie et al., 1991, Science 253:164-170; Gribskov et al., 1990, Meth. Enzym. 183:146-159; Gribskov et al., 1987, Proc. Nat. Acad. Sci. 84:4355-4358), and “evolutionary linkage” (See, Holm, 1999, supra; and 10 Brenner, 1997, supra).
In some embodiments, amino acid substitutions are made that: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter ligand or antigen binding affinities, and/or (4) confer or modify other physicochemical or functional properties on such polypeptides, such as maintaining the structure of 15 the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation; maintaining or altering the charge or hydrophobicity of the molecule at the target site, or maintaining or altering the bulkiness of a side chain.
For example, single or multiple amino acid substitutions (in certain embodiments, conservative amino acid substitutions) may be made in the naturally-occurring sequence. 20 Substitutions can be made in that portion of the antibody that lies outside the domain(s) forming intermolecular contacts). In such embodiments, conservative amino acid substitutions can be used that do not substantially change the structural characteristics of the parent sequence (e.g., one or more replacement amino acids that do not disrupt the secondary structure that characterizes the parent or native antigen binding protein). Examples of art-recognized polypeptide secondary and 25 tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton,
Ed.), 1984, W. H. New York: Freeman and Company; Introduction to Protein Structure (Branden and Tooze, eds.), 1991, New York: Garland Publishing; and Thornton eta!., 1991, Nature 354:105.
Additional variants include cysteine variants wherein one or more cysteine residues in the parent or native amino acid sequence are deleted from or substituted with another amino acid (e.g., 30 serine). Cysteine variants are useful, inter alia when antibodies (for example) must be refolded into a biologically active conformation. Cysteine variants may have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.
The heavy and light chain variable region and CDRs that are disclosed can be used to prepare antigen binding proteins that contain an antigen binding region that can specifically bind to an 35 IL-23 polypeptide. “Antigen binding region" means a protein, or a portion of a protein, that specifically binds a specified antigen, such as the region that contains the amino acid residues that interact with an antigen and confer on the antigen binding protein its specificity and affinity for the target antigen. An antigen binding region may include one or more CDRs and certain antigen binding regions also include one or more “framework" regions. For example, one or more of the CDRs listed in TABLE 3 40 can be incorporated into a molecule (e.g., a polypeptide) covalently or noncovalently to make an 32 immunoadhesion. An immunoadhesion may incorporate the CDR(s) as part of a larger polypeptide chain, may covalently link the CDR(s) to another polypeptide chain, or may incorporate the CDR(s) noncovalently. The CDR(s) enable the immunoadhesion to bind specifically to a particular antigen of interest (e.g., an IL-23 polypeptide). 2017200537 27 Jan 2017 5 Other antigen binding proteins include mimetics (e.g., “peptide mimetics” or “peptidomimetics”) based upon the variable regions and CDRs that are described herein. These analogs can be peptides, non-peptides or combinations of peptide and non-peptide regions. Fauchere, 1986, Adv. Drug Res. 15:29; Veber and Freidinger, 1985, TINS p. 392; and Evans et a./., 1987, J. Med. Chem. 30:1229. Peptide mimetics that are structurally similar to therapeutically 10 useful peptides may be used to produce a similar therapeutic or prophylactic effect. Such compounds are often developed with the aid of computerized molecular modeling. Generally, peptidomimetics are proteins that are structurally similar to an antigen binding protein displaying a desired biological activity, such as the ability to bind IL-23, but peptidomimetics have one or more peptide linkages optionally replaced by a linkage selected from, for example: -CH2NH-, -CH2S-, -CH2-CH2-, -CH-CH-15 (cis and trans), -COCH2-, -CH(OH)CH2-, and -CH2SO-, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may be used in certain embodiments to generate more stable proteins. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and 20 Gierasch, 1992, Ann. Rev. Biochem. 61:387), for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
Derivatives of the antigen binding proteins that are described herein are also provided. The derivatized antigen binding proteins can comprise any molecule or substance that imparts a desired property to the antigen binding protein or fragment, such as increased half-life in a particular use. The 25 derivatized antigen binding protein can comprise, for example, a detectable (or labeling) moiety (e.g., a radioactive, colorimetric, antigenic or enzymatic molecule, a detectable bead (such as a magnetic or electrodense (e.g., gold) bead), or a molecule that binds to another molecule (e.g., biotin or Streptavidin)), a therapeutic or diagnostic moiety (e.g., a radioactive, cytotoxic, or pharmaceutically active moiety), or a molecule that increases the suitability of the antigen binding protein for a 30 particular use (e.g., administration to a subject, such as a human subject, or other in vivo or in vitro uses). Examples of molecules that can be used to derivatize an antigen binding protein include albumin (e.g., human serum albumin) and polyethylene glycol (PEG). Albumin-linked and PEGylated derivatives of antigen binding proteins can be prepared using techniques well known in the art. In one embodiment, the antigen binding protein is conjugated or otherwise linked to transthyretin (TTR) or a 35 TTR variant. The TTR or TTR variant can be chemically modified with, for example, a chemical selected from the group consisting of dextran, poly(n-vinyl pyrrolidone), polyethylene glycols, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols and polyvinyl alcohols.
Other derivatives include covalent or aggregative conjugates of IL-23 antigen binding proteins 40 with other proteins or polypeptides, such as by expression of recombinant fusion proteins comprising 33 heterologous polypeptides fused to the N-terminus or C-terminus of an IL-23 antigen binding protein. For example, the conjugated peptide may be a heterologous signal (or leader) polypeptide, e.g., the yeast alpha-factor leader, or a peptide such as an epitope tag. IL-23 antigen binding protein-containing fusion proteins can comprise peptides added to facilitate purification or identification of the 5 IL-23 antigen binding protein (e.g., poly-His). An IL-23 antigen binding protein also can be linked to 2017200537 27 Jan 2017 the FLAG peptide as described in Hopp et at., 1988, Bio/Technology 6:1204; and US Patent No. 5,011,912. The FLAG peptide is highly antigenic and provides an epitope reversibly bound by a specific monoclonal antibody (mAb), enabling rapid assay and facile purification of expressed recombinant protein. Reagents useful for preparing fusion proteins in which the FLAG peptide is 10 fused to a given polypeptide are commercially available (Sigma, St. Louis, MO).
Oligomers that contain one or more IL-23 antigen binding proteins may be employed as IL-23 antagonists. Oligomers may be in the form of covalently-linked or non-covalently-linked dimers, trimers, or higher oligomers. Oligomers comprising two or more IL-23 antigen binding proteins are contemplated for use, with one example being a homodimer. Other oligomers include heterodimers, 15 homotrimers, heterotrimers, homotetramers, heterotetramers, etc. Oligomers comprising multiple IL-23-binding proteins joined via covalent or non-covalent interactions between peptide moieties fused to the IL-23 antigen binding proteins, are also included. Such peptides may be peptide linkers (spacers), or peptides that have the property of promoting oligomerization. Among the suitable peptide linkers are those described in US Patent. Nos. 4,751,180 and 4,935,233. Leucine zippers 20 and certain polypeptides derived from antibodies are among the peptides that can promote oligomerization of IL-23 antigen binding proteins attached thereto. Examples of leucine zipper domains suitable for producing soluble oligomeric proteins are described in WIPO Publication No. WO 94/10308; Hoppe et al., 1994, FEBS Letters 344:191; and Fanslow et at., 1994, Semin. Immunol. 6:267-278. In one approach, recombinant fusion proteins comprising an IL-23 antigen 25 binding protein fragment or derivative fused to a leucine zipper peptide are expressed in suitable host cells, and the soluble oligomeric IL-23 antigen binding protein fragments or derivatives that form are recovered from the culture supernatant.
Such oligomers may comprise from two to four IL-23 antigen binding proteins. The IL-23 antigen binding protein moieties of the oligomer may be in any of the forms described above, e.g., 30 variants or fragments. Preferably, the oligomers comprise IL-23 antigen binding proteins that have IL-23 binding activity. Oligomers may be prepared using polypeptides derived from immunoglobulins. Preparation of fusion proteins comprising certain heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al., 1991, Proc. Natl. Acad. Sci. USA 88:10535; Byrn et al., 1990, Nature 344:677; and Hollenbaugh 35 et al., 1992 "Construction of Immunoglobulin Fusion Proteins", in Current Protocols in Immunology, Suppl.4, pages 10.19.1-10.19.11.
Also included are dimers comprising two fusion proteins created by fusing an IL-23 antigen binding protein to the Fc region of an antibody. The dimer can be made by, for example, inserting a gene fusion encoding the fusion protein into an appropriate expression vector, expressing the gene 40 fusion in host cells transformed with the recombinant expression vector, and allowing the expressed 34 fusion protein to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield the dimer. Such Fc polypeptides include native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization also are included. Fusion proteins comprising 5 Fc moieties (and oligomers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns. One suitable Fc polypeptide, described in WIPO Publication No. WO 93/10151 and US Patent. Nos. 5,426,048 and 5,262,522, is a single chain polypeptide extending from the N-terminal hinge region to the native C-terminus of the Fc region of a human lgG1 antibody. Another useful Fc polypeptide is the Fc mutein described in US Patent No. 10 5,457,035, and in Baum et al., 1994, EMBO J. 13:3992-4001. The amino acid sequence of this 2017200537 27 Jan 2017 mutein is identical to that of the native Fc sequence presented in WIPO Publication No. WO 93/10151, except that amino acid 19 has been changed from Leu to Ala, amino acid 20 has been changed from Leu to Glu, and amino acid 22 has been changed from Gly to Ala. The mutein exhibits reduced affinity for Fc receptors. 15 Glycosylation
The antigen binding protein may have a glycosylation pattern that is different or altered from that found in the native species. As is known in the art, glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular 20 expression systems are discussed below.
Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the 25 asparagine side chain. Thus, the presence of either of these tri-peptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
Addition of glycosylation sites to the antigen binding protein is conveniently accomplished by 30 altering the amino acid sequence such that it contains one or more of the above-described tri-peptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites). For ease, the antigen binding protein amino acid sequence may be altered through changes at the DNA level, particularly by mutating the DNA encoding the target polypeptide 35 at preselected bases such that codons are generated that will translate into the desired amino acids.
Another means of increasing the number of carbohydrate moieties on the antigen binding protein is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation. Depending on the coupling mode used, the sugar(s) 40 may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such 35 as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in PCT Publication No. WO 87/05330, and in Aplin and Wriston, 1981, CRC Crit. Rev, Biochem., pp. 259-306. 2017200537 27 Jan 2017 5 Removal of carbohydrate moieties present on the starting antigen binding protein may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by 10 Hakimuddin et al., 1987, Arch. Biochem. Biophys. 259:52 and by Edge et a/., 1981, Anal. Biochem. 118:131. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., 1987, Meth. Enzymol. 138:350. Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., 1982, J. Biol. Chem. 257:3105. Tunicamycin blocks the 15 formation of protein-N-glycoside linkages.
Hence, aspects include glycosylation variants of the antigen binding proteins wherein the number and/or type of glycosylation site(s) has been altered compared to the amino acid sequences of the parent polypeptide. In certain embodiments, antigen binding protein variants comprise a greater or a lesser number of N-linked glycosylation sites than the parent polypeptide. Substitutions 20 that eliminate or alter this sequence will prevent addition of an N-linked carbohydrate chain present in the parent polypeptide. For example, the glycosylation can be reduced by the deletion of an Asn or by substituting the Asn with a different amino acid. Antibodies typically have a N-linked glycosylation site in the Fc region.
Labels And Effector Groups 25 Antigen binding proteins may comprise one or more labels. The term “label” or “labeling group" refers to any detectable label. In general, labels fall into a variety of classes, depending on the assay in which they are to be detected: a) isotopic labels, which may be radioactive or heavy isotopes; b) magnetic labels (e.g., magnetic particles); c) redox active moieties; d) optical dyes; enzymatic groups (e.g. horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase); e) 30 biotinylated groups; and f) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags, etc.). In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art. Examples of suitable labeling groups include, but are not limited to, the 35 following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 1111n, 125l, 131l), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). 40 In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of 36 various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and may be used as is seen fit. 2017200537 27 Jan 2017
The term “effector group" means any group coupled to an antigen binding protein that acts as a cytotoxic agent. Examples for suitable effector groups are radioisotopes or radionuclides (e.g., 3H, 5 14C, 15N, 35S, 90Y, 99Tc, 111 In, 125l, 1311). Other suitable groups include toxins, therapeutic groups, or chemotherapeutic groups. Examples of suitable groups include calicheamicin, auristatins, geldanamycin and maytansine. In some embodiments, the effector group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance.
Polynucleotides Encoding IL-23 Antigen Binding Proteins 10 Polynucleotides that encode the antigen binding proteins described herein, or portions thereof, are also provided, including polynucleotides encoding one or both chains of an antibody, or a fragment, derivative, mutein, or variant thereof, polynucleotides encoding heavy chain variable regions or only CDRs, polynucleotides sufficient for use as hybridization probes, PCR primers or sequencing primers for identifying, analyzing, mutating or amplifying a polynucleotide encoding a 15 polypeptide, anti-sense nucleic acids for inhibiting expression of a polynucleotide, and complementary sequences of the foregoing. The polynucleotides can be any length. They can be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 85, 95, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 750, 1,000, 1,500, 3,000, 5,000 or more nucleic acids in length, including all values in between, and/or can comprise one or more additional sequences, for example, regulatory sequences, and/or be 20 part of a larger polynucleotide, for example, a vector. The polynucleotides can be single-stranded or double-stranded and can comprise RNA and/or DNA nucleic acids and artificial variants thereof (e.g., peptide nucleic acids).
Polynucleotides encoding certain antigen binding proteins, or portions thereof (e.g., full length antibody, heavy or light chain, variable domain, or a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, or 25 CDRL3) may be isolated from B-cells of mice that have been immunized with IL-23 or an immunogenic fragment thereof. The polynucleotide may be isolated by conventional procedures such as polymerase chain reaction (PCR). Phage display is another example of a known technique whereby derivatives of antibodies and other antigen binding proteins may be prepared. In one approach, polypeptides that are components of an antigen binding protein of interest are expressed in 30 any suitable recombinant expression system, and the expressed polypeptides are allowed to assemble to form antigen binding protein molecules. Phage display is also used to derive antigen binding proteins having different properties (i.e., varying affinities for the antigen to which they bind) via chain shuffling, see Marks etai, 1992, BioTechnology 10:779.
Due to the degeneracy of the genetic code, each of the polypeptide sequences depicted 35 herein are also encoded by a large number of other polynucleotide sequences besides those provided. For example, heavy chain variable domains provided herein in may be encoded by polynucleotide sequences SEQ ID NOs: 32, 35, 37, 39, 41,43, 45, 47, 49, 51, 53, 55, 57, or 59. Light chain variable domains may be encoded by polynucleotide sequences SEQ ID NOs:2, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, or 28. One of ordinary skill in the art will appreciate that the present 37 application thus provides adequate written description and enablement for each degenerate nucleotide sequence encoding each antigen binding protein. 2017200537 27 Jan 2017
An aspect further provides polynucleotides that hybridize to other polynucleotide molecules under particular hybridization conditions. Methods for hybridizing nucleic acids, basic parameters 5 affecting the choice of hybridization conditions and guidance for devising suitable conditions are well-known in the art. See, e.g., Sambrook, Fritsch, and Maniatis (2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Current Protocols in Molecular Biology, 1995, Ausubel et al., eds., John Wiley & Sons, Inc.. As defined herein, a moderately stringent hybridization condition uses a prewashing solution containing 5x sodium 10 chloride/sodium citrate (SSC), 0.5% SDS, 1.0 mM EDTA (pH 8.0), hybridization buffer of about 50% formamide, 6x SSC, and a hybridization temperature of 55°C (or other similar hybridization solutions, such as one containing about 50% formamide, with a hybridization temperature of 42°C), and washing conditions of 60°C, in 0.5x SSC, 0.1% SDS. A stringent hybridization condition hybridizes in 6x SSC at 45°C, followed by one or more washes in 0.1 x SSC, 0.2% SDS at 68°C. Furthermore, one 15 of skill in the art can manipulate the hybridization and/or washing conditions to increase or decrease the stringency of hybridization such that polynucleotides comprising nucleic acid sequences that are at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to each other, including all values in between, typically remain hybridized to each other.
Changes can be introduced by mutation into a polynucleotide, thereby leading to changes in 20 the amino acid sequence of a polypeptide (e.g., an antigen binding protein or antigen binding protein derivative) that it encodes. Mutations can be introduced using any technique known in the art, such as site-directed mutagenesis and random mutagenesis. Mutant polypeptides can be expressed and selected for a desired property. Mutations can be introduced into a polynucleotide without significantly altering the biological activity of a polypeptide that it encodes. For example, substitutions 25 at non-essential amino acid residues. Alternatively, one or more mutations can be introduced into a polynucleotide that selectively change the biological activity of a polypeptide that it encodes. For example, the mutation can quantitatively or qualitatively change the biological activity, such as increasing, reducing or eliminating the activity and changing the antigen specificity of an antigen binding protein. 30 Another aspect provides polynucleotides that are suitable for use as primers or hybridization probes for the detection of nucleic acid sequences. A polynucleotide can comprise only a portion of a nucleic acid sequence encoding a full-length polypeptide, for example, a fragment that can be used as a probe or primer or a fragment encoding an active portion (e.g., an IL-23 binding portion) of a polypeptide. Probes based on the sequence of a nucleic acid can be used to detect the nucleic acid 35 or similar nucleic acids, for example, transcripts encoding a polypeptide. The probe can comprise a label group, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used to identify a cell that expresses the polypeptide.
Methods of Expressing Antigen Binding Proteins
The antigen binding proteins provided herein may be prepared by any of a number of 40 conventional techniques. For example, IL-23 antigen binding proteins may be produced by 38 recombinant expression systems, using any technique known in the art. See, e.g., Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, Kennet et al.(eds.) Plenum Press, New York (1980); and Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1988). 2017200537 27 Jan 2017 5 Expression systems and constructs in the form of plasmids, expression vectors, transcription or expression cassettes that comprise at least one polynucleotide as described above are also provided herein, as well host cells comprising such expression systems or constructs. As used herein, “vector" means any molecule or entity (e.g., nucleic acid, plasmid, bacteriophage or virus) suitable for use to transfer protein coding information into a host cell. Examples of vectors include, 10 but are not limited to, plasmids, viral vectors, non-episomal mammalian vectors and expression vectors, for example, recombinant expression vectors. Expression vectors, such as recombinant expression vectors, are useful for transformation of a host cell and contain nucleic acid sequences that direct and/or control (in conjunction with the host cell) expression of one or more heterologous coding regions operatively linked thereto. An expression construct may include, but is not limited to, 15 sequences that affect or control transcription, translation, and, if introns are present, affect RNA splicing of a coding region operably linked thereto. “Operably linked" means that the components to which the term is applied are in a relationship that allows them to carry out their inherent functions. For example, a control sequence, e.g., a promoter, in a vector that is "operably linked" to a protein coding sequence are arranged such that normal activity of the control sequence leads to transcription 20 of the protein coding sequence resulting in recombinant expression of the encoded protein.
Another aspect provides host cells into which an expression vector, such as a recombinant expression vector, has been introduced. A host cell can be any prokaryotic cell (for example, E. coll) or eukaryotic cell (for example, yeast, insect, or mammalian cells (e.g., CHO cells)). Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection 25 techniques. For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to 30 drugs, such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced polynucleotide can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die), among other methods.
Antigen binding proteins can be expressed in hybridoma cell lines (e.g., in particular antibodies may be expressed in hybridomas) or in cell lines other than hybridomas. Expression 35 constructs encoding the antigen binding proteins can be used to transform a mammalian, insect or microbial host cell. Transformation can be performed using any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus or bacteriophage and transducing a host cell with the construct by transfection procedures known in the art, as exemplified by US Patent Nos. 4,399,216; 4,912,040; 4,740,461; 4,959,455. The optimal 40 transformation procedure used will depend upon which type of host cell is being transformed. 39
Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, mixing nucleic acid with positively-charged lipids, and direct 5 microinjection of the DNA into nuclei. 2017200537 27 Jan 2017
Recombinant expression constructs typically comprise a polynucleotide encoding a polypeptide. The polypeptide may comprise one or more of the following: one or more CDRs such as provided herein; a light chain variable region; a heavy chain variable region; a light chain constant region; a heavy chain constant region (e.g., CH1, CH2 and/or CH3); and/or another scaffold portion of 10 an IL-23 antigen binding protein. These nucleic acid sequences are inserted into an appropriate expression vector using standard ligation techniques. In one embodiment, the heavy or light chain constant region is appended to the C-terminus of a heavy or light chain variable region provided herein and is ligated into an expression vector. The vector is typically selected to be functional in the particular host cell employed (i.e., the vector is compatible with the host cell machinery, permitting 15 amplification and/or expression of the gene can occur). In some embodiments, vectors are used that employ protein-fragment complementation assays using protein reporters, such as dihydrofolate reductase (see, for example, U.S. Pat. No. 6,270,964). Suitable expression vectors can be purchased, for example, from Invitrogen Life Technologies (Carlsbad, CA) or BD Biosciences (San Jose, CA). Other useful vectors for cloning and expressing the antibodies and fragments include 20 those described in Bianchi and McGrew, 2003, Biotech. Biotechnol. Bioeng. 84:439-44. Additional suitable expression vectors are discussed, for example, in Methods Enzymol., vol. 185 (D. V. Goeddel, ed.), 1990, New York: Academic Press.
Typically, expression vectors used in any of the host cells will contain sequences for plasmid maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, 25 collectively referred to as “flanking sequences” in certain embodiments will typically include one or more of the following nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the polynucleotide 30 encoding the polypeptide to be expressed, and a selectable marker element. The expression vectors that are provided may be constructed from a starting vector such as a commercially available vector. Such vectors may or may not contain all of the desired flanking sequences. Where one or more of the flanking sequences described herein are not already present in the vector, they may be individually obtained and ligated into the vector. Methods used for obtaining each of the flanking sequences are 35 well known to one skilled in the art.
Optionally, the vector may contain a “tag”-encoding sequence, i.e., an oligonucleotide molecule located at the 5’ or 3’ end of the IL-23 antigen binding protein coding sequence; the oligonucleotide sequence encodes polyHis (such as hexaHis), or another “tag” such as FLAG®, HA (hemaglutinin influenza virus), or myc, for which commercially available antibodies exist. This tag is 40 typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for 40 affinity purification or detection of the IL-23 antigen binding protein from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified IL-23 antigen binding protein by various means such as using certain peptidases for cleavage. 2017200537 27 Jan 2017 5 Flanking sequences may be homologous (/.e., from the same species and/or strain as the host cell), heterologous (/'.e., from a species other than the host cell species or strain), hybrid (/'.e., a combination of flanking sequences from more than one source), synthetic or native. As such, the source of a flanking sequence may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence is functional in, and can be 10 activated by, the host cell machinery.
Flanking sequences useful in the vectors may be obtained by any of several methods well known in the art. Typically, flanking sequences useful herein will have been previously identified by mapping and/or by restriction endonuclease digestion and can thus be isolated from the proper tissue source using the appropriate restriction endonucleases. In some cases, the full nucleotide sequence 15 of a flanking sequence may be known. Flere, the flanking sequence may be synthesized using the methods described herein for nucleic acid synthesis or cloning.
Whether all or only a portion of the flanking sequence is known, it may be obtained using polymerase chain reaction (PCR) and/or by screening a genomic library with a suitable probe such as an oligonucleotide and/or flanking sequence fragment from the same or another species. Where the 20 flanking sequence is not known, a fragment of DNA containing a flanking sequence may be isolated from a larger piece of DNA that may contain, for example, a coding sequence or even another gene or genes. Isolation may be accomplished by restriction endonuclease digestion to produce the proper DNA fragment followed by isolation using agarose gel purification, Qiagen® column chromatography (Qiagen, Chatsworth, CA), or other methods known to the skilled artisan. The selection of suitable 25 enzymes to accomplish this purpose will be readily apparent to one of ordinary skill in the art.
An origin of replication is typically a part of those prokaryotic expression vectors purchased commercially, and the origin aids in the amplification of the vector in a host cell. If the vector of choice does not contain an origin of replication site, one may be chemically synthesized based on a known sequence, and ligated into the vector. For example, the origin of replication from the plasmid pBR322 30 (New England Biolabs, Beverly, MA) is suitable for most gram-negative bacteria, and various viral origins (e.g., SV40, polyoma, adenovirus, vesicular stomatitus virus (VSV), or papillomaviruses such as HPV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (for example, the SV40 origin is often used only because it also contains the virus early promoter). 35 A transcription termination sequence is typically located 3’ to the end of a polypeptide coding region and serves to terminate transcription. Usually, a transcription termination sequence in prokaryotic cells is a G-C rich fragment followed by a poly-T sequence. While the sequence is easily cloned from a library or even purchased commercially as part of a vector, it can also be readily synthesized using methods for nucleic acid synthesis such as those described herein. 41 A selectable marker gene encodes a protein necessary for the survival and growth of a host cell grown in a selective culture medium. Typical selection marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, tetracycline, or kanamycin for prokaryotic host cells; (b) complement auxotrophic deficiencies of the cell; or (c) supply critical 5 nutrients not available from complex or defined media. Specific selectable markers are the kanamycin resistance gene, the ampicillin resistance gene, and the tetracycline resistance gene. Advantageously, a neomycin resistance gene may also be used for selection in both prokaryotic and eukaryotic host cells. 2017200537 27 Jan 2017
Other selectable genes may be used to amplify the gene that will be expressed. Amplification 10 is the process wherein genes that are required for production of a protein critical for growth or cell survival are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Examples of suitable selectable markers for mammalian cells include dihydrofolate reductase (DHFR) and promoterless thymidine kinase genes. Mammalian cell transformants are placed under selection pressure wherein only the transformants are uniquely adapted to survive by virtue of the 15 selectable gene present in the vector. Selection pressure is imposed by culturing the transformed cells under conditions in which the concentration of selection agent in the medium is successively increased, thereby leading to the amplification of both the selectable gene and the DNA that encodes another gene, such as an antigen binding protein that binds to IL-23. As a result, increased quantities of a polypeptide such as an antigen binding protein are synthesized from the amplified DNA. 20 A ribosome-binding site is usually necessary for translation initiation of rnRNA and is characterized by a Shine-Dalgarno sequence (prokaryotes) or a Kozak sequence (eukaryotes). The element is typically located 3' to the promoter and 5' to the coding sequence of the polypeptide to be expressed.
In some cases, such as where glycosylation is desired in a eukaryotic host cell expression 25 system, one may manipulate the various pre- or pro-sequences to improve glycosylation or yield. For example, one may alter the peptidase cleavage site of a particular signal peptide, or add prosequences, which also may affect glycosylation. The final protein product may have, in the -1 position (relative to the first amino acid of the mature protein), one or more additional amino acids incident to expression, which may not have been totally removed. For example, the final protein 30 product may have one or two amino acid residues found in the peptidase cleavage site, attached to the amino-terminus. Alternatively, use of some enzyme cleavage sites may result in a slightly truncated form of the desired polypeptide, if the enzyme cuts at such area within the mature polypeptide.
Expression and cloning will typically contain a promoter that is recognized by the host 35 organism and operably linked to the molecule encoding an IL-23 antigen binding protein. Promoters are untranscribed sequences located upstream (i.e., 5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control transcription of the structural gene. Promoters are conventionally grouped into one of two classes: inducible promoters and constitutive promoters. Inducible promoters initiate increased levels of transcription from DNA under their control in response 40 to some change in culture conditions, such as the presence or absence of a nutrient or a change in 42 temperature. Constitutive promoters, on the other hand, uniformly transcribe a gene to which they are operably linked, that is, with little or no control over gene expression. A large number of promoters, recognized by a variety of potential host cells, are well known. A suitable promoter is operably linked to the DNA encoding a heavy chain variable region or a light chain variable region of an IL-23 antigen 5 binding protein by removing the promoter from the source DNA by restriction enzyme digestion and inserting the desired promoter sequence into the vector. 2017200537 27 Jan 2017
Suitable promoters for use with yeast hosts are also well known in the art. Yeast enhancers are advantageously used with yeast promoters. Suitable promoters for use with mammalian host cells are well known and include, but are not limited to, those obtained from the genomes of viruses 10 such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, retroviruses, hepatitis-B virus, and Simian Virus 40 (SV40). Other suitable mammalian promoters include heterologous mammalian promoters, for example, heat-shock promoters and the actin promoter.
Additional promoters which may be of interest include, but are not limited to: SV40 early 15 promoter (Benoist and Chambon, 1981, Nature 290:304-310); CMV promoter (Thornsen et at., 1984, Proc. Natl. Acad. U.S.A. 81:659-663); the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., 1980, Cell 22:787-797); herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1444-1445); promoter and regulatory sequences from the metallothionine gene (Prinster et al., 1982, Nature 296:39-42); and prokaryotic promoters such as 20 the beta-lactamase promoter (Villa-Kamaroff etal., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731); or the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25). Also of interest are the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: the elastase I gene control region that is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 25 50:399-409; MacDonald, 1987, Hepatology 7:425-515); the insulin gene control region that is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-122); the immunoglobulin gene control region that is active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-658; Adames et al., 1985, Nature 318:533-538; Alexander et al., 1987, Mol. Cell. Biol. 7:1436-1444); the mouse mammary tumor virus control region that is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 30 45:485-495); the albumin gene control region that is active in liver (Pinkert et al., 1987, Genes and
Devel. 1 :268-276); the alpha-feto-protein gene control region that is active in liver (Krumlauf et al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 253:53-58); the alpha 1-antitrypsin gene control region that is active in liver (Kelsey et al., 1987, Genes and Devel. 1:161-171); the beta-globin gene control region that is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; 35 Kollias et al., 1986, Cell 46:89-94); the myelin basic protein gene control region that is active in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712); the myosin light chain-2 gene control region that is active in skeletal muscle (Sani, 1985, Nature 314:283-286); and the gonadotropic releasing hormone gene control region that is active in the hypothalamus (Mason et al., 1986, Science 234:1372-1378). 43
An enhancer sequence may be inserted into the vector to increase transcription by higher eukaryotes. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are relatively orientation and position independent, having been found at positions both 5' and 3' to the transcription unit. Several enhancer sequences 5 available from mammalian genes are known (e.g., globin, elastase, albumin, alpha-feto-protein and insulin). Typically, however, an enhancer from a virus is used. The SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers known in the art are exemplary enhancing elements for the activation of eukaryotic promoters. While an enhancer may be positioned in the vector either 5' or 3' to a coding sequence, it is typically located at 10 a site 5' from the promoter. A sequence encoding an appropriate native or heterologous signal sequence (leader sequence or signal peptide) can be incorporated into an expression vector, to promote extracellular secretion of the antibody. The choice of signal peptide or leader depends on the type of host cells in which the antibody is to be produced, and a heterologous signal sequence can replace the native signal sequence. Examples of signal peptides that are functional in 15 mammalian host cells include the following: the signal sequence for interleukin-7 described in US Patent No. 4,965,195; the signal sequence for interleukin-2 receptor described in Cosman et al., 1984, Nature 312:768; the interleukin-4 receptor signal peptide described in EP Patent No. 0367 566; the type I interleukin-1 receptor signal peptide described in U.S. Patent No. 4,968,607; the type II interleukin-1 receptor signal peptide described in EP Patent No. 0 460 846. 2017200537 27 Jan 2017 20 After the vector has been constructed, the completed vector may be inserted into a suitable host cell for amplification and/or polypeptide expression. The transformation of an expression vector for an antigen binding protein into a selected host cell may be accomplished by well known methods including transfection, infection, calcium phosphate co-precipitation, electroporation, microinjection, lipofection, DEAE-dextran mediated transfection, or other known techniques. The method selected 25 will in part be a function of the type of host cell to be used. These methods and other suitable methods are well known to the skilled artisan, and are set forth, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001). A host cell, when cultured under appropriate conditions, synthesizes protein that can be 30 subsequently collected from the culture medium (if the host cell secretes it into the medium) or directly from the host cell producing it (if it is not secreted). The selection of an appropriate host cell will depend upon various factors, such as desired expression levels, polypeptide modifications that are desirable or necessary for activity (such as glycosylation or phosphorylation) and ease of folding into a biologically active molecule. 35 Mammalian cell lines available as hosts for expression are well known in the art and include, but are not limited to, immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines. In certain embodiments, cell lines may be selected through 40 determining which cell lines have high expression levels and constitutively produce antigen binding 44 proteins with IL-23 binding properties. In another embodiment, a cell line from the B cell lineage that does not make its own antibody but has a capacity to make and secrete a heterologous antibody can be also selected.
Use Of Human IL-23 Antigen Binding Proteins For Diagnostic And Therapeutic Purposes
Antigen binding proteins are useful for detecting IL-23 in biological samples and identification of cells or tissues that produce IL-23. Antigen binding proteins that specifically bind to IL-23 may be used in diagnosis and/or treatment of diseases related to IL-23 in a patient in need thereof. For one, the IL-23 antigen binding proteins can be used in diagnostic assays, e.g., binding assays to detect and/or quantify IL-23 expressed in blood, serum, cells or tissue. In addition, IL-23 antigen binding proteins can be used to reduce, inhibit, interfere with or modulate one or more biological activities of IL-23 in a cell or tissue. Thus antigen binding proteins that bind to IL-23 may have therapeutic use in ameliorating diseases related to IL-23.
Indications
The present invention also relates to the use of IL-23 antigen binding proteins for use in the prevention or therapeutic treatment of medical disorders, such as those disclosed herein. The IL-23 antigen binding proteins are useful to treat a variety of conditions in which IL-23 is associated with or plays a role in contributing to the underlying disease or disorder or otherwise contributes to a negative symptom.
Conditions effectively treated by IL-23 antigen binding proteins play a role in the inflammatory response. Such inflammatory disorders include periodontal disease; lung disorders such as asthma; skin disorders such as psoriasis, atopic dermatitis, contact dermatitis; rheumatic disorders such as rheumatoid arthritis, progressive systemic sclerosis (scleroderma); systemic lupus erythematosus; spondyloarthritis including ankylosing spondylitis, psoriatic arthritis, enteropathic arthritis and reactive arthritis. Also contemplated is uveitis including Vogt-Koyanagi-Harada disease, idiopathic anterior and posterior uveitis, and uveitis associated with spondyloarthritis. Use of IL-23 antigen binding proteins is also contemplated for the treatment of autoimmune disorders including multiple sclerosis; autoimmune myocarditis; type 1 diabetes and autoimmune thyroiditis.
Degenerative conditions of the gastrointestinal system are treatable or preventable with IL-23 antigen binding proteins. Such gastrointestinal disorders including inflammatory bowel disease: Crohn's disease, ulcerative colitis and Celiac disease.
Also included are use of IL-23 antigen binding proteins in treatments for graft-versus-host disease, and complications such as graft rejection, resulting from solid organ transplantation, such as heart, liver, skin, kidney, lung or other transplants, including bone marrow transplants.
Also provided herein are methods for using IL-23 antigen binding proteins to treat various oncologic disorders including various forms of cancer including colon, stomach, prostate, renal cell, cervical and ovarian cancers, and lung cancer (SCLC and NSCLC). Also included are solid tumors, including sarcoma, osteosarcoma, and carcinoma, such as adenocarcinoma and squamous cell 45 carcinoma, esophogeal cancer, gastric cancer, gall bladder carcinoma, leukemia, including acute myelogenous leukemia, chronic myelogenous leukemia, myeloid leukemia, chronic or acute lymphoblastic leukemia and hairy cell leukemia, and multiple myeloma.
Diagnostic Methods
The antigen binding proteins of the described can be used for diagnostic purposes to detect, diagnose, or monitor diseases and/or conditions associated with IL-23. Examples of methods useful in the detection of the presence of IL-23 include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
For diagnostic applications, the antigen binding protein typically will be labeled with a detectable labeling group. Suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111 In, 125l, 131l), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, the labelling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labelling proteins are known in the art and may be used.
Other diagnostic methods are provided for identifying a cell or cells that express IL-23. In a specific embodiment, the antigen binding protein is labeled with a labeling group and the binding of the labeled antigen binding protein to IL-23 is detected. In a further specific embodiment, the binding of the antigen binding protein to IL-23 is detected in vivo. In a further specific embodiment, the IL-23 antigen binding protein is isolated and measured using techniques known in the art. See, for example, Harlow and Lane, 1988, Antibodies: A Laboratory Manual, New York: Cold Spring Harbor (ed. 1991 and periodic supplements); John E. Coligan, ed., 1993, Current Protocols In Immunology New York: John Wiley & Sons.
Other methods provide for detecting the presence of a test molecule that competes for binding to IL-23 with the antigen binding proteins provided. An example of one such assay would involve detecting the amount of free antigen binding protein in a solution containing an amount of IL-23 in the presence or absence of the test molecule. An increase in the amount of free antigen binding protein (i.e., the antigen binding protein not bound to IL-23) would indicate that the test molecule is capable of competing for IL-23 binding with the antigen binding protein. In one embodiment, the antigen binding protein is labeled with a labeling group. Alternatively, the test molecule is labeled and the amount of free test molecule is monitored in the presence and absence of an antigen binding protein.
Methods Of Treatment: Pharmaceutical Formulations, Routes Of Administration
Pharmaceutical compositions that comprise a therapeutically effective amount of one or a plurality of the antigen binding proteins and a pharmaceutically acceptable excipient, diluent, carrier, solubilizer, emulsifier, preservative, and/or adjuvant are provided. In addition, methods of treating a patient by administering such pharmaceutical composition are included. The term "patient” includes 46 human patients. The terms “treat" and “treatment" encompass alleviation or prevention of at least one symptom or other aspect of a disorder, or reduction of disease severity, and the like. The term “therapeutically effective amount” or “effective amount” refers to the amount of an IL-23 antigen binding protein determined to produce any therapeutic response in a mammal. Such therapeutically 5 effective amounts are readily ascertained by one of ordinary skill in the art. 2017200537 27 Jan 2017
An antigen binding protein need not affect a complete cure, or eradicate every symptom or manifestation of a disease, to constitute a viable therapeutic agent. As is recognized in the pertinent field, drugs employed as therapeutic agents may reduce the severity of a given disease state, but need not abolish every manifestation of the disease to be regarded as useful therapeutic agents. 10 Similarly, a prophylactically administered treatment need not be completely effective in preventing the onset of a condition in order to constitute a viable prophylactic agent. Simply reducing the impact of a disease (for example, by reducing the number or severity of its symptoms, or by increasing the effectiveness of another treatment, or by producing another beneficial effect), or reducing the likelihood that the disease will occur or worsen in a subject, is sufficient. Certain methods provided 15 herein comprise administering to a patient an IL-23 antagonist (such as the antigen binding proteins disclosed herein) in an amount and for a time sufficient to induce a sustained improvement over baseline of an indicator that reflects the severity of the particular disorder.
As is understood in the pertinent field, pharmaceutical compositions comprising the molecules of the invention are administered to a patient in a manner appropriate to the indication. 20 Pharmaceutical compositions may be administered by any suitable technique, including but not limited to, parenterally, topically, or by inhalation. If injected, the pharmaceutical composition can be administered, for example, via intra-articular, intravenous, intramuscular, intralesional, intraperitoneal or subcutaneous routes, by bolus injection, or continuous infusion. Localized administration, e.g. at a site of disease or injury is contemplated, as are transdermal delivery and sustained release from 25 implants. Delivery by inhalation includes, for example, nasal or oral inhalation, use of a nebulizer, inhalation of the antagonist in aerosol form, and the like. Other alternatives include eyedrops; oral preparations including pills, syrups, lozenges or chewing gum; and topical preparations such as lotions, gels, sprays, and ointments.
Use of antigen binding proteins in ex vivo procedures also is contemplated. For example, a 30 patient’s blood or other bodily fluid may be contacted with an antigen binding protein that binds IL-23 ex vivo. The antigen binding protein may be bound to a suitable insoluble matrix or solid support material.
Advantageously, antigen binding proteins are administered in the form of a composition comprising one or more additional components such as a physiologically acceptable carrier, excipient 35 or diluent. Optionally, the composition additionally comprises one or more physiologically active agents for combination therapy. A pharmaceutical composition may comprise an IL-23 antigen binding protein together with one or more substances selected from the group consisting of a buffer, an antioxidant such as ascorbic acid, a low molecular weight polypeptide (such as those having fewer than 10 amino acids), a protein, an amino acid, a carbohydrate such as glucose, sucrose or dextrins, 40 a chelating agent such as EDTA, glutathione, a stabilizer, and an excipient. Neutral buffered saline or 47 saline mixed with conspecific serum albumin are examples of appropriate diluents. In accordance with appropriate industry standards, preservatives such as benzyl alcohol may also be added. The composition may be formulated as a lyophilizate using appropriate excipient solutions (e.g., sucrose) as diluents. Suitable components are nontoxic to recipients at the dosages and concentrations 5 employed. Further examples of components that may be employed in pharmaceutical formulations are presented in any Remington’s Pharmaceutical Sciences including the 21st Ed. (2005), Mack Publishing Company, Easton, PA. 2017200537 27 Jan 2017
Kits for use by medical practitioners include an IL-23 antigen binding protein and a label or other instructions for use in treating any of the conditions discussed herein. In one embodiment, the 10 kit includes a sterile preparation of one or more IL-23 binding antigen binding proteins, which may be in the form of a composition as disclosed above, and may be in one or more vials.
Dosages and the frequency of administration may vary according to such factors as the route of administration, the particular antigen binding proteins employed, the nature and severity of the disease to be treated, whether the condition is acute or chronic, and the size and general condition of 15 the subject. Appropriate dosages can be determined by procedures known in the pertinent art, e.g. in clinical trials that may involve dose escalation studies. A typical dosage may range from about 0.1 pg/kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage may range from 0.1 pg/kg up to about 30 mg/kg, optionally from 1 pg/kg up to about 30 mg/kg, optionally from 10 pg/kg up 20 to about 10 mg/kg, optionally from about 0.1 mg/kg to 5 mg/kg, or optionally from about 0.3 mg/kg to 3 mg/kg.
Dosing frequency will depend upon the pharmacokinetic parameters of the particular human IL-23 antigen binding protein in the formulation used. Typically, a clinician administers the composition until a dosage is reached that achieves the desired effect. The composition may 25 therefore be administered as a single dose, or as two or more doses (which may or may not contain the same amount of the desired molecule) over time, or as a continuous infusion via an implantation device or catheter. Appropriate dosages may be ascertained through use of appropriate dose-response data. An IL-23 antigen binding protein of the invention may be administered, for example, once or more than once, e.g., at regular intervals over a period of time. In particular embodiments, an 30 IL-23 antigen binding protein is administered over a period of at least a month or more, e.g., for one, two, or three months or even indefinitely. For treating chronic conditions, long-term treatment is generally most effective. However, for treating acute conditions, administration for shorter periods, e.g. from one to six weeks, may be sufficient. In general, the antigen binding protein is administered until the patient manifests a medically relevant degree of improvement over baseline for the chosen 35 indicator or indicators.
It is contemplated that an IL-23 antigen binding protein be administered to the patient in an amount and for a time sufficient to induce an improvement, preferably a sustained improvement, in at least one indicator that reflects the severity of the disorder that is being treated. Various indicators that reflect the extent of the patient’s illness, disease or condition may be assessed for determining 40 whether the amount and time of the treatment is sufficient. Such indicators include, for example, 48 clinically recognized indicators of disease severity, symptoms, or manifestations of the disorder in question. In one embodiment, an improvement is considered to be sustained if the subject exhibits the improvement on at least two occasions separated by two to four weeks. The degree of improvement generally is determined by a physician, who may make this determination based on 5 signs, symptoms, biopsies, or other test results, and who may also employ questionaires that are administered to the subject, such as quality-of-life questionaires developed for a given disease. 2017200537 27 Jan 2017
Particular embodiments of methods and compositions of the invention involve the use of an IL-23 antigen binding protein and one or more additional IL-23 antagonists, for example, two or more antigen binding proteins of the invention, or an antigen binding protein of the invention and one or 10 more other IL-23 antagonists. Also provided are IL-23 antigen binding proteins administered alone or in combination with other agents useful for treating the condition with which the patient is afflicted. Examples of such agents include both proteinaceous and non-proteinaceous drugs. Such agents include therapeutic moieties having anti-inflammatory properties (for example, non-steroidal antiinflammatory agents, steroids, immunomodulators and/or other cytokine inhibitors such as those that 15 antagonize, for example, IFN-γ, GM-CSF, IL-6, IL-8, IL-17, IL-22 and TNFs), or of an IL-23 antigen binding protein and one or more other treatments (e.g., surgery, ultrasound, or treatment effective to reduce inflammation). When multiple therapeutics are co-administered, dosages may be adjusted accordingly, as is recognized or known in the pertinent art. Useful agents that may be combined with IL-23 antigen binding proteins include those used to treat, for example, Crohn’s disease or ulcerative 20 colitis, such as aminosalicylate (for example, mesalamine), corticosteroids (including predisone), antibiotics such as metronidazole or ciprofloxacin (or other antibiotics useful for treating, for example, patients afflicted with fistulas), and immunosuppressives such as azathioprine, 6-mercaptopurine, methotrexate, tacrolimus and cyclosporine. Such agent(s) may be administered orally or by another route, for example via suppository or enema. Agents which may be combined with IL-23 binding 25 proteins in treatment of psoriasis include corticosteroids, calcipotriene and other vitamin D derivatives, acetretin and other retinoic acid derivatives, methotrexate, tacrolimus, and cyclosporine used topically or systemically. Such agents can be administered simultaneously, consecutively, alternately, or according to any other regimen that allows the total course of therapy to be effective.
In addition to human patients, IL-23 antigen binding proteins are useful in the treatment of 30 non-human animals, such as domestic pets (dogs, cats, birds, primates, etc.), domestic farm animals (horses cattle, sheep, pigs, birds, etc). In such instances, an appropriate dose may be determined according to the animal's body weight. For example, a dose of 0.2-1 mg/kg may be used. Alternatively, the dose is determined according to the animal's surface area, an exemplary dose ranging from 0.1-20 mg/m2, or more preferably, from 5-12 mg/m2. For small animals, such as dogs or 35 cats, a suitable dose is 0.4 mg/kg. IL-23 antigen binding protein (preferably constructed from genes derived from the recipient species) is administered by injection or other suitable route one or more times per week until the animal's condition is improved, or it may be administered indefinitely.
The following examples, including the experiments conducted and the results achieved, are provided for illustrative purposes only and are not to be construed as limiting the scope of the 40 appended claims. 49 EXAMPLES Example 1 2017200537 27 Jan 2017
Generation of Human IL-23 Antibodies 5
XenoMouse™ technology (Amgen, Thousand Oaks, CA) was used to develop human monoclonal antibodies that recognize and inhibit native human IL-23 activity while sparing human IL-12. The antibodies also recognize and inhibit recombinant cynomologous IL-23 but do not recognize murine or rat IL-23. 10 Antibodies were selected for recognition and complete inhibition of native human IL-23 obtained from human monocyte-derived dendritic cells (MoDCs), using the STAT-luciferase reporter assay described below. Human monocytes were isolated from peripheral blood mononuclear cells from healthy donors using negative selection (Monocyte Isolation Kit II, Miltenyi Biotec, Auburn, CA). MoDCs were generated by culturing monocytes with human GM-CSF (50 ng/ml) and human IL-4 (100 15 ng/ml) for 7 days in RPMI 1640 with 10% fetal bovine serum complete medium. MoDCs were then washed twice with PBS followed by stimulation with human CD40L (1pg/ml) for an additional 48 hours. CD40L-stimulated MoDC supernatant contains IL-23, IL-12 and IL-12/23p40. ELISAs are used to determine the amount of IL-12p70 (R&D System, Minneapolis, MN), IL-23 (eBiosciences, San Diego, CA) and IL-12/23p40 (R&D Systems). The STAT-luciferase assay responds to IL-23 and not 20 to IL-12 or to free IL-12/23p40, therefore the assay could be used with crude supernatants to assess IL-23 activity. For use in the NK cell assay, described below, the native human IL-23 crude supernatant was purified using an IL-23 affinity column followed by size exclusion chromatography. Concentration was determined using an IL-23 specific ELISA (eBiosciences).
The purified antibody supernatants were also tested against recombinant human (rhu) IL-23 25 and recombinant cynomolgous (cyno) IL-23 in the STAT-luciferase assay. Of the antibodies tested that completely inhibited recombinant human IL-23, only half of those antibodies recognized and completely inhibited native human IL-23. Recognition and complete inhibition of recombinant human IL-23 was not predictive of, nor correlated to, recognition and complete inhibition of native human IL-23. As shown in FIGURES 1A and 1B, of the antibody supernatants that completely inhibited 30 recombinant human IL-23, only half of those antibodies completely inhibited native human IL-23. Those antibodies that recognized and completely inhibited native human IL-23 were selected for further characterization. EXAMPLE 2 35 Functional Assays a) STAT-luciferase assay
It is known that IL-23 binds its heterodimeric receptor and signals through JAK2 and Tyk2 to activate STAT 1, 3, 4 and 5. In this assay, cells transfected with a STAT/luciferase reporter gene are 40 used to assess the ability of the IL-23 antibodies to inhibit IL-23-induced bioactivity. 50
Chinese hamster ovary cells expressing human IL-23 receptor are transiently transfected with STAT-luciferase reporter overnight. IL-23 antibodies are serially diluted (12 points of 1:4 serial dilutions starting at 37.5 pg/ml) into 96 well plates. Native human IL-23 (preparation method is described in Example 1) is added to each well at a concentration of 2 ng/ml and incubated at room 5 temperature for 15-20 minutes. The transiently transfected cells are added (8 x 103 cells) to a final volume of 100 μΙ/well and incubated for 5 hours at 37°C, 10% C02. Following incubation, cells are lysed using 100 pL/well Glo Lysis buffer (1x) (Promega, Madison, Wisconsin) at room temperature for 5 minutes. Fifty microliters of cell lysate is added to a 96 well plate along with 50 pL Bright-Glo luciferase substrate (Promega) and read on a luminometer. 2017200537 27 Jan 2017 10 Statistical analysis can be performed using GraphPad PRISM software (GraphPad Software,
La Jolla, CA). Results can be expressed as the mean ± standard deviation (SD).
As seen in TABLE 5, all IL-23 antibodies potently and completely inhibited native human IL-23-induced STAT/luciferase reporter in a dose dependent manner. The antibodies also potently and completely inhibited recombinant human (rhu) IL-23 and recombinant cyno (cyno) IL-23. The 15 antibodies all had IC50 values in the picomolar range. TABLE 5. Table of mean IC50 (pM) values for IL-23 antibodies in the STAT-luciferase assay.
Native hulL-23 rhulL-23 Cyno IL-23 antibody IC50+/-SD Repeats IC50+/-SD Repeats ICso+/-SD Repeats A 114+/-70 3 190+/-99 3 379+/-213 3 B 45+/-5 4 100+/-59 4 130+/-60 3 C 107+/-31 3 211+/-93 3 376+/-89 3 D 65+/-5 3 107+/-30 3 184+/-77 3 E 140+/-52 3 142+/-52 3 188+/-59 3 F 86+/-47 4 187+/-116 4 366+/-219 4 G 156+/-74 5 296+/-133 5 421+/-174 5 H 192+/-35 4 253+/-184 4 1024+/-533 4 1 208+/-33 3 338+/-140 3 650+/-42 3 J 83+/-54 2 36+/-6 2 56+/-2 2 K 71+/-38 3 43+/-20 3 61+/-10 3 51 L 113+/-80 3 23+/-7 3 47+/-1 3 M 34+/-11 2 40+/-8 2 56+/-6 2 N 361+/-164 3 145 1 238 1 b) NK cell assay 2017200537 27 Jan 2017
It is known that IL-23 acts on natural killer cells to induce expression of pro-inflammatory cytokines, such as interferon γ (IFNy). In this assay, human primary natural killer (NK) cells are used 5 to assess the ability of the IL-23 antibodies to inhibit IL-23-induced IFNy activity in cells expressing the native receptor for human IL-23. NK cells are isolated from multiple human donors via negative selection (NK Cell Isolation Kit, Miltenyi Biotec, Auburn, CA). Purified NK cells (1 x 106 cells/ml) are added to 6 well plates in RPMI 1640 plus 10% fetal bovine serum complete medium supplemented with recombinant human IL-2 10 (10ng/ml, R&D Systems, Minneapolis, MN), to a final volume of 10ml/well. Cells are cultured for 7 days at 37°C, 5% C02. The IL-2-activated NK cells are then stimulated with rhulL-23 or cyno IL-23 (10 ng/ml) and recombinant human IL-18 (20ng/ml, R&D Systems, Minneapolis, MN) in the presence of serial dilutions (11 points of 1:3 serial dilutions starting at 3pg/ml) of IL-23 antibodies for 24 hours. IFNy levels are measured in the supernatant by IFNy ELISA (R&D Systems, Minneapolis, MN) 15 according to manufacturer’s instructions.
Statistical analysis can be performed using GraphPad PRISM software. Results can be expressed as the mean ± standard deviation (SD).
As seen in TABLE 6, all antibodies potently inhibited rhulL-23 and cyno IL-23-induced IFNy expression in NK cells in a dose dependent manner. The antibodies all had IC50 values in the 20 picomolar range. The assay was performed on a subset of antibodies using native human IL-23 (30pg/ml, preparation method is described in Example 1) and rhulL-18 (40 ng/ml, R&D Systems) and yielded the results shown in TABLE 6. Consistent with the selection for IL-23 specific antibodies, these anti-IL-23 antibodies had no effect on IL-12 stimulated IFNy production in NK cells using the assay described above, whereas an IL-12p35 specific neutralizing antibody, mAb219 (R&D Systems, 25 Minneapolis, MN) potently inhibited recombinant human IL-12. TABLE 6. Table of mean IC50 (pM) values for IL-23 antibodies in the NK cell assay.
Native hulL-23 rhulL-23 Cyno IL-23 antibody IC50+/-SD Repeats IC50+/-SD Repeats IC50+/-SD Repeats A 42+/-12 2 31+/-21 2 B 85+/-30 2 48+/-30 3 19+/-8 2 52 2017200537 27 Jan 2017 c 32+/-19 4 29+/-16 2 D 37+/-21 2 29+/-19 2 E 158+/-50 2 57+/-14 3 21+/-3 2 F 25+/-15 2 21+/-17 2 G 152+/-72 2 45+/-30 3 23+/-8 2 H 29+/-28 2 33+/-17 2 1 69 1 52 1 J 4+/-3 2 5+/-3 2 K 7+/-2 2 8+/-6 2 L 3+/-1 2 4+/-1 2 M 8 1 12 1 c) Human Whole Blood Assay
Human whole blood is collected from multiple healthy donors using Refludan® (Bayer Pittsburgh, PA) as an anti-coagulant. The final concentration of Refludan® in whole blood is 10 pg/ml. 5 A stimulation mixture of rhulL-23 or cyno IL-23 (final concentration 1 ng/ml) + rhulL-18 (final concentration 20 ng/ml) + rhulL-2 (final concentration 5 ng/ml) in RPMI 1640 + 10% FBS, is added to a 96 well plate, final volume 20 μΙ/well. Serially diluted IL-23 antibodies (11 points of 1:3 serial dilutions starting from 3pg/ml) are added at 20pl/well and incubated with the stimulation mixture for 30 minutes at room temperature. Whole blood is then added (120 μΙ/well) and the final volume adjusted 10 to 200 μΙ/well with RPMI 1640 + 10% FBS. The final concentration of whole blood is 60%. The plates are incubated for 24 hours at 37°C, 5% C02. Cell free supernatants are harvested and IFNy levels are measured from the supernatants by IFNy ELISA (R&D Systems) according to manufacturer’s instructions.
Statistical analysis can be performed using GraphPad PRISM software. Results can be 15 expressed as the mean ± standard deviation (SD).
As seen in TABLE 7, all antibodies potently inhibited rhulL-23-induced and cyno-IL-23-induced IFNy expression in whole blood cells in a dose dependent manner. The antibodies all had IC50 values in the picomolar range. 20 53 TABLE 7. Table of mean ICS0 (pM) values for IL-23 antibodies in the IFNy human whole blood assay rhulL-23 Cyno IL-23 antibody ICso+/-SD Repeats IC50+/-SD Repeats B 117+/-94 7 161+/-95 6 E 29+/-8 3 54+/-33 3 G 53+/-13 3 93+/-44 3 F 66+/-13 3 166+/-189 3 D 88+/-6 3 110+/-14 3 C 97+/-31 3 186+/-194 3 2017200537 27 Jan 2017 5 d) IL-22 assay
It is known that IL-23 is a potent inducer of proinflammatory cytokines. IL-23 acts on activated and memory T cells and promotes the survival and expansion of Th17 cells which produce proinflammatory cytokines including IL-22. In this assay, human whole blood is used to assess the ability of the IL-23 antibodies to inhibit IL-23-induced IL-22 production. 10 A whole blood assay is conducted in the same manner as described above with the modification of using rhulL-23 or cynolL-23 at 1ng/ml and rhulL-18 at 10ng/ml to induce IL-22 production. IL-22 concentration is determined by IL-22 ELISA (R&D Systems, Minneapolis, MN).
As seen in TABLE 8, the antibodies potently inhibited rhulL-23-induced and cyno IL-23-induced IL-22 production in whole blood cells in a dose dependent manner. The antibodies all had 15 IC50 values in the picomolar range. TABLE 8. Table of mean IC50 (pM) values for IL-23 antibodies in the IL-22 human whole blood assay rhulL-23 Cyno IL-23 antibody ICso+/-SD Repeats IC50+/-SD Repeats B 117+/-68 4 113+/-65 3 E 87+/-109 3 56+/-60 3 G 83+/-59 3 66+/-45 3 20 Example 3
Determining the Equilibrium Dissociation Constant (KD) for anti-IL-23 Antibodies
Using KinExA Technology
Binding affinity of rhulL-23 to IL-23 antibodies is evaluated using a kinetic exclusion assay 25 (KinExA assay, Sapidyne Instruments, Inc., Boise, ID). Normal human serum (NHS)-activated Sepharose 4 fast flow beads (Amersham Biosciences, part of GE Healthcare, Uppsala, Sweden), are pre-coated with rhulL-23 and blocked with 1m Tris buffer with 10mg/mL BSA. 50pM of IL-23 antibody 54 is incubated with rhulL-23 (12 points of 1:2 dilutions starting from 800 pM) at room temperature for 72 hours before it is run through the rhulL-23-coated Sepharose beads. The amount of the bead-bound antibody was quantified by fluorescent (Cy5) labeled goat anti-human-Fc antibody (Jackson Immuno Research, West Grove, Pa.). The binding signal is proportional to the amount of free antibody at 5 equilibrium. 2017200537 27 Jan 2017
The dissociation equilibrium constant (KD) and the association rate (Kon) are obtained from curve fitting using KinExA Pro software. The dissociation rate (Koff) is derived from: KD=K0ff/Kon
As seen in TABLE 9, the antibodies have high affinity for binding to human IL-23. All had KD 10 values in the low to sub pM range. TABLE 9 Table of KD (pM), Kon (1/MS) and Koff(1/s) rates
Antibody KD (pM) Kon (1/MS) Koff (1/s) E 0.131 9.12E+05 1.4E-07 D 0.126 1.72E+06 2.2E-07 B 3.99 1.17E+06 4.7E-06 C 2.56 1.36E+06 4.1E-06 F 2.62 5.69E+05 1.5E-06 L 1.08 3.34E+06 3.7E-06 G 2.00 4.00E+05 8.1E-07 15
Example 4
Structure Determination using X-Ray Crystallography
One way to determine the structure of an antibody-antigen complex is by using X-ray 20 crystallography, see for example, Harlow and Lane Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990), p.23. The crystal structure of IL-23 has been determined, (see Lupardus and Garcia, J Mol Biol, 2008, 382: 931-941) and the crystal structure of an IL-23/Fab complex has been disclosed, (see Beyer et al. J Mol Biol, 2008. 382(4): 942-55). Structural determination of IL-23 with Fab fragments of antibodies claimed herein was obtained using 25 X-ray crystallography.
Protein for crystallization A recombinantly derived human IL-23 heterodimer was used for the crystallization studies 30 (see Beyer et al., supra). The sequence of the human p19 subunit comprised of residues 20-189 of SEQ ID NO: 145, the signal sequence of SEQ ID NO:154 and a C-terminal 6-His tag SEQ ID NO:155. The sequence of the human p40 subunit was mutated from asparagine to glutamine at position 222 of SEQ ID NO:147 in order to prevent glycosylation at this site (Beyer, et al., supra).
Fabs derived from Antibody B and Antibody E were expressed on an lgG1 scaffold that 35 incorporated a caspase cleavage site. The Fabs were processed by means of protease cleavage. 55
Complex formation and crystallization 2017200537 27 Jan 2017
The IL-23-Antibody B Fab complex was made by mixing a 2X molar excess of the Antibody B Fab with the human heterodimeric IL-23 described above. The complex was purified by size 5 exclusion chromatography to remove excess Antibody B Fab and concentrated to ~12 mg/ml for crystallization. The IL-23- Antibody B Fab complex crystallized in 0.1 M Flepes pH 7, 8% PEG 8000.
The IL-23-Antibody E Fab complex was made by mixing a 2X molar excess of the Antibody E Fab with the human heterodimeric IL-23 described above. The complex was methylated using a JBS Methylation Kit according to manufacturer’s instructions (Jena Bioscience, Jena, Germany). The 10 complex was then treated with PNGase to deglycosylate the protein. Following these treatments, the complex was purified by size exclusion chromatography to remove excess Antibody E Fab and concentrated to 13.5 mg/ml for crystallization. The IL-23-Antibody E Fab complex crystallized in 0.1 M Tris pH 8.5, 0.2 M magnesium chloride, 15% PEG 4000. 15 Data collection and structure determination IL-23-Antibody B Fab crystals grew in the P2^ space group with unit cell dimensions a=70.93, b=71.27, c=107.37 A, β=104.98° and diffract to 2.0 A resolution. The IL-23- Antibody B Fab structure was solved by molecular replacement with the program MOLREP (CCP4, The CCP4 suite: programs 20 for protein crystallography. Acta Crystallogr D Biol Crystallogr, 1994. 50(Pt 5): p. 760-3) using the IL-23 structure (Beyer et al. supra) as the starting search model. Keeping the IL-23 solution fixed, an antibody variable domain was used as a search model. Keeping the IL-23-antibody variable domain solution fixed, an antibody constant domain was used as a search model. The complete structure was improved with multiple rounds of model building with Quanta and refinement with cnx (Brunger, et 25 al., Acta Crystallogr D Biol Crystallogr, 1998, 54(Pt 5): p. 905-21).
Distances between protein atoms were calculated using the program PyMOL (DeLano, W.L. The PyMOL Graphics System. Palo Alto, 2002) (Schrodinger, LLC; New York, NY)). Amino acids were chosen if at least one atom was located within the required distance threshold to the partner protein. 30 Boundaries of the A, B, C and D helices of the p19 subunit of IL-23 when bound to the
Antibody B Fab include A helix residues 28-47, B helix residues 86-105, C helix residues 119-134 and D helix residues 154-187 of SEQ ID NO:145.
The regions of interaction on the IL-23p19 subunit when bound to the Antibody B Fab include residues within Ser46-Glu58, Glu112-Glu123 and Pro155-Phe163 of SEQ ID NO:145. 35 IL-23p19 subunit amino acid residues with atoms 4 A or less from the Antibody B Fab include
Ser46, Ala47, His48, Pro49, Leu50, His53, Met54, Asp55, Glu58, Pro113, Ser114, Leu115, Leu116, Pro120, Val121, Trp156, Leu159, Leu160, Arg162and Phe163ofSEQ ID NO :145. IL-23p19 amino acid residues with atoms between 4 A and 5 A from the Antibody B Fab include Val51, Arg57, Glu 112, Asp118, Ser119, Gln123, Pro155of SEQ ID NO:145. 40 IL-23p40 subunit amino acid residues with atoms 4 A or less from the Antibody B Fab include
Glu 122 and Lys 124 of SEQ ID NO:147. 56
The Antibody B Fab heavy chain amino acid residues with atoms 4 A or less from the IL-23 heterodimer include Gly32, Gly33, Tyr34, Tyr35, His54, Asn58, Thr59, Tyr60, Lys66, Arg101, Gly102, Phe103, Tyr104 and Tyr105 of SEQ ID NO:46. The Antibody B Fab heavy chain amino acid residues with atoms < 5 A from the IL-23 heterodimer include Ser31, Gly32, Gly33, Tyr34, Tyr35, His54, Ser56, Asn58, Thr59, Tyr60, Lys66, Arg101, Gly102, Phe103, Tyr104 and Tyr105 of SEQ ID NO:46.
The Antibody B Fab light chain amino acid residues with atoms 4 A or less from the IL-23 heterodimer include Ser30, Ser31, Trp32, Tyr49, Ser52, Ser53, Ala91, Asn92, Ser93, Phe94, and Phe96 of SEQ ID NO: 15. The Antibody B Fab light chain amino acid residues with atoms < 5 A from the IL-23 heterodimer include Ser30, Ser31, Trp32, Tyr49, Ala50, Ser52, Ser53, Ser56, Ala91, Asn92, Ser93, Phe94, and Phe96 of SEQ ID NO:15
The IL-23-Antibody E Fab complex crystals grew in the P222, space group with unit cell dimensions a=61.60, b=97.59, c=223.95 A and diffract to 3.5 A resolution. The IL-23-Antibody E Fab complex structure was solved by molecular replacement with the program Phaser (CCP4, supra) using the IL-23 structure, an antibody variable domain, and an antibody constant domain as the three starting search models, as described above. The complete structure was improved with multiple rounds of model building with Quanta and refinement with cnx (Brunger, et al., supra). The Antibody E Fab constant domain was left out of the final refined structure due to very poor electron density for that portion of the protein.
The regions of interaction on the IL-23p19 subunit identified when bound to the Antibody E Fab include residues within Ser46-His53, Glu112-Val120 and Trp156-Phe163 of SEQ ID NO:145. IL-23p19 amino acid residues with atoms 4 A or less from the Antibody E Fab include Ser46, Ala47, His48, Pro49, Leu50, Glu112, Pro113, Ser114, Leu115, Leu116, Pro117, Asp118, Ser119, Pro120, Trp156, Leu159, Leu160 and Phe163 of SEQ ID NO: 145. IL-23p19 amino acid residues with atoms between 4 A and 5 A from the Antibody E Fab include His53 of SEQ ID NO:145. IL-23p40 amino acid residues with atoms 4 A or less from the Antibody E Fab include Lys121, Glu 122, Pro123 and Asn 125 of SEQ ID NO:147.
The Antibody E Fab heavy chain amino acid residues with atoms 4 A or less from the IL-23 heterodimer include Gly26, Phe27, Thr28, Ser31, Tyr53, Tyr59, Tyr102, Ser104, Ser105, Trp106, Tyr107, and Pro108 of SEQ ID NO:31. The Antibody E Fab heavy chain amino acid residues with atoms < 5 A from the IL-23 heterodimer include Gln1, Gly26, Phe27, Thr28, Ser30, Ser31, Tyr32, Trp52, Tyr53, Tyr59, Arg100, Tyr102, Thr103, Ser104, Ser105, Trp106, Tyr107, and Pro108 of SEQ ID NO:31.
The Antibody E Fab light chain amino acid residues with atoms 4 A or less from the IL-23 heterodimer include Ala31, Gly32, Tyr33, Asp34, Tyr51, Gly52, Asn55, Lys68, and Tyr93 of SEQ ID NO:1. The Antibody B Fab light chain amino acid residues with atoms < 5 A from the IL-23 heterodimer include Thr29, Ala31, Gly32, Tyr33, Asp34, Tyr51, Gly52, Asn55, Lys68, Tyr93, and Trp100 of SEQ ID NO:1. 57
Example 5 2017200537 27 Jan 2017
Determination of IL-23-Antibodv Complex Contact Residues through Solvent Accessible
Surface Area Differences 5 The residue contacts in the paratope (the portion of the antibody that recognizes the antigen) and the portion of the antigen that it binds bound by the paratope in a human IL-23-Antibody B Fab complex and in a human IL-23-Antibody E Fab complex were determined using solvent accessable surface area differences. The solvent accessible surface area calculations were performed using Molecular Operating Environment (Chemical Computing Group, Montreal, Quebec). 10 The solvent accessible surface area differences of the paratope residues in the IL-23-
Antibody B Fab complex were calculated by setting the Antibody B Fab residues as the desired set. The structural information obtained in Example 4 for the IL-23-Antibody B Fab complex was used and the residue solvent accessible surface area of the amino acid residues of the Antibody B Fab in the presence of the IL-23 heterodimer were calculated and represent the “bound areas” for the set. 15 The residue solvent accessible surface area of each of the Antibody B Fab residues in the absence of the IL-23 antigen were calculated and represent the “free areas” of the set.
The “bound areas” were then subtracted from the “free areas” resulting in the “solvent exposed surface area difference” for each residue in the set. The Antibody B Fab residues that had no change in surface area, or a zero difference, had no contact with the residues of the IL-23 antigen 20 when complexed. The Antibody B Fab residues that had a difference value >10 A2 were considered to be in significant contact with residues in the IL-23 antigen such that these Antibody B Fab residues were at least partially to completely occluded when the Antibody B Fab was bound to human IL-23. This set of Antibody B Fab residues make up the “covered patch”, the residues involved in the structure of the interface when Antibody B Fab is bound to human IL-23, see Tables 10 and 11. The 25 Antibody B Fab residues in this covered patch may not be involved in binding interactions with residues of the IL-23 antigen, but mutation of any single residue within the covered patch could introduce energetic differences that would impact the binding of Antibody B Fab to human IL-23. With the exception of Tyr49, all of the residues are located in the CDR regions of the Antibody B Fab light and heavy chains. These residues were also within 5A or less of the II-23 antigen when bound to the 30 Antibody B Fab, as described in Example 4.
Table 10 Solvent Accessibility Surface Area Differences for Antibody B Fab Light Chain
Residue Residue Position Solvent exposed surface area AHO Number SEQ ID NO:15 difference (A2) Ser32 Ser30 44.9 Ser33 Ser31 41.1 Trp40 Trp32 79.0 Tyr57 Tyr49 40.7 Ala58 Ala50 20.3 58 2017200537 27 Jan 2017
Ser68 Ser52 43.6 Ser69 Ser53 38.9 Ser72 Ser56 19.1 Asn110 Asn92 34.0 Phe135 Phe94 51.4
Table 11 Solvent Accessibility Surface Area Differences for Antibody B Fab Heavy Chain Residue Residue Positioin Solvent exposed surface area AHO Number SEQ ID NO:46 difference (A2) Ser33 Ser31 18.2 Gly34 Gly32 49.5 Gly38 Gly33 33.8 Tyr39 Tyr34 51.4 Tyr40 Tyr35 30.7 His59 His54 29.5 Asn67 Asn58 66.7 Thr68 Thr59 26.0 Tyr69 Tyr60 59.4 Lys75 Lys66 32.6 Arg110 Arg101 47.2 Gly111 Gly102 21.7 Phe112 Phe103 35.5 Tyr133 Tyr104 83.0 Tyr134 Tyr105 91.7 5
The solvent accessible surface area differences of the residues in the IL-23-Antibody E Fab complex were calculated as described above. The Antibody E Fab residues that had a difference value >10 A2 were considered to be in significant contact with residues in the IL-23 antigen and these Antibody E Fab residues were at least partially to completely occluded when the Antibody E Fab was 10 bound to human IL-23. This set of Antibody E Fab residues make up the covered patch, the residues involved in the structure of the interface when the Antibody E Fab is bound to human IL-23, see Tables 12 and 13. The Antibody E Fab residues in this covered patch may not be involved in binding interactions with residues of the IL-23 antigen, but mutation of any single residue within the covered patch could introduce energetic differences that would impact the binding of Antibody E Fab to human 15 IL-23. For the most part, these covered patch residues were located within the CDR regions of the
Antibody E Fab heavy and light chains. These residues were also within 5A or less of the IL-23 antigen when bound to the Antibody E Fab, as described in Example 4. 59
Table 13 Solvent Accessibility Surface Area Differences for Antibody E Fab Heavy Chain
Residue Residue Position Solvent exposed surface area AHO Number SEQ ID NO:31 difference (A2) Gln1 Gln1 41.1 Gly27 Gly26 24.6 Thr30 Thr28 82.2 Ser33 Ser31 40.7 Tyr39 Tyr32 30.7 Trp59 Trp52 11.3 Tyr60 Tyr53 44.7 Tyr69 Tyr59 42.4 Lys86 Lys76 17.4 Gly111 Gly101 12.8 Tyr112 Tyr102 103.1 Ser114 Ser104 21.0 Seri 15 Ser105 91.4 T rp131 Trp106 145.0 Tyr132 Tyr107 71.6 Pro133 Pro108 20.4 2017200537 27 Jan 2017
Table 12 Solvent Accessibility Surface Area Differences for Antibody E Fab Light Chain Residue Residue Position Solvent exposed surface area AHO Number SEQ ID NO:1 difference (A2) Ala33 Ala31 11.6 Gly34 Gly32 51.2 Tyr39 Tyr33 47.2 Asp40 Asp34 36.8 Tyr57 Tyr51 16.1 Gly58 Gly52 11.1 Asn69 Asn55 29.4 Lys82 Lys68 20.1 Tyr109 Tyr93 27.3 Seri 35 Ser98 11.3
The solvent accessible surface area differences of the portion of the IL-23 heterodimer bound by the paratope of the Antibody B Fab were calculated by setting the IL-23 heterodimer residues as the desired set. The structural information obtained in Example 4 for the Antibody B Fab-IL-23 complex was used and the residue solvent accessible surface area of the amino acid residues of the 60 IL-23 heterodimer in the presence of the Antibody B Fab were calculated and represent the bound areas for the set. 2017200537 27 Jan 2017
The residue solvent accessible surface area of each of the IL-23 heterodimer residues in the absence of the Antibody B Fab were calculated and represent the free areas of the set. 5 As described above, the bound areas were subtracted from the free areas resulting in the solvent exposed surface area difference for each IL-23 residue. The IL-23 heterodimer residues that had no change in surface area, or a zero difference, had no contact with the residues of the Antibody B Fab when complexed. The IL-23 heterodimer residues that had a difference value >10 A2 were considered to be in significant contact with residues of the Antibody B Fab and these li-23 10 heterodimer residues were at least partially to completely occluded when the human IL-23 heterodimer was bound to the Antibody B Fab. This set of IL-23 heterodimer residues make up the covered patch, the residues involved in the structure of the interface when the human IL-23 heterodimer is bound to the Antibody E Fab, see Table 14. The li-23 heterodimer residues in this covered patch may not all be involved in binding interactions with residues on the Antibody B Fab, but 15 mutation of any single residue within the covered patch could introduce energetic differences that would impact the binding of Antibody B Fab to human IL-23. These residues are also within 4A or less from the Antibody B Fab, as described Example 4. 20
Table 14 Solvent Accessibility Surface Area Differences for IL-23 heterodimer residues p19 residues (SEQ ID NO:145) Solvent exposed surface area difference (A2) Ser46 26.5 Ala47 12.7 Pro49 59.6 Leu 50 122.2 His53 47.8 Met54 13.9 Asp55 20.5 Arg57 14.6 Glu58 96.5 Glu112 29.7 Pro113 64.8 Seri 14 30.0 Leu115 31.4 Leu116 60.0 Asp118 14.4 Seri 19 19.7 Pro120 64.7 Pro155 19.4 Typ156 61.9 Leu159 72.8 Leu160 27.0 Arg162 14.4 Phe163 67.5 p40 residues (SEQ ID NO:147) Glu122 29.1 Lys124 60.9 61
The solvent accessible surface area differences of the portion of the IL-23 heterodimer bound by the paratope of the Antibody E Fab were calculated as described above. The IL-23 heterodimer residues that had a difference value >10 A2 were considered to be in significant contact with residues 5 of the Antibody E Fab and these II-23 heterodimer residues were at least partially to completely occluded when the human IL-23 hetrerodimer was bound to the Antibody E Fab. This set of IL-23 heterodimer residues make up the covered patch, the residues involved in the structure of the interface when the human IL-23 heterodimer is bound to the Antibody E Fab, see Table 15. The II-23 heterodimer residues in this covered patch may not all be involved in binding interactions with 10 residues on the Antibody E Fab, but mutation of any single residue within the covered patch could introduce energetic differences that would impact the binding of Antibody E Fab to human IL-23. These residues are also within 5A or less from the Antibody E Fab, as described in Example 4.
Table 15 Solvent Accessibility Surface Area Differences for IL-23 heterodimer residues 15 p19 residues (SEQ ID NO:145) Solvent exposed surface area difference (A2) Ser46 18.7 Ala47 14.9 Pro49 79.8 Leu 50 99.5 His53 61.2 Glu112 62.8 Pro113 45.7 Ser114 69.5 Leu115 50.3 Leu116 127.2 Pro117 54.1 Asp118 37.0 Pro120 18.8 Pro155 16.9 Trp156 140.7 Leu159 21.8 Leu160 17.0 Phe163 56.6 p40 residues (SEQ ID NO:147) Lvs121 86.2 Glu122 21.8 Pro123 22.1 Asn125 26.7 Arg283 22.6 2017200537 27 Jan 2017 20 62
Claims (70)
- CLAIMS WHAT IS CLAIMED IS:1. An isolated antigen binding protein that binds IL-23, comprising at least one heavy chain variable region comprising a CDRH1, a CDRH2 and a CDRH3 selected from the group consisting of: a) a CDRH1 that differs by no more than one amino acid substitution, insertion or deletion from a CDRH1 as shown in TABLE 3; b) a CDRH2 that differs by no more than three amino acid substitutions, insertions and/or deletions from a CDRH2 as shown in TABLE 3; c) a CDRH3 that differs by no more than three amino acid substitutions, insertions and/or deletions from a CDRH3 as shown in TABLE 3; and comprising at least one light chain variable region comprising a CDRL1, a CDRL2 and a CDRL3 selected from the group consisting of: d) a CDRL1 that differs by no more than three amino acid substitutions, insertions and/or deletions from a CDRL1 as shown in TABLE 3; e) a CDRL2 that differs by no more than one amino acid substitution, insertion or deletion from a CDRL2 as shown in TABLE 3; f) a CDRL3 that differs by no more than one amino acid substitution, insertion or deletion from a CDRL3 as shown in TABLE 3.
- 2. An isolated antigen binding protein of claim 1, comprising at least one heavy chain variable region comprising a CDRH1, a CDRH2 and a CDRH3 selected from the group consisting of: a) a CDRH1 that differs by no more than one amino acid substitution, insertion or deletion from a CDRH1 as shown in TABLE 3; b) a CDRH2 that differs by no more than two amino acid substitutions, insertions and/or deletions from a CDRH2 as shown in TABLE 3; c) a CDRH3 that differs by no more than two amino acid substitutions, insertions and/or deletions from a CDRH3 as shown in TABLE 3; and also comprising at least one light chain variable region comprising a CDRL1, a CDRL2 and a CDRL3 selected from the group consisting of: d) a CDRL1 that differs by no more than two amino acid substitutions, insertions and/or deletions from a CDRL1 as shown in TABLE 3; e) a CDRL2 that differs by no more than one amino acid substitution, insertions or deletion from a CDRL2 as shown in TABLE 3; f) a CDRL3 that differs by no more than one amino acid substitution, insertions or deletion from a CDRL3 as shown in TABLE 3.
- 3. An isolated antigen binding protein of claim 1, comprising at least one heavy chain variable region comprising a CDRH1, CDRH2 and a CDRH3 selected from the group consisting of: a) a CDRH1 that differs by no more than one amino acid substitution, insertion or deletion from a CDRH1 as shown in TABLE 3; b) a CDRH2 that differs by no more than one amino acid substitution, insertion or deletion from a CDRH2 as shown in TABLE 3; c) a CDRH3 that differs by no more than one amino acid substitution, insertion or deletion from a CDRH3 as shown in TABLE 3; and also comprising at least one light chain variable region comprising a CDRL1, a CDRL2 and a CDRL3 selected from the group consisting of: d) a CDRL1 that differs by no more than one amino acid substitution, insertion or deletion from a CDRL1 as shown in TABLE 3; e) a CDRL2 that differs by no more than one amino acid substitution, insertion or deletion from a CDRL2 as shown in TABLE 3; f) a CDRL3 that differs by no more than one amino acid substitution, insertion or deletion from a CDRL3 as shown in TABLE 3.
- 4. An isolated antigen binding protein that binds IL-23 selected from the group consisting of a) an antigen binding protein having CDRH1 of SEQ ID 140:129, CDRH2 of SEQ ID 140:132, CDRH3 of SEQ ID 140:136, and CDRL1 of SEQ ID 140:123, CDRL2 of SEQ ID 140:81, and CDRL3 of SEQ ID NO: 76; b) an antigen binding protein having CDRH1 of SEQ ID N0:131, CDRH2 of SEQ ID NO: 134, CDRH3 of SEQ ID NO:137 and CDRL1 of SEQ ID NO:124, CDRL2 of SEQ ID N0126 and CDRL3 of SEQ ID NO:128; c) a) an antigen binding protein having CDRH1 of SEQ ID NO:130, CDRH2 of SEQ ID N0:133, CDRH3 of SEQ ID NO:99 and CDRL1 of SEQ ID NO:68, CDRL2 of SEQ ID NO:69, and CDRL3 of SEQ ID NO:67; and d) an antigen binding protein having CDRH1 SEQ ID N0:91, CDRH2 SEQ ID NO: 135, CDRH3 SEQ ID NO:138 and CDRL1 SEQ ID NO:125, CDRL2 SEQ ID NO:127, and CDRL3 SEQ ID NO:64.
- 5. An isolated antigen binding protein of claim 1 comprising: a CDRH1 selected from the group consisting of SEQ ID NO: 91,94, 97, 100, and 103; a CDRH2 selected from the group consisting of SEQ ID NO:92, 95, 98, 101, 104, 107, and 110; a CDRH3 selected from the group consisting of SEQ ID NO: 93, 96, 99, 102, and 105; a CDRL1 selected from the group consisting of SEQ ID NO: 62, 65, 68, 71, and 74; a CDRL2 selected from the group consisting of SEQ ID NO:63, 66, 69, 72, 75, and 78; and a CDRL3 selected from the group consisting of SEQ ID NO:64, 67, 70 and 73.
- 6. An isolated antigen binding protein of claim 1, comprising: a CDRH1 selected from the group consisting of SEQ ID NO: 91, 106, 109, 112, and 115; a CDRH2 selected from the group consisting of SEQ ID NO: 113, 116, 118, 120, 121, and 122; a CDRH3 selected from the group consisting of SEQ ID NO: 108, 111, 114, 117, and 119; a CDRL1 selected from the group consisting of SEQ ID NO: 77, 80, 83, 85, 86, 87, 88, 89 and 90; a CDRL2 is SEQ ID NO: 81; and a CDRL3 selected from the group consisting of SEQ ID NO: 76, 79, 82 and 84.
- 7. An isolated antigen binding protein that binds IL-23 comprising at least one heavy chain variable region and at least one light chain variable region, selected from the group consisting of: a) a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 99113 of SEQ ID NO:31; and a light chain variable region comprising amino acid residues 23-36, 52-58 and 91-101 of SEQ ID NO:1; b) a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 99110 of SEQ ID NO:34 and heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-110 of SEQ ID NO:36; and a light chain variable region comprising amino acid residues 23-36, 52-62 and 97-105 of SEQ ID NO:4 ; c) a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99114 of SEQ ID NO:38; and a light chain variable region comprising amino acid residues 23-34, 50-61 and 94-106 of SEQ ID NO:7; d) a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99114 of SEQ ID NO:40; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 94-106 of SEQ ID NO:9; e) a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99114 of SEQ ID NO:42; and a light chain variable region comprising amino acid residues 23-34, 50-61 and 94-106 of SEQ ID NO: 11; f) a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 98107 of SEQ ID NO:44; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:13; g) a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100109 of SEQ ID NO:46 or 153; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID N015 ; h) a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100109 of SEQ ID NO:48; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:17 ; i) a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 101109 of SEQ ID NO:50; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:19; j) a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 98107 of SEQ ID NO: 52; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 98-107 of SEQ ID NO:21; k) a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100109 of SEQ ID NO:54; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:23; l) a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100109 of SEQ ID NO:56; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:25; and m) a heavy chain variable region comprising amino acid residues 31-37, 52-57 and 100109 of SEQ ID NO:58; and a light chain variable region comprising amino acid residues 24-34, 500-56 and 89-97 of SEQ ID NO:27.
- 8. An isolated antigen-binding protein of claim 1 that comprises at least one heavy chain variable region and at least one light chain variable region.
- 9. An isolated antigen-binding protein of claim 1 that comprises at least two heavy chain variable regions and at least two light chain variable regions.
- 10. An isolated antigen binding protein that binds IL-23 comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region sequence differs by no more than 13 amino acid substitutions, additions and/or deletions from a heavy chain variable region sequence as shown in TABLE 2; and wherein the light chain variable region sequence differs by no more than 13 amino acid substitutions, additions and/or deletions from a light chain variable region sequence as shown in TABLE 1.
- 11. An isolated antigen binding protein of claim 10, wherein the heavy chain variable region sequence differs by no more than 11 amino acid substitutions, insertions and/or deletions from a heavy chain variable region sequence as shown in TABLE 2.
- 12. An isolated antigen binding protein of claim 10, wherein the heavy chain variable region sequence differs by no more than 5 amino acid substitutions, insertions and/or deletions from a heavy chain variable region sequence as shown in TABLE 2.
- 13. An isolated antigen binding protein of claim 10, wherein the heavy chain variable region sequence differs by no more than 2 amino acid substitutions, insertions and/or deletions from a heavy chain variable region sequence as shown in TABLE 2.
- 14. An isolated antigen binding protein of claim 10, wherein the heavy chain variable region sequence differs by no more than 1 amino acid substitution, insertion or deletion from a heavy chain variable region sequence as shown in TABLE 2.
- 15. An isolated antigen binding protein of claim 10, wherein the light chain variable region sequence differs by no more than 7 amino acid substitutions, insertions and/or deletions from a light chain variable region sequence as shown in TABLE 1.
- 16. An isolated antigen binding protein of claim 10, wherein the light chain variable region sequence differs by no more than 4 amino acid substitutions, insertions and/or deletions from a light chain variable region sequence as shown in TABLE 1.
- 17. An isolated antigen binding protein of claim 10, wherein the light chain variable region sequence differs by no more than 2 amino acid substitutions, insertions and/or deletions from a light chain variable region sequence as shown in TABLE 1.
- 18. An isolated antigen binding protein of claim 10, wherein the light chain variable region sequence differs by no more than 1 amino acid substitutions, insertions and/or deletions from a light chain variable region sequence as shown in TABLE 1.
- 19. An isolated antigen binding protein that binds IL-23 selected from the group consisting of a) a heavy chain variable region of SEQ ID NO:140 and a light chain variable region of SEQ ID NO: 30; b) a heavy chain variable region of SEQ ID NO:141 and a light chain variable region of SEQ ID NO:61; c) a heavy chain variable region of SEQ ID NO:142 and a light chain variable region of SEQ ID NO:4; and d) a heavy chain variable region of SEQ ID NO:143 and a light chain variable region of SEQ ID NO:139.
- 20. An isolated antigen binding protein that binds IL-23 comprising a heavy chain variable region comprising of an amino acid sequence having at least 90% sequence identity to SEQ ID NO:31, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56 and 58; and a light chain variable region comprising an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 1,4, 7, 9, 11, 13, 15, 17, 19, 21,23, 25 and 27.
- 21. An isolated antigen binding protein of claim 20, a heavy chain variable region comprising of an amino acid sequence having at least 95% sequence identity to SEQ ID NO:31, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56 and 58; and a light chain variable region comprising an amino acid sequence having at least 95% sequence identity to SEQ ID NO: 1,4, 7, 9, 11, 13, 15, 17, 19, 21,23, 25 and 27.
- 22. An isolated antigen binding protein of claim 20, comprising a heavy chain variable region comprising of an amino acid sequence having at least 97% sequence identity to SEQ ID NO:31, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56 and 58; and a light chain variable region comprising an amino acid sequence having at least 97% sequence identity to SEQ ID NO: 1,4, 7, 9, 11, 13, 15, 17, 19, 21,23, 25 and 27.
- 23. An isolated antigen binding protein of claim 20, comprising a heavy chain variable region comprising of an amino acid sequence having at least 98% sequence identity to SEQ ID NO:31, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56 and 58; and a light chain variable region comprising an amino acid sequence having at least 98% sequence identity to SEQ ID NO: 1,4, 7, 9, 11, 13, 15, 17, 19, 21,23, 25 and 27.
- 24. An isolated antigen binding protein of claim 20, comprising a heavy chain variable region selected from the group consisting of SEQ ID NO: 44, 46, 48, 50, 52, 54, 56, 58 and 153, and a light chain variable region selected from the group consisting of SEQ ID NO:13, 15, 17, 19, 21,23, 25, and 27.
- 25. An isolated antigen binding protein of claim 20, comprising a heavy chain variable region selected from the group consisting of SEQ ID NO: 31, 34, 36, 38, 40 and 42, and a light chain variable region selected from the group consisting of SEQ ID NO: 1, 4, 7, 9 and 11.
- 26. An isolated antigen binding protein that binds IL-23 comprising a heavy chain variable region and a light chain variable region selected from the group consisting of: a) a heavy chain variable region of SEQ ID NO:31 and a light chain variable region of SEQ ID NO:1; b) a heavy chain variable region of SEQ ID NO:34 or 36 and a light chain variable region of SEQ ID NO:4; c) a heavy chain variable region of SEQ ID NO:38 and a light chain variable region of SEQ ID NO: 7; d) a heavy chain variable region of SEQ ID NO:40 and a light chain variable region of SEQ ID NO:9; e) a heavy chain variable region of SEQ ID NO:42 and a light chain variable region of SEQ ID NO: 11; f) a heavy chain variable region of SEQ ID NO:44 and a light chain variable region of SEQ ID NO:13; g) a heavy chain variable region of SEQ ID NO:46 or 153 and a light chain variable region of SEQ ID NO:15; h) a heavy chain variable region of SEQ ID NO:48 and a light chain variable region of SEQ ID NO:17; i) a heavy chain variable region of SEQ ID NO:50 and a light chain variable region of SEQ ID NO: 19; j) a heavy chain variable region of SEQ ID NO:52 and a light chain variable region of SEQ ID NO:21; k) a heavy chain variable region of SEQ ID NO:54 and a light chain variable region of SEQ ID NO:23; l) a heavy chain variable region of SEQ ID NO:56 and a light chain variable region of SEQ ID NO:25; and m) a heavy chain variable region of SEQ ID NO:58 and a light chain variable region of SEQ ID NO:27.
- 27. An isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when said antigen binding protein is bound to human IL-23 comprises residue contacts 30, 31, 32, 49, 50, 52, 53, 56, 92 and 94 of SEQ ID NO:15, wherein said residue contacts have a difference value of greater than or equal to 10 A2 as determined by solvent exposed surface area.
- 28. An isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when said antigen binding protein is bound to human IL-23 comprises residue contacts 31-35, 54, 5860, 66, and 101-105 of SEQ ID NO:46, wherein said residue contacts have a difference value of greater than or equal to 10 A2 as determined by solvent exposed surface area.
- 29. An isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when said antigen binding protein is bound to human IL-23 comprises residue contacts 31-34, 51, 52, 55, 68, 93 and 98 of SEQ ID NO:1, wherein said residue contacts have a difference value of greater than or equal to 10 A2 as determined by solvent exposed surface area.
- 30. An isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when said antigen binding protein is bound to human IL-23 comprises residue contacts 1, 26, 28, 31, 32, 52, 53, 59, 76, 101, 102 and 104-108 of SEQ ID NO:31, wherein said residue contacts have a difference value of greater than or equal to 10 A2 as determined by solvent exposed surface area.
- 31. An isolated antigen binding protein that binds human IL-23, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5A or less from residues 3235, 54, 58-60, 66 and 101-105 of SEQ ID NO:46, as determined by X-ray crystallography.
- 32. An isolated antigen binding protein according to claim 31, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5A or less from residues 31-35, 54, 56, 58-60, 66 and 101 -105 of SEQ ID NO:46.
- 33. An isolated antigen binding protein that binds human IL-23, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5 A or less from residues 3032, 49, 52, 53, 91-94 and 96 of SEQ ID NO:15, as determined by X-ray crystallography.
- 34. An isolated antigen binding protein according to claim 33, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5 A or less from residues 30-32, 49, 50, 52, 53, 56, 91-94 and 96 of SEQ ID NO:15.
- 35. An isolated antigen binding protein that binds human IL-23, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5 A or less from residues 2628, 31, 53, 59, 102 and 104-108 of SEQ ID NO:31, as determined by X-ray crystallography.
- 36. An isolated antigen binding protein according to claim 35, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5 A or less from residues 1, 26-28, 30-32, 52, 53, 59, 100, and 102-108 of SEQ ID NO:31.
- 37. An isolated antigen binding protein that binds human IL-23, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5 A or less from residues 3134, 51, 52, 55, 68 and 93 of SEQ ID NO:1 as determined by X-ray crystallography.
- 38. An isolated antigen binding protein according to claim 37, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5 A or less from residues 29, 31-34, 51, 52, 55, 68, 93 and 100ofSEQ ID NO:1.
- 39. An isolated antigen binding protein of claim 1, 4, 7, 10, 19, 20, 26-31, 33, 35 or 37, wherein said antigen binding protein is an antibody.
- 40. An isolated antigen binding protein of claim 39, wherein said antibody is a monoclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, a chimeric antibody, a multispecific antibody, or an antibody fragment thereof.
- 41. An isolated antigen binding protein of claim 40, wherein said antibody fragment is a Fab fragment, a Fab' fragment, a F(ab')2 fragment, a Fv fragment, a diabody, or a single chain antibody molecule.
- 42. An isolated antigen binding protein of claim 40, wherein said antigen binding protein is a human antibody.
- 43. An isolated antigen binding protein of claim 40, wherein said antigen binding protein is a monoclonal antibody.
- 44. An isolated antigen binding protein of claim 39, wherein said antigen binding protein is of the IgG 1 -, lgG2- lgG3- or lgG4-type.
- 45. An isolated antigen binding protein of claim 44, wherein said antigen binding protein is of the IgG 1 - or lgG2-type.
- 46. An isolated nucleic acid molecule encoding an antigen binding protein of claim 1,4, 7, 10, 19, 20 or 26.
- 47. An isolated nucleic acid molecule of claim 46, wherein at least one heavy chain variable region is encoded by an isolated nucleic acid molecule selected from the group consisting of SEQ ID NOs:32, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59 and 152 and at least one light chain variable region is encoded by an isolated nucleic acid molecule selected from the group consisting of SEQ ID NOs:2, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28.
- 48. A nucleic acid molecule according to claim 47, wherein said nucleic acid molecule is operably linked to a control sequence.
- 49. A vector comprising a nucleic acid molecule according to claim 46.
- 50. A host cell comprising the nucleic acid molecule according to claim 46.
- 51. A host cell comprising the vector according to claim 49.
- 52. An isolated polynucleotide sufficient for use as a hybridization probe, PCR primer or sequencing primer that is a fragment of the nucleic acid molecule of claim 47 or its complement.
- 53. A method of making the antigen binding protein of claim 1,4, 7, 10, 19, 20 or 26 comprising the step of preparing said antigen binding protein from a host cell that secretes said antigen binding protein.
- 54. An isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when said antigen binding protein is bound to human IL-23 comprises a residue contact within residues 46-58, a residue contact within residues 112-120, and a residue contact within residues 155163 of the human IL-23p19 subunit as described in SEQ ID 140:145, wherein said residue contact has a difference value greater than or equal to 10A2 as determined by solvent exposed surface area.
- 55. An isolated antigen binding protein according to claim 54, wherein the covered patch formed when said antigen binding protein binds to human IL-23 further comprises a residue contact within residues 121-125 of the human IL-23p40 subunit as described in SEQ ID 140:147, wherein said residue contact has a difference value greater than or equal to 10A2 as determined by solvent exposed surface area.
- 56. An isolated antigen binding protein that binds human IL-23, wherein when said antigen binding protein is bound to human IL-23 said antigen binding protein is 5A or less from a residue within residues 46-58, from a residue within residues 112-123, and from a residue within residues 155-163 of the human IL-23p19 subunit as described in SEQ ID 140:145, as determined by X-ray crystallography.
- 57. An isolated antigen binding protein according to claim 56, wherein when said antigen binding protein is bound to human IL-23 said antigen binding protein is 5A or less from a residue within residues 121-125, of the human IL-23p40 subunit as described in SEQ ID 140:147, as determined by X-ray crystallography.
- 58. An isolated antigen binding protein of claim 1, 4, 7, 10, 19, 20, 26-31, 33, 35, 37, 54 or 56 wherein said antigen binding protein has at least one property selected from the group consisting of: a) reducing human IL-23 activity; b) reducing production of a proinflammatory cytokine; c) binding to human IL-23 with a KD of < 5x10"8 M; d) having a Koff rate of < 5x10"6 1/s; and e) having an IC50 of < 400 pM.
- 59. A pharmaceutical composition comprising at least one antigen binding protein of claim 1,4, 7, 10, 19, 20 or 26 and pharmaceutically acceptable excipient.
- 60. A pharmaceutical composition of claim 59, further comprises a labeling group or an effector group.
- 61. A pharmaceutical composition of claim 60, wherein said labeling group is selected from the group consisting of isotopic labels, magnetic labels, redox active moieties, optical dyes, biotinylated groups and predetermined polypeptide epitopes recognized by a secondary reporter.
- 62. A pharmaceutical composition of claim 60, wherein said effector group is selected from the group consisting of a radioisotope, radionuclide, a toxin, a therapeutic group and a chemotherapeutic group.
- 63. An isolated antigen binding protein of claim 60, wherein said antigen binding protein is coupled to a labeling group.
- 64. A method for treating or preventing a condition associated with 11-23 in a patient, comprising administering to a patient in need thereof an effective amount of at least one isolated antigen binding protein of claim 1, 4, 7,10, 19, 20 or 26.
- 65. A method of claim 64, wherein the condition is selected from the group consisting of an inflammatory disorder, a rheumatic disorder, an autoimmune disorder, an oncological disorder and a gastrointestinal disorder.
- 66. A method of claim 65, wherein the condition is selected from the group consisting of multiple sclerosis, rheumatoid arthritis, cancer, psoriasis, inflammatory bowel disease, Crohn’s disease, ulcerative colitis, systemic iupus erythematosus, psoriatic arthritis, autoimmune myocarditis; type 1 diabetes and ankylosing spondylitis.
- 87, A method of claim 64, wherein the isolated antigen-binding protein is administered alone or as a combination therapy.
- 68. A method of reducing !L-23 activity in a patient comprising administering an effective amount of at least one antigen binding protein of claim 1,4, 7,10,19,20 or 26.
- 69. A method of reducing it-23 activity of claim 68, wherein said fl-23 activity Is inducing production of a pfoinflammatory cytokine.
- 70. An antigen binding protein obtained by the method of claim 53.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2017200537A AU2017200537A1 (en) | 2009-10-26 | 2017-01-27 | Human IL-23 antigen binding proteins |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/254,982 | 2009-10-26 | ||
US61/381,287 | 2010-09-09 | ||
AU2010315557A AU2010315557B2 (en) | 2009-10-26 | 2010-10-26 | Human IL-23 antigen binding proteins |
AU2014202591A AU2014202591A1 (en) | 2009-10-26 | 2014-05-13 | Human IL-23 antigen binding proteins |
AU2017200537A AU2017200537A1 (en) | 2009-10-26 | 2017-01-27 | Human IL-23 antigen binding proteins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2014202591A Division AU2014202591A1 (en) | 2009-10-26 | 2014-05-13 | Human IL-23 antigen binding proteins |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2017200537A1 true AU2017200537A1 (en) | 2017-02-16 |
Family
ID=50846979
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2014202591A Abandoned AU2014202591A1 (en) | 2009-10-26 | 2014-05-13 | Human IL-23 antigen binding proteins |
AU2017200537A Abandoned AU2017200537A1 (en) | 2009-10-26 | 2017-01-27 | Human IL-23 antigen binding proteins |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2014202591A Abandoned AU2014202591A1 (en) | 2009-10-26 | 2014-05-13 | Human IL-23 antigen binding proteins |
Country Status (1)
Country | Link |
---|---|
AU (2) | AU2014202591A1 (en) |
-
2014
- 2014-05-13 AU AU2014202591A patent/AU2014202591A1/en not_active Abandoned
-
2017
- 2017-01-27 AU AU2017200537A patent/AU2017200537A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2014202591A1 (en) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12012449B2 (en) | Human IL-23 antigen binding proteins | |
AU2017200537A1 (en) | Human IL-23 antigen binding proteins | |
US20220267431A1 (en) | Patient Populations Amenable to IL23-Antagonist Therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK1 | Application lapsed section 142(2)(a) - no request for examination in relevant period |