AU2015201122B2 - Substituted 6-amino-nicotinamides as KCNQ2/3 modulators - Google Patents
Substituted 6-amino-nicotinamides as KCNQ2/3 modulators Download PDFInfo
- Publication number
- AU2015201122B2 AU2015201122B2 AU2015201122A AU2015201122A AU2015201122B2 AU 2015201122 B2 AU2015201122 B2 AU 2015201122B2 AU 2015201122 A AU2015201122 A AU 2015201122A AU 2015201122 A AU2015201122 A AU 2015201122A AU 2015201122 B2 AU2015201122 B2 AU 2015201122B2
- Authority
- AU
- Australia
- Prior art keywords
- methyl
- aliphatic residue
- residue
- pyridine
- unsubstituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
SUBSTITUTED 6-AMINO-NICOTINAMIDES AS KCNQ2/3 MODULATORS Abstract R3 ' NR R 4 H N N R6 The invention relates to substituted 6-amino-nicotinamides of general formula (I) to pharmaceutical compositions containing these compounds and also to these compounds for use in the treatment and/or prophylaxis of pain and further diseases and/or disorders.
Description
Substituted 6-amino-nicotinamides as KCNQ2/3 modulators The invention relates to substituted 6-amino-nicotinamides, to pharmaceutical compositions containing these compounds and also to these compounds for use in the treatment and/or prophylaxis of pain and further diseases and/or disorders. The treatment of pain, in particular of neuropathic pain, is of great importance in medicine. There is a worldwide need for effective pain therapies. The urgent need for action for a target-orientated treatment of chronic and non-chronic states of pain appropriate for the patient, by which is to be understood the successful and satisfactory treatment of pain for the patient, is also documented in the large number of scientific works which have recently been published in the field of applied analgesics and of fundamental research into nociception. A pathophysiological feature of chronic pain is the overexcitability of neurons. Neuronal excitability is influenced decisively by the activity of K* channels, since these determine decisively the resting membrane potential of the cell and therefore the excitability threshold. Heteromeric K* channels of the molecular subtype KCNQ2/3 (Kv7.2/7.3) are expressed in neurons of various regions of the central (hippocampus, amygdala) and peripheral (dorsal root ganglia) nervous system and regulate the excitability thereof. Activation of KCNQ2/3 K* channels leads to a hyperpolarization of the cell membrane and, accompanying this, to a decrease in the electrical excitability of these neurons. KCNQ2/3-expressing neurons of the dorsal root ganglia are involved in the transmission of nociceptive stimuli from the periphery into the spinal marrow (Passmore et a/., J. Neurosci. 2003; 23(18): 7227-36). It has accordingly been possible to detect an analgesic activity in preclinical neuropathy and inflammatory pain models for the KCNQ2/3 agonist retigabine (Blackburn-Munro and Jensen, Eur J Pharmacol. 2003; 460(2-3); 109-16; Dost et a/., Naunyn Schmiedebergs Arch Pharmacol 2004; 369(4): 382-390). The KCNQ2/3 K* channel thus represents a suitable starting point for the treatment of pain; in particular of pain selected from the group consisting of chronic pain, acute pain, neuropathic pain, inflammatory pain, visceral pain and muscular pain (Nielsen et al., Eur J Pharmacol. 2004; 487(1-3): 93-103), in particular of neuropathic and inflammatory pain. Moreover, the KCNQ2/3 K* channel is a suitable target for therapy of a large number of further diseases, such as, for example, migraine (US2002/0128277), cognitive diseases (Gribkoff, Expert Opin Ther Targets 2003; 7(6): 737-748), anxiety (Korsgaard et al., J Pharmacol Exp Ther. 2005, 14(1): 282-92), epilepsy (Wickenden et al., Expert Opin Ther Pat 2004; 14(4): 457-469; Gribkoff, Expert Opin Ther Targets 2008, 12(5): 565-81; Miceli et a/., Curr Opin Pharmacol 2008, 8(1): 65-74), urinary incontinence (Streng et al., J Urol 2004; 172: 2054-2058), dependency (Hansen et a/., Eur J Pharmacol 2007, 570(1-3): 77-88), mania/bipolar disorders (Dencker et al., Epilepsy Behav 2008, 12(1): 49-53) and dystonia associated dyskinesias (Richter et al., Br J Pharmacol 2006, 149(6): 747-53). Substituted compounds that have an affinity for the KCNQ2/3 K* channel are e.g. known from the prior art (WO 2008/046582, WO 2010/046108, WO 2010/102809 and WO 2002/066036). DE 25 13 949 and GB 1 420 987 disclose substituted nicotinamides and derivatives thereof as coupling components for the preparation of azo dyes. There is a demand for further compounds having comparable or better properties, not only with regard to affinity to KCNQ2/3 K* channels per se (potency, efficacy). Thus, it may be advantageous to improve the metabolic stability, the solubility in aqueous media or the permeability of the compounds. These factors can have a beneficial effect on oral bioavailability or can alter the PK/PD (pharmacokinetic/pharmacodynamic) profile; this can lead to a more beneficial period of effectiveness, for example. A weak or non-existent interaction with transporter molecules, which are involved in the ingestion and the excretion of pharmaceutical compositions, is also to be regarded as an indication of improved bioavailability and at most low interactions of pharmaceutical compositions. Furthermore, the interactions with the enzymes involved in the decomposition and the excretion of pharmaceutical compositions should also be as low as possible, as such test results also suggest that at most low interactions, or no interactions at all, of pharmaceutical compositions are to be expected. In addition, it may be advantageous if the compounds show a high selectivity towards other receptors of the KCNQ family (specificity), e.g. towards KCNQ1, KCNQ3/5 or KCNQ4. A high selectivity may have a positive effect on the side effects profile: for example it is known that compounds which (also) have an affinity to KCNQ1 are likely to have a potential for cardial side effects. Therefore, a high selectivity towards KCNQ1 may be desirable. However, it may also be advantageous for the compounds to show a high selectivity towards other receptors. For instance, it may be advantageous for the compounds to show a low affinity for the hERG 3 ion channel or the L-type calcium ion channel (phenylalkylamine-, benzothiazepin-, dihydropyridine-binding site) since these receptors are known to possibly have a potential for cardial side effects. Further, an improved selectivity towards binding to other endogenic proteins (i.e. receptors or enzymes) may result in a better side effects profile 5 and, consequently to an improved tolerance. It was therefore an object of the invention to provide new compounds having advantages over the compounds of the prior art. These compounds should be suitable in particular as pharmacological active ingredients in pharmaceutical compositions, preferably in pharmaceutical compositions for the treatment and/or prophylaxis of disorders and/or 10 diseases which are mediated, at least in part, by KCNQ2/3 K+ channels. That object is achieved by the subject-matter described herein. It has been found, surprisingly, that substituted compounds of the general formula (I) given below are suitable for the treatment of pain. It has also been found, surprisingly, that substituted compounds of the general formula (I) given below also have an excellent is affinity for the KCNQ2/3 K+ channel and are therefore suitable for the prophylaxis and/or treatment of disorders and/or diseases that are mediated at least in part by KCNQ2/3 K+ channels. The substituted compounds thereby act as modulators, i.e. agonists or antagonists, of the KCNQ2/3 K+ channel. Summary of the Invention 20 A first aspect of the invention provides for substituted compound of general formula (I-c)
R
2 0 R4N R1 N N R 6 R5 (I-c), wherein R represents a C1io-aliphatic residue, unsubstituted or mono- or polysubstituted; a 25 C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case 3a optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; 5 R2 represents F; Cl; Br; I; CN; CF 3 ; C(=O)H; NO 2 ; OCF 3 ; SCF 3 ; a C 1
.
4 -aliphatic residue, a C(=O)-C 1
.
4 aliphatic residue, a C(=O)-O-C 1
.
4 aliphatic residue, a
C(=O)-NH-C
1
.
4 aliphatic residue, a C(=O)-N(C 1
.
4 aliphatic residue) 2 , wherein the
C
1
.
4 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted; a O-C 1
.
4 -aliphatic residue, a O-C(=O)-C 1
.
4 -aliphatic residue, a 10 S-C 1
.
4 -aliphatic residue, a S(=0) 2
-C
1
.
4 -aliphatic residue, a S(=0)2-0-C1.4 aliphatic residue, wherein the C 1
.
4 aliphatic residue may in each case be unsubstituted or mono- or polysubstituted; a C 3
.
6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1
.
4 aliphatic group, is which in turn may be unsubstituted or mono- or polysubstituted; R4 represents a C 1 io-aliphatic residue, unsubstituted or mono- or polysubstituted; a
C
3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted 20 or mono- or polysubstituted; aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 4 denotes a 3 to 10 membered heterocycloaliphatic residue or a heteroaryl, the 3 to 10 membered heterocycloaliphatic residue or the 25 heteroaryl is linked via a carbon atom; R3 5 denotes H or a C1o-aliphatic residue, unsubstituted or mono- or polysubstituted; or
R
4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, unsubstituted or mono- or 30 polysubstituted; 3b R6 denotes S-R' wherein R7 denotes a C 1
.
6 -aliphatic residue, selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, 5 isopentyl, neopentyl, n-hexyl, ethenyl and propenyl
(-CH
2
CH=CH
2 , -CH=CH-CH 3 , -C(=CH 2
)-CH
3 ), in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-CI-aliphatic residue, OCF 3 , SH, SCF 3 , a
S-C
1 -aliphatic residue, an NH(C 1
.
4 aliphatic residue) and an N(C 1
.
4 aliphatic io residue) 2 , wherein the C 1
.
4 -aliphatic residue in each case is unsubstituted, or denotes a C 3
.
6 -cycloaliphatic residue, or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 aliphatic is residue, OCF 3 , SCF 3 , a S-C 1 aliphatic residue, a C(=O)-O-C 1
.
4 -aliphatic residue, CF 3 , and a CI-aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1
.
4 -aliphatic residue, and wherein the C 3 .io-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic 20 residue in each case may be bridged via an unsubstituted C 1 aliphatic group, on the condition that if R 7 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or R6 denotes O-R 8 25 wherein 3c R in each case denote a C 1
.
6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1
.
4 -aliphatic residue, a C(=O)-O-C 1
.
4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, an NH(C 1
.
4 aliphatic 5 residue), an N(C 1
.
4 aliphatic residue) 2 , CF 3 , and a C 1
.
4 -aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case is unsubstituted, or denotes a C 3
.
6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1
.
4 aliphatic 10 residue, OCF 3 , SCF 3 , a S-C 1
.
4 aliphatic residue, a C(=O)-O-C 1
.
4 -aliphatic residue, CF 3 , and a C 1
.
4 -aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1
.
4 -aliphatic residue, and wherein the C 3 .io-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic is residue in each case may be bridged, via an unsubstituted C 1
.
4 aliphatic group, on the condition that if R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or R6 denotes N(R R ), 20 wherein R 9 denotes a C 1
.
6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1
.
4 -aliphatic residue, a C(=O)-O-C 1
.
4 -aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C 1
.
4 -aliphatic residue, CF 3 , and a C 1
.
4 -aliphatic residue, 25 wherein the C 1
.
4 -aliphatic residue in each case is unsubstituted, 3d or denotes a C 3
.
6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, a C 1
.
4 -aliphatic residue and an 0
C
1
.
4 -aliphatic residue, even more preferably in each case unsubstituted, 5 wherein the C 1
.
4 -aliphatic residue in each case is unsubstituted, and wherein the C 3
-
6 -cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case optionally bridged via an unsubstituted C 1
.
4 aliphatic group, on the condition that if R 9 denotes a 3 to 6 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, 10 denotes H or an unsubstituted C 1
.
4 -aliphatic residue, or
R
9 and R 10 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of is F, Cl, Br, I, OH, an O-C 1
.
4 aliphatic residue, and a C 1
.
4 -aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1
.
4 -aliphatic residue, in which an "aliphatic group" and an "aliphatic residue" can in each case be branched or unbranched, saturated or unsaturated, 20 in which a "cycloaliphatic residue" and a "heterocycloaliphatic residue" can in each case be saturated or unsaturated, in which "mono- or polysubstituted" with respect to an "aliphatic group" and an "aliphatic residue" relates, with respect to the corresponding residues or groups, to the substitution of one or more hydrogen atoms each independently of one another by at least one 25 substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , a NH-C(=O)-C 1
.
4 aliphatic residue, a NH S(=0) 2
-C
1
.
4 aliphatic residue, =0, OH, OCF 3 , a 0-C 1
.
4 -aliphatic residue, a 0-C(=0)-C1.4 aliphatic residue, SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, S(=0) 2 0H, a S(=0) 2
-C
1
.
4 -aliphatic residue, a S(=0) 2 -0-C 1
.
4 -aliphatic residue, a S(=0) 2
-NH-C
1
.
4 -aliphatic residue, CN, CF 3
,
3e CHO, COOH, a C 1
.
4 -aliphatic residue, a C(=O)-C 1
.
4 -aliphatic residue, a C(=0)-0-C1.4 aliphatic residue, a C 3
.
6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=O)-NH 2 , a C(=O)-NH(C 1
.
4 aliphatic residue), and a C(=O)-N(C 1
.
4 aliphatic residue) 2 ; 5 in which "mono- or polysubstituted" with respect to a "cycloaliphatic residue" and a "heterocycloaliphatic residue" relates, with respect to the corresponding residues, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , a NH-C(=O)-C 1
.
4 aliphatic residue, a NH 10 S(=0) 2
-C
1
.
4 aliphatic residue, =0, OH, OCF 3 , a 0-C 1
.
4 -aliphatic residue, a 0-C(=0)-C1.4 aliphatic residue, SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, S(=0) 2 0H, a S(=0) 2
-C
1
.
4 -aliphatic residue, a S(=0) 2 -0-C 1
.
4 -aliphatic residue, a S(=0) 2
-NH-C
1
.
4 -aliphatic residue, CN, CF 3 , CHO, COOH, a C 1
.
4 -aliphatic residue, a C(=O)-C 1
.
4 -aliphatic residue, a C(=0)-0-C1.4 aliphatic residue, a C 3
.
6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic is residue, C(=O)-NH 2 , a C(=O)-NH(C 1
.
4 aliphatic residue), and a C(=O)-N(C 1
.
4 aliphatic residue) 2 ; in which "mono- or polysubstituted" with respect to "aryl" and a "heteroaryl" relates, with respect to the corresponding residues, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group O0 'N \O 0 20 consisting of F, Cl, Br, I, NO 2 , NH 2 , kO, , 1>, ?3, an NH(C 1
.
4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , an NH-C(=O)-C 1
.
4 aliphatic residue, an NH-S(=0) 2
-C
1
.
4 aliphatic residue, OH, OCF 3 , a O-C 1
.
4 -aliphatic residue, a O-C(=O)-C 1
.
4 -aliphatic residue, SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, S(=0) 2 0H, a S(=0) 2
-C
1
.
4 -aliphatic residue, a S(=0) 2 -0-C 1
.
4 -aliphatic residue, a S(=0) 2
-NH-C
1
.
4 -aliphatic residue, CN, CF 3 , C(=O)H, 25 C(=O)OH, a C 1
.
4 -aliphatic residue, a C(=O)-C 1
.
4 -aliphatic residue, a C(=0)-0-C1.4 aliphatic residue, a C 3
.
6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, aryl, heteroaryl, C(=O)-NH 2 , a C(=O)-NH(C 1
.
4 aliphatic residue), and a
C(=O)-N(C
1
.
4 aliphatic residue) 2 ; in the form of the free compounds, the racemate, the enantiomers, diastereomers, 30 mixtures of the enantiomers or diastereomers in any mixing ratio, or of an individual enantiomer or diastereomer, or in the form of the salts of physiologically acceptable acids or bases 3f A second aspect of the invention provides for a pharmaceutical composition comprising at least one compound according to the first aspect of the invention in the form of the free compounds; the racemate; the enantiomers, diastereomers, mixtures of the enantiomers or diastereomers in any mixing ratio or of an individual enantiomer or diastereomer; or in 5 the form of the salts of physiologically acceptable acids or bases, and optionally at least one pharmaceutically acceptable auxiliary and/or optionally at least one further active ingredient. A third aspect of the invention provides for the compound according to the first aspect of the invention for use in the treatment and/or prophylaxis of disorders and/or diseases 10 which are mediated, at least in part, by KCNQ2/3 K+ channels, preferably for use in the treatment and/or prophylaxis of disorders and/or diseases selected from the group consisting of consisting of pain, preferably pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, 15 migraine, cognitive diseases and dystonia-associated dyskinesias. A fourth aspect of the invention provides for the use of a compound according to the first aspect of the invention for the manufacture of a medicament for the treatment and/or prophylaxis of disorders and/or diseases which are mediated, at least in part, by KCNQ2/3 K+ channels. 20 A fifth aspect of the invention provides for a method of treatment and/or prophylaxis of disorders and/or diseases, which are mediated, at least in part, by KCNQ2/3 K+ channels, in a mammal, which comprises administering an effective amount of at least one compound according to the first aspect of the invention, or the pharmaceutical composition of the second aspect of the invention, to the mammal. 25 Description The present invention therefore relates to a substituted compound of general formula (1), NJ N R 6 3g wherein R represents a C1imoaliphatic residue, unsubstituted or mono- or polysubstituted; a
C
3
.
1 o-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case 5 optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C1 8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; R 2 represents F; Cl; Br; I; CN; CF 3 ; C(=O)H; NO 2 ; OCF 3 ; SCF 3 ; a C 1 4 -aliphatic residue, a
C(=O)-C
1 4 aliphatic residue, a C(=O)-O-C 1
.
4 aliphatic residue, a C(=O)-NH-C 1 4 aliphatic residue, a C(=O)-N(C 1 4 aliphatic residue) 2 , wherein the C 14 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted; a O-C 1 4 -aliphatic residue, a O-C(=O)-C 14 -aliphatic residue, a S-C 1 4 -aliphatic residue, a S(=O) 2
-C
1 4 aliphatic residue, a S(=O) 2 -0-C 1
.
4 -aliphatic residue, wherein the C 1 4 aliphatic residue may in each case be unsubstituted or mono- or polysubstituted; a C 3 -a-cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a
C
1 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted;
R
3 represents H; F; CI; Br; I; CN; CF 3 ; SCF 3 ; NO 2 ; OCF 3 ; a C 1
.
4 -aliphatic residue, a
O-C
1 4 -aliphatic residue, a S-C 1 4 -aliphatic residue, wherein the C 14 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted; a C 3 -6 cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted;
R
4 represents a C,.
1 o-aliphatic residue, unsubstituted or mono- or polysubstituted; a C 3
.
10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1
-
8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged, preferably in each case bridged, via a C 1 _ aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 4 denotes a 3 to 10 membered heterocycloaliphatic residue or a heteroaryl, the 3 to 10 membered heterocycloaliphatic residue or the heteroaryl is linked via a carbon atom;
R
5 denotes H or a C 1 10 -aliphatic residue, preferably a C 1 4 -aliphatic residue, unsubstituted or mono- or polysubstituted; or
R
4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted, which may optionally be condensed with aryl or heteroaryl, preferably selected from the group consisting of phenyl, pyridyl and thienyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted; R represents a C 2
-
1 0 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C 3
-
10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1
.
8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 6 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or denotes S-R 7 , O-R" or N(R9R'4), wherein
R
7 and R" in each case represent a C 1
.
10 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C 3
-
1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono or polysubstituted and in each case optionally bridged via a C1.3 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 7 or R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom,
R
9 represents a C 1
.
1 0 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C 3 -1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C1.8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 9 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom;
R'
0 denotes H or a C1.
1 0 -aliphatic residue, preferably a C1.
4 -aliphatic residue, unsubstituted or mono- or polysubstituted; or
R
9 and R 1 0 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted; which may optionally be condensed with aryl or heteroaryl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted; in which an "aliphatic group" and an "aliphatic residue" can in each case be branched or unbranched, saturated or unsaturated, in which a "cycloaliphatic residue" and a "heterocycloaliphatic residue" can in each case be saturated or unsaturated, in which "mono- or polysubstituted" with respect to an "aliphatic group" and an "aliphatic residue" relates, with respect to the corresponding residues or groups, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(CjA aliphatic residue), an
N(C
1 .4 aliphatic residue) 2 , a NH-C(=O)-C 1 .4 aliphatic residue, a NH-S(=0) 2
-C
1
.
4 aliphatic residue, =0, OH, OCF 3 , a O-C 1 4-aliphatic residue, a O-C(=O)-C1.4-aliphatic residue, SH,
SCF
3 , a S-C 1
.
4 -aliphatic residue, S(=0) 2 0H, a S(=0) 2
-C
1 .4-aliphatic residue, a S(=0) 2 -0-C 1 .4 aliphatic residue, a S(=0) 2
-NH-C
1 4-aliphatic residue, CN, CF 3 , CHO, COOH, a C 1 4-aliphatic residue, a C(=O)-C 1 4-aliphatic residue, a C(=O)-O-Cl4-aliphatic residue, a C 3 _6-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=O)-NH 2 , a C(=O)-NH(C 1 4 aliphatic residue), and a C(=O)-N(C 4 aliphatic residue) 2 ; in which "mono- or polysubstituted" with respect to a "cycloaliphatic residue" and a "heterocycloaliphatic residue" relates, with respect to the corresponding residues, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C4 aliphatic residue) 2 , a NH-C(=O)-C 4 aliphatic residue, a NH S(=0) 2
-C
1 4 aliphatic residue, =O, OH, OCF 3 , a O-C-aliphatic residue, a O-C(=O)-C aliphatic residue, SH, SCF 3 , a S-C 4 -aliphatic residue, S(=O) 2 OH, a S(=0) 2 -C-aliphatic residue, a S(=O) 2 -O-C-aliphatic residue, a S(=O) 2 -NH-C-aliphatic residue, CN, CF 3 , CHO, COOH, a C-aliphatic residue, a C(=O)-Cl-aliphatic residue, a C(=O)-O-C aliphatic residue, a C 3
-
6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=O)-NH 2 , a C(=O)-NH(C 1 .4 aliphatic residue), and a C(=O)-N(C 1 .4 aliphatic residue) 2 ; in which "mono- or polysubstituted" with respect to "aryl" and a "heteroaryl" relates, with respect to the corresponding residues, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , Lo> /'o , , , an NH(C 1
.
4 aliphatic residue), an N(C14 aliphatic residue) 2 , an NH-C(=O)-C 1 .4 aliphatic residue, an NH-S(=O) 2
-C
4 aliphatic residue, OH, OCF 3 , a O-C 4 -aliphatic residue, a O-C(=O)-Cl-aliphatic residue, SH, SCF 3 , a
S-C
1 .4-aliphatic residue, S(=O) 2 OH, a S(=0) 2 -C-aliphatic residue, a S(=O) 2 -O-C-aliphatic residue, a S(=O) 2 -NH-C-aliphatic residue, CN, CF 3 , C(=O)H, C(=O)OH, a C 1 -aliphatic residue, a C(=O)-C-aliphatic residue, a C(=O)-O-Cw-aliphatic residue, a C 6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, aryl, heteroaryl, C(=0)-NH 2 , a C(=O)-NH(C4 aliphatic residue), and a C(=O)-N(C 1 .4 aliphatic residue) 2 ; with the exception of the following compounds * N-butyl-4-methyl-2,6-bis(methylamino)nicotinamide and * N-butyl-2,6-bis(butylamino)-4-methylnicotinamide, in the form of the free compounds, the racemate, the enantiomers, diastereomers, mixtures of the enantiomers or diastereomers in any mixing ratio, or of an individual enantiomer or diastereomer, or in the form of the salts of physiologically acceptable acids or bases, or in the form of the solvates, in particular hydrates. The terms "C 1
-
1 0 -aliphatic residue", "C 2
-
1 0 -aliphatic residue", "C 1 4 -- aliphatic residue", "C 1 -6 aliphatic residue" and "C 1
-
4 -aliphatic residue" and "C 1
-
2 -aliphatic residue" comprise in the sense of this invention acyclic saturated or unsaturated aliphatic hydrocarbon residues, which can be branched or unbranched and also unsubstituted or mono- or polysubstituted, containing 1 to 10, or 2 to 10, or 1 to 8, or 1 to 6, or 1 to 4 or 1 to 2 carbon atoms, respectively, i.e. C1-10 alkanyls, C 2
-
1 0 alkenyls and C2-10 alkynyls as well as C 2
-
10 alkanyls as well as C1-8 alkanyls, C2-8 alkenyls and C2-8 alkynyls as well as C1.e alkanyls, C 2 -6 alkenyls and
C
2 -6 alkynyls as well as C 14 alkanyls, C 2 -4 alkenyls and C 2
-
4 alkynyls, as well as C1- 2 alkanyls,
C
2 -alkenyls and C 2 alkynyls, respectively. In this case, alkenyls comprise at least one C-C double bond (a C=C-bond) and alkynyls comprise at least one C-C triple bond (a C=C-bond). Preferably, aliphatic residues are selected from the group consisting of alkanyl (alkyl) and alkenyl residues, more preferably are alkanyl residues. Preferred C1.10 alkanyl residues are selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.
butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl and n decyl. Preferred C2-10 alkanyl residues are selected from the group consisting of ethyl, n propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl. Preferred C1-8 alkanyl residues are selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl and n-octyl. Preferred C1.6 alkanyl residues are selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl and n-hexyl. Preferred C1A alkanyl residues are selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n butyl, isobutyl, sec.-butyl and tert.-butyl. Preferred C 2
-
10 alkenyl residues are selected from the group consisting of ethenyl (vinyl), propenyl (-CH 2
CH=CH
2 , -CH=CH-CH 3 ,
-C(=CH
2
)-CH
3 ), butenyl, pentenyl, hexenyl heptenyl, octenyl, nonenyl and decenyl. Preferred
C
2 -8 alkenyl residues are selected from the group consisting of ethenyl (vinyl), propenyl
(-CH
2
CH=CH
2 , -CH=CH-CH 3 , -C(=CH 2
)-CH
3 ), butenyl, pentenyl, hexenyl heptenyl and octenyl. Preferred C2- alkenyl residues are selected from the group consisting of ethenyl (vinyl), propenyl (-CH 2
CH=CH
2 , -CH=CH-CH 3 , -C(=CH 2
)-CH
3 ), butenyl, pentenyl and hexenyl. Preferred C24 alkenyl residues are selected from the group consisting of ethenyl (vinyl), propenyl (-CH 2
CH=CH
2 , -CH=CH-CH 3 , -C(=CH 2
)-CH
3 ) and butenyl. Preferred C2-10 alkynyl residues are selected from the group consisting of ethynyl, propynyl (-CH 2 -CECH,
-C=C-CH
3 ), butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl and decynyl. Preferred C2-8 alkynyl residues are selected from the group consisting of ethynyl, propynyl (-CH 2 -C=CH,
-CEC-CH
3 ), butynyl, pentynyl, hexynyl, heptynyl and octynyl. Preferred C2- alkynyl residues are selected from the group consisting of ethynyl, propynyl (-CH 2 -C2CH, -CEC-CH 3 ), butynyl, pentynyl and hexynyl Preferred C 2
.
4 alkynyl residues are selected from the group consisting of ethynyl, propynyl (-CH 2 -CHCH, -CC-CH 3 ) and butynyl. The terms "C3-6-cycloaliphatic residue" and "C3.
1 0 .cycloaliphatic residue" mean for the purposes of this invention cyclic aliphatic hydrocarbons containing 3, 4, 5 or 6 carbon atoms and 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, respectively, wherein the hydrocarbons in each case can be saturated or unsaturated (but not aromatic), unsubstituted or mono- or polysubstituted. The cycloaliphatic residues can be bound to the respective superordinate general structure via any desired and possible ring member of the cycloaliphatic residue. The cycloaliphatic residues can also be condensed with further saturated, (partially) unsaturated, (hetero)cyclic, aromatic or heteroaromatic ring systems, i.e. with cycloaliphatic, heterocycloaliphatic, aryl or heteroaryl residues which can in turn be unsubstituted or mono or polysubstituted. C,.
10 cycloaliphatic residue can furthermore be singly or multiply bridged such as, for example, in the case of adamantyl, bicyclo[2.2.1]heptyl or bicyclo[2.2.2]octyl. Preferred C3- 1 0 cycloaliphatic residues are selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, adamantyl, , , , , cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl. Preferred C. cycloaliphatic residues are selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentenyl and cyclohexenyl. The terms "3-6-membered heterocycloaliphatic residue", "4-7-membered heterocycloaliphatic residue" and "3-10-membered heterocycloaliphatic residue" mean for the purposes of this invention heterocycloaliphatic saturated or unsaturated (but not aromatic) residues having 3 6, i.e. 3, 4, 5 or 6 ring members, and 4-7, i.e. 4, 5, 6 or 7 ring members, and 3-10, i.e. 3, 4, 5, 6, 7, 8, 9 or 10 ring members, respectively, in which in each case at least one, if appropriate also two or three carbon atoms are replaced by a heteroatom or a heteroatom group each selected independently of one another from the group consisting of 0, S, S(=0) 2 , N, NH and
N(C
1 . alkyl), preferably N(CH 3 ), wherein the ring members can be unsubstituted or mono- or polysubstituted. The heterocycloaliphatic residue can be bound to the superordinate general structure via any desired and possible ring member of the heterocycloaliphatic residue if not indicated otherwise. The heterocycloaliphatic residues can also be condensed with further saturated, (partially) unsaturated (hetero)cycloaliphatic or aromatic or heteroaromatic ring systems, i.e. with cycloaliphatic, heterocycloaliphatic, aryl or heteroaryl residues, which can in turn be unsubstituted or mono- or polysubstituted. The term "condensed" also optionally includes spirocycles, i.e. an at least bicyclic ring system, wherein the heterocycloaliphatic residue is connected through just one (spiro)atom with a further saturated, (partially) unsaturated (hetero)cycloaliphatic or aromatic or heteroaromatic ring system. Example of such spirocycles are e.g. and . The heterocycloaliphatic residues can furthermore optionally be singly or multiply bridged with a C- or C 2 -aliphatic group such as, for example, in the case of -,-NcO ,N 7 N O - -N O -- NSO -9- NZO , and . Preferred heterocycloaliphatic residues are selected from the group consisting of azetidinyl, aziridinyl, azepanyl, azocanyl, diazepanyl, dithiolanyl, dihydroquinolinyl, dihydropyrrolyl, dioxanyl, dioxolanyl, dioxepanyl, dihydroindenyl, dihydropyridinyl, dihydrofuranyl, dihydroisoquinolinyl, dihydroindolinyl, dihydroisoindolyl, imidazolidinyl, isoxazolidinyl, morpholinyl, oxiranyl, oxetanyl, oxazepanyl, pyrrolidinyl, piperazinyl, 4-methylpiperazinyl, piperidinyl, pyrazolidinyl, pyranyl, tetrahydropyrrolyl, tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, tetrahydroindolinyl, tetrahydrofuranyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrahydropyridoindolyl, tetrahydronaphthyl, tetrahydrocarbolinyl, tetrahydroisoxazolo pyridinyl, thiazolidinyl, tetrahydroimidazo[1,2-a]pyrazinyl, octahydropyrrolo[1,2-a]pyrazinyl and thiomorpholinyl. More preferred heterocycloaliphatic residues are pyrrolidinyl, piperidinyl, oxazepanyl, azetidinyl, morpholinyl, piperazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, dihydroindolinyl, and dihydroisoindolyl. Most preferred heterocycloaliphatic residues are pyrrolidinyl, piperidinyl, oxazepanyl, azetidinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, dihydroindolinyl, and dihydroisoindolyl. The term "aryl" means for the purpose of this invention aromatic hydrocarbons having 6 to 14 ring members, including phenyls and naphthyls. Each aryl residue can be unsubstituted or mono- or polysubstituted, wherein the aryl substituents can be the same or different and in any desired and possible position of the aryl. The aryl can be bound to the superordinate general structure via any desired and possible ring member of the aryl residue. The aryl residues can also be condensed with further saturated, (partially) unsaturated, (hetero)cycloaliphatic, aromatic or heteroaromatic ring systems, i.e. with a cycloaliphatic, heterocycloaliphatic, aryl or heteroaryl residue, which can in turn be unsubstituted or mono or polysubstituted. Examples of condensed aryl residues are benzodioxolanyl and benzodioxanyl. Preferably, aryl is selected from the group consisting of phenyl, 1-naphthyl, 2naphthyl, fluorenyl and anthracenyl, each of which can be respectively unsubstituted or mono- or polysubstituted. A particularly preferred aryl is phenyl, unsubstituted or mono- or polysubstituted. The term "heteroaryl" for the purpose of this invention represents a 5 or 6-membered cyclic aromatic residue containing at least 1, if appropriate also 2, 3, 4 or 5 heteroatoms, wherein the heteroatoms are each selected independently of one another from the group S, N and 0 and the heteroaryl residue can be unsubstituted or mono- or polysubstituted; in the case of substitution on the heteroaryl, the substituents can be the same or different and be in any desired and possible position of the heteroaryl. The binding to the superordinate general structure can be carried out via any desired and possible ring member of the heteroaryl residue. The heteroaryl can also be part of a bi- or polycyclic system having up to 14 ring members, wherein the ring system can be formed with further saturated, (partially) unsaturated, (hetero)cycloaliphatic or aromatic or heteroaromatic rings, i.e. with a cycloaliphatic, heterocycloaliphatic, aryl or heteroaryl residue, which can in turn be unsubstituted or mono- or polysubstituted. It is preferable for the heteroaryl residue to be selected from the group consisting of benzofuranyl, benzoimidazolyl, benzothienyl, benzothiadiazolyl, benzothiazolyl, benzotriazolyl, benzooxazolyl, benzooxadiazolyl, quinazolinyl, quinoxalinyl, carbazolyl, quinolinyl, dibenzofuranyl, dibenzothienyl, furyl (furanyl), imidazolyl, imidazothiazolyl, indazolyl, indolizinyl, indolyl, isoquinolinyl, isoxazoyl, isothiazolyl, indolyl, naphthyridinyl, oxazolyl, oxadiazolyl, phenazinyl, phenothiazinyl, phthalazinyl, pyrazolyl, pyridyl (2-pyridyl, 3-pyridyl, 4-pyridyl), pyrrolyl, pyridazinyl, pyrimidinyl, pyrazinyl, purinyl, phenazinyl, thienyl (thiophenyl), triazolyl, tetrazolyl, thiazolyl, thiadiazolyl and triazinyl. Furyl, pyridyl, oxazolyl, thiazolyl and thienyl are particularly preferred. The terms "aryl, heteroaryl, a heterocycloaliphatic residue, or a cycloaliphatic residue bridged via a C 1 4 -aliphatic group or via a C 1 .3-aliphatic group" mean for the purpose of the invention that the expressions "aryl, heteroaryl, heterocycloaliphatic residue and cycloaliphatic residue" have the above-defined meanings and are bound to the respective superordinate general structure via a Cl-4-aliphatic group or via a C 1 -- aliphatic group, respectively. The C1 aliphatic group and the C 1 .s-aliphatic group can in all cases be branched or unbranched, unsubstituted or mono- or polysubstituted. The C 1 _ aliphatic group can in all cases be furthermore saturated or unsaturated, i.e. can be a C 1
_
4 alkylene group, a C2.4 alkenylene group or a C2.4 alkynylene group. The same applies to a C 1 .s-aliphatic group, i.e. a C1.4 aliphatic group can in all cases be furthermore saturated or unsaturated, i.e. can be a C 1 .8 alkylene group, a C2-8 alkenylene group or a C2-8 alkynylene group. Preferably, the C 1 -4 aliphatic group is a C 1 _4 alkylene group or a C2.4 alkenylene group, more preferably a C1 alkylene group. Preferably, the C 18 -aliphatic group is a C 1 alkylene group or a C2-, alkenylene group, more preferably a C 1 - alkylene group. Preferred C 1 4 alkylene groups are selected from the group consisting of -CH 2 -, -CH 2
-CH
2 -, -CH(CH 3 )-, -CH 2
-CH
2
-CH
2 -,
-CH(CH
3
)-CH
2 -, -CH(CH 2
CH
3 )-, -CH 2
-(CH
2
)
2
-CH
2 -, -CH(CH 3
)-CH
2
-CH
2 -, -CH 2
-CH(CH
3
)-CH
2 -,
-CH(CH
3
)-CH(CH
3 )-, -CH(CH 2
CH
3
)-CH
2 -, -C(CH 3
)
2
-CH
2 -, -CH(CH 2
CH
2
CH
3 )- and
-C(CH
3
)(CH
2
CH
3 )-. Preferred C 2 .4 alkenylene groups are selected from the group consisting of -CH=CH-, -CH=CH-CH 2 -, -C(CH 3
)=CH
2 -, -CH=CH-CH 2
-CH
2 -, -CH 2
-CH=CH-CH
2 -, -CH=CH-CH=CH-, -C(CH 3
)=CH-CH
2 -, -CH=C(CH 3
)-CH
2 -, -C(CH 3
)=C(CH
3 )- and
-C(CH
2
CH
3 )=CH-. Preferred C 2 4 alkynylene groups are selected from the group consisting of -CEC-, -CEC-CH 2 -, -CEC-CH 2
-CH
2 -, -C=C-CH(CH 3 )-, -CH 2
-C=C-CH
2 - and -CEC-CEC-. Preferred C 1 - alkylene groups are selected from the group consisting of -CH 2 -, -CH 2
-CH
2 -,
-CH(CH
3 )-, -CH 2
-CH
2
-CH
2 -, -CH(CH 3
)-CH
2 -, -CH(CH 2
CH
3 )-, -CH 2
-(CH
2
)
2
-CH
2 -, -CH(CH 3
)
CH
2
-CH
2 -, -CH 2
-CH(CH
3
)-CH
2 -, -CH(CH 3
)-CH(CH
3 )-, -CH(CH 2
CH
3
)-CH
2 -, -C(CH 3
)
2
-CH
2 -,
-CH(CH
2
CH
2
CH
3 )-, -C(CH 3
)(CH
2
CH
3 )-, -CH 2
-(CH
2
)
3
-CH
2 -, -CH(CH 3
)-CH
2
-CH
2
-CH
2 -, -CH 2 CH(CH 3
)-CH
2
-CH
2 -, -CH(CH 3
)-CH
2
-CH(CH
3 )-, -CH(CH 3
)-CH(CH
3
)-CH
2 -, -C(CH 3
)
2
-CH
2
-CH
2 -, -CH2-C(CH 3 )2-CH2-, -CH(CH 2
CH
3 )-CH2-CH 2 -, -CH 2
-CH(CH
2
CH
3
)-CH
2 -, -C(CH 3
)
2
-CH(CH
3 )-,
-CH(CH
2
CH
3
)-CH(CH
3 )-, -C(CH 3
)(CH
2
CH
3
)-CH
2 -, -CH(CH 2
CH
2
CH
3
)-CH
2 -, -C(CH 2
CH
2
CH
3
)
CH
2 -, -CH(CH 2
CH
2
CH
2
CH
3 )-, -C(CH 3
)(CH
2
CH
2
CH
3 )-, -C(CH 2
CH
3
)
2 - and -CH 2
-(CH
2
)
4
-CH
2 -. Preferred C2-8 alkenylene groups are selected from the group consisting of -CH=CH-,
-CH=CH-CH
2 -, -C(CH 3
)=CH
2 -, -CH=CH-CH 2
-CH
2 -, -CH 2
-CH=CH-CH
2 -, -CH=CH-CH=CH-,
-C(CH
3
)=CH-CH
2 -, -CH=C(CH 3
)-CH
2 -, -C(CH 3
)=C(CH
3 )-, -C(CH 2
CH
3 )=CH-, -CH=CH-CH 2 CH 2
-CH
2 -, -CH 2
-CH=CH
2
-CH
2
-CH
2 -, -CH=CH=CH-CH 2
-CH
2 - and -CH=CH 2
-CH-CH=CH
2 -. Preferred C 2 -8 alkynylene groups are selected from the group consisting of -C=C-, -CEC
CH
2 -, -C=C-CH 2
-CH
2 -, -CEC-CH(CH 3 )-, -CH 2
-C=C-CH
2 -, -C=C-C=C-, -C=C-C(CH 3
)
2 -, -C=C
CH
2
-CH
2
-CH
2 -, -CH 2
-C=C-CH
2
-CH
2 -, -C=C-CEC-CH 2 - and -C=C-CH 2 -C=C. In relation to "aliphatic residue" and "aliphatic group" the term "mono- or polysubstituted" refers in the sense of this invention, with respect to the corresponding residues or groups, to the single substitution or multiple substitution, e.g. disubstitution, trisubstitution and tetrasubstitution, of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , a NH-C(=O)-C 1 .4 aliphatic residue, a NH S(=0) 2
-C
1 .4 aliphatic residue, =0, OH, OCF 3 , a O-C 1 4-aliphatic residue, a 0-C(=0)-C1.4 aliphatic residue, SH, SCF 3 , a S-C 1 .4-aliphatic residue, S(=0) 2 OH, a S(=0) 2 -C14-aliphatic residue, a S(=0) 2 -0-C 1 .4-aliphatic residue, a S(=0) 2
-NH-C
1 4-aliphatic residue, CN, CF 3 , CHO, COOH, a C 1 4-aliphatic residue, a C(=O)-C4-aliphatic residue, a C(=O)-O-C 1 .4 aliphatic residue, a C3-e-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=O)-NH 2 , a C(=O)-NH(C 1 4 aliphatic residue), and a C(=0)-N(C 4 aliphatic residue) 2 . The term "polysubstituted" with respect to polysubstituted residues and groups includes the polysubstitution of these residues and groups either on different or on the same atoms, for example trisubstituted on the same carbon atom, as in the case of CF 3 or CH 2
CF
3 , or at various points, as in the case of CH(OH)-CH=CH-CHCl 2 . A substituent can if appropriate for its part in turn be mono- or polysubstituted. The multiple substitution can be carried out using the same or using different substituents. In relation to "cycloaliphatic residue" and "heterocycloaliphatic residue" the term "mono- or polysubstituted" refers in the sense of this invention, with respect to the corresponding residues, to the single substitution or multiple substitution, e.g. disubstitution, trisubstitution and tetrasubstitution, of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an
NH(C
1 4 aliphatic residue), an N(C 1 _ aliphatic residue) 2 , a NH-C(=O)-C 1 - aliphatic residue, a NH-S(=0) 2
-C
1 - aliphatic residue, =0, OH, OCF 3 , a O-C 1 -- aliphatic residue, a O-C(=O)-Cl aliphatic residue, SH, SCF 3 , a S-C 1 -- aliphatic residue, S(=0) 2 OH, a S(=O) 2 -C--aliphatic residue, a S(=O) 2
O-C
1 4-aliphatic residue, a S(=O) 2 -NH-C,--aliphatic residue, CN, CF 3 , CHO, COOH, a C 1 -- aliphatic residue, a C(=O)-C--aliphatic residue, a C(=O)-O-Cl aliphatic residue, a C3_6-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=O)-NH 2 , a C(=O)-NH(C 1 - aliphatic residue), and a C(=O)-N(C 1 - aliphatic residue) 2 . The term "polysubstituted" with respect to polysubstituted residues and groups includes the polysubstitution of these residues and groups either on different or on the same atoms, for example disubstituted on the same carbon atom, as in the case of 1,1 difluorocyclohexyl, or at various points, as in the case of 1-chloro-3-fluorocyclohexyl. A substituent can if appropriate for its part in turn be mono- or polysubstituted. The multiple substitution can be carried out using the same or using different substituents. Preferred substituents of "aliphatic residue" and "aliphatic group" are selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , =0, OH, OCF 3 , a O-C 1 -- aliphatic residue, SH, SCF 3 , a S-C-aliphatic residue, a S(=0) 2 -C-aliphatic residue, a S(=O) 2
-NH-C
4 -aliphatic residue, CN, CF 3 , a C 1 w 4 -aliphatic residue, a C(=0)-C 4 -aliphatic residue, a C(=O)-O-C-aliphatic residue, CONH 2 , a C(=0)
NH(C
1 _ aliphatic residue), and a C(=O)-N(C 4 aliphatic residue) 2 . Preferred substituents of "cycloaliphatic residue" and "heterocycloaliphatic residue" are selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 _ aliphatic residue), an
N(C
1 _ aliphatic residue) 2 , =0, OH, OCF 3 , a O-Cw- 4 -aliphatic residue, SH, SCF 3 , a S-C 1 w aliphatic residue, a S(=0) 2 -C-aliphatic residue, a S(=O) 2 -NH-Cw_ 4 -aliphatic residue, CN,
CF
3 , a C 1 4 -aliphatic residue, a C(=O)-C 1 4 -aliphatic residue, a C(=O)-O-C 1 4 -aliphatic residue,
CONH
2 , a C(=O)-NH(C 1 4 aliphatic residue), and a C(=O)-N(C 1 4 aliphatic residue) 2 . In relation to "aryl" and "heteroaryl" the term "mono- or polysubstituted" refers in the sense of this invention to the single substitution or multiple substitution, e.g. disubstitution, trisubstitution and tetrasubstitution, of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, C1, Br, I, ! -N \O NO
NO
2 , NH 2 , 'O ,' 1 , i , an NH(C 1 . aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , an NH-C(=O)-C 1 4 aliphatic residue, an NH-S(=0) 2
-C
1 .4aliphatic residue, OH, OCF 3 , a O-C 1 4 aliphatic residue, a O-C(=O)-C 1 a-aliphatic residue, SH, SCF 3 , a S-C 1 4-aliphatic residue,
S(=O)
2 OH, a S(=0) 2 -Cl4-aliphatic residue, a S(=0) 2
-O-C
1 4-aliphatic residue, a S(=0) 2
-NH
C
1 4-aliphatic residue, CN, CF 3 , C(=O)H, C(=0)OH, a C 1 4-aliphatic residue, a C(=O)-C-4 aliphatic residue, a C(=O)-O-C 1 4-aliphatic residue, a C3.e-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, aryl, heteroaryl, C(=O)-NH 2 , a C(=O)-NH(C 1 . 4 aliphatic residue), and a C(=O)-N(Cl4 aliphatic residue) 2 on one or if appropriate different atoms, wherein a substituent can if appropriate for its part in turn be mono- or polysubstituted. The multiple substitution is carried out employing the same or using different substituents. Preferred substituents of "aryl" and "heteroaryl" are selected from the group consisting of F, q o !o oN Cl, Br, I, NO 2 , NH 2 , 'o, ' , , 1, an NH(C 1 . aliphatic residue), an N(C 1 4 aliphatic residue) 2 , an NH-C(=0)-Cl4 aliphatic residue, an NH-S(=0) 2
-C
1 .4 aliphatic residue, OH,
OCF
3 , a O-C 1 4-aliphatic residue, SH, SCF 3 , a S-C 1 .4-aliphatic residue, S(=0) 2 0H, a S(=0) 2 C14-aliphatic residue, a S(=O) 2 -NH-C4-aliphatic residue, CN, CF 3 , a C 1 4-aliphatic residue, a
C(=O)-C
14 -aliphatic residue, a C(=O)-O-C,4-aliphatic residue, a C3.6-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, CONH 2 , a C(=O)-NH(Cl4 aliphatic residue), a
C(=O)-N(C
1 4 aliphatic residue) 2 , aryl, preferably phenyl, or benzyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, CN, CF 3 , CH 3 , C 2
H
5 , iso-propyl, tert.-butyl, C(=O)-OH, C(=O)
CH
3 , C(=O)-C 2
H
5 , C(=0)-O-CH 3 and C(=O)-O-C 2
H
5 , O-CH 3 , OCF 3 , O-CH 2 -OH, O-CH 2 -0
CH
3 , SH, S-CH 3 , SCF 3 , NO 2 , NH 2 , N(CH 3
)
2 , N(CH 3
)(C
2
H
5 ) and N(C 2
H
5
)
2 , heteroaryl, preferably pyridyl, thienyl, furyl, thiazolyl or oxazolyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, CN, CF 3 , CH 3 , C 2
H
5 , iso-propyl, tert.-butyl, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-
CH
3 and C(=O)-O-C 2
H
5 , O-CH 3 , OCF 3 , O-CH 2 -OH, O-CH 2
-O-CH
3 , SH, S-CH 3 , SCF 3 , NO 2 ,
NH
2 , N(CH 3
)
2 , N(CH 3
)(C
2
H
5 ) and N(C 2
H
5
)
2 . The compounds according to the invention are defined by substituents, for example by R 1 , R 2 and R 3 (1st generation substituents) which are for their part if appropriate substituted ( 2 nd generation substituents). Depending on the definition, these substituents of the substituents can for their part be resubstituted ( 3 rd generation substituents). If, for example, R 1 = a C 1
.
1 0 aliphatic residue (1** generation substituent), then the C 10 aliphatic residue can for its part be substituted, for example with a NH-CjA aliphatic residue ( 2 nd generation substituent). This produces the functional group R 1 = (Cl-lo aliphatic residue-NH-ClAaliphatic residue). The NH
C
1 4 aliphatic residue can then for its part be resubstituted, for example with Cl ( 3 rd generation substituent). Overall, this produces the functional group R1 = Co 10 aliphatic residue-NH-ClA aliphatic residue, wherein the C1- aliphatic residue of the NH-CA aliphatic residue is substituted by CI. However, in a preferred embodiment, the 3 rd generation substituents may not be resubstituted, i.e. there are then no 4 th generation substituents. In another preferred embodiment, the 2 nd generation substituents may not be resubstituted, i.e. there are then not even any 3 rd generation substituents. In other words, in this embodiment, in the case of general formula (I), for example, the functional groups for R 1 to
R
6 can each if appropriate be substituted; however, the respective substituents may then for their part not be resubstituted. In some cases, the compounds according to the invention are defined by substituents which are or carry an aryl or heteroaryl residue, respectively unsubstituted or mono- or polysubstituted, or which form together with the carbon atom(s) or heteroatom(s) connecting them, as the ring member or as the ring members, a ring, for example an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted. Both these aryl or heteroaryl residues and the (hetero)aromatic ring systems formed in this way can if appropriate be condensed with a cycloaliphatic, preferably a C 3
.
6 cycloaliphatic residue, or heterocycloaliphatic residue, preferably a 3 to 6 membered heterocycloaliphatic residue, or with aryl or heteroaryl, e.g. with a C3- cycloaliphatic residue such as cyclopentyl, or a 3 to 6 membered heterocycloaliphatic residue such as morpholinyl, or an aryl such as phenyl, or a heteroaryl such as pyridyl, wherein the cycloaliphatic or heterocycloaliphatic residues, aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted.
In some cases, the compounds according to the invention are defined by substituents which are or carry a cycloaliphatic residue or a heterocycloaliphatic residue, respectively, in each case unsubstituted or mono- or polysubstituted, or which form together with the carbon atom(s) or heteroatom(s) connecting them, as the ring member or as the ring members, a ring, for example a cycloaliphatic or a heterocycloaliphatic ring system. Both these cycloaliphatic or heterocycloaliphatic ring systems and the (hetero)cycloaliphatic ring systems formed in this manner can if appropriate be condensed with aryl or heteroaryl, preferably selected from the group consisting of phenyl, pyridyl and thienyl, or with a cycloaliphatic residue, preferably a C3.6 cycloaliphatic residue, or a heterocycloaliphatic residue, preferably a 3 to 6 membered heterocycloaliphatic residue, e.g. with an aryl such as phenyl, or a heteroaryl such as pyridyl, or a cycloaliphatic residue such as cyclohexyl, or a heterocycloaliphatic residue such as morpholinyl, wherein the aryl or heteroaryl residues or cycloaliphatic or heterocycloaliphatic residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted. Within the scope of the present invention, the symbol used in the formulae denotes a link of a corresponding residue to the respective superordinate general structure. If a residue occurs multiply within a molecule, then this residue can have respectively different meanings for various substituents: if, for example, both R 2 and R 3 denote a 3 to 6 membered heterocycloaliphatic residue, then the 3 to 6 membered heterocycloaliphatic residue can e.g. represent morpholinyl for R 2 and can represent piperazinyl for R 3 . The term "salts of physiologically acceptable acids" refers in the sense of this invention to salts of the respective active ingredient with inorganic or organic acids which are physiologically acceptable - in particular when used in human beings and/or other mammals. Hydrochloride is particularly preferred. Examples of physiologically acceptable acids are: hydrochloric acid, hydrobromic acid, sulphuric acid, methanesulphonic acid, p toluenesulphonic acid, carbonic acid, formic acid, acetic acid, oxalic acid, succinic acid, tartaric acid, mandelic acid, fumaric acid, maleic acid, lactic acid, citric acid, glutamic acid, saccharic acid, monomethylsebacic acid, 5-oxoproline, hexane-1-sulphonic acid, nicotinic acid, 2, 3 or 4-aminobenzoic acid, 2,4,6-trimethylbenzoic acid, a-lipoic acid, acetyl glycine, hippuric acid, phosphoric acid, aspartic acid. Citric acid and hydrochloric acid are particularly preferred.
The term "salts of physiologically acceptable bases" refers in the sense of this invention to salts of the respective compound according to the invention - as an anion, e.g. upon deprotonation of a suitable functional group - with at least one cation or base - preferably with at least one inorganic cation - which are physiologically acceptable - in particular when used in human beings and/or other mammals. Particularly preferred are the salts of the alkali and alkaline earth metals, in particular (mono-) or (di)sodium, (mono-) or (di)potassium, magnesium or calcium salts, but also ammonium salts [NH.R 4 ._]*, in which x = 0, 1, 2, 3 or 4 and R represents a branched or unbranched C 1 .4 aliphatic residue. Particularly preferred is also a compound according to general formula (I), wherein the particular radicals R 1
-R
6 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof with the additional exception of the following compounds * N-ethyl-2,6-bis(butylamino)-4-methylnicotinamide, * N-(2-methoxyethyl)-2,6-bis(2-methoxyethylamino)-4-methylnicotinamide and * N-butyl-2,6-bis(butylamino)-4-propylnicotinamide. In another particularly preferred embodiment of the compound according to general formula (I) radicals R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof, with the proviso that R 1 comprises at least 4 atoms selected from the group consisting of carbon and heteroatoms, preferably at least 4 atoms selected from the group consisting of carbon atoms and heteroatoms selected from the group consisting of N, 0 and S. The present invention further relates to a substituted compound of general formula (I),
R
2 0
R
3 N R1 N N
R
6 R5 (w), wherein R1 represents a C 11 o-aliphatic residue, unsubstituted or mono- or polysubstituted; a C 3
.
10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1
.
8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C1.3 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; R2 represents F; Cl; Br; I; CN; CF 3 ; C(=O)H; NO 2 ; OCF 3 ; SCF 3 ; a C 1
.
4 -aliphatic residue, a
C(=O)-C
1 .4 aliphatic residue, a C(=O)-O-C1.4 aliphatic residue, a C(=0)-NH-Cl14 aliphatic residue, a C(=O)-N(C1A aliphatic residue) 2 , wherein the C1.4 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted; a O-C 1 4 -aliphatic residue, a O-C(=0)-C-aliphatic residue, a S-C 1 .- aliphatic residue, a S(=0)2-C1.
aliphatic residue, a S(=0) 2 -0-C 1 .- aliphatic residue, wherein the C1.4 aliphatic residue may in each case be unsubstituted or mono- or polysubstituted; a C3-6-cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a
C
1 .4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted;
R
3 represents H; F; Cl; Br; 1; CN; CF 3 ; SCF 3 ; NO 2 ; OCF 3 ; a C 1 .- aliphatic residue, a
O-C
1 .- aliphatic residue, a S-C 1 4 -aliphatic residue, wherein the C1.4 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted; a C3 cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C1.4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted;
R
4 represents a C 1
.
10 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C3-10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C1.8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged, preferably in each case bridged, via a C1-8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 4 denotes a 3 to 10 membered heterocycloaliphatic residue or a heteroaryl, the 3 to 10 membered heterocycloaliphatic residue or the heteroaryl is linked via a carbon atom;
R
5 denotes H or a C 1
.
1 0 -aliphatic residue, preferably a C 1
.
4 -aliphatic residue, unsubstituted or mono- or polysubstituted; or
R
4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted, R represents a C 2 1 0 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C3- 10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 .8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 6 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or denotes S-R 7 , O-R 8 or N(R"R'"), wherein
R
7 and R8 in each case represent a C 1
.
1 0 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C3- 1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono or polysubstituted and in each case optionally bridged via a C 1 8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 7 or R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom,
R
9 represents a C 1 -1a)-aliphatic residue, unsubstituted or mono- or polysubstituted; a C 3 .a-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 _8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 9 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom;
R
10 denotes a C 1
.
10 -aliphatic residue, preferably a C 1 4 -aliphatic residue, unsubstituted or mono- or polysubstituted; or
R
9 and R 1 0 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted; in which an "aliphatic group" and an "aliphatic residue" can in each case be branched or unbranched, saturated or unsaturated, in which a "cycloaliphatic residue" and a "heterocycloaliphatic residue" can in each case be saturated or unsaturated, in which "mono- or polysubstituted" with respect to an "aliphatic group" and an "aliphatic residue" relates, with respect to the corresponding residues or groups, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 _ aliphatic residue), an
N(C
1 _ aliphatic residue) 2 , a NH-C(=O)-C 1 - aliphatic residue, a NH-S(=0) 2
-C
1 - aliphatic residue, =0, OH, OCF 3 , a O-ClA-aliphatic residue, a O-C(=O)-C 1 --aliphatic residue, SH,
SCF
3 , a S-C 1 4 -aliphatic residue, S(=0) 2 0H, a S(=0) 2
-C
1 -- aliphatic residue, a S(=0)2-0-C1 aliphatic residue, a S(=0) 2 -NH-C, -aliphatic residue, CN, CF 3 , CHO, COOH, a C 14 -aliphatic residue, a C(=O)-C--aliphatic residue, a C(=O)-O-C 1 -- aliphatic residue, a C3-e-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=0)-NH 2 , a C(=O)-NH(C 1 4 aliphatic residue), and a C(=O)-N(CA aliphatic residue) 2
;
in which "mono- or polysubstituted" with respect to a "cycloaliphatic residue" and a "heterocycloaliphatic residue" relates, with respect to the corresponding residues, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, CI, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , a NH-C(=O)-C 1 4 aliphatic residue, a NH S(=0) 2
-C
1 - aliphatic residue, =0, OH, OCF 3 , a O-C 1 -- aliphatic residue, a O-C(=O)-Cl aliphatic residue, SH, SCF 3 , a S-C 1 4 -aliphatic residue, S(=0) 2 OH, a S(=0) 2
-C
1 -- aliphatic residue, a S(=0) 2 -0-C--aliphatic residue, a S(=0) 2
-NH-C
1 -- aliphatic residue, CN, CF 3 , CHO, COOH, a C 1
.
4 -aliphatic residue, a C(=O)-C, 4 -aliphatic residue, a C(=O)-O-Cl aliphatic residue, a C3.
6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=0)-NH 2 , a C(=O)-NH(C- aliphatic residue), and a C(=O)-N(C 1 - aliphatic residue) 2 ; in which "mono- or polysubstituted" with respect to "aryl" and a "heteroaryl" relates, with respect to the corresponding residues, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , o, Vo", , an NH(C- aliphatic residue), an
N(C
1 - aliphatic residue) 2 , an NH-C(=O)-C 1 - aliphatic residue, an NH-S(=0) 2
-C
1 - aliphatic residue, OH, OCF 3 , a O-C 1 4 -aliphatic residue, a O-C(=O)-C 1 -- aliphatic residue, SH, SCF 3 , a
S-C
1 -- aliphatic residue, S(=0) 2 OH, a S(=0) 2 -C--aliphatic residue, a S(=0) 2 -0-C 1 -- aliphatic residue, a S(=0) 2 -NH-C--aliphatic residue, CN, CF 3 , C(=O)H, C(=O)OH, a C 1 -- aliphatic residue, a C(=O)-C 1 --aliphatic residue, a C(=O)-O-C--aliphatic residue, a C3-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, aryl, heteroaryl, C(=0)-NH 2 , a C(=O)-NH(C- aliphatic residue), and a C(=O)-N(C 1 - aliphatic residue) 2 ; in the form of the free compounds, the racemate, the enantiomers, diastereomers, mixtures of the enantiomers or diastereomers in any mixing ratio, or of an individual enantiomer or diastereomer, or in the form of the salts of physiologically acceptable acids or bases, or in the form of the solvates, in particular hydrates. In another preferred embodiment of the compound according to formula (1), preferred substituents of "cycloaliphatic residue" and "heterocycloaliphatic residue" are selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 - aliphatic residue), an N(C 1 aliphatic residue) 2 , a NH-C(=O)-C- aliphatic residue, a NH-S(=0) 2 -Ci4aliphatic residue, =0, OH, OCF 3 , a O-C 1 -- aliphatic residue, a O-C(=O)-C 1 -- aliphatic residue, SH, SCF 3 , a S-Cjaliphatic residue, S(=O) 2 0H, a S(=0) 2
-C
1
.
4 -aliphatic residue, a S(=0) 2 -0-C 1 4 -aliphatic residue, a S(=0) 2
-NH-C
1 4 -aliphatic residue, CN, CF 3 , CHO, COOH, a~C 1 4 -aliphatic residue,
CH
2 OH, CH 2
-OCH
3 , C 2
H
4 -OH, C 2
H
4
-OCH
3
CH
2
-CF
3 , a C(=O)-Cl4-aliphatic residue, a C(=O)
O-C
1 _4-aliphatic residue, a C3-6-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=O)-NH 2 , a C(=O)-NH(Cl4 aliphatic residue), and a C(=O)-N(Cl4 aliphatic residue) 2 . In another preferred embodiment of the compound according to formula (1), preferred substituents of "aryl" and "heteroaryl" are selected from the group consisting of F, Cl, Br, I, 7ii 'N i 0 0 V\% "
NO
2 , NH 2 , o , o , , , , A>, an NH(C 1
.
4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , an NH-C(=O)-C 1 .4 aliphatic residue, an NH-S(=0) 2 -Cl4 aliphatic residue, OH, OCFH 2 , OCF 2 H, OCF 3 , a O-C 1
.
4 -aliphatic residue, SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, S(=0) 2 0H, a S(=0) 2
-C
1 .4-aliphatic residue, a S(=0) 2
-NH-C
1 4-aliphatic residue, CN, CF 3 ,
CF
2 H, CHF 2 , a C14-aliphatic residue, CH 2 OH, CH 2
-OCH
3 , C 2
H
4 -OH, C 2
H
4
-OCH
3 , a C(=O)-C 1 . 4 -aliphatic residue, a C(=O)-O-C 1 .4-aliphatic residue, a C3-cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, CONH 2 , a C(=O)-NH(C1.4 aliphatic residue), a
C(=O)-N(C
1 _4 aliphatic residue) 2 , aryl, preferably phenyl, or benzyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, CN, CF 3 , CH 3 , C 2
H
5 , iso-propyl, tert.-butyl, C(=O)-OH, C(=O)
CH
3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , O-CH 3 , OCF 3 , O-CH 2 -OH, O-CH 2 -0
CH
3 , SH, S-CH 3 , SCF 3 , NO 2 , NH 2 , N(CH 3
)
2 , N(CH 3
)(C
2
H
5 ) and N(C 2
H
5
)
2 , heteroaryl, preferably pyridyl, thienyl, furyl, thiazolyl or oxazolyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, CN, CF 3 , CH 3 , C 2
H
5 , iso-propyl, tert.-butyl, C(=0)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=0)-O
CH
3 and C(=O)-O-C 2
H
5 , O-CH 3 , OCF 3 , O-CH 2 -OH, O-CH 2
-O-CH
3 , SH, S-CH 3 , SCF 3 , NO 2 ,
NH
2 , N(CH 3
)
2 , N(CH 3
)(C
2
H
5 ) and N(C 2
H
5
)
2 . In yet another preferred embodiment of the compound according to general formula (I) the particular radicals R'-R 5 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof and
R
6 represents a C 2
-
1 0 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C3-10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C1.8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 6 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or denotes S-R 7 or O-R 6 wherein R 7 and R 8 in each case represent a C 1
.
1 0 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C3- 10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 - aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 7 or R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom. In another preferred embodiment of the present invention the compound according to general formula (I) has the general formula (I-a)
R
2 0
R
3 N R1 N N S R5 R 7 (I-a), wherein the particular radicals R'-R 5 and R 7 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof. In another preferred embodiment of the present invention the compound according to general formula (I) has the general formula (I-b)
R
2 o
R
3 N R1 N N R" R5 (I-b), wherein the particular radicals R'-R 5 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof, R" represents O-R 8 or N(R 9 R'4), wherein R3, R 9 and R 1 0 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof, or represents a C 2
-
10 -aliphatic residue, unsubstituted or mono- or polysubstituted; a C3 1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 -8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R" denotes a 3 to 10 membered heterocycloaliphatic residue, the binding is carried out via a carbon atom of the 3 to 10 membered heterocycloaliphatic residue. In a particular preferred embodiment of the present invention, radical R" in general formula (I-b) and radical R 6 in general formula (1) represents O-R 8 , wherein R 8 has the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof. In another particular preferred embodiment of the present invention, radical R" in general formula (I-b) and radical R 6 in general formula (I) represents N(R 9
R
0 ), wherein R 9 and R 1 0 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof. In yet another particular preferred embodiment of the present invention, radical R" in general formula (I-b) and radical R 6 in general formula (I) represents a C 2 -o-aliphatic residue, unsubstituted or mono- or polysubstituted; a C3.
1 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1
.
8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R" denotes a 3 to 10 membered heterocycloaliphatic residue, the binding is carried out via a carbon atom of the 3 to 10 membered heterocycloaliphatic residue. Another preferred embodiment of the compound according to general formula (1) has the general formula (I-c),
R
2 0 R4N R1 N N RH R5 (I-c), wherein the particular radicals R', R 2 , R 4 , R 5 and R 6 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof. Another preferred embodiment of the compound according to general formula (1) has the general formula (I-e) or (I-f), 0 0
R
3 N -R1 N R 1 R H 4 H N N R 6 RN N R 6 R5 R5 (I-e), (1-f) wherein the particular radicals R 1 , R 3 , R 4 , R 5 and R 6 or R', R 4 , R 5 and R 6 , respectively, have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof.
In yet another preferred embodiment of the compound according to general formula (I) radicals R 2 , R 3 , R 4 , R 5 and R 6 have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof, and R' represents aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted. In case R 4 and R 5 of the compound of general formula (I) form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted, said heterocycloaliphatic residue may optionally be condensed with aryl or heteroaryl or with a C3 10 cycloaliphatic residue or with a 3 to 10 membered heterocycloaliphatic residue, wherein the aryl, heteroaryl, C3.10 cycloaliphatic or 3 to 10 membered heterocycloaliphatic residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted. Preferably, said heterocycloaliphatic residue formed by R 4 and R 5 of the compound of general formula (1) together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, wherein the aryl, or heteroaryl, preferably selected from the group consisting of phenyl, pyridyl and thienyl condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted. Particularly preferably, in case R 4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted, said heterocycloaliphatic residue may optionally be condensed with aryl or heteroaryl, preferably selected from the group consisting of phenyl, pyridyl and thienyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted. In case R 9 and R 10 of the compound of general formula (1) form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted, said heterocycloaliphatic residue may optionally be condensed with aryl or heteroaryl or with a C3 10 cycloaliphatic residue or with a 3 to 10 membered heterocycloaliphatic residue, wherein the aryl, heteroaryl, C3.
1 0 cycloaliphatic or 3 to 10 membered heterocycloaliphatic residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted. Preferably, said heterocycloaliphatic residue formed by R 9 and R 1 0 of the compound of general formula (1) together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, wherein the aryl, or heteroaryl, preferably selected from the group consisting of phenyl, pyridyl and thienyl condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted. Particularly preferably, in case R 9 and R form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted, said heterocycloaliphatic residue may optionally be condensed with aryl or heteroaryl, preferably selected from the group consisting of phenyl, pyridyl and thienyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted. Yet another preferred embodiment of present invention is a compound according to general formula (1), wherein
R
1 denotes a C 10 -aliphatic residue, preferably a C 1 -- aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 - aliphatic residue), an N(C 1 - aliphatic residue) 2 , OH, =0, an O-C 1 -- aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 -aliphatic residue, a S(=0) 2 -C,--aliphatic residue, CF 3 , CN, a C 1 -- aliphatic residue and C(=0) OH, preferably denotes a C 1 10 -aliphatic residue, more preferably a C 1 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 - aliphatic residue) 2 , OH, =0, an O-C 1 -- aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C 1 4 -aliphatic residue, CF 3 , CN, a ClA-aliphatic residue and C(=O)-OH, wherein the C 1 -- aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C-aliphatic residue, or denotes a C3 10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(Cj.
4 aliphatic residue), an N(C.
4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue, C(=O) OH, a C3.6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, and wherein the C3 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-Cj4 aliphatic residue, OCF 3 , SH, SCF 3 , a S
C
1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue and C(=O)-OH, and wherein the C3 1 o-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 - aliphatic group, preferably a C14 aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C,4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-Csa aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 4 -aliphatic residue and C(=O)-OH, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C, 4 aliphatic residue) 2 , OH, an O-Cj4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, a S(=0) 2
-C
1 4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)
C
2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , a C3 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, 'O, o' , D I I , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 4 aliphatic residue), an N(C 4 aliphatic residue) 2 , OH, an O-C4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue, C(=O)-OH, C(=0)-CH 3 , C(=0)
C
2
H
5 , C(=0)-O-CH 3 and C(=0)-O-C 2
H
5 , a C3 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, 'o ,O , , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an
NH(C
1 .4 aliphatic residue), an N(C14 aliphatic residue) 2 , OH, an O-C 1 .4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2
-O-CH
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C1.4-aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=0)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2
H
5 , and wherein the C3., cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S C1.
4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue and C(=0)-OH, and wherein the aryl or the heteroaryl residue may in each case be optionally bridged via a C1- aliphatic group, preferably a C1.4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN and C(=O)-OH,
R
2 represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; a C 1 .4-aliphatic residue, a S-C 1 4 aliphatic residue, a O-C 1 A-aliphatic residue, wherein the C 1 4 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted; a C3.e-cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a
C
1
.
4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted, preferably represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; a C 1 -- aliphatic residue, a S-C 1 -aliphatic residue, a O-C14-aliphatic residue, wherein the C 1 4-aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 .4-aliphatic residue; a C3.e-cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, a C 1 .4-aliphatic residue and an O-C 1 .4-aliphatic residue, wherein the
C
1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 .4-aliphatic residue, and wherein the C.-cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case be optionally bridged via a C 1 .4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an unsubstituted C1.4-aliphatic residue and an unsubstituted O-C 1 .4-aliphatic residue, R3 represents H; F; Cl; Br; 1; CN; CF 3 ; SCF 3 ; NO 2 ; OCF 3 ; a C 1 .4-aliphatic residue, a
O-C
1 .4-aliphatic residue, a S-C 1 .4-aliphatic residue, wherein the C 1 .4 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 .4-aliphatic residue; a C.-cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, a C 1 .4-aliphatic residue and a O-C 1 .4-aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 .4-aliphatic residue, and wherein the C 3 -6-cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case be optionally bridged via a C1.4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, =0, OH, an unsubstituted C 1 4 -aliphatic residue and an unsubstituted O-C 1 4 -aliphatic residue, R4 denotes a C 110 -aliphatic residue, preferably a C 1 -- aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1
.
4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4-aliphatic residue, CF 3 , CN, a C 1 a-aliphatic residue, a C(=O)-O-C 1 4 -aliphatic residue, and C(=O)-OH, wherein the C 1 4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4-aliphatic residue, or denotes a C3- 1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=0) OH, a C(=O)-O-C 1 4 -aliphatic residue a C3-6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-Cl4-aliphatic residue, and wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1 a aliphatic residue, OCF 3 , SH, SCF 3 , a S
C
1
.
4 aliphatic residue, CF 3 , CN, a C 1 a-aliphatic residue and C(=O)-OH, and wherein the C3- 1 o-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C1s aliphatic group, preferably a CIA aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(CjA aliphatic residue), an N(CI.
4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, a C(=O)-O-C 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-CIA aliphatic residue, CF 3 , CN, a CIA-aliphatic residue and C(=O)-OH, on the condition that if R 4 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 4 aliphatic residue), an N(CiA aliphatic residue) 2 , OH, an
O-C
14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-CiA aliphatic residue, CF 3 , CN, a CIA aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=0)-O
C
2
H
5 , a Cm cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, o , ' , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 14 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(CIA aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, an O-Cj aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0-CH 3 , SH, SCF 3 , a S-C 14 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=0)-O-CH 3 and C(=0)-O-C 2
H
5 , and wherein the Cm cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S C1A aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue and C(=O)-OH, and wherein the aryl or the heteroaryl residue may in each case be optionally bridged, preferably in each case is bridged, via a C 1 .8 aliphatic group, preferably a C 1
.
4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 1 .4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN and C(=0)-OH,
R
5 denotes H or a C 1
.
1 0 -aliphatic residue, preferably a C 1 4 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an O-C 1 .4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue and C(=O)-OH, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1
.
4 -aliphatic residue, or
R
4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 ,
NH
2 , an NH(C 1 4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, =0, an 0
C
1
.
4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a
C
1
.
4 -aliphatic residue, C(=O)-OH, a C3.6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, OCF 3 , CF 3 and an unsubstituted O-C 1
.
4 -aliphatic residue, preferably selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1 4 -aliphatic residue and wherein the C 3
.
6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-Cl.
4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a Cl4-aliphatic residue and C(=O)-OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, preferably with phenyl or pyridyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C-4 aliphatic residue), an N(Cl4 aliphatic residue) 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=0)-O-CH 3 and C(=0)-O
C
2
H
5 , a C 3 -6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, 'o, , , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with a Co 10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, wherein the C, 10 cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , =0, OH, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 4 aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and
C(=O)-O-C
2
H
5 , a C3-6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C1.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1
.
4 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0
CH
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=0)
O-C
2
H
5 , and wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C1.4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C14 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue and C(=0)-OH,
R
6 denotes a C2- 1 0 -aliphatic residue, preferably a C 2 8-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 1 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, CF 3 , CN, a C1 4 -aliphatic residue and C(=O)-OH, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, or denotes a C3o 10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C14 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, and C(=O)-OH, wherein the C 1 4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4-aliphatic residue, and and wherein the C3- 1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 - aliphatic group, preferably a C 1 - aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C1 aliphatic residue) 2 , OH, =0, an O-C 1 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1 aliphatic residue, CF 3 , CN, a C 1 .4-aliphatic residue and C(=O)-OH, on the condition that if R 6 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or
R
6 denotes S-R 7 , O-R" or N(R9R ), wherein
R
7 and R 8 in each case represent a C 1
.
1 0 -aliphatic residue, preferably a C 1 _ 8 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an
NH(C
1 4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4-aliphatic residue, CF 3 , CN, a C 1
-
4 aliphatic residue and C(=O)-OH, wherein the C 1 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1
.
4 -aliphatic residue, or in each case represent a C 310 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=O)-OH, a C3.6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1
.
4 -aliphatic residue, and wherein the C-e cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 14 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue and C(=O)-OH, and wherein the C3.
1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C1.3 aliphatic group, preferably a C 1
.
4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1
_
4 aliphatic residue) 2 , OH, =0, an O-C 1
.
4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue and C(=O)-OH, on the condition that if R 7 or R' denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom of the 3 to 10 membered heterocycloaliphatic residue,
R
9 denotes a C 1 0 o-aliphatic residue, preferably a C 1 .--aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 .4-aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, a C(=O)-O-C 1
.
4 -aliphatic residue, and C(=O)-OH, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1
.
4 -aliphatic residue, or denotes a C3_ 1 o-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 .4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an 0-C 1
.
4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue, C(=O)-OH, a C(=O)-O-C 1 4 aliphatic residue a C3-e cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1
.
4 -aliphatic residue, and wherein the C3_6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, =0, an 0-C 1
.
4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue and C(=O)-OH, and wherein the C3.
1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 .a aliphatic group, preferably a C 1 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, =0, an O-C 1
.
4 aliphatic residue, a C(=O)-O-C 1 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O)-OH, on the condition that if R 9 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom of the 3 to 10 membered heterocycloaliphatic residue,
R
1 0 denotes H or a C 1
.
1 0 -aliphatic residue, preferably a C 1
.
4 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, =0, an 0-C 1
.
4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
_
4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O)-OH; preferably denotes a C 1
.
10 -aliphatic residue, more preferably a C 1 4 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I,
NO
2 , NH 2 , an NH(C 14 aliphatic residue), an N(C1 4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue and C(=O)-OH, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1
.
4 -aliphatic residue, or
R
9 and R 10 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 3 to 6 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 ,
NH
2 , an NH(C 1 .4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an 0
C
1
_
4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a
C
14 -aliphatic residue, C(=O)-OH, a Cm cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
14 -aliphatic residue, and wherein the C3 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 .4aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an 0-C 1
.
4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 -aliphatic residue and C(=O)-OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 9 and R 10 together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, preferably with phenyl or pyridyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 .4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue,
CF
3 , CN, a C 1 .4-aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , a C3 cycloaliphatic residue, a 3 to 6 membered >o heterocycloaliphatic residue, O , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1 4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an
NH(C
1 4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, an 0-C 1
.
4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0-CH 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue, C(=0)-OH, C(=O)-CH 3 , C(=0)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2
H
5 , and wherein the C- 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 .4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S C14 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue and C(=O)-OH. In a preferred embodiment of the compound according to general formula (I), the residue
R
1 denotes a C 1 1 0 -aliphatic residue, preferably a C 1 -- aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C4 aliphatic residue) 2 , OH, =0, an O-C4-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 -aliphatic residue, a S(=0) 2 -C4-aliphatic residue, CF 3 , CN, a C 1 4-aliphatic residue and C(=O) OH, preferably denotes a C 1 1 0 -aliphatic residue, more preferably a C 1 -- aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-Cl4-aliphatic residue, OCF 3 , SH,
SCF
3 , a S-Cl 4 -aliphatic residue, CF 3 , CN, a C 1 4-aliphatic residue and C(=O)-OH, wherein the C 1 a-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, C, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1
.
4 -aliphatic residue, or denotes a C3- 1 o-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, NO 2 , NH 2 , an NH(C 4 aliphatic residue), an N(C4 aliphatic residue) 2 , OH, =0, an O-Cj4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C1.
4 -aliphatic residue, C(=O) OH, a Cm cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, and wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 1 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S
C
1 - aliphatic residue, CF 3 , CN, a C 1 --aliphatic residue and C(=O)-OH, and wherein the C3-l-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 8 aliphatic group, preferably a C 1 4 aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C- aliphatic residue), an N(C 1 - aliphatic residue) 2 , OH, =0, an O-C 1 - aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 --aliphatic residue and C(=O)-OH, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, an
O-C
1 - aliphatic residue, OCF 3 , SH, SCF 3 , a S-C.
4 aliphatic residue, a S(=O) 2
-C
1 aliphatic residue, CF 3 , CN, a C 1 -aliphatic residue, C(=0)-OH, C(=0)-CH 3 , C(=0)
C
2 Hs, C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , a C3-6 cycloaliphatic residue, a 3 to 6 0) No o o 0 membered heterocycloaliphatic residue, ,o , , , , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 aliphatic residue, CF 3 , CN, a C 1 4-aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)
C
2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , a C3-6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, 0 , , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an
NH(C
1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2
-O-CH
3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C1-aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2
H
5 , and wherein the C3 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 1 .4 aliphatic residue, OCF 3 , SH, SCF 3 , a S
C
14 aliphatic residue, CF 3 , CN, a C1--aliphatic residue and C(=O)-OH, and wherein the aryl or the heteroaryl residue may in each case be optionally bridged via a C 1 -8 aliphatic group, preferably a C14 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C14 aliphatic residue), an N(C14 aliphatic residue) 2 , OH, =0, an 0-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN and C(=O)-OH. In a further preferred embodiment of the compound according to general formula (1), the residue
R
1 represents the partial structure (T1) - (CR12aR12b) m R12c (T1), wherein m denotes 0, 1, 2, 3 or 4, preferably denotes 0, 1, 2 or 3, more preferably denotes 0, 1, or 2,
R
12 a and R 12 b each independently of one another represent H, F, CI, Br, I, NO 2 , NH 2 , a NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 4 aliphatic residue or C(=O)-OH, or together denote =0, preferably each independently of one another represent H, F, CI, Br, I,
NH
2 , a NH(C 1 4 aliphatic residue), a N(C 1 4 aliphatic residue) 2 , OH, 0 C14 aliphatic residue or a C14 aliphatic residue, or together denote =0, more preferably each independently of one another represent H, F, Cl, Br, I, OH, an O-C 1 .4 aliphatic residue or a C 1 .4 aliphatic residue, or together denote =0, even more preferably each independently of one another represent H, F, OH, an O-C 1 4 aliphatic residue or a C 1 4 aliphatic residue, or together denote =0, and
R
12 c denotes a CI4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an
N(C
1 4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, a S(=0) 2
-C
1 aliphatic residue,
CF
3 , CN, a C 1 4-aliphatic residue and C(=O)-OH, preferably denotes a
C
1 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I,
NO
2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O)-OH, or denotes a C3- 1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an
N(C
1 4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue, C(=O)-OH, a C3.6 cycloaliphatic residue and a 3 to 6 membered heterocycloaliphatic residue, preferably when m is A 0, wherein the C 1 .4-aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 .4-aliphatic residue, and wherein the C3- 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I,
NO
2 , NH 2 , an NH(C 1 .4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN, a C 1 4-aliphatic residue and C(=O)-OH, or denotes - preferably when m is 0 or 2, more preferably when m is 0 an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an
N(C
1
.
4 aliphatic residue) 2 , OH, an O-C1.4 aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C 1
.
4 aliphatic residue, a S(=0) 2
-C
1
.
4 aliphatic residue, CF 3 , CN, a C 1 .4-aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2
H
5 , a C3.6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, 'o o , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, preferably denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C1.
4 -aliphatic residue, C(=0)-OH, C(=O)-CH 3 , C(=0)-C 2
H
5 , C(=0)-O-CH 3 and C(=O)-O-C 2
H
5 , a C3-6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic 0 >'o o residue, -o , , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, preferably when m is = 0, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 .4-aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C14 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN, a
C
14 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2 H, and wherein the Cm cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I,
NO
2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an O-C14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN, a C 1 4-aliphatic residue and C(=O)-OH. Preferably,
R
1 represents the partial structure (T1), wherein m denotes 0, 1, 2 or 3, preferably denotes 0, 1 or 2,
R
12 " and R12b each independently of one another represent H, F, Cl, Br, I, OH, an O-C 1
.
4 aliphatic residue or a C 14 aliphatic residue, or together denote =0, preferably each independently of one another represent H, F, OH, a 0
C
1
-
2 aliphatic residue or a C 1
-
2 aliphatic residue, or together denote =0, and
R
12 c denotes a C 1 .4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C1.4 aliphatic residue, OCF 3 ,
CF
3 , CN, a C 1
.
4 -aliphatic residue, a S(=O) 2
-C
1 4-aliphatic residue and C(=O)-OH, preferably denotes denotes a C 1
.
4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1
.
4 aliphatic residue, OCF 3 , CF 3 , a C 1
.
4 -aliphatic residue and C(=O)-OH, or denotes a C3- 10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1
.
4 aliphatic residue, OCF 3 ,
CF
3 , a C 1
.
4 -aliphatic residue, C(=O)-OH, a C3 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1
.
4 -aliphatic residue, and wherein the C3 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C1.
4 aliphatic residue, OCF 3 , CF 3 , a C 1
.
4 -aliphatic residue and C(=O)-OH, or denotes - preferably when m is 0 or 2, more preferably when m is 0 an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-Cj aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C 1 - aliphatic residue, a S(=O) 2
-C
1 - aliphatic residue, NO 2 ,
N(C
1 - aliphatic residue) 2 , CF 3 , CN, a C 1 -- aliphatic residue, C(=O)-OH,
C(=O)-CH
3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 , C(=O)-O-C 2
H
5 , 'O , , a Cm cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl or oxazolyl, preferably denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 - aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 - aliphatic residue, CF 3 , CN, a C 1 -- aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 , C(=O)-O-C 2
H
5 , a C3-6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl or oxazolyl, preferably when m is 0, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 -- aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 - aliphatic residue,
OCF
3 , CF 3 , CN, a C 1 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 ,
C(=O)-C
2
H
5 , C(=0)-O-CH 3 and C(=O)-O-C 2
H
5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 , 0-CH 3 , CF 3 and OCF 3 , wherein the C3.
6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 14 aliphatic residue, OCF 3 , CF 3 a C 1
_
4 -aliphatic residue and C(=O)-OH. More preferably, R1 represents the partial structure (TI), wherein m denotes 0, 1, or 2 or 3, preferably denotes 0, 1 or 2,
R
1 2 a and R12b each independently of one another represent H, F, Cl, Br, I, OH, an 0
C
1 .4 aliphatic residue or a C 1 .4 aliphatic residue, or together denote =0, preferably each independently of one another represent H, F, OH, a 0
C
1
-
2 aliphatic residue or a C 1
-
2 aliphatic residue, or together denote =0, and Rl1C denotes a C 1
.
4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1
_
4 aliphatic residue, CF 3 , CN, a S(=O) 2
-C
1
.
4 -aliphatic residue and a C1. 4 -aliphatic residue, preferably denotes a C 1
.
4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, an 0-C 1
.
4 aliphatic residue, CF 3 , and a C 1 4 -aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, CF 3 and an unsubstituted O-C 1
.
4 -aliphatic residue, or denotes a C3- 10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an 0-C1.
4 aliphatic residue, CF 3 , and a C 1
.
4 -aliphatic residue, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, CF 3 and an unsubstituted O-C 4 -aliphatic residue, or denotes - preferably when m is 0 or 2, more preferably when m is 0 - an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 4 aliphatic residue, OCF 2 H, OCF 3 , CF 3 , CN, a C 14 -aliphatic residue,
C(=O)-CH
3 , C(=O)-C 2
H
5 , CH 2 -OH, CH 2
-OCH
3 , S(=0) 2
-CH
3 , SCF 3 , NO 2 , N(C 1 4 aliphatic residue) 2 , 'o , , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , a C3 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl or pyridyl, preferably denotes - preferably when m is 0 or 2, more preferably when m is 0 - an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 14 aliphatic residue, OCF 3 , CF 3 , CN, a C 14 -aliphatic residue, C(=O)-CH 3 , C(=O)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2
H
5 , a C3 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl or pyridyl, wherein benzyl, phenyl, thienyl and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 4 aliphatic residue, OCF 3 ,
CF
3 , CN, a C 4 -aliphatic residue, C(=O)-CH 3 , C(=0)-C 2
H
5 , C(=0)-O
CH
3 and C(=O)-O-C 2
H
5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 , O-CH 3 , CF 3 and
OCF
3 , and wherein the C3 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 4 aliphatic residue,
OCF
3 , CF 3 a C 14 -aliphatic residue and C(=O)-OH. In a further preferred embodiment of the compound according to general formula (1), the residue R' represents the partial structure (T1), wherein m is 0, 1 or 2, preferably 0 or 2, more preferably 2, and R1 2 a and R12b each independently of one another represent H, F, OH, a O-C 1 aliphatic residue or a C- aliphatic residue or together denote =0; preferably H, F, OH, CH 3 or OCH 3 or together denote =0;
R
12 C denotes a C1A aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, CN, OH, an unsubstituted O-CA aliphatic residue, an unsubstituted S(=O)2-ClA aliphatic residue, CF 3 , and an unsubstituted C14-aliphatic residue, preferably denotes a C1 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted O-CiA aliphatic residue, CF 3 , and an unsubstituted C 1 A-aliphatic residue or denotes a C3.
1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted O-C1A aliphatic residue, CF 3 , and an unsubstituted C 1 4-aliphatic residue, or wherein m is 0 or 2, more preferably 0, and
R
12 a and R12b each independently of one another represent H, F, OH, a 0-CjA aliphatic residue or a C1A aliphatic residue; preferably H, F, OH, CH 3 or
OCH
3 ; and
R
12 c denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-CA aliphatic residue, OCF 3 , OCF 2 H, CH 2 -OH, CH 2 OCH 3 , S(=O) 2
-CH
3 , SCF 3 , NO 2 , N(C 1 - aliphatic residue) 2 , 'o , , CF 3 , CN, a C 1 -- aliphatic residue, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 , C(=O)-O-C 2
H
5 and phenyl, preferably denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 4 aliphatic residue, OCF 3 , CF 3 , CN, a C 14 -aliphatic residue, C(=O)-CH 3 , C(=O)-C 2
H
5 ,
C(=O)-O-CH
3 , C(=O)-O-C 2
H
5 and phenyl, wherein phenyl may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0
C
1 4 aliphatic residue, OCF 3 , CF 3 , CN, a C 1 4 -aliphatic residue, C(=O)
CH
3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 ,
O-CH
3 , CF 3 and OCF 3 . Preferably,
R
1 represents the partial structure (TI), wherein m is 0, 1 or 2, preferably 0 or 2, more preferably 2, and R1 2 a and R12b each independently of one another represent H, F, OH, CH 3 or OCH 3 or together denote =0, more preferably H, F, OH or CH 3 , even more preferably H, R1 2 r denotes a C4 aliphatic residue, preferably methyl, ethyl, n-propyl, 2-propyl, n butyl, isobutyl, sec.-butyl, or tert.-butyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, CN, OH, S(=O) 2
-CH
3 , an unsubstituted O-C 1 4 aliphatic residue, preferably 0-methyl and O-tert.-butyl, and CF 3 , preferably denotes a C4 aliphatic residue, preferably methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, or tert.-butyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted O-C1.4 aliphatic residue, preferably 0-methyl and O-tert.-butyl, and CF 3 or denotes a C3.
10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, preferably cyclopropyl, cyclopentyl, cyclohexyl, morpholinyl, oxetanyl, or tetrahydropyranyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, an unsubstituted O-C 1 .4 aliphatic residue, preferably 0-methyl and O-ethyl, CF 3 , and an unsubstituted C 1
.
4 -aliphatic residue, preferably methyl or ethyl, or wherein m is 0 or 2, more preferably 0, and
R
12 a and R12b each independently of one another represent H, F, OH, CH 3 or OCH 3 ; preferably H, OH or CH 3 , and
R
12 c denotes an aryl or heteroaryl, preferably phenyl or pyridyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0-C1.4 aliphatic residue, preferably OCH 3 , OCF 3 , OCF 2 H, CH 2 -OH, CH 2
-OCH
3 , S(=0) 2
-CH
3 , o> \j ,
SCF
3 , NO 2 , N(CH 3
)
2 , 'o , , CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=O)-CH 3 ,
C(=O)-C
2
H
5 , C(=O)-O-CH 3 , C(=O)-O-C 2
H
5 and phenyl, preferably denotes an aryl or heteroaryl, preferably phenyl or pyridyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 _4 aliphatic residue, OCF 3 , CF 3 , CN, a C1. 4 -aliphatic residue, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 , C(=O)-O-C 2
H
5 and phenyl, wherein phenyl may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0- C14 aliphatic residue, OCF 3 , CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=0)
CH
3 , C(=0)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 , 0-CH 3 , CF 3 and OCF 3 . Particularly preferred is a compound according to general formula (I) which has the following general formula (l-d):
R
2 0 R3 N (CR12aR12b)M N N R 6
R
12 C R 5 (l-d), wherein the particular radicals and parameters have the meanings described herein in connection with the compounds according to the invention and preferred embodiments thereof. In a preferred embodiment of the compound according to general formula (I), the residue R2 represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; a C 1 --aliphatic residue, a S-Cj aliphatic residue, a O-COl-aliphatic residue, wherein the C1 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted; a C.-cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C1 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted. Preferably,
R
2 represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; a C 1 -- aliphatic residue, a S-C 1 aliphatic residue, a 0-Cl--aliphatic residue, wherein the COl-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 --aliphatic residue, a C 3
-
6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, =0, OH, a C 14 -aliphatic residue and a O-C 1 4 -aliphatic residue, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-ClA-aliphatic residue, and wherein the C3-cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case be optionally bridged via a C 1 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an unsubstituted C 14 -aliphatic residue and an unsubstituted O-C 1 4 -aliphatic residue. More preferably,
R
2 represents F; Cl; Br; 1; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; a C 14 -aliphatic residue, a S-C 1 4 aliphatic residue, a O-C 1 4 -aliphatic residue, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 4 -aliphatic residue, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, 4 methylpiperazinyl, morpholinyl, or piperidinyl, preferably cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an unsubstituted C 1 4 -aliphatic residue and an unsubstituted O-C 1 4 -aliphatic residue, and wherein cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, 4-methylpiperazinyl, morpholinyl or piperidinyl may in each case be optionally bridged via an C1 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an unsubstituted C 14 -aliphatic residue and an unsubstituted O-C 1 4 -aliphatic residue. Even more preferably, R 2 represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; methyl; ethyl; n-propyl; iso-propyl; n-butyl; sec.-butyl; tert.-butyl; CH 2 -OH; CH 2
-O-CH
3 ; CH 2
-CH
2 -OH; CH 2
-CH
2
-OCH
3 ; 0 methyl; O-ethyl; O-(CH 2
)
2 -0-CH 3 ; O-(CH 2
)
2 -OH; S-Methyl; S-ethyl; cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl; preferably represents F; Cl; Br; 1; CN; CF 3 ;
NO
2 ; OCF 3 ; SCF 3 ; methyl; ethyl; n-propyl; iso-propyl; n-butyl; sec.-butyl; tert.-butyl; 0 methyl; O-ethyl; 0-(CH 2
)
2 -0-CH 3 ; 0-(CH 2
)
2 -OH; S-Methyl; S-ethyl; cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl Still more preferably, R 2 is selected from the group consisting of F; Cl; CF 3 ; CN; SCF 3 ; OCF3; CH 3 ; C 2
H
5 ; n propyl; iso-propyl; t-butyl; CH 2 -OH; CH 2 -0-CH 3 ; cyclopropyl; O-CH 3 and O-C 2
H
5 ; preferably is selected from the group consisting of F; Cl; CF 3 ; CN; SCF 3 ; OCF 3 ; CH 3 ;
C
2 H; n-propyl; iso-propyl; t-butyl; cyclopropyl; O-CH 3 and O-C 2
H
5 ; In particular,
R
2 is selected from the group consisting of F; Cl; CF 3 ; CH 3 ; C 2 H, iso-propyl; CH 2 -0-CH 3 ; cyclopropyl; and O-CH 3 ; preferably is selected from the group consisting of F; Cl; CF 3 ;
CH
3 ; C 2 H, iso-propyl; cyclopropyl; and O-CH 3 ; More particular,
R
2 is selected from the group consisting of CF 3 ; CH 3 ; C 2
H
5 , iso-propyl; CH 2 -0-CH 3 ; and
O-CH
3 ; preferably is selected from the group consisting of CH 3 ; C 2
H
5 , iso-propyl; CH 2 O-CH 3 ; and O-CH 3 ; In a particular preferred embodiment of the compound according to general formula (I), the residue
R
2 denotes CH 3 or CF 3 , most preferably R 2 denotes CH 3
.
In a further preferred embodiment of the compound according to general formula (1), the residue
R
3 represents H; F; Cl; Br; I; CN; CF 3 ; SCF 3 ; NO 2 ; OCF 3 ; a C 1 -- aliphatic residue, a
O-C
1 -- aliphatic residue, a S-C 1 4 -aliphatic residue, wherein the C14 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 -- aliphatic residue; a C- 6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, a C 1 4-aliphatic residue and a O-C 1 --aliphatic residue, wherein the C 1 -- aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 -- aliphatic residue, and wherein the C3-cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case be optionally bridged via a C 1 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an unsubstituted C 14 -aliphatic residue and an unsubstituted O-C 1 4-aliphatic residue. Preferably,
R
3 represents H; F; Cl; Br; 1; CN; CF 3 ; SCF 3 ; NO 2 ; OCF 3 ; a C 14 -aliphatic residue, a
O-C
14 -aliphatic residue, a S-C 1 4 -aliphatic residue, wherein the C1 4 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C1 4 -aliphatic residue.
More preferably, R 3 represents H; F; Cl; Br; I; CN; CF 3 ; SCF 3 ; NO 2 ; OCF 3 ; methyl; ethyl; n-propyl; iso propyl; n-butyl; sec.-butyl; tert.-butyl; O-methyl; O-ethyl; O-(CH 2
)
2 -0-CH 3 ; O-(CH 2
)
2 OH; S-Methyl; or S-Ethyl. Even more preferably R 3 represents H; F; Cl; Br; I; CN; CF 3 ; SCF 3 ; OCF 3 ; methyl; ethyl; O-methyl; or O-ethyl, preferably represents H; F; Cl; Br; I; CF 3 ; SCF 3 ; OCF 3 ; methyl; ethyl; O-methyl; or 0 ethyl, Still more preferably
R
3 represents H; F; Cl; Br; CN; CF 3 ; SCF 3 ; OCF 3 ; 0-methyl or methyl, preferably represents H; F; Cl; CF 3 ; SCF 3 ; OCF 3 ; 0-methyl or methyl. In particular
R
3 represents H; F; Cl; Br; CN; or methyl, preferably H, F, Cl, Br or CN, more preferably H, Cl or Br, most preferably H. In a further preferred embodiment of the compound according to general formula (I), the residue
R
4 denotes a C 1
.
1 0 -aliphatic residue, preferably a C 1 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, CF 3 , CN, a ClA-aliphatic residue, a C(=O)-O-Cl4-aliphatic residue, and C(=O)-OH, wherein the C 1 -- aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 -aliphatic residue, or denotes a C3.
10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 _4 aliphatic residue, CF 3 , CN, a C1--aliphatic residue, C(=0) OH, a C(=O)-O-C 1 4-aliphatic residue a C3-6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4-aliphatic residue, and wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 1 _4 aliphatic residue, OCF 3 , SH, SCF 3 , a S C14 aliphatic residue, CF 3 , CN, a C 1 .4-aliphatic residue and C(=0)-OH, and wherein the C3_ 10 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C1-8 aliphatic group, preferably a C14 aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, NO 2 , NH 2 , an NH(C 1 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C14 aliphatic residue, a C(=O)-O-C1.4-aliphatic residue, OCF 3 , SH, SCF 3 , a
S-C
1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue and C(=O)-OH, on the condition that if R 4 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, an O-C14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 14 aliphatic residue, CF 3 , CN, a C14 aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-
C
2
H
5 , a C 3
-
6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1 r-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an
NH(C
1 .4 aliphatic residue), an N(C1.4 aliphatic residue) 2 , OH, an O-C 1 .4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0-CH 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C14-aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2
H
5 , and wherein the C3- 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C14 aliphatic residue), an N(C1.4 aliphatic residue) 2 , OH, =0, an 0-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S C1.4 aliphatic residue, CF 3 , CN, a C 1 r-aliphatic residue and C(=O)-OH, and wherein the aryl or the heteroaryl residue may in each case be optionally bridged, preferably in each case is bridged, via a C1.8 aliphatic group, preferably a C 1
.
4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C1.4 aliphatic residue), an N(C1.4 aliphatic residue) 2 , OH, =0, an O-C 1
.
4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN and C(=0)-OH,
R
5 denotes H or a C1.10-aliphatic residue, preferably a C 1
.
4 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 .4 aliphatic residue), an N(C1.4 aliphatic residue) 2 , OH, =0, an 0 -C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C14 aliphatic residue, CF 3 , CN, a C1.4-aliphatic residue and C(=O)-OH, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-Cl4-aliphatic residue, or
R
4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 ,
NH
2 , an NH(C 1 .4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an 0
C
1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a
C
1 .4-aliphatic residue, C(=O)-OH, a C3.6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, OH, =0, OCF 3 , CF 3 and an unsubstituted O-C 1 .4-aliphatic residue, and wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, =0, an O-C1.4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN, a C 1 --aliphatic residue and C(=O)-OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, preferably with phenyl, pyridyl or thienyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an
NH(C
1 4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, an O-C 1 .4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN, a C1.4-aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O
C
2
H
5 , a C 3
-
6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic 0O 0 Nf 0 residue, ,u ,, , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with a C3- 10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, wherein the C3.
1 0 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, NO 2 , NH 2 , an
NH(C
1 4 aliphatic residue), an N(C 14 aliphatic residue) 2 , =0, OH, an O-C 14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 1
.
4 aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and
C(=O)-O-C
2
H
5 , a C3-6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1
.
4 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2
-O
CH
3 , SH, SCF 3 , a S-C 14 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=0)-O-CH 3 and C(=O)
O-C
2 He, and wherein the C3.6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O)-OH. In a further preferred embodiment of the compound according to general formula (I), the residue
R
4 represents the partial structure (T2) -+(CR13aR13b);- R 13 c (T2), wherein n denotes 0, 1, 2, or 3, preferably denotes 1, 2 or 3, more preferably denotes 1 or 2, even more preferably denotes 1,
R
3 " and R1 3 b each independently of one another represent H, F, Cl, Br, I, NO 2 , NH 2 , a NH(C 1 - aliphatic residue), an N(C 1 - aliphatic residue) 2 , OH, an O-C 1 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 - aliphatic residue, CF 3 , CN, a C1 aliphatic residue or C(=O)-OH, or together denote =0, preferably each independently of one another represent H, F, Cl, Br, I,
NH
2 , a NH(C 1 - aliphatic residue), a N(C 1 - aliphatic residue) 2 , OH, 0
C
1 - aliphatic residue or a C 1 - aliphatic residue or together denote =0, more preferably each independently of one another represent H, F, Cl, Br, I, an O-C 1 - aliphatic residue or a C 1 - aliphatic residue or together denote =0, even more preferably each independently of one another represent H, F, an O-C 1 - aliphatic residue or a C1A aliphatic residue or together denote =0, and R denotes a C1A aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(CjA aliphatic residue), an
N(C
1 4 aliphatic residue) 2 , OH, =0, an O-CA aliphatic residue, OCF 3
,
SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue and C(=O)-OH, or denotes - preferably when n is 9 0, more preferably when n is 1 - a
C-
1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I,
NO
2 , NH 2 , an NH(C 1 .4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an O-C 1 _4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=O)-OH, a C3.6 cycloaliphatic residue and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 4-aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 .4-aliphatic residue, and wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I,
NO
2 , NH 2 , an NH(C 1 .4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an O-C 14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 .4 aliphatic residue, CF 3 , CN, a C 1 .4-aliphatic residue and C(=O)-OH, or denotes - preferably when n is 0 0, more preferably when n is 1, - an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C14 aliphatic residue), an
N(C
1 .4 aliphatic residue) 2 , OH, an O-C 1 .4 aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=0)-OH, C(=0)-CH 3 , C(=0)-C 2
H
5 , C(=0)-O-CH 3 and C(=O)-O-C 2
H
5 , a Cm cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic o> - \o \o residue, LO, o 1 , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, 1, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4-aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 - aliphatic residue, CF 3 , CN, a
C
1 4-aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2
H
5 , and wherein the C3s cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I,
NO
2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an 0-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue and C(=O)-OH,
R
5 denotes H or a C 1 0 o-aliphatic residue, preferably a C 1 .e-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-Cj 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, and a C 14 -aliphatic residue, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, or
R
4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, or preferably selected from the group consisting of morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, piperazinyl, 4 methylpiperazinyl, oxazepanyl, thiomorpholinyl, azepanyl, , I-Na3O } -NTjO - -NN7O - -N§IIO }-N"70 N O I and , more preferably selected from the group consisting of morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, piperazinyl, 4-methylpiperazinyl, oxazepanyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, C(=O)-OH, an
O-C
1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, and a C14-aliphatic residue, a C3 cycloaliphatic residue, preferably cyclopropyl, cyclobutyl or cyclopentyl, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 -- aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, CF 3 and an unsubstituted 0
C
1 4-aliphatic residue, preferably selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 1 4-aliphatic residue, wherein the C3 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C14 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 4-aliphatic residue and C(=0)-OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, preferably with phenyl, pyridyl or thienyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, an 0
C
1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-Ci4 aliphatic residue, CF 3 , CN, a
C
1 4 -aliphatic residue, C(=O)-OH, a C3-6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, ,0 , , benzyl, phenyl, thienyl, and pyridyl, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with a C3- 10 cycloaliphatic residue, preferably cyclopropyl, cyclobutyl or cycciopentyl, or a 3 to 10 membered heterocycloaliphatic residue, preferably oxetanyl or oxiranyl, wherein the C3- 10 cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(Cl4 aliphatic residue), an N(ClA aliphatic residue) 2 , =0, OH, an O-C14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C4 aliphatic residue, CF 3 , CN, a Cl4-aliphatic residue, C(=O)-OH, C(=O)-CH 3 ,
C(=O)-C
2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , wherein the Cl 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1 4 -aliphatic residue, and wherein benzyl, phenyl, thienyl, and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, an O-C4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0-CH 3 , SH, SCF 3 , a S-C4 aliphatic residue, CF 3 , CN, a Cl4-aliphatic residue, and C(=O)-OH, and wherein the C-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 14 aliphatic residue and C(=O)-OH. Preferably, R 4 represents the partial structure (T2), wherein n denotes 0, 1, 2, or 3, preferably denotes 1, 2 or 3, more preferably denotes 1 or 2, even more preferably denotes 1,
R
13 a and R1 3 b each independently of one another represent H, F, Cl, Br, I, an 0-C 1 4 aliphatic residue or a C 1 4 aliphatic residue or together denote =0, preferably each independently of one another represent H, F, a O-C 1 2 aliphatic residue or a C 1 2 aliphatic residue or together denote =0, and R' 13denotes a C 1 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an 0-C 1
.
4 aliphatic residue, OCF 3 ,
CF
3 , a C 1
.
4 -aliphatic residue and C(=O)-OH, or denotes - preferably when n is 0, more preferably when n is 1 -a C3- 10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , CF 3 , a C 1
.
4 -aliphatic residue, C(=O)-OH, a C3-6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1
.
4 -aliphatic residue, and wherein the C 3
-
6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , CF 3 , a C 1 4 -aliphatic residue and C(=0)-OH, or denotes - preferably when n is 0 0, more preferably when n is 1 - an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 4 aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C14 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=0)-O-CH 3 and C(=O)-O-C 2
H
5 , a C3-6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl or oxazolyl, wherein the C 1 4-aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-Cl-aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-CjA aliphatic residue,
OCF
3 , CF 3 , CN, a C 14 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 ,
C(=O)-C
2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 , O-CH 3 , CF 3 and OCF 3 , wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , CF 3 a C 1
.
4 -aliphatic residue and C(=O)-OH,
R
5 denotes H or a C 1 .e-aliphatic residue, preferably a C 1
.
4 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C 1 _4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C14 aliphatic residue, CF 3 , CN, and a C1.4-aliphatic residue, wherein the C1.4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 1 4-aliphatic residue, or
R
4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 4 to 7 membered heterocycloaliphatic residue, or preferably selected from the group consisting of morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, piperazinyl, 4 -- NCO methylpiperazinyl, oxazepanyl, thiomorpholinyl, azepanyl, - -NaO - -N O , and , more preferably selected from the group consisting of morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, piperazinyl, 4 methylpiperazinyl, oxazepanyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, C(=O)-OH, an 0-C1_4 aliphatic residue, OCF 3 , SCF 3 , a S-C14 aliphatic residue, CF 3 , and a Cl4-aliphatic residue, and a C3 cycloaliphatic residue, preferably cyclopropyl, cyclobutyl or cyclopentyl, , wherein the C 1 w-aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, CF 3 and an unsubstituted 0
C
1
.
4 -aliphatic residue, preferably selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 1 w-aliphatic residue, wherein the C 3
.
6 cycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, OH, =0, an O-C 1 _ aliphatic residue, OCF 3 , SCF 3 , a S-CA aliphatic residue, CF 3 , CN, a
C
14 -aliphatic residue and C(=O)-OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, preferably with phenyl or pyridyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, , OH, an O-CjA aliphatic residue, OCF 3 , SCF 3 , a S-C 1 _ aliphatic residue, CF 3 , a C 1 4 -aliphatic residue, C(=O)-OH, a C. cycloaliphatic residue, benzyl, phenyl, thienyl, and pyridyl, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with a C3_ 10 cycloaliphatic residue, preferably cyclopropyl, cyclobutyl or cycclopentyl, or a 3 to 10 membered heterocycloaliphatic residue, preferably oxetanyl or oxiranyl, wherein the C 3
_
10 cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an O-CA aliphatic residue, OCF 3 , SH, SCF 3 , a S-CA aliphatic residue, CF 3 , CN, a ClA-aliphatic residue, C(=0)-OH, C(=O)-CH 3 , C(=0)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , wherein the ClA-aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0 CIA-aliphatic residue, and wherein benzyl, phenyl, thienyl, and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-CIA aliphatic residue, OCF 3 , 0-CH 2 -OH, O-CH 2 -0-CH 3 , SCF 3 , a S-C, 4 aliphatic residue, CF 3 , CN, a Cl 4 -aliphatic residue, and C(=0)-OH, and wherein the C3-6 cycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , a C 14 aliphatic residue and C(=O)-OH. More preferably,
R
4 represents the partial structure (T2), wherein n denotes 0, 1, 2 or 3, preferably denotes 1 or 2, more preferably denotes 1, R1 3 a and R 1 " each independently of one another represent H, F, Cl, Br, I, an O-C 1 4 aliphatic residue or a C 1 4 aliphatic residue or together denote =0, preferably each independently of one another represent H, F, a 0-C 1 -2 aliphatic residue or a C 1
-
2 aliphatic residue or together denote =0, and
R
1 * denotes a C 1 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, an O-C 1 4 aliphatic residue, CF 3 , and a C 1 4 -aliphatic residue, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, or denotes a C310-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an O-C 1 4 aliphatic residue, CF 3 , and a C 1 4 -aliphatic residue, consisting of morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, piperazinyl, 4 methylpiperazinyl, oxazepanyl, thiomorpholinyl, azepanyl, , , and , in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, OH, =0, C(=O)-OH, an O-C 1 . aliphatic residue, OCF 3 , SCF 3 , a
S-C
1
.
4 aliphatic residue, CF 3 , and a C 1
.
4 -aliphatic residue, cyclopropyl, cyclobutyl and cyclopentyl, wherein the C 1
.
4 -aliphatic residue is in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, =0, CF 3 and an unsubstituted 0-C 1
.
4 aliphatic residue, preferably is in each case unsubstituted, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with phenyl or pyridyl, wherein the phenyl or pyridyl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0-C 1
.
4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , a C 1
.
4 -aliphatic residue, C(=O)-OH, and a C3 cycloaliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, OCF 3 , CF 3 and an unsubstituted 0-C 1
.
4 aliphatic residue, and wherein the Cm cycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an 0-C1.
4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , a C1.
4 aliphatic residue and C(=O)-OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, CF 3 and an unsubstituted O-Cl 4 -aliphatic residue, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C14 aliphatic residue, OCF 3 , CF 3 , CN, a C 1 4-aliphatic residue, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , a C3.e cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl or pyridyl, wherein benzyl, phenyl, thienyl and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 4 aliphatic residue, OCF 3 ,
CF
3 , CN, a C 14 -aliphatic residue, C(=O)-CH 3 , C(=O)-C 2 Hg, C(=0)-O
CH
3 and C(=O)-O-C 2
H
5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 , O-CH 3 , CF 3 and
OCF
3 , and wherein the C3 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 4 aliphatic residue,
OCF
3 , CF 3 a C 1 --aliphatic residue and C(=O)-OH,
R
5 denotes H or an unsubstituted C 14 -aliphatic residue or a C1A-aliphatic residue monosubstituted with 0-methyl, wherein the C 4 -aliphatic residue is in each case preferably selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n butyl, isobutyl, sec.-butyl and tert.-butyl, more preferably selected from the group consisting of methyl and ethyl, or
R
4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, more preferably selected from the group condensed with a C 3
-
6 cycloaliphatic residue, preferably cyclopropyl, cyclobutyl or cycciopentyl, or a 4 to 7 membered heterocycloaliphatic residue, preferably oxetanyl or oxiranyl, wherein the C3.
6 cycloaliphatic residue or the 4 to 7 membered heterocycloaliphatic residue condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an 0-C 1 . 4 aliphatic residue, OCF 3 , SCF 3 ,, CF 3 , CN, a C 1 .4-aliphatic residue, C(=O)-OH,
C(=O)-CH
3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 . Even more preferably,
R
4 represents the partial structure (T2), wherein n denotes 0, 1, 2 or 3, preferably denotes 1 or 2, more preferably denotes 1,
R
1 3 and Ri1b each independently of one another represent H, F, a O-C 1 .4 aliphatic residue or a C 1 .4 aliphatic residue or together denote =0; preferably each independently of one another represent H, F, CH 3 or OCH 3 or together denote =0;
R
1 " denotes a C 1 .4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, an unsubstituted O-C 1 .4 aliphatic residue, CF 3 , and an unsubstituted C 1 .4 aliphatic residue, or denotes a C3- 1 0 -cycloaliphatic residue, preferably selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, or a 3 to 10 membered heterocycloaliphatic residue, preferably selected from the group consisting of pyrrolidinyl, morpholinyl, piperazinyl, piperidinyl and tetrahydropyranyl, more preferably tetrahydropyranyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted 0-C 1 .4 aliphatic residue, CF 3 , and an unsubstituted C 1 4-aliphatic residue, or denotes an aryl or heteroaryl, preferably phenyl or pyridyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-Cj4 aliphatic residue, OCF 3 , CF 3 , CN, a C 1 4-aliphatic residue, C(=O)-CH 3 , C(=O)-C 2
H
5 ,
C(=O)-O-CH
3 , C(=O)-O-C 2
H
5 and phenyl, wherein phenyl may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0
C
1 4 aliphatic residue, OCF 3 , CF 3 , CN, a Cl 4 -aliphatic residue, C(=O)
CH
3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 , 0-CH 3 , CF 3 and OCF 3 ,
R
5 denotes H or an unsubstituted C 1 4-aliphatic residue or a C14-aliphatic residue, which is monosubstituted with OCH 3 , preferably H, methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl or tert.-butyl or CH 2
-OCH
3 , C 2
H
4
-OCH
3 or C 3
H
6
-OCH
3 , more preferably H, methyl or ethyl, preferably denotes H or an unsubstituted C4-aliphatic residue, preferably H, methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl or tert.-butyl, more preferably H, methyl or ethyl, or
R
4 and R 5 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, piperazinyl, 4-methylpiperazinyl, - -NZO - -NaO oxazepanyl, thiomorpholinyl, azepanyl, , , and tetrahydroquinolinyl, tetrahydroisoquinolinyl, tetra hydroimidazo[1, 2-a]pyrazinyl, octahydropyrrolo[1,2-a]pyrazinyl, dihydroindolinyl, or dihydroisoindolyl, preferably a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, piperazinyl, 4 methylpiperazinyl, oxazepanyl, tetrahydroq uinolinyl, tetrahydroisoquinolinyl, dihydroindolinyl, or dihydroisoindolyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, C(=0)-OH, an O-Cj4 aliphatic residue, OCF 3 , SCF 3 , a
S-C
1 4 aliphatic residue, CF 3 , and a Cl 4 -aliphatic residue, cyclopropyl, cyclobutyl and cyclopentyl, wherein the C 1 -- aliphatic residue is in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, OH, =0, CF 3 and an unsubstituted O-C 1 4 aliphatic residue, preferably is in each case unsubstituted. Still more preferably, R 4 represents the partial structure (T2), wherein n denotes 0, 1, 2 or 3, preferably denotes 1 or 2, more preferably denotes 1,
R
13 a and R13b each independently of one another represent H, F, CH 3 or OCH 3 or together denote =0, preferably each independently of one another represent H or CH 3 , more preferably H,
R
1 * denotes a C14 aliphatic residue, preferably methyl, ethyl, n-propyl, 2-propyl, n butyl, isobutyl, sec.-butyl, or tert.-butyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, an unsubstituted O-C 1 4 aliphatic residue, and CF 3 , or denotes cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, pyrrolidinyl, morpholinyl, piperazinyl, piperidinyl and tetrahydropyranyl, more preferably tetrahydropyranyl or morpholinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted O-C14 aliphatic residue, CF 3 , and an unsubstituted C 1 -- aliphatic residue, or denotes an aryl or heteroaryl, preferably phenyl or pyridyl, more preferably phenyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-Ci 4 aliphatic residue, OCF 3 , CF 3 , CN, and a C 1 -aliphatic residue,
R
5 denotes H, methyl or ethyl or C 2
H
4 0CH 3 or C 3 HrOCH 3 , more preferably H or methyl or ethyl, even more preferably methyl, or
R
4 and R 5 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazepanyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, thiomorpholinyl, azepanyl, ,-NC O ,-Na I or , tetrahydroimidazo[1,2-a]pyrazinyl, octahydropyrrolo[1,2 a]pyrazinyl, - , dihydroindolinyl, or dihydroisoindolyl, preferably a a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazepanyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, dihydroindolinyl, or dihydroisoindolyl, more preferably a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazepanyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, more preferably a morpholinyl, oxazepanyl, tetrahydroquinolinyl, or tetrahydroisoquinolinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, =0, C(=O)-OH, C(=O)-CH 3 , C(=O)-OCH 3 , O-methyl, O-ethyl, OCF 3 , SCF 3 , CF 3 , methyl, CH 2
CF
3 , CH 2 OH, CH 2
-OCH
3 , CH 2
CH
2 OCH 3 , ethyl, n-propyl, 2-propyl, cyclopropyl, and cyclobutyl, preferably selected from the group consisting of F, Cl, OH, =0, C(=O)-OH, O-methyl, 0 ethyl, OCF 3 , SCF 3 , CF 3 , methyl, ethyl, n-propyl, 2-propyl, cyclopropyl, and cyclobutyl In a preferred embodiment of the compound according to general formula (I), the residue
R
6 denotes a C 2
-
1 0 -aliphatic residue, preferably a C 2 -8-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C1.4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 1 4-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, CF 3 , CN, a C14-aliphatic residue and C(=O)-OH, wherein the C14-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1
_
4 -aliphatic residue, or denotes a C3-10-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1
_
4 aliphatic residue) 2 , OH, =0, an O-C14 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue, and C(=0)-OH, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1
.
4 -aliphatic residue, and and wherein the C3_ 1 o-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 -8 aliphatic group, preferably a C 1
.
4 aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C 1 .4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-CI4 aliphatic residue, CF 3 , CN, a C 1
_
4 -aliphatic residue and C(=O)-OH, on the condition that if R 6 denotes a 3 to 10 membered heterocycloaliphatic residue, the binding is carried out via a carbon atom of the 3 to 10 membered heterocycloaliphatic residue, or
R
6 denotes S-R 7 , O-R 8 or N(R9R'0), wherein
R
7 and R" in each case represent a C 1
.
1 0 -aliphatic residue, preferably a C 1
.
8 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, =0, an O-C 1
.
4 -aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1
.
4 -aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O)-OH, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 4 -aliphatic residue, or in each case represent a C3.
10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 ,
NH
2 , an NH(C 1
.
4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 14 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue, C(=O)-OH, a C3.6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1
.
4 -aliphatic residue, and wherein the C3.6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S C1 4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O)-OH, and wherein the C3.
10 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1
.
4 aliphatic group, preferably a C 14 aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 14 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O)-OH, on the condition that if R 7 or R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the binding is carried out via a carbon atom of the 3 to 10 membered heterocycloaliphatic residue,
R
9 denotes a C 1
.
10 -aliphatic residue, preferably a C 1 .8-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C14 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , OH, =0, an O-C-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C-aliphatic residue, CF 3 , CN, a C 1 -aliphatic residue, a C(=0)-O-C-aliphatic residue, and C(=O)-OH, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0 Cl-aliphatic residue, or denotes a C3.
1 a-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an 0 -C14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C-aliphatic residue, C(=O)-OH, a C(=O)-O-C aliphatic residue a C3-6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
1 4 -aliphatic residue, and wherein the C3- 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 14 aliphatic residue), an N(C 14 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 4 -aliphatic residue and C(=O)-OH, and wherein the C3.10-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C1.8 aliphatic group, preferably a C1.4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, =0, an O-C1. aliphatic residue, a C(=O)-O-C 14 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 14 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue and C(=O)-OH, on the condition that if R 9 denotes a 3 to 10 membered heterocycloaliphatic residue, the binding is carried out via a carbon atom of the 3 to 10 membered heterocycloaliphatic residue,
R
1 0 denotes H or a C 1 .1-aliphatic residue, preferably a C 1 4-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C14 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1. aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O)-OH, preferably denotes a C 1
.
1 0 -aliphatic residue, more preferably a C 14 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I,
NO
2 , NH 2 , an NH(Cl aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C14-aliphatic residue and C(=O)-OH, wherein the C1.4-aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
14 -aliphatic residue, or
R
9 and R 1 0 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 3 to 6 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1
.
4 aliphatic residue), an N(Cj.
4 aliphatic residue) 2 , OH, =0, an O-C 14 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue, C(=0) OH, a Cm cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted 0
C
14 -aliphatic residue, and wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 A aliphatic residue) 2 , OH, =0, an 0-C 1
.
4 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue and C(=O)-OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 9 and RIO together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, preferably with phenyl or pyridyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, an 0-C 14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue,
CF
3 , CN, a C 14 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=0)-O-C 2 Hq, a C3 cycloaliphatic residue, a 3 to 6 membered ! No ' \ heterocycloaliphatic residue, o ,o , , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 4 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an
NH(C
1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , OH, an O-C14 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0-CH 3 , SH, SCF 3 , a S-Cl 4 aliphatic residue, CF 3 , CN, a Cl4-aliphatic residue, C(=0)-OH, C(=0)-CH 3 , C(=0)-C 2
H
5 ,
C(=O)-O-CH
3 and C(=O)-O-C 2
H
5 , and wherein the C3.6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 4 aliphatic residue), an N(Cl.
4 aliphatic residue) 2 , OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S C1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue and C(=0)-OH. Preferably,
R
6 denotes a C 2
-
1 0 -aliphatic residue, preferably a C 2 .a-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C 1 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a
S-C
1 4 -aliphatic residue, a C(=O)-O-C 1 4 -aliphatic residue, CF 3 , CN, and a C14 aliphatic residue wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, or denotes a Ca 1 o-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, a C(=0)-O-C 1 4 -aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue, wherein the C 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 14 -aliphatic residue, and and wherein the C 3
-
1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 s aliphatic group, preferably a CIA aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C1.4 aliphatic residue, a C(=O)-O-C1.4-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C4 aliphatic residue, CF 3 , CN, and a C 1
.
4 -aliphatic residue. on the condition that if R 6 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or
R
6 denotes S-R 7 or O-R 8 wherein
R
7 and R 8 in each case represent a C 1 -- aliphatic residue, unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C1.4-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 -aliphatic residue, an NH(C 1 4 aliphatic residue), an N(C4 aliphatic residue) 2 , a C(=O)-O-C-4 aliphatic residue, CF 3 , and a Cl4-aliphatic residue, wherein the Cl4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-Cl4-aliphatic residue, or in each case denote a C3.
1 0 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 .4 aliphatic residue, OCF 3 , SCF 3 , a C(=O)-O-Cl4-aliphatic residue, a S-C 1
.
4 aliphatic residue, CF 3 , and a C 1 4-aliphatic residue, wherein the C1.4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, and wherein the C3.
1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 18 aliphatic group, preferably a C 1 - aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 - aliphatic residue, OCF 3 , SH, SCF 3 , a S-CjA aliphatic residue, a C(=0)-O-CA-aliphatic residue, CF 3 , CN, and a ClA-aliphatic residue. on the condition that if R 7 or R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or
R
6 denotes N(R 9
R'
0 ), wherein
R
9 denotes a Ci--aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-ClA-aliphatic residue, OCF 3 , SH, SCF 3 , a S-ClA-aliphatic residue, a C(=O)-O
C
14 -aliphatic residue, CF 3 , and a ClA-aliphatic residue, wherein the ClA-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-ClA-aliphatic residue, or denotes a C-.
1 o-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-CA aliphatic residue, OCF 3 , SCF 3 , a C(=O)-O-ClA-aliphatic residue, a S-C 1 4 aliphatic residue, CF 3 , and a C 1 4 -aliphatic residue, wherein the C 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, and and wherein the C3- 1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 - aliphatic group, preferably a C 1 4 aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, OH, =0, an O-C 1 - aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1A aliphatic residue, a C(=O)-O-C 1 -- aliphatic residue, CF 3 , CN, and a Cl--aliphatic residue, on the condition that if R 9 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, and wherein R10 denotes H or a C 1
.
10 -aliphatic residue, preferably a C 1 -- aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-CjA aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1A aliphatic residue, CF 3 , CN, and a C1A-aliphatic residue, preferably denotes a C 1 10 -aliphatic residue, more preferably a C 1 4 -- aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-Cj aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1A aliphatic residue, CF 3 , CN, and a C 1 A-aliphatic residue wherein the ClA-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-ClA-aliphatic residue, or
R
9 and R 1 0 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably a 3 to 6 membered heterocycloaliphatic residue, more preferably selected from the group consisting of morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl and piperazinyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C 14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, CF 3 , CN, and a
C
14 -aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 14 aliphatic residue, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 9 and R 10 together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, preferably with phenyl or pyridyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S
C
1
.
4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue, C(=O)-OH, a C3-6 0> \O0) cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, o , g o go , , benzyl, phenyl, thienyl, and pyridyl, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 4 -aliphatic residue, and wherein benzyl, phenyl, thienyl, and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, an O-C 1
.
4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2
-O-CH
3 , SH, SCF 3 , a S-C 14 aliphatic residue, CF 3 , CN, a C 1
.
4 -aliphatic residue, and C(=O)-OH, and wherein the C3-6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, NO 2 , OH, =0, an 0-C 14 aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C, 4 aliphatic residue, CF 3 , CN, a C 14 -aliphatic residue and C(=O) OH. More preferably,
R
6 denotes a C 2 8-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an 0
C
1 -- aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 --aliphatic residue, a C(=O)-O-Cl aliphatic residue, CF 3 , and a C 1 -- aliphatic residue wherein the C 1 4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 1 -- aliphatic residue, or denotes a C3- 10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 aliphatic residue, OCF 3 , SCF 3 , a C(=O)-O-C 1 --aliphatic residue, a S-Cj aliphatic residue, CF 3 , and a C 1 --aliphatic residue, wherein the C 1 --aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C, 4 -aliphatic residue, and and wherein the C3.
1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 -8 aliphatic group, preferably a C 1 - aliphatic group, which in turn may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 - aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 - aliphatic residue, a C(=O)-O-C,4-aliphatic residue, CF 3 , CN, and a C 1 -- aliphatic residue. on the condition that if R 6 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or
R
6 denotes S-R 7 or O-R 8 wherein
R
7 and R 8 in each case denote a C 1 -- aliphatic residue, preferably a C 1
.
6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, OH, =0, an O-C 1 -aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 .4-aliphatic residue, an NH(C 1 .4 aliphatic residue), an N(C 1 .4 aliphatic residue) 2 , CF 3 , a C(=O)-O-C 1 .4-aliphatic residue, and a C 1 .4-aliphatic residue wherein the C 1 .4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 1 .4-aliphatic residue, or in each case denote a C3.
10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 .4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 .4 aliphatic residue, a C(=O)-O-C 1 .4 aliphatic residue, CF 3 , and a C 1 .4-aliphatic residue, wherein the C 1 .4-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 .4-aliphatic residue, and wherein the C3.10-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may be bridged, preferably is bridged, via a C1.8 aliphatic group, preferably a
C
14 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, CF 3 , CN, and a C1.4-aliphatic residue, on the condition that if R 7 or R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or
R
6 denotes N(R 9 R' ), wherein
R
9 denotes a C 1 .--aliphatic residue, preferably a C 1 .e-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C-aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C 1 .4-aliphatic residue, CF 3 , a C(=O)-O-C-aliphatic residue, and a C 1 4 aliphatic residue wherein the C 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 4 -aliphatic residue, or denotes a C3.
10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an 0-C 14 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 .4 aliphatic residue, a C(=0)-O-C 4 -aliphatic residue, CF 3 , and a C 4 -aliphatic residue, wherein the C 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 4 -aliphatic residue, and wherein the C3.
1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case be bridged, preferably is bridged, via a C 1 -8 aliphatic group, preferably a C1_4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an 0-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1
.
4 aliphatic residue, a C(=O)-O-C 4 -aliphatic residue, CF 3 , CN, and a C 4 -aliphatic residue, on the condition that if R 9 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, and
R
10 denotes H or a C-aliphatic residue, preferably a C 1 w4saliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C14 aliphatic residue, CF 3 , CN, and a C-aliphatic residue, preferably denotes a C 1 -aliphatic residue, more preferably a C-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C14 aliphatic residue, CF 3 , CN, and a C-aliphatic residue, wherein the C-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-Cl-aliphatic residue, or
R
9 and R 10 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, preferably selected from the group consisting of morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl and piperazinyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an 0-C14 aliphatic residue, OCF 3 , SH, SCF 3 , a S-CjA aliphatic residue, CF 3 , CN, and a
C
4 -aliphatic residue, wherein the C-aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C aliphatic residue, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 9 and R 1 0 together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, preferably with phenyl or pyridyl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, an 0
C
1
.
4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a o \0 o \o
C
1
.
4 -aliphatic residue, C(=O)-OH, residue, 'o , 'o, benzyl, phenyl, thienyl, and pyridyl, wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-CI aliphatic residue, and wherein benzyl, phenyl, thienyl, and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, an O-C1.4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2
-O-CH
3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C-aliphatic residue, and C(=0)-OH. Even more preferably,
R
6 denotes a C 2 .6-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an 0 Cl-aliphatic residue, a C(=0)-O-C14-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C aliphatic residue, CF 3 , and a C 1
.
4 -aliphatic residue wherein the C1.4-aliphatic residue in each case is unsubstituted, or denotes a C3- 1 0 -cycloaliphatic residue, preferably a C- 6 -cycloaliphatic residue, or a 3 to 10 membered heterocycloaliphatic residue, preferably a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SCF 3 , a S-CI4 aliphatic residue, a C(=O)-O-Cl14 aliphatic residue, CF 3 , and a C1.4-aliphatic residue, wherein the C-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with OH or an unsubstituted O-C 1
.
4 -aliphatic residue.
and wherein the C 3 10 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a unsubstituted
C
14 aliphatic group, on the condition that if R 6 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or
R
6 denotes S-R 7 or O-R 8 wherein R and R 8 in each case denote a C 1 -- aliphatic residue, preferably a C 1
.
6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C-aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C-aliphatic residue, an NH(C 1
.
4 aliphatic residue), an N(C 1
.
4 aliphatic residue) 2 , a C(=O)-O-ClA-aliphatic residue, CF 3 , and a C 1
.
4 -aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 4 -aliphatic residue, or in each case denotes a C 10 -cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 - aliphatic residue, OCF 3 , SCF 3 , a S-C 1 - aliphatic residue, a C(=O)-O-C,4 aliphatic residue, CF 3 , and a C 14 -aliphatic residue, wherein the C-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C-aliphatic residue, and wherein the C 3 -lo-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue in each case may be bridged, preferably is brisdged, via an unsubstituted C 18 aliphatic group, preferably an unsubstituted C 1 - aliphatic group, on the condition that if R 7 or R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or R6 denotes N(R 9
R
0 ), wherein
R
9 denotes a C-aliphatic residue, preferably a C 1 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C-aliphatic residue, OCF 3 , SH,
SCF
3 , a S-C-aliphatic residue, a C(=O)-O-C-aliphatic residue, CF 3 , and a C 1 aliphatic residue wherein the C 4 -aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 4 -aliphatic residue, or denotes a C 1 o-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 - aliphatic residue, a C(=O)-O-C-aliphatic residue, CF 3 , and a C 1 w-aliphatic residue, wherein the C-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 4 -aliphatic residue, and wherein the C 3
.
1 0 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue is in each case bridged via a unsubstituted C1-8 aliphatic group, preferably an unsubstituted C1.4 aliphatic group, on the condition that if R 9 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, and
R
10 denotes H or an unsubstituted C-aliphatic residue, preferably selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl and tert.-butyl, more preferably selected from the group consisting of methyl and ethyl, preferably denotes an unsubstituted Cl-aliphatic residue, preferably selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.
butyl and tert.-butyl, more preferably selected from the group consisting of methyl and ethyl or
R
9 and R 10 form together with the nitrogen atom connecting them a 3 to 6 membered heterocycloaliphatic residue, preferably selected from the group consisting of morpholinyl, piperidinyl, pyrrolidinyl, and azetidinyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C14 aliphatic residue,
OCF
3 , SH, SCF 3 , a S-C 1 4 aliphatic residue, CF 3 , CN, and a C 1 -aliphatic residue, wherein the C 1
.
4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C aliphatic residue, and wherein the 3 to 6 membered heterocycloaliphatic residue formed by R 9 and R 1 0 together with the nitrogen atom connecting them may optionally be condensed with phenyl or pyridyl, wherein the phenyl or pyridyl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 4 aliphatic residue, OCF 3 , SH, SCF 3 , a
S-C
1 4 aliphatic residue, CF 3 , CN, a C 1 4 -aliphatic residue, C(=O)-OH, residue, benzyl, phenyl, and pyridyl, wherein the C 14 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, and an unsubstituted O-C 4 -aliphatic residue, and wherein benzyl, phenyl, and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OCH 3 , OCF 3 , O-CH 2 OH, O-CH 2 -0-CH 3 , SH, SCF 3 , CF 3 , and a Cl-aliphatic residue. Still more preferably,
R
6 denotes a C 2 -aliphatic residue, preferably selected from the group consisting of ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, ethenyl and propenyl (-CH 2
CH=CH
2 , -CH=CH-CH 3 ,
-C(=CH
2
)-CH
3 ), unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C aliphatic residue, a C(=O)-O-C-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C-aliphatic residue, CF 3 , and a C 1 -aliphatic residue, preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an O-C 1 w-aliphatic residue, CF 3 , and a C 1 w-aliphatic residue, more preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, and an O-Cw4-aliphatic residue, preferably O-methyl, even more preferably in each case unsubstituted, wherein the C 4 -aliphatic residue in each case is unsubstituted, or denotes a Cw-cycloaliphatic residue, preferably selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, or a 3 to 6 membered heterocycloaliphatic residue, preferably selected from the group consisting of piperidinyl (preferably piperidin-4-yl or piperidin-3-yl), tetra hyd rofuranyl, and tetrahydropyranyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an 0-
C
14 -aliphatic residue, a C(=O)-O-C 1 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 4 aliphatic residue, CF 3 , and a C 14 -aliphatic residue, preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an O-C- 4 -aliphatic residue, CF 3 , and a C 1
.
4 -aliphatic residue, more preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, and an O-Cj aliphatic residue, preferably O-methyl, even more preferably in each case unsubstituted, wherein the C 1 .- aliphatic residue in each case is unsubstituted, and wherein the C.-cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case optionally bridged via an unsubstituted
C
1 4 aliphatic group, preferably via an unsubstituted C 1 2 aliphatic group, on the condition that if R 6 a 3 to 6 membered heterocycloaliphatic residue, the 3 to 6 membered heterocycloaliphatic residue is linked via a carbon atom, or
R
6 denotes S-R 7 or O-R 8 wherein
R
7 and R 8 in each case denote a C 1 e-aliphatic residue, preferably selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, ethenyl and propenyl
(-CH
2
CH=CH
2 , -CH=CH-CH 3 , -C(=CH 2
)-CH
3 ), unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-Cl.
4 -aliphatic residue, a C(=O)-O-C 1 --aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 -aliphatic residue, an NH(C 1 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , CF 3 , and a C14-aliphatic residue, more preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, and an O-C- 4 -aliphatic residue, wherein the ClA-aliphatic residue in each case is unsubstituted, or denotes a C 3 .6-cycloaliphatic residue, preferably cyclopropyl, or a 3 to 6 membered heterocycloaliphatic residue, preferably oxetanyl, in each case unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 .4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 4 aliphatic residue, a C(=O)-O-C 1 4 -aliphatic residue, CF 3 , and a CwA-aliphatic residue, preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an O-Cl-waliphatic residue, CF 3 , and a C 1 -aliphatic residue, wherein the CwA-aliphatic residue in each case may be unsubstituted or mono or polysubstituted with OH or an unsubstituted O-C 4 -aliphatic residue, and wherein the C3.
10 -cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue in each case may be bridged, preferably is bridged, via an unsubstituted C 1 4 aliphatic group, on the condition that if R 7 or R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or
R
6 denotes N(R 9 R'"), wherein
R
9 denotes a C 1 .6-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 w-aliphatic residue, a C(=O)-O-CwA-aliphatic residue, OCF 3 , SH, SCF 3 , a S
C
1 4 -aliphatic residue, CF 3 , and a C 1
.
4 -aliphatic residue, preferably an unsubstituted
C
1 .6-aliphatic residue, more preferably selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, and n-hexyl, wherein the C 1 4 -aliphatic residue in each case is unsubstituted, or denotes a C 3
.
6 -cycloaliphatic residue, preferably selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, or a 3 to 6 membered heterocycloaliphatic residue, preferably selected from the group consisting of piperidinyl (preferably piperidin-4-yl or piperidin-3-y), tetrahydrofuranyl, and tetrahydropyranyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, a C 1 4 -aliphatic residue and an O-C 1 4-aliphatic residue, even more preferably in each case unsubstituted, wherein the C 1 -- aliphatic residue in each case is unsubstituted, and wherein the C3-6-cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case optionally bridged via an unsubstituted
C
14 aliphatic group, on the condition that if R9 denotes a 3 to 6 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom,
R
10 denotes H or an unsubstituted C 1 4 -aliphatic residue, preferably represents an unsubstituted C 1 -aliphatic residue, or denotes H, methyl, ethyl, n-propyl, 2-propyl, n butyl, isobutyl, sec.-butyl or tert.-butyl, preferably denotes methyl, ethyl, n-propyl, 2 propyl, n-butyl, isobutyl, sec.-butyl or tert.-butyl, or
R
9 and R 1 0 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 4 aliphatic residue, and a Cl4-aliphatic residue wherein the C 1 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1 -aliphatic residue. Most preferred,
R
6 denotes ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, ethenyl or propenyl (-CH 2
CH=CH
2 , -CH=CH-CH 3 ,
-C(=CH
2
)-CH
3 ), in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an O-C-aliphatic residue, CF 3 , and a C 1 -aliphatic residue, preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, and an O-C 4 -aliphatic residue, preferably O-methyl, more preferably in each case unsubstituted, wherein the C 1 4 -aliphatic residue in each case is unsubstituted, or denotes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, preferably denotes cyclopropyl or tetrahydropyranyl, more preferably cyclopropyl, in each case unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an O-C 1 w-aliphatic residue, CF 3 , and a C 1 w-aliphatic residue, preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, and an O-C-aliphatic residue, preferably O-methyl, more preferably in each case unsubstituted, wherein the C 1 4 -aliphatic residue in each case is unsubstituted, and wherein cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, piperidinyl, tetrahydrofuranyl, and tetrahydropyranyl may in each case be optionally bridged via an unsubstituted C1A aliphatic group, preferably via an unsubstituted C 1
.
2 aliphatic group, on the condition that if R 6 denotes piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl is linked via a carbon atom, or
R
6 denotes S-R' or O-R 8 wherein R' and R 8 in each case denote methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, ethenyl and propenyl
(-CH
2
CH=CH
2 , -CH=CH-CH 3 , -C(=CH 2
)-CH
3 ), in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, N(C 1 4 aliphatic residue) 2 and an O-C 1 4-aliphatic residue, wherein the C 1 -- aliphatic residue in each case is unsubstituted, or in each case denote cyclopropyl, cyclobutyl, cyclopentyl cyclohexyl, oxetanyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, preferably cyclopropyl or oxetanyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an O-C 1 4-aliphatic residue, CF 3 , and a C 1 4-aliphatic residue, preferably in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, and an O-C 1 4-aliphatic residue, more preferably in each case unsubstituted, wherein the C 1 -- aliphatic residue in each case is unsubstituted, and wherein cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, oxetanyl, piperidinyl, tetrahydrofuranyl, and tetrahydropyranyl may in each case be optionally bridged via an unsubstituted C 1 4 aliphatic group, on the condition that if R 7 or R 8 denotes piperidinyl, oxetanyl, tetrahydrofuranyl, or tetrahydropyranyl, each of these residues is linked via a carbon atom, or
R
6 denotes N(R 9 R"), wherein
R
9 denotes a C 1 .e-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, =0, OH, and O-methyl, preferably unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, and O-methyl, more preferably unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F and O-methyl, preferably denotes an unsubstituted C 1
_-
aliphatic residue, more preferably selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, and n-hexyl,
R
10 denotes H, methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl or tert.-butyl, preferably methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl or tert.-butyl, more preferably methyl or ethyl, or
R
9 and R 10 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-CjA aliphatic residue, and a ClA-aliphatic residue, more preferably unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl and a O-C 1 - aliphatic residue, preferably form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted. In particular,
R
6 denotes ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, CH 2
-CH(CH
3
)(C
2
H
5 ), C(CH 3
)
2
(C
2
H
5 ), ethenyl or propenyl
(-CH
2
CH=CH
2 , -CH=CH-CH 3 , -C(=CH 2
)-CH
3 ), CH 2
-OCH
3 , C 2
H
4
-OCH
3 , C 3
H
6
-OCH
3 , cyclopropyl, cyclobutyl, or tetrahydropyranyl, in each case unsubstituted, or
R
6 denotes S-R 7 or O-R 8 wherein R 7 and R 8 in each case denote methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, a N(C 1 - aliphatic residue) 2 , and an O-C 1 -- aliphatic residue, preferably with at least one substituent selected from the group consisting of F, OH, N(CH 3
)
2 , 0-methyl and O-ethyl, or in each case denote CH 2 -cyclopropyl or oxetanyl, preferably, R 7 and RB in each case denote methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl, CH 2
-
CH
2 -F, CH 2
CHF
2 , CH2-OCH3, CH 2
CH
2
-OCH
3 , CH 2
CH
2
-N(CH
3
)
2 , CH 2 -cyclopropyl or oxetanyl, wherein the C 1 .4-aliphatic residue in each case is unsubstituted, or
R
6 denotes N(R 9
R
0 ), wherein
R
9 denotes methyl, ethyl, C(=O)-CH 3 , n-propyl, 2-propyl, n-butyl, isobutyl, sec.
butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl,
R
10 denotes H, methyl or ethyl, preferably methyl or ethyl, or
R
9 and R 10 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted. Particularly preferred is a compound according to general formula (I), wherein
R
1 represents the partial structure (TI), - -(CR12aR12b)-- R1 2 c (TI), wherein m is 0, 1 or 2, preferably 0 or 2, more preferably 2, and
R
12 a and R12b each independently of one another represent H, F, OH, CH 3 or OCH 3 or together denote =0, more preferably H, F, OH or CH 3 , even more preferably H,
R
12 ' denotes a C 14 aliphatic residue, preferably methyl, ethyl, n-propyl, 2-propyl, n butyl, isobutyl, sec.-butyl, or tert.-butyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, CI, Br, I, CN, OH, S(=0) 2
-CH
3 , an unsubstituted O-C 1 4 aliphatic residue, preferably 0-methyl and O-tert.-butyl, and CF 3 , preferably denotes a C 1 4 aliphatic residue, preferably methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, or tert.-butyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted O-C 1 4 aliphatic residue, preferably 0-methyl and 0-tert.-butyl, and CF 3 , or denotes a C3- 1 o-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, preferably cyclopropyl, cyclopentyl, cyclohexyl, morpholinyl, oxetanyl or tetrahydropyranyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted 0-C 1 4 aliphatic residue, preferably 0-methyl and O-ethyl, CF 3 , and an unsubstituted C 1 4-aliphatic residue, preferably methyl or ethyl, or wherein m is 0 or 2, more preferably 0, and
R
12 a and R12b each independently of one another represent H, F, CH 3 or OCH 3 ; and R1 2 c denotes an aryl or heteroaryl, preferably phenyl or pyridyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0-C 1 4 aliphatic residue, OCF 3 , OCF 2 H, CH 2 -OH, CH 2
-OCH
3 , S(=0) 2
-CH
3 , SCF 3 , NO 2 ,
N(CH
3
)
2 , to , 1>, CF 3 , CN, a C 14 -aliphatic residue, C(=O)-CH 3 , C(=O)
C
2 H, C(=0)-O-CH 3 , C(=O)-O-C 2
H
5 and phenyl, preferably denotes an aryl or heteroaryl, preferably phenyl or pyridyl, in each case unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0-C 1 4 aliphatic residue, OCF 3 , CF 3 , CN, a C 4 -aliphatic residue, C(=O)-CH 3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 , C(=O)-O-C 2
H
5 and phenyl, wherein phenyl may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0
C
1
.
4 aliphatic residue, OCF 3 , CF 3 , CN, a C 1
_
4 -aliphatic residue, C(=O)
CH
3 , C(=O)-C 2
H
5 , C(=O)-O-CH 3 and C(=O)-O-C 2
H
5 , preferably with at least one substituent selected from the group consisting of F, CI, CH 3 ,
O-CH
3 , CF 3 and OCF 3 ,
R
2 represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; methyl; ethyl; n-propyl; iso-propyl; n-butyl; sec.-butyl; tert.-butyl; CH 2 -OH; CH 2 -0-CH 3 ; CH 2
-CH
2 -OH; CH 2
-CH
2
-OCH
3 ; 0 methyl; O-ethyl; O-(CH 2
)
2 -0-CH 3 ; O-(CH 2
)
2 -OH; S-Methyl; S-Ethyl; cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; preferably represents F; Cl; Br; I; CN; CF 3 ; NO 2 ;
OCF
3 ; SCF 3 ; methyl; ethyl; n-propyl; iso-propyl; n-butyl; sec.-butyl; tert.-butyl; CH 2 OH; O-methyl; O-ethyl; 0-(CH 2
)
2 -0-CH 3 ; 0-(CH 2
)
2 -OH; S-Methyl; S-Ethyl; cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl,
R
3 represents H; F; Cl; Br; I; CN; CF 3 ; SCF 3 ; NO 2 ; OCF 3 ; methyl; ethyl; n-propyl; iso propyl; n-butyl; sec.-butyl; tert.-butyl; O-methyl; O-ethyl; 0-(CH 2
)
2 -0-CH 3 ; 0-(CH 2
)
2 OH; S-Methyl; or S-Ethyl,
R
4 represents the partial structure (T2) - -(CR13a!R13b) n--R13e (T2), wherein n denotes 0, 1, 2 or 3, preferably denotes 1 or 2, more preferably denotes 1,
R
13 a and R13b each independently of one another represent H, F, CH 3 or OCH 3 , or together denote =0, preferably each independently of one another represent H or CH 3 , more preferably H,
R
1 3 denotes a C 1 4 aliphatic residue, preferably methyl, ethyl, n-propyl, 2-propyl, n butyl, isobutyl, sec.-butyl, or tert.-butyl, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, an unsubstituted O-CA aliphatic residue, and CF 3 , or denotes cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, pyrrolidinyl, morpholinyl, piperazinyl, piperidinyl and tetrahydropyranyl, more preferably tetrahydropyranyl or morpholinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted O-Cj4 aliphatic residue, CF 3 , and an unsubstituted Cl-aliphatic residue, or denotes an aryl or heteroaryl, preferably phenyl or pyridyl, more preferably phenyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0 C4 aliphatic residue, OCF 3 , CF 3 , CN, and a COl-aliphatic residue,
R
5 denotes H, methyl or ethyl, C 2
H
4 0CH 3 or C 3
HOCH
3 , more preferably H or methyl, even more preferably methyl, or
R
4 and R 5 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazepanyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, dihydroindolinyl, or dihydroisoindolyl, preferably a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazepanyl, tetrahydroquinolinyl, -- N7O - -N3O tetrahydroisoquinolinyl, thiomorpholinyl, azepanyl, , , or tetrahydroimidazo[ 1, 2-a]pyrazinyl, octahydropyrrolo[1,2-a]pyrazinyl, -N'>'O /N O , dihydroindolinyl, or dihydroisoindolyl, preferably a a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazepanyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, dihydroindolinyl, or dihydroisoindolyl, more preferably a morpholinyl, oxazepanyl, tetrahydroquinolinyl, or tetrahydroisoquinolinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, =0, C(=O)-OH, O-methyl, 0-ethyl, OCF 3
,
SCF
3 , CF 3 , C(=O)-CH 3 , C(=O)-OCH 3 , CH 2
CF
3 , CH 2 OH, CH 2
-OCH
3 , CH 2
CH
2
-OCH
3 , methyl, ethyl, n-propyl, 2-propyl, cyclopropyl, and cyclobutyl, preferably selected from the group consisting of F, Cl, OH, =0, C(=O)-OH, O-methyl, O-ethyl, OCF 3 , SCF 3 ,
CF
3 , methyl, ethyl, n-propyl, 2-propyl, cyclopropyl, and cyclobutyl,
R
6 denotes ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, CH 2
-CH(CH
3
)(C
2
H
5 ), C(CH 3
)
2
(C
2
H
5 ), ethenyl or propenyl
(-CH
2
CH=CH
2 , -CH=CH-CH 3 , -C(=CH 2
)-CH
3 ), CH 2
-OCH
3 , C 2
H
4
-OCH
3 , C 3
H
6
-OCH
3 , cyclopropyl, cyclobutyl, or tetrahydropyranyl, in each case unsubstituted, or
R
6 denotes S-R 7 or O-R 8 wherein R 7 and R 8 in each case denote methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, a N(C 1 aliphatic residue) 2 , and an O-C 1 4-aliphatic residue, preferably with at least one substituent selected from the group consisting of F, OH, N(CH 3
)
2 , 0-methyl and O-ethyl, or in each case denote CH 2 -cyclopropyl or oxetanyl, preferably, R 7 and R 8 in each case denote methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl, CH 2 CH 2 -F, CH 2
CHF
2 , CH2-OCH3, CH 2
CH
2
-OCH
3 , CH 2
CH
2
-N(CH
3
)
2 , CH 2 -cyclopropyl or oxetanyl, wherein the C14-aliphatic residue in each case is unsubstituted, or
R
6 denotes N(R 9 R'"), wherein
R
9 denotes methyl, C(=0)-CH 3 , ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.
butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl,
R
1 0 denotes H, methyl or ethyl, preferably methyl or ethyl, or
R
9 and R' 1 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted. In another particularly preferred embodiment of the compound according to general formula (1),
R
1 represents phenyl or pyridyl, preferably phenyl, in each case unsubstituted or mono or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, OH, OCH 3 , OCF 3 , CF 3 , and CH 3 ,
R
2 represents H; CF 3 ; methyl; ethyl; iso-propyl; O-methyl; or cyclopropyl,
R
3 represents H; F; Cl; Br; 1; CN; CF 3 ; methyl; or O-methyl;
R
4 and R 5 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazepanyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, dihydroindolinyl, or dihydroisoindolyl, in each case unsubstituted;
R
6 denotes ethyl, n-propyl, 2-propyl (iso-propyl), tert.-butyl, cyclopropyl, cyclobutyl or cyclopentyl or tetrahydropyranyl, or
R
6 denotes S-R 7 or O-R 8 wherein R 7 and R" in each case denote methyl, ethyl, 2-propyl, or tert.-butyl. or
R
6 denotes N(R 9
R
1 ), wherein
R
9 denotes methyl, ethyl, n-propyl, 2-propyl, or tert.-butyl,
R
1 0 denotes H, methyl or ethyl, preferably methyl or ethyl, or
R
9 and R" form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl. Especially particularly preferred are compounds according to general formula (I) selected from the group comprising: 1 N-[(3,5-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 3 N-[(3,5-Difluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 4 2-Ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 5 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(tetrahydro-pyran-2-yl methyl)-amino]-pyridine-3-carboxylic acid amide; 6 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(3-methoxy-azetidin-1 -yl)-4-methyl pyridine-3-carboxylic acid amide; 7 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(3-hydroxy-azetidin-1 -yl)-4-methyl pyridine-3-carboxylic acid amide; 8 2-EthylsuIfanyl-N-[(3-fluorophenyl)-methyl]-6-[(4-fluorophenyl)-methylamino]-4-methyl pyridine-3-carboxylic acid amide; 9 N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-y-2-[(E)-prop-1 -enyl]-pyridine-3 carboxylic acid amide; 10 N-[( 3 -Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-propyl-pyridine-3-carboxylic acid amide; 11 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-morpholin-4-y-4-(trifluoromethyl) pyridine-3-carboxylic acid amide; 12 N-[(3-Fluorophenyl)-methyl]-4-methyl-2,6-dimorpholin-4-yl-pyridine-3-carboxylic acid amide; 13 1-[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl-carbamoyl]-4-methyl-pyridin-2-yl] piperidine-4-carboxylic acid methyl ester; 14 1-[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl-carbamoyl]-4-methyl-pyridin-2-yl] piperidine-4-carboxylic acid; 15 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(4-hydroxy-piperidin-1 -yl)-4-methyl pyridine-3-carboxylic acid amide; 16 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(4-oxo-piperidin-1 -yl)-pyridine 3-carboxylic acid amide; 17 2-Ethylsulfanyl-N-[(4-fluoro-2-methoxy-phenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 18 2-Ethylsulfanyl-N-[(4-fluoro-2-hydroxy-phenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 19 N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 20 2-Ethylamino-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 21 N-[(3-Fluorophenyl)-methyl]-2-(2-methoxy-ethoxy)-4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide; 22 2-Ethyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 23 N-[(3-Fluorophenyl)-methyl]-2-isopropyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 24 N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-pyrrolidin-1-yl-pyridine-3 carboxylic acid amide; 25 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-pyrrolidin-1-yI-pyridine-3 carboxylic acid amide; 26 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(1,2,3,4-tetrahydro-isoquinolin 2-yl)-pyridine-3-carboxylic acid amide; 27 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[6-(trifluoromethyl)-1,2,3,4 tetrahydro-isoquinolin-2-yl]-pyridine-3-carboxylic acid amide; 28 N-[(4-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-[(E)-prop-1 -enyl]-pyridine-3 carboxylic acid amide; 29 N-[(4-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-propyl-pyridine-3-carboxylic acid amide 30 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(3-methoxy-pyrrolidin-1-yl)-4-methyl pyridine-3-carboxylic acid amide; 31 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(4-methyl-piperazin-1 -yl) pyridine-3-carboxylic acid amide; 32 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-piperidin-1 -yi-pyridine-3 carboxylic acid amide; 33 6-Dimethylamino-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 carboxylic acid amide; 34 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-methylamino-pyridine-3 carboxylic acid amide; 35 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(2-methoxy-ethyl-methyl-amino)-4 methyl-pyridine-3-carboxylic acid amide; 36 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(2-methoxy-ethylamino)-4-methyl pyridine-3-carboxylic acid amide; 37 N-[(3-Fluorophenyl)-methyl]-2-(isopropylsulfanyl)-4-methyl-6-morpholin-4-yI-pyridine 3-carboxylic acid amide; 38 2-Ethoxy-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 39 N-[(4-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 40 N-[(3-Fluorophenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 41 N-[(3,4-Difluoro-phenyl)-methylj-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 42 2-Ethylsulfanyl-4-methyl-N-(3-methyl-butyl)-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 43 N-(Cyclopentyl-methyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 44 N-(2-Cyclopentyl-ethyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 45 2-Ethylsulfanyl-N-[(6-fluoro-pyridin-2-yl)-methyl]-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 46 2-Ethylsulfanyl-N-[(5-fluoro-pyridin-2-yl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 47 N-(2,2-Dimethyl-propyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 48 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(2-methyl-morpholin-4-yl) pyridine-3-carboxylic acid amide; 49 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(4-methoxy-piperidin-1-yl)-4-methyl pyridine-3-carboxylic acid amide; 50 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[(2-phenyl-phenyl)-methyl]-pyridine-3 carboxylic acid amide; 51 2-Ethylsulfanyl-4-methyl-6-morpholin-4-y-N-[[2-(trifluoromethyl )-phenyl]-methyl] pyridine-3-carboxylic acid amide; 52 2-Ethylsulfanyi-N-[(3-fluorophenyl )-methyl]-6-[(4-fluorophenyl)-methyl-methyl-amino] 4-methyl-pyridine-3-carboxylic acid amide; 53 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(3-phenyl-propyl)-pyridine-3-carboxylic acid amide; 54 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yI-N-phenethyl-pyridine-3-carboxylic acid amide; 55 N-Benzyl-2-ethylsulfanyl-4-methyl-6-morpholin-4-yI-pyridine-3-carboxylic acid amide 56 N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yI-2-(propylsulfanyl)-pyridine-3 carboxylic acid amide; 57 2-(Butylsulfanyl)-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 58 2-Ethylsu Ifanyl-5-fluoro-N-[(3-fluorophenyl )-methyl]-4-methyl-6-morpholin-4-yI pyridine-3-carboxylic acid amide; 59 2-Ethylsulfanyl-4-methyl-6-morpholin-4-y-N-[[3-(trifluoromethyl)phenyl]-methyl pyridine-3-carboxylic acid amide; 60 2-Ethylsu Ifa nyl-4-methyl-6-morpholin-4-y-N-[[4-(trifluoromethyl )-phenyl]-methyl] pyridine-3-carboxylic acid amide; 61 2-Ethylsulfanyl-N-[(3-fluoro phenyl )-methyl]-4-methyl-6-[methyi-(tetra hydro-pyran-4-yI methyl)-amino]-pyridine-3-carboxylic acid amide; 62 N-[(3-Fluorophenyl )-methyl]-4-methyl-2-(2-methyl-propylsulfanyl )-6-morpholin-4-yI pyridine-3-Garboxylic acid amide; 63 N-[( 3-Fluorophenyl )-methyl]-2-(2-methoxy-ethylsu Ifanyl)-4-methyl-6-morphol in-4-yI pyridine-3-carboxylic acid amide; 64 2-Ethoxy-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-y-pyrid ine-3-carboxylic acid amide; 65 2-Dimethylamino-N-[(3-fluo rophenyl)-methyl]-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 66 6-(2,6-Dimethyl-morpholin-4-yI)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 67 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-y-pyrid ine-3 carboxylic acid amide; 68 2-Ethylsulfa nyl-4-methyl-6-morpholin-4-yI-N-(2-tetrahydro-pyran-2-yI-ethyl)-pyridine-3 carboxylic acid amide; 69 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yI-N-(tetrahydro-pyran-2-y-methyl)-pyridine-3 carboxylic acid amide; 70 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(4-methyl-piperidin- 1-yl) pyridine-3-carboxylic acid amide; 71 2-Ethylsulfanyl-N-[[2-(4-fluorophenyl)-phenyl]-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 72 2-[[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl-carbamoyl]-4-methyl-pyridin-2-yl] methyl-amino]-acetic acid ethyl ester; 73 6-(4-Cyclopropyl-piperazin-1 -yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 74 6-(4,4-Dimethyl-piperid in-1 -yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 75 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethylsulfanyl)-phenyl] methyl]-pyridine-3-carboxylic acid amide; 76 N-(Cyclohexyl-methyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-y-pyridine-3-carboxylic acid amide; 77 2-Ethylsulfanyl-N-(2-methoxy-ethyl)-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 78 2-Ethylsulfanyl-N-(3-methoxy-propyl)-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 79 2-Ethylsulfanyl-4-methyl-N-(4-methyl-pentyl)-6-morpholin-4-y-pyridine-3-carboxylic acid amide; 80 N-Butyl-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 81 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yI-N-pentyl-pyridine-3-carboxylic acid amide; 82 2-Ethylsulfanyl-N-[[4-fluoro-3-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 83 N-(2-tert-Butoxy-ethyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-y-pyridine-3-carboxylic acid amide; 84 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide; 85 2-Ethylsulfanyl-N-[[4-fluoro-2-(4-fluorophenyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 86 N-(4,4-Dimethyl-pentyl)-2-methoxy-4-methyl-6-morpholin-4-yI-pyridine-3-carboxylic acid amide; 87 N-[(3,4-Difluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 88 2-Methoxy-4-methyl-6-morpholin-4-yl-N-[(2-phenyl-phenyl)-methyl]-pyridine-3 carboxylic acid amide; 89 N-(4,4-Dimethyl-pentyl)-2-ethoxy-4-methyl-6-morpholin-4-yl-pyridine-3-carbo xylic acid amide; 90 N-[(3,5-Difluoro-phenyl)-methyl]-2-ethoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 91 N-[(3,4-Difluoro-phenyl)-methyl]-2-ethoxy-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 92 2-Ethoxy-4-methyl-6-morpholin-4-yl-N-[(2-phenyl-phenyl)-methyl]-pyridine-3 carboxylic acid amide; 93 2-Ethylsulfanyl-N-[[3-fluoro-5-(trifluoromethyl)-phenyl]-methylJ-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 94 2-Ethylsulfanyl-N-[[2-fluoro-3-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 95 2-Ethylsulfanyl-N-[[2-fluoro-5-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 96 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-([1,4]oxazepan-4-yI)-pyridine 3-carboxylic acid amide; 97 2-Ethylsulfanyl-4-methyl-6-morpholin-4-y-N-[[4-(trifluoromethyloxy)-phenyl]-methyl] pyridine-3-carboxylic acid amide; 98 N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-([1,4]oxazepan-4-yl)-pyridine-3 carboxylic acid amide; 99 2-Ethoxy-N-[(3-fluorophenyl)-methyl]-4-methyl-6-([1,4]oxazepan-4-y)-pyridine-3 carboxylic acid amide; 100 N-[(2,3-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 101 N-[(2,5-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 102 N-[(3-Cyano-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 103 2-Ethylsulfanyl-N-(2-isopropoxy-ethyl)-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 104 N-(3,3-Dimethyl-butyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 105 N-(3-Cyclopentyl-propyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 106 N-(2-Cyclohexyl-ethyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-y-pyridine-3-carboxylic acid amide; 107 N-[(2,4-Difluoro-phenyl )-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 108 2-Ethylsulfanyl-N-[3-(4-fiuorophenyl)-propyl]-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 109 2-Ethylsulfanyl-4-methyl-6-morpholin-4-y-N-(3-pyrid in-2-yI-propyl )-pyridine-3 carboxylic acid amide; 110 2-Butoxy-N-[(3-fluorophenyl )-methyl]-4-methyl-6-morpholin-4-yI-pyridine-3-carboxylic acid amide; Ill N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yI-2-propoxy-pyridine-3 carboxylic acid amide; 112 2-Ethylsulfanyl-N-[(3-fluorophenyl )-methyi]-4-methyl-6-(3-oxo-azetidin-1 -yI )-pyridine 3-carboxylic acid amide; 113 2-Ethylsulfanyl-N-[3-(3-fluorophenyl)-propyl]-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 114 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yI-N-(3-pyrid in-3-yI-propyl )-pyridine-3 carboxylic acid amide; 115 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yi-N-(3-pyridin-4-yI-propyl)-pyridine-3 carboxylic acid amide; 116 N-(5,5-Dimethyl-hexyl)-2-ethylsulfanyl-4-methyi-6-morpholin-4-yI-pyridine-3-carboxylic acid amide; 117 2-Methoxy-4-methyl-6-morpholin-4-y-N-[[4-(trifluoromethyl)-phenyl]-methyl]-pyridine 3-carboxylic acid amide; 118 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(pyridin-4-yi-methyl) amino]-pyridine-3-carboxylic acid amide; 119 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(pyridin-3-y-methyl) amino]-pyridine-3-carboxylic acid amide; 120 2-Ethylsuifanyl-6-[(4-fluoro-benzoyl )-methyl-amino]-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide; 121 2-Ethylsulfanyl-N-[(3-fluorophenyl )-methyi]-4-methyl-6-[methyl-(pyridin-2-yI-methyl) amino]-pyridine-3-carboxylic acid amide; 122 2-Ethylsulfanyl-N-[(3-fl uorophenyl)-methyl]-4-methyl-6-(pyridin-3-yI-methylamino) pyridine-3-carboxyl ic acid amide; 123 6-(Acetyl-methyl-amino)-2-ethylsu Ifanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine 3-carboxylic acid amide; 124 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 125 N-[(3-Chlorophenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyrid ine-3 carboxylic acid amide; 126 6-[Bis(2-methoxy-ethyl)-am ino]-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 127 2-(Ethyl-methyl-amino)-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 128 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(3-methoxy-propyl-methyl-amino)-4 methyl-pyridine-3-carboxylic acid amide; 129 2-Ethylsulfanyl-N-[3-(2-fluorophenyl)-propyl]-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 130 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[[3-(trifluoromethyloxy)-phenyl]-methyl] pyridine-3-carboxylic acid amide; 131 2-Ethylsulfanyl-N-[[3-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 132 2-Ethoxy-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl]-methyl]-pyridine-3 carboxylic acid amide; 133 2-Ethoxy-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid amide; 134 N-(1,3-Benzodioxol-5-yl-methyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 135 2-Ethylsulfanyl-N-[[2-fluoro-4-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yi-pyridine-3-carboxylic acid amide; 136 6-(Azepan-1-yI)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 carboxylic acid amide; 137 2-Ethylsulfanyl-N-[(4-methoxyphenyl)-methyl]-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 138 (2S)-2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(2-methyl-morpholin-4-yI) pyridine-3-carboxylic acid amide; 139 (2R)-2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(2-methyl-morpholin-4-yl) pyridine-3-carboxylic acid amide; 140 2-Methoxy-4-methyl-6-morpholin-4-y-N-(4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid amide; 141 N-(3-Cyclopropyl-propyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 142 2-Ethylsulfanyl-N-[[3-fluoro-4-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 143 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxo-piperazin-1 -yi)-pyridine 3-carboxylic acid amide; 144 6-(4-Acetyl-piperazin-1 -yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 145 N-[(4-Cyano-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 146 2-Ethylsulfanyl-N-[[4-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 147 2-Ethylsulfanyl-N-[[3-fluoro-4-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 148 N-[(4-Dimethylaminophenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 149 2-Ethylsulfanyl-N-[[4-fluoro-3-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 150 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(4-methyl-3-oxo-piperazin-1 yi)-pyridine-3-carboxylic acid amide; 151 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(6-oxa-2-azaspiro[3.3]heptan 2-yl)-pyridine-3-carboxylic acid amide; 152 N-(4,4-Dimethyl-pentyl)-4-methyl-2-methylsulfanyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 153 4-Methyl-2-methylsulfanyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide; 154 N-[(4-Fluorophenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 155 N-[(3,4-Difluoro-phenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide; 156 N-[(3,5-Difluoro-phenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide; 157 4-Methyl-2-methylsulfanyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl]-methyl] pyridine-3-carboxylic acid amide; 158 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(6-oxo-2,3,4,7,8,8a-hexahydro 1H-pyrrolo[1,2-a]pyrazin-2-yl)-pyridine-3-carboxylic acid amide; 159 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxa-6 azabicyclo[2.2.1]heptan-6-yl)-pyridine-3-carboxylic acid amide; 160 N-(3-Cyano-propyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 161 2- Ethyl sulIfa nyl-4-m ethyl-6-m orph ol in-4-y-N-(p-to lyl-m ethyl )-pyrid in e-3-ca rboxyl ic acid amide; 162 2- Ethyls ulfa nyl-4-methyl-N-(3-m ethyl sulfo nyl-p ro pyl)-6-mo rphoi n-4-y-pyrid ine-3 carboxylic acid amide; 163 N-(4-Cyano-butyl )-2-ethylsulfanyl-4-methyl-6-morpholin-4-y-pyrid ine-3-carboxylic acid amide; 164 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yI-N-(m-tolyl-methyl)-pyridine-3-carboxylic acid amide; 165 N-[(4-Chlorophenyl )-methyl]-2-methoxy-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 166 N-[(4-Chlorophenyl )-methyl]-2-ethoxy-4-methyl-6-morpholin-4-yI-pyrid ine-3-carboxylic acid amide; 167 6-(2-Ethyl-morpholin-4-yI )-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 168 N-[(4-Chlorophenyi )-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 169 N-[(4-Fluorophenyl)-methyl]-2-isopropyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-y] pyridine-3-carboxylic acid amide; 170 2-Ethylsulfanyl-N-[(3-fluorophenyl )-methyl]-4-methyl-6-(methy-pyridin-2-yI-amino) pyridine-3-carboxylic acid amide; 171 2-Ethylsulfanyl-N-[(3-fluorophenyl )-methyl]-4-methyl-6-(methyl-pyridin-3-yI-amino) pyridine-3-carboxylic acid amide; 172 2-Dimethylamino-N-[(4-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4 yI]-pyridine-3-carboxylic acid amide; 173 2-(Ethyl-methyl-am ino)-N-[(4-fluorophenyl )-methyl]-4-methyl-6-[(3R)-3-methyl morpholin-4-yI]-pyridine-3-carboxylic acid amide; 174 2-(Ethyl-methyl-amino)-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-y pyridine-3-carboxylic acid amide; 175 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(tetrahydro-pyran-3-y methyl)-amino]-pyridine-3-carboxylic acid amide; 176 N-[(4-Fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4-y]-2 methylsulfanyl-pyridine-3-carboxylic acid amide; 177 2-Ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-4-methy-6-[(3R)-3-methyl-morpholin-4-y] pyridine-3-carboxylic acid amide; 178 6-(3-Ethyl-morphol in-4-yi )-2-ethylsulIfa nyl-N-[(3-fl uorophenyl)-methyl]-4-m ethyl pyridine-3-carboxylic acid amide; 179 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3R)-3-(methoxymethyl)-morpholin-4 yl]-4-methyl-pyridine-3-carboxylic acid amide; 180 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3S)-3-(methoxymethyl)-morpholin-4-yl] 4-methyl-pyridine-3-carboxylic acid amide; 181 N-[(4-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 182 2-Ethoxy-N-[(4-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4-y] pyridine-3-carboxylic acid amide; 183 2-Dimethylamino-N-(4,4-dimethyl-pentyl)-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 184 N-(4,4-Dimethyl-pentyl)-2-(ethyl-methyl-amino)-4-methyl-6-[(3R)-3-methyl-morpholin 4-yi]-pyridine-3-carboxylic acid amide; 185 N-(4,4-Dimethyl-pentyl)-2-isopropyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 186 N-(4,4-Dimethyl-pentyl)-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 187 N-(4,4-Dimethyl-pentyl)-2-ethoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-y]-pyridine 3-carboxylic acid amide; 188 2-(Ethyl-methyl-amino)-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl] methyl]-pyridine-3-carboxylic acid amide; 189 N-(4,4-Dimethyl-pentyl)-2-(ethyl-methyl-amino)-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 190 2-(Ethyl-methyl-amino)-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide; 191 N-[(4-Chlorophenyl)-methyl]-2-(ethyl-methyl-amino)-4-methyl-6-morpholin-4-y pyridine-3-carboxylic acid amide; 192 N-(4,4-Dimethyl-pentyl)-4-methyl-6-[(3R)-3-methyl-morpholin-4-y]-2-methylsulfanyl pyridine-3-carboxylic acid amide; 193 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 194 N-[(4-Fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-2-(1-methyl propyl)-pyridine-3-carboxylic acid amide; 195 N-(4,4-Dimethyl-pentyl)-4-methyl-6-[(3R)-3-methyl-morpholin-4-y]-2-(1-methyl propyl)-pyridine-3-carboxylic acid amide; 196 2-Cyclopropyl-N-[(4-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 197 N-[(4- F1uorop he nyi)-m ethyl] -4-m ethyl-6-[(3 R)-3-methyl-m orp hol in -4-y] -2-propyl pyridine-3-carboxylic acid amide; 198 2-Cyclopropyl-N-(4,4-dimethyl-pentyl)-4-methyl-6-[(3R)-3-methyl-morpholin-4-y] pyridine-3-carboxylic acid amide; 199 N-(4,4-Dimethyl-pentyl)-4-methyl-6-[(3R)-3-methyl-morpholin-4-y]-2-propyl-pyridine 3-carboxylic acid amide; 200 2-Ethylsulfanyi-N-[(3-fluorophenyl )-methyl]-4-methyl-6-( methyl-pyridin-4-yI-amino ) pyridine-3-carboxylic acid amide; 201 2-Ethylsu Ifanyl-N-[(4-fluoro-3-methyl-phenyl)-methyl]-4-methyl-6-morpholin-4-y pyridine-3-carboxylic acid amide; 202 2-Ethylsulfanyl-N-(2-hyd roxy-3-phenyl-propyl)-4-methyl-6-morpholin-4-y-pyridi ne-3 carboxylic acid amide; 203 N-[(3,4-Difluoro-phenyl)-methyl]-2-(ethyl-methyi-amino)-4-methyl-6-morpholin-4-y pyridine-3-carboxylic acid amide; 204 N-[(3, 5-Difluoro-phenyl)-methyl]-2-(ethyl-methyl-amino)-4-methy-6-morpholin-4-y pyridine-3-carboxylic acid amide; 205 2-Dimethylamino-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 206 N-[(3,4-Difluoro-phenyl)-methyl]-2-dimethylamino-4-methyl-6-morpholin-4-y-pyridine 3-carboxylic acid amide; 207 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-[(3R)-3-methyl-morpholin-4 yI]-pyridine-3-carboxylic acid amide; 208 N-[(3, 5-Dimethyl-phenyl)-methyl]-2-ethylsulfanyl-4-methy-6-morpholin-4-y-pyrid ine-3 carboxylic acid amide; 209 2-Ethylsulfanyl-N-heptyl-4-methyl-6-morpholin-4-yI-pyridine-3-carboxylic acid amide; 210 6-Dimethylamino-N-(4,4-dimethyl-pentyl)-2-ethylsulfanyl-4-methyl-pyridine-3 carboxylic acid amide; 211 N-(4,4-Dimethyl-pentyl )-2-ethylsulfanyl-6-(2-methoxy-ethyl-methyl-amino)-4-methyl pyridine-3-carboxylic acid amide; 212 N-(4,4-Dimethyl-pentyl )-2-ethylsulfanyl-6-(3-methoxy-propyl-methyl-amino)-4-methyl pyridine-3-carboxylic acid amide; 213 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methy-6-(3-propyl-morpholin-4-y ) pyridine-3-carboxylic acid amide; 214 N-t(3-Fluorophenyl)-methyll-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-yI] pyridine-3-carboxylic acid amide; 215 N-[(4-Chlorophenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-y] pyridine-3-carboxylic acid amide; 216 N-[(3-Fluorophenyl)-methyll-4-methyl-2-( 1 -methyl-propyl)-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 217 2-Ethylsulfanyl-N-hexyl-4-methyl-6-morpholin-4-yI-pyridine-3-carboxyic acid amide; 218 N-(4, 4-Dimethyl-penty )-2-ethylsulfanyl-4-methyl-6-(methyl-tetrahydro-furan-3-y amino)-pyridine-3-carboxylic acid amide; 219 N-(4,4-Dimethyl-pentyl )-2-ethylsulfanyl-4-methyl-6-(2-methyl-morpholin-4-yI )-pyridine 3-carboxylic acid amide; 220 2-tert-Butyl-N-(4,4-dimethyl-pentyl)-4-methyl-6-morpholin-4-yI-pyridine-3-carboxylic acid amide; 221 N-(4,4-Dimethyl-pentyl )-4-methyl-2-(l1-methyl-propyl )-6-morpholin-4-yI-pyrid ine-3 carboxylic acid amide; 222 2-Ethylsulfanyl-N-[(3-fluorophenyl )-methyl]-4-methyl-6-(2-oxa-6-azaspiro[3.4loctan-6 yI)-pyridine-3-carboxylic acid amide; 223 2-Ethylsulfanyl-N-[(3-fluorophenyl )-methyl]-6-[(2R)-2-(methoxymethyl )-morpholin-4 yI]-4-methyl-pyridine-3-carboxylic acid amide; 224 2-Ethylsu Ifanyl-N-[(3-fluorophenyl )-methyl]-6-[(2S)-2-(methoxymethyl )-morpholi n-4-yI] 4-methyl-pyridine-3-carboxylic acid amide; 225 N-[(3,4-Difluoro-phenyl )-methyl]-2-ethylsulfanyl-4-methyl-6-[(3R)-3-methyi-morpholin 4-yi]-pyridine-3-carboxylic acid amide; 226 N-[(3,4-Oifluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4 yi]-pyridine-3-carboxylic acid amide; 227 2-Ethylsulfanyl-N-(3-hydroxy-3-phenyl-propyl )-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 228 2-Ethyisulfanyl-N-(2-hydroxy-4-methyl-pentyl )-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 229 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[2-(2-methoxy-ethyl )-morpholin-4-yI]-4 methyl-pyridine-3-carboxylic acid amide; 230 2-Ethylsulfanyl-N-(5-hydroxy-4,4-di methyl-pentyl )-4-methyl-6-morpholin-4-yI-pyridine 3-carboxylic acid amide; 231 2-Ethylsulfanyl-4-methyl-N-[(3-methylsulfonyl-phenyl )-methyl]-6-morpholin-4-y pyrid ine-3-carboxyl ic acid amide; 232 2-Ethylsulfanyi-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[2-(trifluoromethyl )-5,6 .7,8 tetra hyd ro-[1, ,6]n aphthyrid in-6-yI]-pyrid ine-3-ca rboxyl ic acid amide; 233 N-[(3, 5-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-[(3R)-3-methyl-morpholin 4-yIJ-pyrid ine-3-carboxylic acid amide; 234 N-[(3,5-Difluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-[( 3R)-3-methyl-m orpholin-4 yi]-pyridine-3-carboxylic acid amide; 235 2-Ethylsulfanyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-yI-N-(4,4,4-trifluoro-butyl ) pyridine-3-carboxylic acid amide; 236 2-Methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-yI]-N-(4,4,4-trifluoro-butyl)-pyridine 3-carboxylic acid amide; 237 2-Ethylsulfanyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-y]-N-[[4-(trifluoromethyl) phenyl]-methyl]-pyridine-3-carboxylic acid amide; 238 2-Methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-y]-N-[[4-(trifluoromethyl)-phenyl] methyl]-pyridine-3-carboxylic acid amide; 239 2-Ethylsulfanyl-N-[( 3-fluorophenyl)-methyl]-6-[3-( methoxymethyl )-azetidin-1 -yI]-4 methyl-pyridine-3-carboxylic acid amide; 240 6-(2,5-Dimethyl-morpholin-4-yI)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid a mide; 241 2-Dimethylamino-4-methyl-6-morpholin-4-y-N-[[4-(trifluoromethyl)-phenyl]-methyl] pyridine-3-carboxylic acid amide; 242 N-[(3,5-Difluoro-phenyl)-methyl]-2-dimethylamino-4-methyl-6-morpholin-4-yI-pyridine 3-carboxylic acid amide; 243 2-Ethylsulfanyl-N-[(3-fluorophenyl )-methyl]-4-methyl-6-[2-(trif Iuoromethyl)-5,6, 7,8 tetra hydro-im idazo[ 1,2-a]pyrazi n-7-yI]-pyridine-3-carboxyl ic acid amide; 244 N-[(4-Chlorophenyl)-methyl]-2-dimethylamino-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 245 2-Dimethylamino-N-(4,4-dimethyl-pentyl)-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 246 2-Dimethylamino-4-methyl-6-morpholin-4-y-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide; 247 2-Ethylsulfanyl-4-methyl-N-[(4-methylsulfonyl-phenyl)-methyl]-6-morpholin-4-y pyridine-3-carboxylic acid amide; 248 2-Ethylsu Ifanyl-N-[(4-fluorophenyl)-methyl]-6-[(3R)-3-(methoxymethyl)-morpholin-4 yI]-4-methyl-pyridine-3-carboxylic acid amide; 249 2-Ethyisulfanyl-N-[(4-fluorophenyl)-methyl]-6-[(3S)-3-(methoxymethyl)-morpholin-4-y] 4-methyl-pyridine-3-carboxylic acid amide; 250 2-tert-Butyl-N-[(3-fluorophenyl )-methyl]-4-methyl-6-morphol in-4-yI-pyridine-3 carboxylic acid amide; 251 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[4-(2, 2, 2-trifluoro-ethyl) piperazin-1 -yI]-pyridine-3-carboxylic acid amide; 252 6-(2,2-Dimethyl-morpholin-4-y )-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyrid ine-3-carboxylic acid am ide; 253 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(2-oxo-propyl)-am ino] pyridine-3-carboxylic acid amide; 254 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6-[(2R)-2-(methoxymethyl)-morpholin-4 yl]-4-methyl-pyridine-3-carboxylic acid amide; 255 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6-[(2S)-2-(methoxymethyl)-morpholin-4 yl]-4-methyl-pyridine-3-carboxylic acid amide; 256 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6-[(3R)-3-(methoxymethyl)-morpholin-4 yI]-4-methyl-pyridine-3-carboxylic acid amide; 257 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6-[(3S)-3-(methoxymethyl)-morpholin-4 yI]-4-methyl-pyridine-3-carboxylic acid amide; 258 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro-pyran-4-y amino)-pyridine-3-carboxylic acid amide; 259 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(4-methoxy-cyclohexyl)-methyl-amino] 4-methyl-pyridine-3-carboxylic acid amide; 260 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[2-(trifluoromethyl)-morpholin 4-yl]-pyridine-3-carboxylic acid amide; 261 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro-pyran-3-yl amino)-pyridine-3-carboxylic acid amide; 262 6-(3,5-Dimethyl-morpholin-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 263 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3S)-3-(hydroxymethyl)-morpholin-4-y] 4-methyl-pyridine-3-carboxylic acid amide; 264 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3R)-3-(hydroxymethyl)-morpholin-4-yl] 4-methyl-pyridine-3-carboxylic acid amide; 265 N-[(4-Chlorophenyl)-methyl]-2-isopropyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 266 N-[(4-Chlorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-2-propyl pyridine-3-carboxylic acid amide; 267 2-Ethylsulfanyl-N-(3-hydroxy-4,4-dimethyl-pentyl)-4-methyl-6-morpholin-4-y-pyridine 3-carboxylic acid amide; 268 N-[(4-Cyano-3-fluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 269 N-[(4-Chlorophenyl)-methyl]-2-(2-fluoro-ethoxy)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 270 N-[(4-Chlorophenyl)-methyl]-2-(2,2-difluoro-ethoxy)-4-methyl-6-morpholin-4-yI pyridine-3-carboxylic acid amide; 271 N-[(4-Chlorophenyl)-methyl]-2-(cyclopropyl-methoxy)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 272 2-(2,2-Difluoro-ethoxy)-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 273 N-[(4-Chlorophenyl)-methyl]-2-ethoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 274 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4-methyl-6-[(2S)-2-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 275 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4-methyl-6-[(2R)-2-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 276 2-(Cyclopropyl-methoxy)-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 277 N-[(4-Chlorophenyl)-methyl]-2-isopropyl-6-[(3S)-3-(methoxymethyl)-morpholin-4-yl]-4 methyl-pyridine-3-carboxylic acid amide; 278 N-(4,4-Dimethyl-pentyl)-4-methyl-2-(2-methyl-butyl)-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 279 N-(4,4-Dimethyl-pentyl)-2-(1,1 -dimethyl-propyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 280 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4-methyl-6-(methyl-tetrahydro-pyran-3-yl amino)-pyridine-3-carboxylic acid amide; 281 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[(4-nitrophenyl)-methyl]-pyridine-3 carboxylic acid amide; 282 N-[(4-Chlorophenyl)-methyl]-2-cyclopropyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-y] pyridine-3-carboxylic acid amide; 283 N-[(4-Chlorophenyl)-methyl]-2-(2-dimethylaminoethyloxy)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 284 2-Ethylsulfanyl-N-[(4-fluoro-3-methoxy-phenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 285 N-[(4-Chlorophenyl)-methyl]-2-isopropyl-6-[(2S)-2-(methoxymethyl)-morpholin-4-yl]-4 methyl-pyridine-3-carboxylic acid amide; 286 2-Ethylsulfanyl-N-(3-hydroxy-4-methyl-pentyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 287 2-Ethylsulfanyl-N-[(3-fluoro-4-methoxy-phenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 288 N-[[4-(Difluoro-methoxy)-phenyl]-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-y pyridine-3-carboxylic acid amide; 289 N-(1, 3-Dihydro-isobenzofuran-5-yl-methyl)-2-ethylsulfanyl-4-methyl-6-morphoin-4-yl pyridine-3-carboxylic acid amide; 290 N-[(4-Chlorophenyl)-methyl]-2-cyclopropyl-6-[(2S)-2-(methoxymethyl)-morpholin-4-yl] 4-methyl-pyridine-3-carboxylic acid amide; 291 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(2S)-2-(hydroxymethyl)-morpholin-4-yl] 4-methyl-pyridine-3-carboxylic acid amide; 292 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(2R)-2-(hydroxymethyl)-morpholin-4-yl] 4-methyl-pyridine-3-carboxylic acid amide; 293 6-(Benzyl-methyl-amino)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 294 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(tetrahydro-furan-2-yl methyl)-amino]-pyridine-3-carboxylic acid amide; 295 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 296 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[(3S)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide; 297 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-[[4-(trifluoromethyl) phenyl]-methyl]-amino]-pyridine-3-carboxylic acid amide; 298 6-(1,1-Dioxo-[1,4]thiazinan-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 299 6-(Azetidin-1 -yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 carboxylic acid amide; 301 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro-furan-3-yl amino)-pyridine-3-carboxylic acid amide; 302 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(N-methyl-anilino)-pyridine-3 carboxylic acid amide; 303 6-(2,3-Dihydro-1 H-isoindol-2-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide; 304 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(1,2,3,4-tetrahydro-quinolin- 1 yl)-pyridine-3-carboxylic acid amide; 305 6-(2,3-Dihydro-1 H-indol-1 -yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methylj-4-methyl pyridine-3-carboxylic acid amide; 306 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(2,4,4-trimethyl-pentyl)-pyridine-3 carboxylic acid amide; 307 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3-methoxy-cyclohexyl)-methyl-amino] 4-methyl-pyridine-3-carboxylic acid amide; 308 N-(4,4-Difluoro-pentyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyrid ine-3-carboxylic acid amide; 309 N-[(4-Fluorophenyl)-methyl]-2-isopropyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 310 N-[(3,4-Difluoro-phenyl)-methyl]-2-isopropyl-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 311 2-Isopropyl-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl]-methyl]-pyridine 3-carboxylic acid amide; 312 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxo-morpholin-4-yl) pyridine-3-carboxylic acid amide; 313 N-(4,4-Dimethyl-pentyl)-4-methyl-6-morpholin-4-y-2-propyl-pyridine-3-carboxylic acid amide; 314 N-(4,4-Dimethyl-pentyl)-2-isopropyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 315 2-Isopropyl-4-methyl-6-morpholin-4-y-N-(4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid amide; 316 N-[(3,5-Difluoro-phenyl)-methyl]-2-isopropyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 317 N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-(oxetan-3-yloxy)-pyridine-3 carboxylic acid amide; 318 2-Ethylsulfanyl-N-(4-methoxy-4-methyl-pentyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 319 2-Ethylsulfanyl-N-(4-fluoro-4-methyl-pentyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 320 4-Methyl-6-morpholin-4-yl-2-propyl-N-(4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid amide; 321 N-[(3,4-Difluoro-phenyl)-methyl]-4-methyl-6-morpholin-4-yI-2-propyl-pyridine-3 carboxylic acid amide; 322 N-[(3,5-Difluoro-phenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-propyl-pyridine-3 carboxylic acid amide; 323 4-Methyl-6-morpholin-4-yl-2-propyl-N-[[4-(trifluoromethyl)-phenyl]-methyl]-pyridine-3 carboxylic acid amide; 324 N-(4,4-Dimethyl-2-oxo-pentyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 325 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(8-oxa-3 azabicyclo[3.2.1]octan-3-yl)-pyridine-3-carboxylic acid amide; 326 N-[(4-Chlorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-propyl-pyridine-3-carboxylic acid amide; 327 N-[(4-Chlorophenyl)-methyl]-2-isopropyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 328 2-Cyclopropyl-N-(4,4-dimethyl-pentyl)-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 329 2-Cyclopropyl-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid amide; 330 2-Cyclopropyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 331 2-Cyclopropyl-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 332 2-Cyclopropyl-N-[(3,4-difluoro-phenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 333 2-Cyclopropyl-N-[(3,5-difluoro-phenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 334 2-Cyclopropyl-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl]-methyl] pyridine-3-carboxylic acid amide; 335 N-[(4-Chlorophenyl)-methyl]-2-cyclopropyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 336 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methoxy-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 337 N-(4,4-Dimethyl-pentyl)-2-(2-methoxy-ethylsulfanyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 338 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(4-fluorophenyl)-methyl-(3-methoxy propyl)-amino]-4-methyl-pyridine-3-carboxylic acid amide; 339 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yI-N-(3,4,4-trimethyl-pentyl)-pyridine-3 carboxylic acid amide; 340 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[3-(2-methoxy-ethyl)-morpholin-4-yl]-4 methyl-pyridine-3-carboxylic acid amide; 341 2-(Acetyl-methyl-amino)-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 342 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(4-fluorophenyl)-methyl-(2-methoxy ethyl)-amino]-4-methyl-pyridine-3-carboxylic acid amide; 343 2-Ethylsulfanyl-4-methyl-N-[3-(3-methyl-oxetan-3-y)-propyl]-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 344 N-(4,4-Dimethyl-pent-2-ynyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yI-pyridine-3 carboxylic acid amide; 345 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxa-8 azabicyclo[3.2.1]octan-8-yl)-pyridine-3-carboxylic acid amide; 346 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-(methoxymethyl)-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 347 N-[(4-Chlorophenyl)-methyl]-4-methyl-2-(1 -methyl-propyl)-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 348 N-(4,4-Dimethyl-hexyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 349 N-(4,4-Dimethyl-pentyl)-2-(2-methoxy-ethoxy)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 350 2-Ethylsulfanyl-4-methyl-N-[3-(1 -methyl-cyclopropyl)-propyl]-6-morpholin-4-yl pyridine-3-carboxylic acid amide; 351 2-Cyclopropyl-N-[[4-fluoro-3-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 352 2-Ethylsulfanyl-N-[[4-fluoro-3-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-[(3R)-3 methyl-morpholin-4-ylJ-pyridine-3-carboxylic acid amide; 353 2-Ethylsulfanyl-N-[[4-fluoro-3-(hydroxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 354 N-(4,4-Dimethyl-pentyl)-2-(3-methoxy-propyl)-4-methyl-6-morpholin-4-y-pyridine-3 carboxylic acid amide; 355 2-Cyclopropyl-N-[[3-fluoro-4-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide; 356 N-[(3-Fluorophenyl)-methyl]-2-(methoxymethyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 357 N-[(4-Chlorophenyl)-methyl]-2,4-diisopropyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide; 358 N-(4,4-Dimethyl-pentyl)-2-(2-methoxy-ethyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide; 359 N-[(4-Chlorophenyl)-methyl]-2,4-diethyl-6-morpholin-4-yI-pyridine-3-carboxylic acid amide; 362 N-(4,4-Dimethyl-pentyl)-4-methyl-6-morpholin-4-yl-2-tetrahydro-pyran-4-yl-pyridine-3 carboxylic acid amide, respectively in the form of the free compounds; the racemate; the enantiomers, diastereomers, mixtures of the enantiomers or diastereomers in any mixing ratio or of an individual enantiomer or diastereomer; or in the form of the salts of physiologically acceptable acids or bases; or in the form of solvates, in particular hydrates. The substituted compounds according to the invention of the aforementioned general formula (I) and corresponding stereoisomers and also the respective corresponding salts and solvates are toxicologically safe and are therefore suitable as pharmaceutical active ingredients in pharmaceutical compositions. The present invention therefore further relates to a pharmaceutical composition containing at least one compound according to general formula (I), in each case if appropriate in the form of one of its pure stereoisomers, in particular enantiomers or diastereomers, its racemates or in the form of a mixture of stereoisomers, in particular the enantiomers and/or diastereomers, in any desired mixing ratio, or respectively in the form of a physiologically acceptable salt, or respectively in the form of a corresponding solvate, and also if appropriate one or more pharmaceutically acceptable auxiliaries. These pharmaceutical compositions according to the invention are suitable in particular for the modulation of KCNQ2/3 K' channels, preferably for KCNQ2/3 K' channel inhibition and/or KCNQ2/3 K* channel stimulation, i.e. they exert an agonistic or antagonistic effect. Likewise, the pharmaceutical compositions according to the invention are preferably suitable for the prophylaxis and/or treatment of disorders and/or diseases which are mediated, at least in part, by KCNQ2/3 K' channels. The pharmaceutical composition according to the invention is suitable for administration to adults and children, including toddlers and babies. The pharmaceutical composition according to the invention may be prepared as a liquid, semisolid or solid pharmaceutical form, for example in the form of injection solutions, drops, juices, syrups, sprays, suspensions, tablets, patches, capsules, plasters, suppositories, ointments, creams, lotions, gels, emulsions, aerosols or in multiparticulate form, for example in the form of pellets or granules, if appropriate pressed into tablets, decanted in capsules or suspended in a liquid, and also be administered as much. In addition to at least one substituted compound of general formula (1), if appropriate in the form of one of its pure stereoisomers, in particular enantiomers or diastereomers, its racemate or in the form of mixtures of the stereoisomers, in particular the enantiomers or diastereomers, in any desired mixing ratio, or if appropriate in the form of a corresponding salt or respectively in the form of a corresponding solvate, the pharmaceutical composition according to the invention conventionally may contain further physiologically acceptable pharmaceutical auxiliaries which, for example, can be selected from the group consisting of excipients, fillers, solvents, diluents, surface-active substances, dyes, preservatives, blasting agents, slip additives, lubricants, aromas and binders. The selection of the physiologically acceptable auxiliaries and also the amounts thereof to be used depend on whether the pharmaceutical composition is to be applied orally, subcutaneously, parenterally, intravenously, intraperitoneally, intradermally, intramuscularly, intranasally, buccally, rectally or locally, for example to infections of the skin, the mucous membranes and of the eyes. Preparations in the form of tablets, dragees, capsules, granules, pellets, drops, juices and syrups are preferably suitable for oral application; solutions, suspensions, easily reconstitutable dry preparations and also sprays are preferably suitable for parenteral, topical and inhalative application. The substituted compounds according to the invention used in the pharmaceutical composition according to the invention in a repository, in a dissolved form or in a plaster, and further agents promoting skin penetration being added if appropriate, are suitable percutaneous application preparations. Orally or percutaneously applicable preparation forms can release the respective substituted compound according to the invention also in a delayed manner. The pharmaceutical compositions according to the invention can be prepared with the aid of conventional means, devices, methods and process known in the art, such as are described for example in ,,Remington's Pharmaceutical Sciences", A.R. Gennaro (Editor), 17* edition, Mack Publishing Company, Easton, Pa, 1985, in particular in Part 8, Chapters 76 to 93. The corresponding description is introduced herewith by way of reference and forms part of the disclosure. The amount to be administered to the patient of the respective substituted compounds according to the invention of the above-indicated general formula (I) may vary and is for example dependent on the patient's weight or age and also on the type of application, the indication and the severity of the disorder. Conventionally, 0.001 to 100 mg/kg, preferably 0.05 to 75 mg/kg, particularly preferably 0.05 to 50 mg of at least one compound according to the invention are applied per kg of the patient's body weight. The pharmaceutical composition according to the invention is preferably suitable for the prophylaxis and/or treatment of disorders and/or diseases which are mediated, at least in part, by KCNQ2/3 K* channels. The pharmaceutical composition according to the invention is more preferably suitable for the treatment and/or prophylaxis of one or more diseases and/or disorders selected from the group consisting of pain, in particular pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, migraine, cognitive diseases and dystonia-associated dyskinesias. The pharmaceutical composition according to the invention is suitable particularly preferably for the treatment of pain, more particularly preferably of acute pain, chronic pain, neuropathic pain, visceral pain, inflammatory pain and muscular pain, and most particularly for the treatment of neuropathic pain. The pharmaceutical composition according to the invention is also preferably suitable for the treatment and/or prophylaxis of epilepsy. The present invention further relates to at least one compound according to general formula (I) and also if appropriate of one or more pharmaceutically acceptable auxiliaries for use in the modulation of KCNQ2/3 K' channels, preferably for use in KCNQ2/3 K' channel inhibition and/or stimulation. The present invention therefore further relates to at least one compound according to general formula (I) and also if appropriate of one or more pharmaceutically acceptable auxiliaries for use in the prophylaxis and/or treatment of disorders and/or diseases which are mediated, at least in part, by KCNQ2/3 K* channels. Preference is given to at least one compound according to general formula (I) and optionally one or more pharmaceutically acceptable auxiliaries for use in the prophylaxis and/or treatment of disorders and/or diseases selected from the group consisting of pain, in particular pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, migraine, cognitive diseases and dystonia associated dyskinesias. Particular preference is given to at least one compound according to general formula (I) and optionally one or more pharmaceutically acceptable auxiliaries for use in the prophylaxis and/or treatment of disorders and/or diseases selected from the group consisting of pain, in particular pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, most particularly neuropathic pain.
Particular preference is also given to at least one compound according to general formula (1) and optionally one or more pharmaceutically acceptable auxiliaries for use in the prophylaxis and/or treatment of epilepsy. The present invention further relates to at least one compound according to general formula (I) and also if appropriate of one or more pharmaceutically acceptable auxiliaries for the modulation of KCNQ2/3 K* channels, preferably for KCNQ2/3 K* channel inhibition and/or stimulation. The present invention therefore further relates to at least one compound according to general formula (I) and also if appropriate of one or more pharmaceutically acceptable auxiliaries for the prophylaxis and/or treatment of disorders and/or diseases which are mediated, at least in part, by KCNQ2/3 K* channels. Preference is given to at least one compound according to general formula (I) and optionally one or more pharmaceutically acceptable auxiliaries for the prophylaxis and/or treatment of disorders and/or diseases selected from the group consisting of pain, especially pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, migraine, cognitive diseases and dystonia-associated dyskinesias.. Particular preference is given to at least one compound according to general formula (I) and optionally one or more pharmaceutically acceptable auxiliaries for the prophylaxis and/or treatment of disorders and/or diseases selected from the group consisting of pain, in particular pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, most particularly neuropathic pain. Particular preference is also given to at least one compound according to general formula (I) and optionally one or more pharmaceutically acceptable auxiliaries for the prophylaxis and/or treatment of epilepsy. The present invention further relates to at least one compound according to general formula (I) and also if appropriate of one or more pharmaceutically acceptable auxiliaries for use in the preparation of a medicament for prophylaxis and/or treatment of disorders and/or diseases which are mediated, at least in part, by KCNQ2/3 K' channels.
Preference is given to at least one compound according to general formula (1) and optionally one or more pharmaceutically acceptable auxiliaries for use in the preparation of a medicament for the prophylaxis and/or treatment of disorders and/or diseases selected from the group consisting of pain, in particular pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, migraine, cognitive diseases and dystonia-associated dyskinesias. Particular preference is given to at least one compound according to general formula (1) and optionally one or more pharmaceutically acceptable auxiliaries for use in the preparation of a medicament for the prophylaxis and/or treatment of disorders and/or diseases selected from the group consisting of pain, in particular pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, most particularly neuropathic pain. Particular preference is also given to at least one compound according to general formula (I) and optionally one or more pharmaceutically acceptable auxiliaries for use in the preparation of a medicament for the prophylaxis and/or treatment of epilepsy. Another aspect of the present invention is a method of treatment and/or prophylaxis of disorders and/or diseases, which are mediated, at least in part, by KCNQ2/3 K* channels, in a mammal, preferably of disorders and/or diseases selected from the group consisting of pain, preferably pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, migraine, cognitive diseases and dystonia-associated dyskinesias, which comprises administering an effective amount of at least one compound of general formula (I) to the mammal. The effectiveness against pain can be shown, for example, in the Bennett or Chung model (Bennett, G.J. and Xie, Y.K., A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man, Pain 1988, 33(1), 87-107; Kim, S.H. and Chung, J.M., An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat, Pain 1992, 50(3), 355-363), by tail flick experiments (e.g. according to D'Amour und Smith (J. Pharm. Exp. Ther. 72, 74 79 (1941)) or by the formalin test (e.g. according to D. Dubuisson et al., Pain 1977, 4, 161-174). The effectiveness against epilepsy can be demonstrated, for example, in the DBA/2 mouse model (De Sarro et al., Naunyn Schmiedeberg's Arch. Pharmacol. 2001, 363, 330-336).
The compounds according to the invention preferably have a EC 50 value of not more than 10000 nM or not more than 8000 nM, more preferably not more than 7000 nM or not more than 6000 nM, yet more preferably not more than 5000 nM or not more than 3000 nM, even more preferably not more than 2000 nM or not more than 1000 nM, yet even more preferably not more than 800 nM or not more than 700 nM, still more preferably not more than 600 nM or not more than 500 nM, yet still more preferably not more than 400 nM or not more than 300 nM, most preferably not more than 200 nM or not more than 150 nM and especially not more than 120 nM or not more than 100 nM. Methods for determining the EC 50 value are known to the person skilled in the art. The EC 50 value is preferably determined by fluorimetry, particularly preferably as described below under "pharmacological experiments". The invention further provides processes for the preparation of the substituted compounds according to the invention. The chemicals and reaction components used in the reactions and schemes described below are available commercially or in each case can be prepared by conventional methods known to the person skilled in the art. The reactions described can each be carried out under the conventional conditions with which the person skilled in the art is familiar, for example with regard to pressure or the order in which the components are added. If appropriate, the person skilled in the art can determine the optimum procedure under the respective conditions by carrying out simple preliminary tests. The intermediate and end products obtained using the reactions described hereinbefore can each be purified and/or isolated, if desired and/or required, using conventional methods known to the person skilled in the art. Suitable purifying processes are for example extraction processes and chromatographic processes such as column chromatography or preparative chromatography. All of the process steps described below, as well as the respective purification and/or isolation of intermediate or end products, can be carried out partly or completely under an inert gas atmosphere, preferably under a nitrogen atmosphere. If the substituted compounds according to the invention of the aforementioned general formula (1) are obtained, after preparation thereof, in the form of a mixture of their stereoisomers, preferably in the form of their racemates or other mixtures of their various enantiomers and/or diastereomers, they can be separated and if appropriate isolated using conventional processes known to the person skilled in the art. Examples include chromatographic separating processes, in particular liquid chromatography processes under normal pressure or under elevated pressure, preferably MPLC and HPLC processes, and also fractional crystallisation processes. These processes allow individual enantiomers, for example diastereomeric salts formed by means of chiral stationary phase HPLC or by means of crystallisation with chiral acids, for example (+)-tartaric acid, (-)-tartaric acid or (+)-10 camphorsulphonic acid, to be separated from one another.
General reaction scheme I (synthesis of precursor SMOI):
R
2 0 R 0' H, Me, Et I& Cl N CI SMO1 A plurality of syntheses of and synthesis paths to compounds of the general formula SM01 with a very broad substitution pattern for residues R 2 and R 3 are known in the current specialist literature. Previously unknown intermediates of the general formula SM01 with similar substitution patterns for residues R 2 and R 3 as outlined thereafter and whose syntheses are not described in greater detail, can be produced by the person skilled in the art according to these known methods or by combination of the known methods. General reaction scheme II
R
2 0
R
3 'OH Cl N CI IMO1 stage01 I stage03 stage02
R
2 0 R 2 0 R 2 O H H R OO H H C N R 1 R4
-
IY H N N Cl Cl N R 6 Cl N Cl
R
5 IM02 IM03 IM04 stage tgeO5 tge6 stage ge8 stageO9
R
2 0 R 2 O H H R 2 O H H R3 OH R N3 N RI R N RI
R
4 1l N C H I H N NR 6 NN Cl NR 6 5 IMOS RIM IM07 stagea1 stage10 stage 12
R
2 0 H H R N N R 1 R5 In stage03, stageO5, stage07 and stagelO, acids of the general formulae IM01, IM02, IM03 and IM05, respectively, can be transformed into amides of the general formulae IM04, IM06, IM07 and I respectively, with amines of the general formula R'-CH 2
-NH
2 according to methods known to the person skilled in the art, for example, using a suitable coupling reagent, for example HATU. In stage0l, stage, stageO8 and stage12, 6-chloro-pyridines of the general formulae IM01, IM03, IM04 and IM07 respectively, can be transformed into 6-amino-pyridines of the general formulae IM02, IM05, IM06 and I respectively, with amines of the general formula HNR 4
R
5 according to methods known to the person skilled in the art, for example by conventional or microwave heating, neat or in solution, for example in MeCN, DMF or THF, optionally in the presence of a suitable base, for example NEt 3 , DIPEA, K 2
CO
3 , Cs 2
CO
3 , NaOtBu or KOtBu, optionally by addition of a suitable coupling reagent, for example Pd(PPh 3
)
4 . In stage02, stage04, stage09, and stagel1, 2-chloro-pyridines of the general formulae IM01, IM02, IM04, and IM06 respectively, can be transformed into 2-substituted-pyridines of the general formulae IM03, IM05, IM07 and I respectively, with compounds of the general formula X-R , where X denotes H, a metal, for example sodium, or a residue to form an organometal reagent, for example MgBr or MgCI, according to methods known to the person skilled in the art, for example by conventional or microwave heating, neat or in solution, for example in MeCN, DMF, THF, MeOH or EtOH, optionally in the presence of a suitable base, for example NEt 3 , DIPEA, K 2
CO
3 , Cs 2
CO
3 , NaOtBu or KOtBu, optionally by addition of a suitable coupling reagent, for example Pd(PPh 3
)
4 , Ni(dppp)C1 2 or Fe(acac) 3
.
General reaction scheme Ill:
R
2 0 R 2 0 MeorE stage13 R Me or Et Cl N Cl Cl N R IM08 IM09 stage14 I I stage15
R
2 0 R 2 0 R4,R9, e o Et stage16 R YR ,Me or Et
R
3 Me,~ Me or Et ) S IM10R IM11 1 stage18
R
2 0
R
2 O H H
R
3 ,OH stage19
R
3 H 'N N R 6 R' N: N Rr
R
5 IM12 RS In stage13 and stage16, 2-chloro-pyridines of the general formulae IM08 and IM10 respectively, can be transformed into 2-substituted-pyridines of the general formulae IM09 and IM11 respectively, with compounds of the general formula X-R 6 , where X denotes H, a metal, for example sodium, or a residue to form an organometal reagent, for example MgBr or MgCI, according to methods known to the person skilled in the art, for example by conventional or microwave heating, neat or in solution, for example in MeCN, DMF, THF, MeOH or EtOH, optionally in the presence of a suitable base, for example NEt 3 , DIPEA,
K
2
CO
3 , Cs 2
CO
3 , NaOtBu or KOtBu, optionally by addition of a suitable coupling reagent, for example Pd(PPh 3
)
4 , Ni(dppp)C1 2 or Fe(acac) 3 . In stage14 and stage15, 6-chloro-pyridines of the general formulae IM08 and IM09 respectively, can be transformed into 6-Amino-pyridines of the general formulae IMIO and IM11 respectively, with amines of the general formula HNR 4
R
5 according to methods known to the person skilled in the art, for example by conventional or microwave heating, neat or in solution, for example in MeCN, DMF or THF, optionally in the presence of a suitable base, for example NEt 3 , DIPEA, K 2
CO
3 , Cs 2
CO
3 , NaOtBu or KOtBu, optionally by addition of a suitable coupling reagent, for example Pd(PPh 3
)
4
.
In stage17 esters of the general formula IM11 can be transformed into acids of the general formula IM12 according to methods known to the person skilled in the art, for example, by employing a base, for example lithium hydroxide. In stage18 esters of the general formula IM11 can be converted to yield amides of the general formula I, with amines of the general formula R'-CH 2
-NH
2 according to methods known to the person skilled in the art, for example by the addition of trimethyl aluminium. In stage19 acids of the general formula IM12 can be transformed into amides of the general formula I with amines of the general formula R'-CH 2
-NH
2 according to methods known to the person skilled in the art, for example, using a suitable coupling reagent, for example, HATU. Thus obtained compounds of the general formula I can be further transformed to introduce and/or exchange one or more of the substituents R 1 , R 2 , R 3 , R 4
R
5 and R 6 by simple derivatization reactions known to the person skilled in the art, for example, esterification, ester formation, amide formation, etherification, ether cleavage, oxidation, reduction, substitution or cross-coupling reactions. The invention will be described hereinafter with the aid of a number of examples. This description is intended merely by way of example and does not limit the general idea of the invention.
Examples The indication ,,equivalents" ("eq.") means molar equivalents, ,,RT" means room temperature (23 ± 7 *C), ,M" are indications of concentration in mol/l, ,aq." means aqueous, ,,sat." means saturated, ,,sol." means solution, "conc." means concentrated. Further abbreviations: acac acetylacetone = 2,4-pentanedione AcOH acetic acid d days dppp 1,3-bis(diphenylphosphino)propane brine saturated aqueous sodium chloride solution CC column chromatography on silica gel DCM dichloromethane DIPEA N,N-diisopropylethylamine DMF N,N-dimethylformamide ether diethyl ether EtOAc ethyl acetate EtOH ethanol h hour(s)
H
2 0 water HATU O-(7-aza-benzotriazol-1 -yl)-N, N,N', N'-tetramethyluroniumhexafluorophosphate m/z mass-to-charge ratio MeOH methanol MeCN acetonitrile min minutes MS mass spectrometry N/A not available NEt 3 triethylamine NMP N-methyl-2-pyrrolidone RM reaction mixture THF tetrahydrofuran v/v volume to volume w/w weight in weight The yields of the compounds prepared were not optimized.
All temperatures are uncorrected. All starting materials which are not explicitly described were either commercially available (the details of suppliers such as for example Acros, Avocado, Aldrich, Bachem, Fluka, Lancaster, Maybridge, Merck, Sigma, TCI, Oakwood, etc. can be found in the Symyx@ Available Chemicals Database of MDL, San Ramon, US or the SciFinder@ Database of the ACS, Washington DC, US, respectively, for example) or the synthesis thereof has already been described precisely in the specialist literature (experimental guidelines can be found in the Reaxys@ Database of Elsevier, Amsterdam, NL or the SciFinder@ Database of the ACS, Washington DC, US, repspectively, for example) or can be prepared using the conventional methods known to the person skilled in the art. The stationary phase used for the column chromatography was silica gel 60 (0.04 - 0.063 mm) from E. Merck, Darmstadt. For microwave reactions a Discover@ microwave, from the CEM Corporation, Matthews, US, was used. The mixing ratios of solvents or eluents for chromatography are specified in v/v. All the intermediate products and exemplary compounds were analytically characterised by means of 1 H-NMR spectroscopy. In addition, mass spectrometry tests (MS, m/z for [M+H]*) were carried out for all the exemplary compounds and selected intermediate products.
Synthesis of exemplary compounds Synthesis of example 1: N-[(3,5-difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 0 N F O N F a) Synthesis of 6-chloro-2-ethylsulfanyl-4-methyl-pyridine-3-carboxylic acid 6.1 g (153 mmol, 60% w/w in mineral oil) NaH were dissolved in THF (90 ml) at 0 0C. At this temperature 3,4 g (54.7 mmol) ethane thiol were added. After stirring for 15 min at 0 OC, 12.4 g (60.2 mmol) 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid were added portionwise. The RM was allowed to warm to RT and stirring was continued at RT for 16 h. Then the reaction was quenched with a 2M aq. HCI and diluted with EtOAc. The organic layer was separated, dried over MgSO 4 and concentrated in vacuo. Crystallisation (DCM/hexane) of the residue yielded 12.0 g (51.7 mmol, 95%) 6-chloro-2-ethylsulfanyl-4-methyl-pyridine-3-carboxylic acid. b) Synthesis of 2-ethylsulfanyl-4-methyl-6-morpholin-4-y-pyridine-3-carboxylic acid A mixture of 12.0 g (51.7 mmol) 6-chloro-2-ethylsulfanyl-4-methyl-pyridine-3-carboxylic acid and 33.7 g (387 mmol) morpholine was heated to 105 0C for 5 d. After cooling to RT a 2M aq. NaOH sol. (200 ml) was added, followed by washing with ether (3 x 200 ml). The aqueous layer was then acidified with a 2M aq. HCI to pH 5 and extracted with EtOAc. In the same manner pH 4 was adjusted followed by extraction with EtOAc. The combined EtOAc extracts were dried over MgSO 4 and concentrated in vacuo. Crystallisation (DCM/hexane) of the residue yielded 7.2 g (25.3 mmol, 49%) 2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid. c) Synthesis of N-[(3,5-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide To a solution of 250 mg (0.89 mmol) 2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid in THF (7 ml), 124 pl (0.97 mmol) 3,5-difluorobenzylamine, 335 mg (0.89 mmol) HATU and 367 pl (2.66 mmol) NEt 3 were added and the RM was heated at 70 *C for 5d. Subsequently the mixture was diluted with EtOAc and washed with a 4M aq. NH 4 CI sol., a 1 M aq. NaHCO 3 sol. and brine. The organic layer was dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:2) provided 187 mg (0.46 mmol, 52%) N-[(3,5-difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide (example 1). [M+H]* 408.1. Synthesis of example 2: 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 0 N F a) Synthesis of 2,6-dichloro-N-(3-fluorobenzyl)-4-methyl-pyridine-3-carboxylic acid amide To a solution of 17.4 g (84.4 mmol) of 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid in THF (340 ml) were added 10.6 ml (92.9 mmol) 3-fluorobenzylamine, 32.0 g (84.4 mmol) HATU and 35.0 ml (253.3 mmol) NEt 3 . The RM was then heated at 70 *C for 16. After dilution with EtOAc (350 ml) the mixture was washed with a 4M aq. NH 4 CI sol., a 1M aq. NaHCO 3 sol. and brine. The organic layer was dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:2) provided 19.5 g (62.3 mmol, 74%) 2,6-dichloro-N (3-fluorobenzyl)-4-methyl-pyridine-3-carboxylic acid amide. b) Synthesis of 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 carboxylic acid amide A solution of 4.0 g (12.8 mmol) 2,6-dichloro-N-(3,5-difluorobenzyl)-4-methyl-pyridine-3 carboxylic acid amide in DMF (30 ml) was treated with 2.6 g (19.2 mmol) K 2
CO
3 and 1.2 ml (16.0 mmol) ethanethiol, followed by stirring in a closed vessel at RT for 16 h. Then water (35 ml) was added and the mixture was extracted with EtOAc (2 x 70 ml). The combined organic layers were washed with water, a 2M aq. NaOH sol. and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:1) provided 3.3 g (9.7 mmol, 76%) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine 3-carboxylic acid amide. c) Synhesis of 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide A mixture of 1.5 g (4.4 mmol) 6-chloro-2-ethylsufanyl-N-[(3-fl uorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide and 1.9 ml (22.1 mmol) morpholine was heated in the microwave at 120 "C for 30 min. Subsequently the RM was diluted with water and EtOAc and the layers were separated. The organic layer was washed with a 1M aq. NaOH sol. and brine, dried over MgSO 4 and concentrated in vacuo. Crystallisation (hexane/EtOAc 3:1) of the residue yielded 1.3 g (3.3 mmol, 75%) 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 2). [M+H]* 390.2. Synthesis of example 3: N-[(3,5-difluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 0 N F H O~ F a) Synthesis of 6-chloro-2-methoxy-4-methyl-pyridine-3-carboxylic acid To a suspension of 9.3 g (231 mmol, 60% w/w in mineral oil) NaH in THF (200 ml) was added a solution of 3.8 ml (93 mmol) Methanol in THF (200 ml) while the temperature was kept at 10-20 "C. Subsequently a solution of 20.0 g (97 mmol) of 2,6-dichloro-4-methyl pyridine-3-carboxylic acid in THF (200 ml) was added and the RM was heated to 70 *C for 16 h. After cooling to RT the mixture was acidified with a 2M aq. HCI to pH 3-4 and was then extracted with EtOAc (2 x 600 ml). The combined organic layers were washed with water and brine, dried over MgSO 4 and concentrated in vacuo. The obtained crude 22.6 g 6-chloro-2 methoxy-4-methyl-pyridine-3-carboxylic acid was used in subsequent reactions without further purification. b) Synthesis of 2-methoxy-4-methyl-6-morpholin-4-y-pyridine-3-carboxylic acid To a solution of 302 mg crude 6-chloro-2-methoxy-4-methyl-pyridine-3-carboxylic acid in THF (12 ml) were added 568 mg (1.5 mmol) HATU and 934 pl (6.8 mmol) NEt 3 . The RM was stirred at 50 *C for 3 h followed by the addition of 268 mg (1.9 mmol) 3,5 difluorobenzylamine. Stirring was continued at 50 *C for 72 h. The RM was then diluted with EtOAc (50 ml) and subsequently washed with a 4M aq. NH 4 CI sol., a 1M aq. NaHCO 3 sol. and brine. The organic layer was dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:1) provided 237 mg (0.7 mmol, 54% over 2 steps) 2 methoxy-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid. c) Synthesis of N-[(3,5-Difluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide A mixture of 237 mg (0.7 mmol) 2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid and 474 pl (5.4 mmol) morpholine was heated in the microwave at 90 *C for 150 min. Subsequently the RM was diluted EtOAc and the layers were separated. The organic layer was washed with a 1M aq. NaHCO 3 and brine, dried over MgSO 4 and concentrated in vacuo.
Purification of the residue by CC (hexane/EtOAc 7:3) provided 100 mg (0.26 mmol, 38%) N [(3,5-d ifluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 3). [M+H]* 378.2. Synthesis of example 4: 2-ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 0 N N N N' S F O"' A solution of 254 mg (0.75 mmol) 6-chloro-2-ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide (synthesized according to the methods described in sections a) and b) of example 2), 196 pl (2.25 mmol) morpholine and 392 pl (2.25 mmol) DIPEA in MeCN (2 ml) was heated in the microwave at 180 *C for 4 h. Subsequently the RM was diluted with water and EtOAc and the layers were separated. The organic layer was washed with water and brine, dried over MgSO 4 and concentrated in vacuo. Crystallisation (hexane/EtOAc 1:1) of the residue yielded 154 mg (0.40 mmol, 53%) 2-ethylsulfanyl-N-[(4 fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 4). [M+H]* 390.2. Synthesis of example 5: 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl (tetrahydro-pyran-2-yl-methyl)-amino]-pyridine-3-carboxylic acid amide 0 N N F N IN SH A solution of 254 mg (0.75 mmol) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 2), 322 mg (2.25 mmol) N-methyl-1-(tetrahydro-2H-pyran-2-yl)methanamine and 392 pl (2.25 mmol) DIPEA in MeCN (2 ml) was heated in the microwave at 150 *C for 4.5 h. Subsequently the RM was diluted with a 2M aq. NaOH sol and EtOAc and the layers were separated. The organic layer was washed with water and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) provided 122 mg (0.28 mmol, 38%) 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl- (tetrahyd ro-pyran-2-yl-methyl)-am inol-pyrid ine-3-carboxylic acid amide (example 5). [M+H]* 432.2. Synthesis of example 6: 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(3-methoxy-azetidine 1-yl)-4-methyl-pyridine-3-carboxylic acid amide 0 N N F OH 0 "~lN S A solution of 410 mg (1.2 mmol) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid aide (synthesis is described in section b) of example 2), 125 mg (1.0 mmol) 3-methoxy-azetidine and 824 mg (2.53 mmol) Cs 2
CO
3 in 1,4-dioxane (7 ml) was heated at 110 *C for 24 h. Subsequently the RM was concentrated in vacuo. The residue obtained was partitioned between water and EtOAc. The organic layer was separated, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:1) provided 122 mg (0.31 mmol, 31%) 2-ethylsulfanyl-N-[(3-fluorophenyl) methyl]-6-(3-methoxy-azetidin-1-yl)-4-methyl-pyridine-3-carboxylic acid amide (example 6). [M+H]* 390.2. Synthesis of example 7: 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(3-hydroxy-azetidin-1 yl)-4-methyl-pyridine-3-carboxylic acid am ide 0 HONN F
HOJ
1 1JNNLS A mixture of 439 mg (1.2 mmol) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 2), 284 mg (2.6 mmol) 3-hydroxy-azetidine, 2.1 g (6.5 mmol) Cs 2
CO
3 and 149 mg (0.13 mmol) Pd(PPh 3
)
2 in 1,4-dioxane (4 ml) was heated at 110 'C for 16 h. Subsequently the RM was diluted with brine (30 ml) and extracted with EtOAc (3 x 40 ml). The combined organic layers were dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) and subsequent crystallization (hexane/EtOAc) provided 66 mg (0.18 mmol, 15%) 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(3-hydroxy-azetidin-1 -yl)-4-methyl pyridine-3-carboxylic acid amide (example 7). [M+H] 376.1. Synthesis of example 8: 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(4-fluorophenyl) methylamino]-4-methyl-pyridine-3-carboxylic acid amide 0 " F FN N S A mixture of 200 mg (0.59 mmol) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 2), 340 pl (2.96 mmol) 3-fluorobenzylamine and 240 mg (1.77 mmol) K 2
CO
3 were heated in a sealed tube at 160 *C for 16 h. Subsequently the RM was diluted with water (50 ml) and extracted with EtOAc (3 x 40 ml). The combined organic layers were washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:1) provided 120 mg (0.28 mmol, 47%) 2-ethylsulfanyl-N-[(3-fluorophenyl) methyl]-6-[(4-fluorophenyl)-methylamino]-4-methyl-pyridine-3-carboxylic acid amide (example 8). [M+H]* 428.2. Synthesis of example 9: (E)-N-(3-fluorobenzyl)-4-methyl-6-morpholino-2-(prop-1-enyl) pyridine-3-carboxylic acid amide a) Synthesis of 6-chloro-N-[(3-fluorophenyl)-methyl]-4-methyl-2-morpholin-4-yl-pyridine-3 carboxylic acid amide and 2-chloro-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide To a solution of 2.0 g (6.4 mmol) 2,6-dichloro-N-(3-fluorobenzyl)-4-methyl-pyridine-3 carboxylic acid amide (synthesis is described in section a) of example 2) in DMF (19 ml) were added 1.32 g (9.6 mmol) K 2
CO
3 and 660 mg (7.7 mmol) morpholine and the RM was stirred at 90 *C for 16 h. Then the RM was poured into ice water (40 ml), followed by extraction with EtOAc (3 x 40 ml). The combined organic layers were washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:2) provided 1.14g (3.2 mmol, 49%) 6-chloro-N-[(3-fluorophenyl)-methyl]-4 methyl-2-morpholin-4-yl-pyridine-3-carboxylic acid and 400 mg (1.1 mmol, 17%) 2-chloro-N [(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-y-pyridine-3-carboxylic acid amide.
b) Synthesis of (E)-N-(3-fluorobenzyl)-4-methyl-6-morpholino-2-(prop-1-enyl)-pyridine-3 carboxylic acid amide To a solution of 400 mg (1.1 mmol) 2-chloro-N-[(3-fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide in toluene (15 ml) were added 140 mg (1.7 mmol) (E)-prop-1-enylboronic acid, 1.1 g (3.3 mmol) CsCO 3 and EtOH (1.5 ml). After degassing with argon for 15 min 370 mg (0.32 mmol) Pd(PPh 3
)
4 were added and the RM was heated to 110 *C for 5 h. Subsequently the RM was filtered through celite and the filtrate was concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:1) provided 300 mg (0.8 mmol, 74%) (E)-N-(3-fluorobenzyl)-4-methyl-6-morpholino-2-(prop-1-enyl)-pyridine 3-carboxylic acid amide (example 9). [M+H]* 370.2. Synthesis of example 10: N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-propyl pyridine-3-carboxylic acid amide 0 N N OH A solution of 300 mg (0.81 mmol) (E)-N-(3-fluorobenzyl)-4-methyl-6-morpholino-2-(prop-1 enyl)-pyridine-3-carboxylic acid amide (example 9) in MeOH (9 ml) was degassed with argon for 15 min. Then 0.065 g Pd/C (10% w/w) was added and the RM was stirred for 3 h under hydrogen atmosphere by use of an H 2 balloon. Subsequently the mixture was filtered through celite and the filtrate was concentrated in vacuo. Purification of the residue by CC (hexane/acetone 17:3) provided 170 mg (0.5 mmol, 56%) N-[(3-fluorophenyl)-methyl]-4 methyl-6-morpholin-4-yl-2-propyl-pyridine-3-carboxylic acid amide (example 10). [M+H]* 372.2. Synthesis of example 11: 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-morpholin-4-yl-4 (trifluoromethyl)-pyridine-3-carboxylic acid amide F F FO N N S
OJK
a) Synthesis of methyl 6-chloro-2-(ethylsulfanyl)-4-(trifluoromethyl)-pyridine-3-carboxylate To a solution of 2.5 g (9.1 mmol) methyl 2,6-dichloro-4-(trifluoromethyl)-pyridine-3 carboxylate in DMF (21 ml) were added 1.9 g (13.7 mmol) K 2
CO
3 and 843 pl (11.4 mmol) ethanethiol. After stirring in a closed vessel at RT for 4 h, the RM was extracted twice with EtOAc. The combined organic layers were washed with water and a 2M aq. NaOH sol., dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 99:1) provided 2.25 g of a - 1:1 mixture of methyl 6-chloro-2-(ethylsulfanyl)-4 (trifluoromethyl)-pyridine-3-carboxylate and methyl 2,6-bis(ethylsulfanyl)-4-(trifluoromethyl) pyridine-3-carboxylate, which was used in the next step without further purification. b) Synthesis of methyl 2-(ethylsulfanyl)-6-morpholin-4-yl-4-(trifluoromethyl)-pyridine-3 carboxylate A solution of 2 g of a -1:1 mixture of methyl 6-chloro-2-(ethylsulfanyl)-4-(trifluoromethyl) pyridine-3-carboxylate and methyl 2,6-bis(ethylsulfanyl)-4-(trifluoromethyl)-pyridine-3 carboxylate, 1.7 ml (20.0 mmol) morpholine and 3.5 ml (20.0 mmol) DIPEA in MeCN (10 ml) was heated in the microwave to 150 *C for 4 h. The RM was then diluted with water and EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 4:1) provided 440 mg (1.3 mmol, 16 % over 2 steps) methyl 2-(ethylsulfanyl)-6-morpholin-4-yl-4 (trifluoromethyl)-pyridine-3-carboxylate. c) Synthesis of 2-(ethylsulfanyl)-6-morpholin-4-yl-4-(trifluoromethyl)-pyridine-3-carboxylic acid A solution of 440 mg (1.3 mmol) methyl 2-(ethylsulfanyl)-6-morpholin-4-y-4-(trifluoromethyl) pyridine-3-carboxylate in a MeOH/THF mixture (6 ml, 1:1 v/v) was treated with a 2M aq. LiOH sol. (3 ml) and was then stirred at 60 *C for 5 d. After cooling to RT the RM was acidified with a 2M aq. HCI sol. to pH 2. Upon dilution with EtOAc the precipitate formed was filtered off to give 176 mg (0.5 mmol, 42%) 2-(ethylsulfanyl)-6-morpholin-4-yl-4-(trifluoromethyl)-pyridine-3 carboxylic acid, which was used in the next step without further purification. d) Synthesis of 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-morpholin-4-yl-4 (trifluoromethyl)-pyridine-3-carboxylic acid amide To a solution of 170 mg (0.5 mmol) 2-(ethylsulfanyl)-6-morpholin-4-yl-4-(trifluoromethyl) pyridine-3-carboxylic acid in THF (3 ml) were added 192 mg (0.5 mmol) HATU and 210 pl (1.5 mmol) NEt 3 and the RM was stirred at 50 *C for 90 min. Then 69 pl (0.6 mmol) 3 fluorobenzylamine were added and stirring was continued at 50 *C for 5d. After cooling to RT the mixture was partitioned between water and EtOAc. The organic layer was separated, washed with a 4N aq. NH 4 CI sol. and brine, dried over MgSO 4 and concentrated in vacuo.
Purification of the residue by CC (hexae/EtOAc 3:1) provided 57 mg (0.13 mmol, 26%) 2 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-morpholin-4-yl-4-(trifluoromethyl)-pyrid ine-3 carboxylic acid aide (example 11). [M+H]* 444.1. Synthesis of example 12: N-[(3-Fluorophenyl)-methyl]-4-methyl-2,6-dimorpholin-4-yl pyridine-3-carboxylic acid amide 0 N F H N Nh F O 0O A mixture of 300 mg (0.82 mmol) 6-chloro-N-[(3-fluorophenyl)-methyl]-4-methyl-2-morpholin 4-yi-pyridine-3-carboxylic acid (synthesis is described in section a) of example 9) and 1.4 g (16.5 mmol) morpholine was heated in the micowave to 120 *C for 2 h. The RM was then diluted with EtOAc and a 2M aq. NaOH sol. was added. The organic layer was separated, washed with water and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:2) provided 253 mg (0.61 mmol, 74%) N-[(3 Fluorophenyl)-methyl]-4-methyl-2,6-dimorpholin-4-yl-pyridine-3-carboxylic acid amide (example 12). [M+H]* 415.2. Synthesis of example 14: 1-[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl-carbamoyl]-4 methyl-pyridin-2-yl]-piperidine-4-carboxylic acid 0 N F HOH Hoy[ N N S HO 0 A solution of 146 mg (0.32 mmol) 1-[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl-carbamoyl]-4 methyl-pyridin-2-yl]-piperidine-4-carboxylic acid methyl ester (example 13) in a MeOH/THF mxiture (1:1 v/v, 2ml) was treated with 1 ml (2.0 mmol) 2M aq. LiOH sol. and heated to 70 *C for 16 h. Subsequently pH 3-4 was adjusted with a 2M aq. HCI sol., followed by extraction with EtOAc. The organic layer was washed with brine, dried over MgSO 4 and concentrated in vacuo. As residue 112 mg (0.26 mmol, 79%) 1-[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl carbamoyl]-4-methyl-pyridin-2-yl]-piperidine-4-carboxylic acid (example 14) were obtained. [M+H]* 432.2.
Synthesis of example 16: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(4-oxo piperidin-1-yl)-pyridine-3-carboxylic acid amide 0 N F I H I N A solution of 201 mg (0.5 mmol) 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(4-hydroxy piperidin-1-yl)-4-methyl-pyridine-3-carboxylic acid amide (example 15) in DCM (7 ml) was treated with 1.84 g (0.65 mmol, 15% w/w in DCM) Dess-Martin periodinane and stirred at RT for 3 h. The RM was then quenched by addition of a 10% (w/w) aq. Na 2
S
2
O
3 sol. and diluted with DCM (30 ml). The organic layer was separated, washed with a 2M aq. NaOH sol. and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) provided 88 mg (0.22 mmol, 44%) 2-Ethylsulfanyl-N-[(3-fluorophenyl) methyl]-4-methyl-6-(4-oxo-piperidin-1-yl)-pyridine-3-carboxylic acid amide (example 16). [M+H]* 402.2. Synthesis of example 18: 2-Ethylsulfanyl-N-[(4-fluoro-2-hydroxy-phenyl)-methyl]-4-methyl 6-morpholin-4-yl-pyridine-3-carboxylic acid amide 0 OH -- N IH N N S F To a cooled solution of 209 mg (0.5 mmol) 2-Ethylsulfanyl-N-[(4-fluoro-2-methoxy-phenyl) methyl]-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 17) in DCM (7 ml) were added dropwise 5 ml (5.0 mmol, 1M in DCM) BBr 3 at -50 0 C. The RM was then allowed to reach 0 *C and stirring was continued at this temperature for 3h. Then a 1M aq. NaHCO 3 sol. (15 ml) was added at 0 *C and the mixture was diluted with MeOH (10 ml) and DCM (10 ml). The layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 7:3) provided 81 mg (0.2 mmol, 40%) 2-Ethylsulfanyl-N [(4-fluoro-2-hydroxy-phenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 18). [M+H]* 406.2.
Synthesis of example 19: N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 0 NN F (N 'N 0 O) a) Synthesis of 6-Chloro-N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-pyridine-3 carboxylic acid amide 330 mg (8.3 mmol, 60% w/w in mineral oil) NaH were slowly added to Methanol (30 ml) at RT and stirring was continud at RT for 45 min. Then 2.35 g (7.5 mmol) 2,6-dichloro-N-(3 fluorobenzyl)-4-methyl-pyridine-3-carboxylic acid amide (synthesis is described in section a) of example 2) were added and the RM was heated to 70 'C for 24 h. After cooling to RT water (10 ml) was added and most of the MeOH was removed in vacuo. The mixture was then extracted with EtOAc and the organic layer was washed twice with brine, dried over MgSO 4 and concentrated in vacuo. Crystallisation (hexane/EtOAc 3:1) of the residue yielded 1.24 g (0.4 mmol, 54%) 6-Chloro-N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-pyridine 3-carboxylic acid amide. b) Synthesis of N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide and N-[(3-Fluorophenyl)-methyl]-2-hydroxy-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide A mixture of 1.37 g (4.4 mmol) 6-Chloro-N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl pyridine-3-carboxylic acid amide and 2.9 ml (33.2 mmol) morpholine was heated in the microwave to 120 *C for 30 min. The RM was then diluted with EtOAc (50 ml) and a 1M aq. NaOH sol. (20 ml) was added. The precipitate formed was filtered off to give 715 mg (2.0 mmol, 47%) N-[(3-Fluorophenyl)-methyl]-2-hydroxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide. The organic layer was separated from the filtrate, washed with water and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:2) provided 397 mg (1.1 mmol, 25%) N-[(3-Fluorophenyl)-methyl]-2 methoxy-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 19). [M+H]* 360.2.
Synthesis of example 20: 2-Ethylamino-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 0 NN F N N N H O" a) Synthesis of 6-chloro-2-ethylamino-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 carboxylic acid amide A suspension of 626 mg (2.0 mmol) 2,6-dichloro-N-(3-fluorobenzyl)-4-methyl-pyridine-3 carboxylic acid amide (synthesis is described in section a) of example 2), 244 mg (2.4 mmol) ethylamine hydrochloride and 689 mg (5.0 mmol) K 2
CO
3 in DMF (6 ml) was heated to 100 "C for 3 d. Then the RM was poured into ice water (10 ml), followed by extraction with EtOAc (3 x 15 ml). The combined organic layers were washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) provided 84 mg (0.26 mmol, 13%) 6-chloro-2-ethylamino-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 carboxylic acid amide. b) Synthesis of 2-Ethylamino-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide A mixture of 80 mg (0.25 mmol) 6-chloro-2-ethylamino-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide and 433 mg (5.0 mmol) morpholine was heated in the microwave to 120 0 C for 10 h. After cooling to RT, purification of the residue by CC (hexane/EtOAc 2:1) provided 73 mg (0.2 mmol, 78%) 2-Ethylamino-N-[(3-fluorophenyl) methyl]-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 20). [M+H]* 373.2. Synthesis of example 21: N-[(3-Fluorophenyl)-methyl]-2-(2-methoxy-ethoxy)-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 0 (N I N 0H 0K N F. To a solution of 200 mg (0.58 mmol) N-[(3-Fluorophenyl)-methyl]-2-hydroxy-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 19) in DMF (8 ml) 15 mg (0.64 mmol, 60% w/w in mineral oil) NaH were added, followed by stirring at RT for 30 min. Then 88 mg (0.64 mmol) 2-bromoethyl-methylether were added and the RM was heated to 50 *C for 16 h. Subsequently water (10 ml) and EtOAc were added and the layers were separated. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:7) provided 90 mg (0.22 mmol, 39%) N-[(3-Fluorophenyl)-methyl]-2-(2-methoxy-ethoxy)-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide (example 21). [M+H]* 404.2. Synthesis of example 22: 2-Ethyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 0 N F N N To a solution of 200 mg (0.55 mmol) 2-chloro-N-[(3-fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide (synthesis is described in section a) of example 9) in THF (5 ml) were added 30 mg (0.055 mmol) Ni(dppp)C1 2 and 330 pl (0.66 mmol, 2M in THF) ethylmagnesiumbromide. The RM was heated to 80 *C for 8 h, followed by quenching with a sat. aq. NH 4 CI sol. and extraction with EtOAc (3 x 20 ml). The combined organic layers were washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 7:3) provided 50 mg (0.14 mmol, 25%) Ethyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 22). [M+H]* 358.2. Synthesis of example 23: N-[(3-Fluorophenyl)-methyl]-2-isopropyl-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 0 F - N H N N O) A solution of 300 mg (0.83 mmol) 2-chloro-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide (synthesis is described in section a) of example 9) in THF/NMP (6:1 v/v, 14 ml) was cooled to -30 *C. At this temperature were successively added 58 mg (0.16 mmol) Fe(acac) 3 and 6 ml (12.0 mmol, 2M inTHF) iso-propyl-magnesiumchloride. The RM was then allowed to warm to 0 *C within 1 h. Then sat. aq. NH 4 CI sol. was added the mixture was extracted with EtOAc (3 x 20 ml). The combined organic layers were washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 7:3) provided 110 mg (0.30 mmol, 36%) N-[(3 Fluorophenyl)-methyl]-2-isopropyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 23). [M+H]* 372.2. Synthesis of example 24: N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2 pyrrolidin-1-yl-pyridine-3-carboxylic acid amide 0 F (N N N To a solution of 254 mg (0.7 mmol) 2-chloro-N-[(3-fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide (synthesis is described in section a) of example 9) in MeCN (0.5 ml) were added 115 pl (1.4 mmol) pyrrolidine and 290 pl (2.1 mmol) NEt 3 . The RM was heated in the microwave to 120 *C for 30 min and subsequently to 140 *C for 45 min. Then the mixture was filtered through celite and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 2:1), followed by crystallization (hexane/EtOAc) provided 164 mg (0.41 mmol, 59%) N-[(3-Fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-2-pyrrolidin-1-yl-pyridine-3-carboxylic acid amide (example 24). [M+H]* 399.2. Synthesis of example 117: 2-Methoxy-4-methyl-6-morpholin-4-y-N-[[4-(trifluoro-methyl) phenyl]-methyl]-pyridine-3-carboxylic acid amide 0 N FF F F a) Synthesis of 6-chloro-2-methoxy-4-methyl pyridine-3-carboxylic acid methylester A solution of 8.8 (43.7 mmol) 6-chloro-2-methoxy-4-methyl-3-carboxylic acid amide (synthesis is described in section a) of example 3) in DMF (110 ml) was treated with 9.0 g (65.5 mmol) K 2
CO
3 and subsequently stirred at RT for 30 min. Then 5.4 ml (65.5 mmol) lodomethan were added and stirring was continued at RT for 16 h. After quenching with water the mixture was extracted twice with EtOAc and the combined organic layer was washed with brine, dried over MgSO 4 and concentrated in vacuo. As residue 9.1 g (39.6 mmol, 91%) 6-chloro-2-methoxy-4-methyl pyridine-3-carboxylic acid methylester was obtained which was used in next step without further purification. b) Synthesis of 2-methoxy-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester A solution of 5.0 g (21.8 mmol) 6-chloro-2-methoxy-4-methyl pyridine-3-carboxylic acid methylester, 2.0 g (24.0 mmmol) morpholine and 6.0 ml (43.5 mmol) NEt 3 in NMP (21 ml) was heated at 90 *C for 2 d. After cooling to RT the mixture was partiotionated between EtOAc and a 1M aq. NaHCO 3 sol. The organic layer was separated, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 4:1) provided 2.7 g (9.8 mmol, 45%) 2-methoxy-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester. c) Synthesis of 2-Methoxy-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoro-methyl)-phenyl]-methyl] pyridine-3-carboxylic acid amide 2-methoxy-4-methyl-6-morpholino-pyridine-3-carboxylic acid amide (example 117), [M+H]* 410.2) was synthesized from 2-methoxy-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester according to the methods decribed in sections c) of example 11 and section c) of example 1. Synthesis of example 120: 2-Ethylsulfanyl-6-[(4-fluoro-benzoyl)-methyl-amino]-N-[(3 fluorophenyl)-methyl]-4-methyl-pyridine-3-carboxylic acid amide 0 0 N F N IN N SH To a solution of 150 mg (0.45 mmol) 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(methyl amino)-4-methyl-pyridine-3-carboxylic acid amide (synthesis is described in section a) of example 123) in DCM (3 ml) and THF (3 ml) was added 160 pl (0.95 mmol) DIPEA. At 0 *C 56 pl (0.47 mmol) 4-fluoro-benzoylchloride was added dropwise and stirring was continued at 0 *C for 2h and RT for 16h. Then the mixture was partiotionated between EtOAc and a 1M aq. NaHCO 3 sol. The organic layer was separated, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) provided 171 mg (0.38 mmol, 83%) 2-Ethylsulfanyl-6-[(4-fluoro-benzoyl)-methyl-amino]-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide (example 120). [M+H]* 456.1 Synthesis of example 123: 6-(Acetyl-methyl-amino)-2-ethylsulfanyl-N-[(3-fluorophenyl) methyl]-4-methyl-pyridine-3-carboxylic acid amide 0 0~ N N. F N N S a) Synthesis of 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(methyl-amino)-4-methyl pyridine-3-carboxylic acid amide A mixture of 750 mg (2.2 mmol) and 2.7 ml (22.1 mmol, 33% w/w in H 2 0) was heated to 150 *C in the MW for 3 h. The mixture was then diluted with EtOAc and water and the organic layer was separated, washed with a 2M aq. NaOH sol. and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) and subsequent crystallization (hexane/EtOAc) provided 454 mg (1.36 mmol, 62%) 2-ethylsulfanyl-N-[(3 fluorophenyl)-methyl]-6-(methyl-amino)-4-methyl-pyridine-3-carboxylic acid amide. b) Synthesis of 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(methyl-amino)-4-methyl pyridine-3-carboxylic acid amide To a solution of 250 mg (0.75 mmol) 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(methyl amino)-4-methyl-pyridine-3-carboxylic acid amide in DCM (5 ml) and THF (5 ml) was added 267 pl (1.58 mmol) DIPEA. At 0 *C 74 pl (0.79 mmol) acetanhydride was added dropwise and stirring was continued at RT for 16h. Then another 297 pl (3.2 mmol) acetanhydride and 535 pl (3.2 mmol) DIPEA were added at RT and the mixture was stirred at 35 *C for 2 d. The solution was diluted with water and a 1 M aq. NaOH sol, The organic layer was separated, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:2) provided 226 mg (0.6 mmol, 80%) 6-(Acetyl-methyl-amino)-2 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3-carboxylic acid amide (example 123). [M+H]* 376.1 Synthesis of example 138 & 139: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6 [(2S)-2-methyl-morpholin-4-yl]-pyridine-3-carboxylic acid amide & 2-Ethylsulfanyl-N-[(3 fluorophenyl)-methyl]-4-methyl-6-[(2R)-2-methyl-morpholin-4-y]-pyridine-3-carboxylic acid amide 0 0 N F ' N F N N S< N N S O and O 558 mg racemic 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(2-methyl-morpholin 4-yl)-pyridine-3-carboxylic acid amide (example 48) was separated by chiral HPLC to provide 183 mg 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[(2S)-2-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide (example 138), [M+H]* 404.2 and 184 mg 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[(2R)-2-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide (example 139), [M+H]* 404.2 Synthesis of example 154: N-[(4-Fluorophenyl)-methyl]-4-methyl-2-methylsulfanyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 0 N N SHI KN N S F O"' a) Synthesis of 6-chloro-2-methylsulfanyl-4-methyl-pyridine-3-carboxylic acid To a cooled (ice-bath) solution of 3.8 g (54.7 mmol) NaSMe in THF (85 ml) 12.4 g (60.2 mmol) 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid was added. After stirring at RT for 2h, 1.3 g (xx mmol) NaH (60% w/w in mineral oil, 32.5 mmol) and 1.6 g (23.0 mmol) NaSMe were added and stirring was continued at RT for 16h. Then the mixture was diluted with THF (45 ml) and again 1.3 g (xx mmol) NaH (60% w/w in mineral oil, 32.5 mmol) and 3.4 g (48.9 mmol) NaSMe were added and stirring was continued at RT for 16h. Then the reaction was quenched with a 2M aq. HCI and diluted with EtOAc. The organic layer was separated, dried over MgSO 4 and concentrated in vacuo. Crystallisation (DCM/hexane) of the residue yielded 7.34 g (33.7 mmol, 62%) 6-chloro-2-methylsulfanyl-4-methyl-pyridine-3-carboxylic acid.
b) Synthesis of N-[(4-Fluorophenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide N-[(4-Fluorophenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 154), [M+H]* 376.1, was synthesized from 6-chloro-2-methylsulfanyl-4 methyl-pyridine-3-carboxylic acid according to the methods decribed in sections b) & c) of example 1. Synthesis of example 169: N-[(4-Fluorophenyl)-methyl]-2-isopropyl-4-methyl-6-[(3R)-3 methyl-morpholin-4-y]-pyridine-3-carboxylic acid amide 0 H N N F a) Synthesis of 2-chloro-N-(4-fluorobenzyl)-4-methyl-6-[(3R)-3-methylmorpholino]-pyridine-3 carboxylic amide A mixture of 6.0 g (19.2 mmol) 2,6-dichloro-N-(4-fluorobenzyl)-4-methyl-pyridine-3-carboxylic amide (synthesized according to the methods decribed in section a) of example 2), 3.9 g (28.7 mmol) (R)-3-methylmorpholine hydrochloride, 13.0 ml (76.6 mmol) and NMP (18.4 ml) was heated in the MW to 180 *C for 16 h. After cooling to RT the mixture was partiotionated between EtOAc and a 2M aq. NaOH sol. The organic layer was separated, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) provided 1.4 g (3.7 mmol, 20%) 2-chloro-N-(4-fluorobenzyl)-4-methyl-6-[(3R)-3-methylmorpholino] pyridine-3-carboxylic amide. b) Synthesis of N-[(4-Fluorophenyl)-methyl]-2-isopropyl-4-methyl-6-[(3R)-3-methyl-morpholin 4-yl]-pyridine-3-carboxylic acid amide 2-chloro-N-(4-fluorobenzyl)-4-methyl-6-[(3R)-3-methylmorpholino]-pyridine-3-carboxylic amide was converted into N-[(4-Fluorophenyl)-methyl]-2-isopropyl-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide (example 169), [M+H]* 386.2, according to the method described for example 23.
Synthesis of example 171: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl pyridin-3-yl-amino)-pyridine-3-carboxylic acid amide 0 N F NN N N-*' I I H I N N N S A mixture of 338 mg (1.0 mmol) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 2), 237 mg (2.2 mmol) 2-methylamino-pyridine, 1.8 g (5.4 mmol) Cs 2
CO
3 and 125 mg (0.11 mmol) Pd(PPh 3
)
2 in 1,4-dioxane (4 ml) was heated at 110 "C for 2 h and stirred at RT for 16 h. The mixture was then filtered through celite and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) provided 243 mg (0.59 mmol, 59%) 2-ethylsulfanyl-N-[(3 fluorophenyl)-methyl]-4-methyl-6-(methyl-pyridin-3-yl-amino)-pyridine-3-carboxylic acid amide (example 171). [M+H]* 411.2 Synthesis of example 172: 2-Dimethylamino-N-[(4-fluorophenyl)-methyl]-4-methyl-6-[(3R) 3-methyl-morpholin-4-yl]-pyridine-3-carboxylic acid amide 0 H N F 2-chloro-N-(4-fluorobenzyl)-4-methyl-6-[(3R)-3-methylmorpholino]-pyridine-3-carboxylic amide (synthesis is described in section a) of example 169) was converted with a 2M solution of dimethylamine in THF into 2-dimethylamino-N-[(4-fluorophenyl)-methyl]-4-methyl 6-[(3R)-3-methyl-morpholin-4-yl]-pyridine-3-carboxylic acid amide (example 172), [M+H]* 387.2, according to the method described for example 24. Synthesis of example 174: 2-(Ethyl-methyl-amino)-N-[(4-fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 0 N N OH (N IN N F 0") a) Synthesis of 6-chloro-2-(ethyl(methyl)amino)-4-methyl-pyridine-3-carboxylic acid ethylester A mixture of 8.2 g (35.0 mmol) 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid ethylester, 3.7 ml (43.8 mmol) N-methylethylamine and 8.9 ml (52.5 mmol) DIPEA in NMP (25 ml) was heated in the MW to 90 0C for 1 h. Then the solution was diluted with water, a 1M aq. NaOH sol. and EtOAc. The organic layer was separated, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 9:1) provided 4.0 g (15.6 mmol, 44%) 6-chloro-2-(ethyl(methyl)amino)-4-methyl-pyridine-3-carboxylic acid ethylester. b) Synthesis of 2-(ethyl(methyl)amino)-4-methyl-6-morpholino-pyridine-3-carboxylic acid ethylester A mixture of 4.0 g (15.6 mmol) 6-chloro-2-(ethyl(methyl)amino)-4-methyl-pyridine-3 carboxylic acid ethylester and 13.6 ml (155.8 mmol) morpholine was heated in the MW to 135 "C for 2 h. Then the mixture was diluted with a 1M aq. NaOH sol. and EtOAc. The organic layer was separated, washed with brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 9:1) provided 2.0 g (6.4 mmol, 41%) 2-(ethyl(methyl)amino)-4-methyl-6-morpholino-pyridine-3-carboxylic acid ethylester. c) Synthesis of -(Ethyl-methyl-amino)-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide A solution of 249 mg (0.81 mmol) 2-(ethyl(methyl)amino)-4-methyl-6-morpholino-pyridine-3 carboxylic acid ethylester and 924 pl (8.1 mmol) 4-fluoro-benzylamine in toluene (17 ml) was treated with 2.85 ml (2M in toluene, 5.7 mmol) AIMe 3 and was subsequently heated to 120 *C for 4 d. Then the solution was diluted with water, a 1M aq. NaOH sol. and EtOAc. The organic layer was separated, washed with a 2M aq. NaOH sol. and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:1) provided 127 mg (0.33 mmol, 40%) 2-(Ethyl-methyl-amino)-N-[(4-fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide (example 174). [M+H]* 387.2 Synthesis of example 176: N-[(4-Fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-2-methylsulfanyl-pyridine-3-carboxylic acid amide 0 N F N IN SH F To a solution of 200 mg (0.52 mmol) 2-chloro-N-(4-fluorobenzyl)-4-methyl-6-[(3R)-3 methylmorpholino]-pyridine-3-carboxylic amide (synthesis is described in section a) of example 169) in THF (3 ml) was added 46 pg (0.66 mmol) NaSMe. The reaction mixture was stirred in a closed vessel at 80 *C for 3 d. Subsequently the mixture was diluted with water and a 2M aq. NaOH sol. and extracted twice with EtOAc. The combined organic layers were washed with water, dried over MgSO 4 and concentrated in vacuo. Crystallisation (EtOAc/pentane) of the residue yielded 128 mg (0.33 mmol, 62%) N-[(4-Fluorophenyl) methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-2-methylsulfany-pyridine-3-carboxylic acid amide (example 176). [M+H]* 390.2 Synthesis of example 214: N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3 methyl-morpholin-4-yl]-pyridine-3-carboxylic acid amide N F LI" 0 6-Chloro-N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 19) was converted with (R)-3 methylmorpholine into N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide (example 214), [M+H]* 374.2, according to the method described for example 171. Synthesis of example 253: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl (2-oxo-propyl)-amino]-pyridine-3-carboxylic acid amide 0 N F ~$N 1 N S S 0 1 To a solution of 150 mg (0.45 mmol) 2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(methyl amino)-4-methyl-pyridine-3-carboxylic acid amide (synthesis is described in section a) of example 123) in NMP (1 ml) were added 229 pl (1.35 mmol) DIPEA and 39 pl (0.50 mmol) chloroacetone. The mixture was heated in the MW to 140 0C for 40 min and subsequently partiotionated between a 1 M aq. NaOH sol and EtOAc. The organic layer was separated, washed with a 1 M aq. NaOH sol, water and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 13:7) provided 53 mg (0.14 mmol, 30%) 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(2-oxo-propyl)-amino] pyridine-3-carboxylic acid amide (example 253). [M+H]* 390.2 Synthesis of example 258: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl tetrahydro-pyran-4-yl-amino)-pyridine-3-carboxylic acid amide 0 S NN F Oa N IN SH A solution of 338 mg (1.0 mmol) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 2), 172 mg (1.5 mmol) N-methyl-tetrahydro-2H-pyran-4-amine and 509 pl (3.0 mmol) DIPEA in NMP (1 ml) was heated in the microwave at 180 *C for 2 h. Subsequently the RM was diluted with a 2M aq. NaOH sol, water and EtOAc and the layers were separated. The organic layer was washed with water and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 13:7) provided 77 mg (0.18 mmol, 18%) 2-Ethylsulfanyl N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro-pyran-4-yl-amino)-pyridine-3 carboxylic acid amide (example 258). [M+H]* 418.2 Synthesis of example 263: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3S)-3 (hydroxymethyl)-morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 0 HOI- F $NNN To a cooled (ice-bath) solution of 450 mg (1.32 mmol) (S)-morpholin-3-yl-methanol in THF (5 ml) were added at 0 *C 570 pl (2.78 mmol) 1,1,1,3,3,3 hexamethyldisilazane and 33 pl (0.26 mmol) trimethylchlorosilane. The mixture was then stirred at RT for 1 h. Then another 33 pl (0.26 mmol) trimethylchlorosilane was added and stirring was continued at RT for 1 h followed by concentration in vacuo. The residue, 450 mg (1.3 mmol) 6-chloro-2-ethylsulfanyl N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 2) and 903 pl (5.3 mmol) DIPEA were suspended in NMP (1.5 ml). Then the reaction mixture was heated at 180 *C for 32 h and stirred at RT for 72 h. Subsequently a 1 M hydrochlorid acid was added and the mixture was stirred at RT for 15 min. After neutralization with a sat. aq. NaHCO 3 sol. EtOAc was added and the layers were separated. The organic layer was washed with water and brine, dried over MgSO 4 and concentrated in vacuo. Purification of the residue by CC (cyclohexane/EtOAc 1:1) provided 70 mg (0.17 mmol, 13%) 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3S)-3 (hydroxymethyl)-morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide (example 263). [M+H]* 420.2 Synthesis of example 285: N-[(4-Chlorophenyl)-methyl]-2-isopropyl-6-[(2S)-2 (methoxymethyl)-morpholin-4-y]-4-methyl-pyridine-3-carboxylic acid amide 0 N H N N N Cl 0") a) Synthesis of 6-chloro-N-(4-chlorobenzyl)-2-isopropyl-4-methyl-pyridine-3-carboxylic amide A solution of 6.0 g (18.3 mmol) 2,6-dichloro-N-(4-chlorobenzyl)-4-methyl-pyridine-3 carboxylic acid amide (synthesized according to the method described in section a) of example 2) in THF (180 ml) and NMP (60 ml) was degassed for 30 min followed by the addition of 1.3 g (3.7 mmol) Fe(acac) 3 . This mixture was degassed again for 20 min. At -40 *C 137 ml (2M in THF, 274 mmol) isopropylmagnesiumchloride was added dropwise over 1 h. The reaction mixture was allowed to reach 0 *C and was quenched at this temperature with a sat. aq. NH 4 CI sol. followed by stirring at 10 *C for 30 min. Then the mixture was diluted with EtOAc and the organic layer was separated, washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 9:1) provided 2.45 g (7.3 mmol, 40%) 6-chloro-N-(4-chlorobenzyl)-2-isopropyl-4-methyl pyridine-3-carboxylic amide. b) Synthesis of N-[(4-Chlorophenyl)-methyl]-2-isopropyl-6-[(2S)-2-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 6-chloro-N-(4-chlorobenzyl)-2-isopropyl-4-methyl-pyridine-3-carboxylic amide was converted into N-[(4-Chlorophenyl)-methyl]-2-isopropyl-6-[(2S)-2-(methoxymethyl)-morpholin-4-yl]-4 methyl-pyridine-3-carboxylic acid amide (example 285), [M+H]* 432.2, according to the method described for example 258.
Synthesis of example 298: 6-(1,1 -Dioxo-[1,4]thiazinan-4-yl)-2-ethylsulfanyl-N-[(3 fluorophenyl)-methyl]-4-methyl-pyridine-3-carboxylic acid amide 0 N" F N IN SH O=S" 0 a) Synthesis of 2-chloro-N-(3-fluorobenzyl)-4-methyl-6-thiomorpholino-pyridine-3-carboxylic acid amide A solution of 700 mg (2.24 mmol) 2,6-dichloro-N-(3-fluorobenzyl)-4-methyl-pyridine-3 carboxylic acid amide (synthesis is described in section a) of example 2), 280 pl (2.9 mmol) thiomorpholine and 3.95 g (12.1 mmol) Cs 2
CO
3 in dioxane (60 ml) was degassed for 30 min followed by the addition of 285 mg (0.25 mmol) Pd(PPh 3
)
4 . Subsequently the reaction solution was heated to 120 *C for 16 h. Then the mixture was filtered through celite and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 19:1) provided 420 mg (1.1 mmol, 49%) 2-chloro-N-(3-fluorobenzyl)-4-methyl-6-thiomorpholino-pyridine-3 carboxylic acid amide. b) Synthesis of 2-chloro-6-(1,1-Dioxo-[1,4]thiazinan-4-yl)-2-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide To a solution of 420 mg (1.1 mmol) 2-chloro-N-(3-fluorobenzyl)-4-methyl-6-thiomorpholino pyridine-3-carboxylic acid amide in DCM (13 ml) was added 640 mg (60% pure, 2.2 mmol) mCPBA at 0 *C and stirring was continued at this temperature for 2 h. The mixture was then diluted with DCM and washed with a sat. aq. Na 2
CO
3 sol., water and brine, dried over Na 2
SO
4 and concentrated in vacuo. The obtained crude 450 mg 2-chloro-6-(1,1-Dioxo [1,4]thiazinan-4-yl)-2-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3-carboxylic acid amide was used in subsequent reactions without further purification. c) Synthesis of 6-(1,1-Dioxo-[1,4]thiazinan-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide A solution of 450 mg (crude, -1.1 mmol) 2-chloro-6-(1,1-Dioxo-[1,4]thiazinan-4-yl)-2-N-[(3 fluorophenyl)-methyl]-4-methyl-pyridine-3-carboxylic acid amide, 750 mg (5.5 mmol) K 2 CO3 and 400 pL (5.5 mmol) ethylmercaptane in DMF (4 ml) was heated to 60 *C for 2 h. Subsequently the mixture was poured into water. The mixture was extracted with EtOAc and the organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 1:1) provided 205 mg (0.47 mmol, 43%) 6-(1,1 -Dioxo-[1,4]thiazina n-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyll-4-methyl pyridine-3-carboxylic acid amide. [M+HJ 438.1 Synthesis of example 307: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3-methoxy cyclohexyl)-methyl-amino]-4-methyl-pyridine-3-carboxylic acid amide 0 0 N F N IN SH a) Synthesis of 2-chloro-N-(3-fluorobenzyl)-6-((3-methoxycyclohexyl)(methyl)amino)-4 methyl-pyridine-3-carboxylic acid amide To a solution of 1.19 g (3.8 mmol) 2,6-dichloro-N-(3-fluorobenzyl)-4-methyl-pyridine-3 carboxylic acid amide (synthesis is described in section a) of example 2) in DMF (12 ml) were added 1.05 g (7.6 mmol) K 2
CO
3 and 683 mg (3.8 mmol) 3-methoxy-N methylcyclohexanamine and the reaction mixture was heated at 110 *C for 16 h. The mixture was then poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 4:1) provided 850 mg (2.7 mmol, 32%) 2-chloro-N-(3-fluorobenzyl)-6-((3 methoxycyclohexyl)(methyl)amino)-4-methyl-pyridine-3-carboxylic acid amide. b) Synthesis of 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3-methoxy-cyclohexyl)-methyl amino]-4-methyl-pyridine-3-carboxylic acid amide To a solution of 148 mg (0.35 mmol) 2-chloro-N-(3-fluorobenzyl)-6-((3-methoxy cyclohexyl)(methyl)amino)-4-methyl-pyridine-3-carboxylic acid amide in DM (1 ml) were added 488 mg (3.53 mmol) K 2
CO
3 and 260 pl (3.53 mmol) mmol) ethylmercaptane and the reaction mixture was heated at 80 *C for 16 h. The mixture was then poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 17:3) provided 90 mg (0.2 mmol, 58%) 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3-methoxy cyclohexyl)-methyl-amino]-4-methyl-pyridine-3-carboxylic acid amide (example 307). [M+H]* 446.2 Synthesis of example 312: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxo morpholin-4-yl)-pyridine-3-carboxylic acid amide N N F j-1N IN H IS A solution of 1.0 g (2.95 mmol) 6-chloro-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide (synthesis is described in section b) of example 2) in propionitrile (20 ml) was treated with 1.33g (8.87 mmol) Nal and 1.0 ml (8.28 mmol) trichloromethylsilane. Subsequently the solution was heated at 110 *C for 16h. The mixture was then partitionated between a 2M aq. NaOH sol and EtOAc. The organic layer was separated, washed with brine, dried over Na 2
SO
4 and concentrated in vacuo. The residue was dissolved in dioxane (10 ml) and 2.26 g (7.0 mmol) Cs 2
CO
3 and 114 mg (0.92 mmol) picolinic acid were added. This mixture was degassed for 30 min followed by the addition of 88 mg (0.46 mmol) Cul and 470 mg (4.65 mmol) 3-morpholinone. The reaction solution was then heated to 100 *C for 16 h and subsequently concentrated in vacuo. The residue was dissolved in water and was extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 7:3) provided 60 mg (0.15 mmol, 5%) 2-Ethylsulfanyl-N-[(3-fluorophenyl) methyl]-4-methyl-6-(3-oxo-morpholin-4-yl)-pyridine-3-carboxylic acid amide (example 312). [M+H]* 404.1. Synthesis of example 317: N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2 (oxetan-3-yloxy)-pyridine-3-carboxylic acid amide 0 N F 0')< 0 A solution of 209 mg (2.82 mmol) 3-hydroxy-oxetane in THF (6 ml) was treated with 316 mg (2.81 mmol) KOtBu and was heated at 50 *C for 15 min. After cooling to RT a solution of 205 mg (0.56 mmol) 2-chloro-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide (synthesis is described in section a) of example 9) in THF (3 ml) was added and the mixture was heated at 80 *C for 8 h. The mixture was then poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 7:3) provided 190 mg (0.47 mmol, 84%) N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2 (oxetan-3-yloxy)-pyridine-3-carboxylic acid amide (example 317). [M+H]* 402.2. Synthesis of example 336: 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methoxy-6 morpholin-4-yl-pyridine-3-carboxylic acid amide ~ H N F OUN N a) Synthesis of 2,6-dichloro-4-methoxy-pyridine-3-carboxylic acid To a solution of 4.0 g (22.5 mmol) 2,6-dichloro-4-methoxy-pyridine in THF (20 ml) was added 10.0 ml (2.47 M in hexane, 24.7 mmol) n-butyllithium at -78 *C. After stirring for 1 h at -78 *C excess dry ice was added and the mixture was allowed to warm to RT. Then the mixture was acidified with 6N aqueos hydrochlorid acid to pH 3-4 followed by extraction with EtOAc. The organic layer was dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 4:1) provided 3.5 g (15.8 mmol, 70%) 2,6-dichloro-4-methoxy pyridine-3-carboxylic acid. b) Synthesis of 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methoxy-6-morpholin-4-yl pyridine-3-carboxylic acid amide 2,6-dichloro-4-methoxy-pyridine-3-carboxylic acid was converted into 2-Ethylsulfanyl-N-[(3 fluorophenyl)-methyl]-4-methoxy-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 336), [M+H]* 406.2, according to the methods described for example 2. Synthesis of example 341: 2-(Acetyl-methyl-amino)-N-[(3-fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 0 N F H (~N N N 0") 0 a) Synthesis of 6-chloro-N-(3-fluorobenzyl)-4-methyl-2-(N-methylacetamido)- pyridine-3 carboxylic acid amide To a solution of 240 pl (1.69 mmol) diisopropylamine in THF (5 ml) was added 680 pl (2.47 M in hexane, 1.69 mmol) n-butyllithium at -78 *C. After stirring for 15 min at -78 *C a solution of 520 mg (1.69 mmol) 6-chloro-2-methylamino-N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 carboxylic acid amide (synthesized according to the method described in section a) of example 20) in THF (5 ml) was added at -78 *C. The mixture was then allowed to warm to 0 *C. At this temperature 160 pl (1.69 mmol) acetanhydride was added and stirring was continued at RT for 4 h. After quenching with a sat. aq. NH 4 CI sol the mixture was extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 13:7) provided 200 mg (0.57 mmol, 34%) 6-chloro-N-(3-fluorobenzyl)-4-methyl-2-(N-methylacetamido)- pyridine 3-carboxylic acid amide. b) Synthesis of 2-(Acetyl-methyl-amino)-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 6-chloro-N-(3-fluorobenzyl)-4-methyl-2-(N-methylacetamido)- pyridine-3-carboxylic acid amide was converted into 2-(Acetyl-methyl-amino)-N-[(3-fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide (example 341), [M+H]* 401.2, according to the method described for example 258. Synthesis of example 346: 2-Ethylsu Ifa nyl-N-[(3-fluorophenyl)-methyl]-4-(methoxymethyl) 6-morpholin-4-yl-pyridine-3-carboxylic acid amide 0 U 0 S N F .HI N N SF O( JNN a) Synthesis of 4-(bromomethyl)-2,6-dichloro-pyridine-3-carboxylic acid methylester To a solution of 5.3 g (24.1 mmol) 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid methylester in CC1 4 (92 ml) were added 3.1 g (26.5 mmol) N-Bromosuccinimide, 395 mg (2.4 mmol) AIBN and 1.45 ml (25.3 mmol) acetic acid. The mixture was irradiated with a 200W Wolfram lamp at 60 0C for 24 h. Subsequently the mixture was filtered through celite and the filtrate was concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 97:3) provided 5.2 g of a mixture of 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid methylester and 4-(bromomethyl)-2,6-dichloro-pyridine-3-carboxylic acid methylester which was used in subsequent reactions without further purification. b) Synthesis of 2,6-dichloro-4-(methoxymethyl)-pyridine-3-carboxylic acid methylester 320 mg Sodium was dissolved in MeOH (40 ml) at 0 "C followed by the addition of a solution of 5.2 g of the crude mixture from section a) in MeOH (30 ml) at 0 *C. The reaction solution was stirred at RT for 2 h and was then poured into water. This mixture was extracted with EtOAc and the organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 97:3) provided 830 mg (11.9 mmol, 10% over 2 steps) 2,6-dichloro-4-(methoxymethyl)-pyridine-3-carboxylic acid methylester. c) Synthesis of 2,6-dichloro-4-(methoxymethyl)-pyridine-3-carboxylic acid To a solution of 630 mg (2.5 mmol) 2,6-dichloro-4-(methoxymethyl)-pyridine-3-carboxylic acid methylester in dioxane (16 ml) was added a aq. 1M NaOH sol. and the reaction solution was heated to 100 *C for 4 h. The mixture was then diluted with water and washed with EtOAc. The aqueous layer was acidified with 2M HCI to pH 3 to 4 and was extracted with DCM. The organic layer was dried over Na 2
SO
4 and concentrated in vacuo. The obtained 520 mg (2.4 mmol, 94%) 2,6-dichloro-4-(methoxymethyl)-pyridine-3-carboxylic acid was used in subsequent reactions without further purification. d) Synthesis of 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-(methoxymethyl)-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 2,6-dichloro-4-(methoxymethyl)-pyridine-3-carboxylic acid was converted into 2-ethylsulfanyl N-[(3-fluorophenyl)-methyl]-4-(methoxymethyl)-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 346), [M+H]* 420.2, according to the method described for example 2. Synthesis of example 354: N-(4,4-Dimethyl-pentyl)-2-(3-methoxy-propyl)-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 0 H $N N 0shh a) Synthesis of 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid methylester To a solution of 5.0 g (24.3 mmol) 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid in DMF (73 ml) were added 5.0 g (36.4 mmol) K 2
CO
3 and 7.6 ml (121.3 mmol) iodomethane at 0 *C. The reaction mixture was stirred at RT for 3 h and was subsequently poured into water. This mixture was extracted with EtOAc and the organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 19:1) provided 5.2 g (23.7 mmol, 98%) 2,6-dichloro-4-methyl-pyridine-3 carboxylic acid methylester. b) Synthesis of 2-chloro-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester A solution of 5.2 g (23.7 mmol) 2,6-dichloro-4-methyl-pyridine-3-carboxylic acid methylester, 3.94 g (28.5 mmol) K 2 C0 3 and 2.06 ml (23.7 mmol) morpholine in DMF (48 ml) was heated to 60 *C for 16 h. Then the mixture was poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 4:1) provided 1.95 g (7.2 mmol, 30%) 2-chloro-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester. c) Synthesis of 2-(3-methoxyprop-1-ynyl)-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester To a solution of 700 mg (2.6 mmol) 2-chloro-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester and 1.39 g (3.9 mmol) tributyl(3-methoxyprop-1-ynyl)stannane in dioxane (10 ml) was added 273 mg (0.39 mmol) PdCl 2 (PPh 3
)
2 . Then the reaction solution was heated at 100 *C for 16 h. After cooling to RT the mixture was filtered through celite and the filtrate was concentrated in vacuo. The residue was dissolved in EtOAc and washed with water. The organic layer was dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (5% KF-silica, hexane/EtOAc 19:1) provided 500 mg (1.64 mmol, 63%) 2-(3 methoxyprop-1-ynyl)-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester. d) Synthesis of 2-(3-methoxypropyl)-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester To a solution of 500 mg (1.64 mmol) 2-(3-methoxyprop-1-ynyl)-4-methyl-6-morpholino pyridine-3-carboxylic acid methylester in MeOH (30 ml) was added 170 mg 10%-Pd/C. The reaction solution was stirred under hydrogen atmosphere (balloon) at RT for 16 h. Then the mixture was filtered through celite and the filtrate was concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 9:1) provided 480 mg (1.55 mmol, 95%) 2-(3 methoxypropyl)-4-methyl-6-morpholino- pyridine-3-carboxylic acid methylester.
e) Synthesis of N-(4,4-Dimethyl-pentyl)-2-(3-methoxy-propyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 2-(3-methoxypropyl)-4-methyl-6-morpholino- pyridine-3-carboxylic acid methylester was converted into N-(4,4-Dimethyl-pentyl)-2-(3-methoxy-propyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide (example 354), [M+H]* 392.3, according to the methods described in sections c) and d) of example 11. Synthesis of example 355: 2-Cyclopropyl-N-[[3-fluoro-4-(methoxymethyl)-phenyl]-methyl]-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide 0 S N F H 0 N N-O a) Synthesis of 2-cyclopropyl-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester To a solution of 1.0 g (3.69 mmol) 2-chloro-4-methyl-6-morpholino-pyridine-3-carboxylic acid methylester (synthesis is described in section b) of example 354) in toluene (20 ml) were added 634 mg (7.38 mmol) cyclopropyl boronic acid, 2.74 g (12.9 mmol) K 3
PO
4 , 104 mg (0.37 mmol) tri-cyclohexyl-phosphine and water (1 ml). After degassing for 30 min 82 mg (0.37 mmol) Pd(OAc) 2 were added and the reaction solution was heated at 120 *C for 16 h. The mixture was then poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 17:3) provided 500 mg (1.84 mmol, 80%) 2-cyclopropyl-4 methyl-6-morpholino-pyridine-3-carboxylic acid methylester b) Synthesis of 2-Cyclopropyl-N-[[3-fluoro-4-(methoxymethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 2-Cyclopropyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid methylester was converted into 2-Cyclopropyl-N-[[3-fluoro-4-(methoxymethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide (example 355), [M+H]* 414.2, according to the methods described in sections c) and d) of example 11. Synthesis of example 356: N-[(3-Fluorophenyl)-methyl]-2-(methoxymethyl)-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 0 F ~ HI N N 0 0s a) Synthesis of 2-(methoxymethyl)-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid methylester To a solution of 710 mg, (3.6 mmol) 6-chloro-2,4-dimethyl-pyridine-3-carboxylic acid methylester in CC1 4 (16 ml) were added 688 mg (3.90 mmol) N-bromosuccinimide, 59 mg (0.36 mmol) AIBN and 210 pl (3.72 mmol) acetic acid . The reaction mixture was irradiated with a 200W Wolfram lamp at 60 *C for 24 h. The mixture was then filtered through celite, washed with CC1 4 and concentrated in vacuo. After CC (hexane/EtOAc 97:3) of the residue a mixture of 6-chloro-2,4-dimethyl-pyridine-3-carboxylic acid methylester, 4-(bromomethyl)-6 chloro-2-methyl-pyridine-3-carboxylic acid methylester and 2-(bromomethyl)-6-chloro-4 methyl-pyridine-3-carboxylic acid methylester was obtained. This mixture was dissolved in dioxane (10 ml) and added at 0 *C to a solution prepared by dissolving 594 mg (25.8 mmol) sodium in MeOH (11 ml) at 0 *C. This reaction mixture was stirred at RT for 3 h. Then the reaction solution was poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. After CC (hexane/EtOAc 97:3) of the residue again a mixture of 6-chloro-4-(methoxymethyl)-2-methyl pyridine-3-carboxylic acid methylester and 6-chloro-2-(methoxymethyl)-4-methyl-pyridine-3 carboxylic acid methylester was obtained. This material was dissolved in NMP (7.8 ml) and 860 pl (9.85 mmol) morpholine and 1.36 g (9.85 mmol) K 2
CO
3 were added followed by heating at 100 *C for 5 h. Then the mixture was poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 9:1) provided 90 mg (0.32 mmol, 9%) 2-(methoxymethyl)-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid methylester. b) Synthesis of N-[(3-Fluorophenyl)-methyl]-2-(methoxymethyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 2-(methoxymethyl)-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid methylester was converted into N-[(3-Fluorophenyl)-methyl]-2-(methoxymethyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide (example 356), [M+H]* 373.2, according to the methods described in sections c) and d) of example 11. Synthesis of example 357: N-[(4-Chlorophenyl)-methyl]-2,4-diisopropyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 0 HI N N CI 0"' a) Synthesis of 2,4-diisopropyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid ethylester To a solution of 20.0 g, (126.4 mmol) ethyl 4-methyl-3-oxopentanoate in methanol (100 ml) was added 48.72 g, (632.2 mmol) ammonium acetate. The reaction mixture was stirred at RT for 3 d. Then the mixture was concentrated in vacuo. The residue was taken up with with DCM (300 ml) and filtered. The filtrate is water and brine, dried over Na 2
SO
4 and concentrated in vacuo. This residue was dissolved in toluene (100 ml), followed by the addition of HCI (saturated solution in dioxane, 65 ml) at 00C. The reaction mixture was heated at 120 OC for 20 h and subsequently filtered and the solid is washed with toluene. The filtrate was concentrated in vacuo. Purification of the residue by CC (hexane/EtOAc 3:2) provided 2.2 g (8.76 mmol, 7%) 2,4-diisopropyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid ethylester. b) Synthesis of 6-chloro-2,4-diisopropyl-pyridine-3-carboxylic acid ethylester A solution of 2.2 g (8.76 mmol) 2,4-diisopropyl-6-oxo-1,6-dihydropyridine-3-carboxylic acid ethylester in POCl 3 (43.8 ml) was stirred at 120 *C for 2 h. Then excess POCl 3 was evaporated. The residue was dissolved in EtOAc (60 ml) and the solution was washed with a sat. NaHCO 3 sol, water and brine. The organic layer was dried over Na 2
SO
4 and concentrated in vacuo. Purification of this residue by CC (hexane/EtOAc 97:3) provided 2.0 g (7.43 mmol, 85%) 6-chloro-2,4-diisopropyl-pyridine-3-carboxylic acid ethylester. c) Synthesis of N-[(4-Chlorophenyl)-methyl]-2,4-diisopropyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 6-chloro-2,4-diisopropyl-pyridine-3-carboxylic acid ethylester was converted into N-[(4 Chlorophenyl)-methyl]-2,4-diisopropyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 357), [M+H]* 415.2, according to the methods described in sections b) of example 117 followed by the methods described in section c) and d) of example 11.
Synthesis of example 358: N-(4,4-Dimethyl-pentyl)-2-(2-methoxy-ethyl)-4-methyl-6 morpholin-4-yI-pyridine-3-carboxylic acid amide 0 N N 0H 0 "J 0 To a solution of 750 mg, (2.17 mmol) N-(4,4-dimethylpentyl)-4-methyl-6-morpholino-2-vinyl pyiridine-3-carboxylic acid amide (synthesized according to the methods described for example 9) in THF (10 ml) was added dropwise 730 pl (7.6 mmol) at 0 *C and the resulting mixture was stirred at RT for 16 h. The reaction mixture was cooled to 0 "C and a 1N aq. NaOH sol (4 ml) was added dropwise over a period of 0.5 h, followed by the addition of H 2 0 2 (30% in water, 4 ml). Then the reaction mixture was stirred at RT for 4 h and was then extracted with EtOAc. The organic layer was dried over Na 2
SO
4 and concentrated in vacuo. After CC(hexane/EtOAc 3:7) a mixture of N-(4,4-dimethylpentyl)-2-(2-hydroxyethyl)-4-methyl 6-morpholino-pyridine-3-carboxylic acid amide and N-(4,4-dimethylpentyl)-2-( 1 hydroxyethyl)-4-methyl-6-morpholino-pyridine-3-carboxylic acid amide was obtained. This mixture was dissolved in THF (6 ml) and benzene (6 ml) and 24 mg, 0.0716 mmol) TBAHS was added at RT followed by the addition of a 25 % aq. NaOH sol (6 ml) and 0.450 pl (7.16 mmol) iodomethane. Then the reaction mixture was slowly heated to 70 *C and stirred at the same temperature for 3 h. The additional 0.450 pl (7.16 mmol) iodomethane was added and stirring was continued at 70 "C for another 3 h. Then the organic layer was separated and the aq. layer was extracted with EtOAc. The combined organic layer was washed with water, and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of this residue by CC (hexane/EtOAc 3:2) provided 60 mg (0.16 mmol, 6%)_N-(4,4-Dimethyl-pentyl)-2-(2-methoxy ethyl)-4-methyl-6-morpholin-4-y-pyridine-3-carboxylic acid amide (example 358).[M+H]* 377.3 Synthesis of example 359: N-[(4-Chlorophenyl)-methyl]-2,4-diethyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 0 N IN SN N Cl
O)
a) Synthesis of 6-chloro-2,4-diethyl-pyridine-3-carboxylic acid ethylester To a solution of 2.73 g (14.12 mmol) 2,4-diethyl-pyridine-3-carboxylic acid ethylester in chloroform (109 ml) was added 6.97 g, (70% pure, 28.29 mmol) mCPBA at 0 *C. The reaction mixture was stirred at RT for 6 h and was then diluted with chloroform and washed with a sat. NaHCO 3 sol and brine. The organic layer was dried over Na 2
SO
4 and concentrated in vacuo. The residue was dissolved in POC1 3 (70 ml) and the reaction mixture was heated at 110 *C for 6.5 h. Then excess POCl 3 was evaporated and cold water was added to the residue. The mixture was basified with a sat. NaHCO 3 sol to pH-10 and was extracted EtOAc. The organic layer was washed with water and brine, dried over Na 2
SO
4 and concentrated in vacuo. Purification of this residue by CC (hexane/EtOAc 9:1) provided 1.6 g (7.02 mmol, 20o)_6-chloro-2,4-diiethyl-pyridine-3-carboxylic acid ethylester. b) Synthesis of N-[(4-Chlorophenyl)-methyl]-2,4-diethyl-6-morpholin-4-y-pyridine-3-carboxylic acid amide 6-chloro-2,4-diethyl-pyridine-3-carboxylic acid ethylester was converted into N-[(4 Chlorophenyl)-methyl]-2,4-diethyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide (example 359), [M+H]* 387.2, according to the methods described in sections b) of example 117 followed by the methods described in section c) and d) of example 11.
Synthesis of further examples The synthesis of further examples was carried out according to the methods already described. Table I shows which compound was produced according to which method. It is evident to the person skilled in the art which educts and reagents were used in each case. Table 1: Preparation MS m/z Example Chemical name according to [M+H]* example 1-[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl 13 carbamoyl]-4-methyl-pyridin-2-yl]-piperid ine-4- 5 446.2 carboxylic acid methyl ester 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 15 (4-hydroxy-piperid in-1 -yl)-4-methyl-pyridine-3- 5 404.2 carboxylic acid amide 2-Ethylsulfanyl-N-[(4-fluoro-2-methoxy 17 phenyl)-methyl]-4-methyl-6-morpholin-4-yl- 1 420.2 pyridine-3-carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 25 methyl-6-pyrrolidin-1-yl-pyridine-3-carboxylic 8 374.2 acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 26 methyl-6-(1,2,3,4-tetrahydro-isoquinolin-2-yl)- 8 436.2 pyridine-3-carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 27 methyl-6-[6-(trifluoromethyl)-1,2,3,4- 5 504.2 tetrahydro-isoquinolin-2-yl]-pyridine-3 carboxylic acid amide (E)-N-(4-fluorobenzyl)-4-methyl-6-morpholino 28 2-(prop-1-enyl)-pyridine-3-carboxylic acid 9 370.2 amide N-[(4-Fluorophenyl)-methyl]-4-methyl-6 29 morpholin-4-yl-2-propyl-pyridine-3-carboxylic 10 372.2 acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 30 (3-methoxy-pyrrolidin-1-yl)-4-methyl-pyridine- 6 404.2 3-carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 31 methyl-6-(4-methyl-piperazin-1 -yl)-pyridine-3- 4 403.2 carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 32 methyl-6-piperidin-1 -yl-pyridine-3-carboxylic 4 388.2 acid amide 6-Dimethylamino-2-ethylsulfanyl-N-[(3 33 fluorophenyl)-methyl]-4-methyl-pyridine-3- 4 348.1 carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 34 methyl-6-methylamino-pyridine-3-carboxylic 4 334.1 acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 35 (2-methoxy-ethyl-methyl-amino)-4-methyl- 4 392.2 pyridine-3-carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 36 (2-methoxy-ethylamino)-4-methyl-pyridine-3- 4 378.2 carboxylic acid amide N-[(3-Fluorophenyl)-methyl]-2 37 (isopropylsulfanyl)-4-methyl-6-morpholin-4-yl- 2 404.2 pyridine-3-carboxylic acid amide 2-Ethoxy-N-[(3-fluorophenyl)-methyl]-4-methyl 38 6-morpholin-4-yl-pyridine-3-carboxylic acid 19 374.2 amide N-[(4-Fluorophenyl)-methyl]-2-methoxy-4 39 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 19 360.2 acid amide N-[(3-Fluorophenyl)-methyl]-4-methyl-2 40 methylsulfanyl-6-morpholin-4-y-pyridine-3- 2 376.1 carboxylic acid amide N-[(3,4-Difluoro-phenyl)-methyl]-2 41 ethylsulfanyl-4-methyl-6-morpholin-4-yI- 1 408.1 pyridine-3-carboxylic acid amide 2-Ethylsulfanyl-4-methyl-N-(3-methyl-butyl)-6 42 morpholin-4-yl-pyridine-3-carboxylic acid 1 352.2 amide N-(Cyclopentyl-methyl)-2-ethylsulfanyl-4 43 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 1 364.2 acid amide N-(2-Cyclopentyl-ethyl)-2-ethylsulfanyl-4 44 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 1 378.2 acid amide 2-Ethylsulfanyl-N-[(6-fluoro-pyridin-2-yl) 45 methyl]-4-methyl-6-morpholin-4-yl-pyridine-3- 1 391.2 carboxylic acid amide 2-Ethylsulfanyl-N-[(5-fluoro-pyridin-2-yl) 46 methyl]-4-methyl-6-morpholin-4-yl-pyridine-3- 1 391.2 carboxylic acid amide N-(2,2-Dimethyl-propyl)-2-ethylsulfanyl-4 47 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 1 352.2 acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 48 methyl-6-(2-methyl-morpholin-4-yl)-pyridine-3- 5 404.2 carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 49 (4-methoxy-piperidin-1-yl)-4-methyl-pyridine-3- 4 418.2 carboxylic acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N 50 [(2-phenyl-phenyl)-methyl]-pyridine-3- 1 448.2 carboxylic acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N 51 [[2-(trifluoromethyl)-phenyl]-methyl]-pyridine-3- 1 440.2 carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 52 [(4-fluorophenyl)-methyl-methyl-amino]-4- 4 442.2 methyl-pyridine-3-carboxylic acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N 53 (3-phenyl-propyl)-pyridine-3-carboxylic acid 1 400.2 amide 54 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N- 1 386.2 phenethyl-pyridine-3-carboxylic acid amide N-Benzyl-2-ethylsulfanyl-4-methyl-6 55 morpholin-4-yl-pyridine-3-carboxylic acid 1 372.2 amide N-[(3-Fluorophenyl)-methyl]-4-methyl-6 56 morpholin-4-yl-2-(propylsulfanyl)-pyridine-3- 2 404.2 carboxylic acid amide 2-(Butylsulfanyl)-N-[(3-fluorophenyl)-methyl]-4 57 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 2 418.2 acid amide 2-Ethylsulfanyl-5-fluoro-N-[(3-fluorophenyl) 58 methyl]-4-methyl-6-morpholin-4-yl-pyridine-3- 2 408.1 carboxylic acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N 59 [[3-(trifluoromethyl)phenyl]-methyl]-pyridine-3- 1 440.2 carboxylic acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N 60 [[4-(trifluoromethyl)-phenyl]-methyl]-pyridine-3- 1 440.2 carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 61 methyl-6-[methyl-(tetrahydro-pyran-4-yl- 5 432.2 methyl)-amino]-pyridine-3-carboxylic acid amide N-[(3-Fluorophenyl)-methyl]-4-methyl-2-(2 62 methyl-propylsulfanyl)-6-morpholin-4-yl- 2 418.2 pyridine-3-carboxylic acid amide N-[(3-Fluorophenyl)-methyl]-2-(2-methoxy 63 ethylsulfanyl)-4-methyl-6-morpholin-4-yl- 2 420.2 pyridine-3-carboxylic acid amide 2-Ethoxy-N-[(4-fluorophenyl)-methyl]-4-methyl 64 6-morpholin-4-yl-pyridine-3-carboxylic acid 19 374.2 amide 2-Dimethylamino-N-[(3-fluorophenyl)-methyl] 65 4-methyl-6-morpholin-4-y-pyridine-3- 24 373.2 carboxylic acid amide 6-(2,6-Dimethyl-morpholin-4-y)-2 66 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4- 5 418.2 methyl-pyridine-3-carboxylic acid amide N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4 67 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 1 380.2 acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N 68 (2-tetrahydro-pyran-2-yl-ethyl)-pyridine-3- 1 394.2 carboxylic acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N 69 (tetrahyd ro-pyran-2-yl-methyl)-pyridine-3- 1 380.2 carboxylic acid amide 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 70 methyl-6-(4-methyl-piperidin-1-yl)-pyridine-3- 5 402.2 carboxylic acid amide 2-Ethylsulfanyl-N-[[2-(4-fluorophenyl)-phenyl] 71 methyl]-4-methyl-6-morpholin-4-yI-pyridine-3- 1 466.2 carboxylic acid amide 2-[[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl 72 carbamoyl]-4-methyl-pyridin-2-y]-methyl- 5 420.2 amino]-acetic acid ethyl ester 6-(4-Cyclopropyl-piperazin-1-yl)-2 73 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4- 5 429.2 methyl-pyridine-3-carboxylic acid amide 6-(4,4-Dimethyl-piperidin-1 -yl)-2-ethylsulfanyl 74 N-[(3-fluorophenyl)-methyl]-4-methyl-pyridine- 5 416.2 3-carboxylic acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N 75 [[4-(trifluoromethylsulfanyl)-phenyl]-methyl]- 1 472.1 pyridine-3-carboxylic acid amide N-(Cyclohexyl-methyl)-2-ethylsulfanyl-4 76 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 1 378.2 acid amide 2-Ethylsulfanyl-N-(2-methoxy-ethyl)-4-methyl 77 6-morpholin-4-yl-pyridine-3-carboxylic acid 1 340.2 amide 2-Ethylsulfanyl-N-(3-methoxy-propyl)-4 78 methyl-6-morpholin-4-yI-pyridine-3-carboxylic 1 354.2 acid amide 2-Ethylsulfanyl-4-methyl-N-(4-methyl-pentyl) 79 6-morpholin-4-yl-pyridine-3-carboxylic acid 1 366.2 amide 80 N-Butyl-2-ethylsulfanyl-4-methyl-6-morpholin- 1 338.2 4-yl-pyridine-3-carboxylic acid amide 81 2- Ethyl sulfa nyl-4-m ethyl-6-m orp hol in-4-y -N- 1 352.2 pentyl-pyridine-3-carboxylic acid amide 2-Ethyi s ulfa nyi- N-[[4-fl uoro-3-(trifl uorom ethyl) 82 phenyl]-methyl]-4-methyl-6-morpholin-4-y- 1 458.1 __________pyridine-3-carboxylic acid amide N-(2-te rt-Butoxy-ethyl)-2-ethylsulfanyl-4 83 methyl-6-morpholin-4-yl-pyrid ine-3-carboxylic 1 382.2 _________acid amide 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yI-N 84 (4,4,4-trifluoro-butyl )-pyrid ine-3-carboxylic acid 1 392.2 amide 2-Ethylsulfanyl-N-[[4-fluoro-2-(4-fluorophenyl) 85 phenyl]-methyl]-4-methyl-6-morpholin-4-y- 1 484.2 pyridine-3-carboxylic acid amide N-(4,4-Dimethyl-pentyl)-2-methoxy-4-methyl 86 6-morpholin-4-yI-pyridine-3-carboxylic acid 3 350.2 amide N-[(3,4-Difluoro-phenyl )-methyl]-2-methoxy-4 87 methyl-6-morpholin-4-yI-pyridine-3-carboxylic 3 378.2 acid amide _______ 2-Methoxy-4-methyl-6-morpholin-4-y-N-[(2 88 phenyl-phenyl)-methylJ-pyridine-3-carboxylic 3 418.2 acid amide N-(4,4-Dimethyl-pentyl)-2-ethoxy-4-methyl-6 89 morpholin-4-yI-pyridine-3-carboxylic acid 3 364.3 amide N-[(3, 5-Dif luoro-phenyl )-methyl]-2-ethoxy-4 90 methyl-6-morpholin-4-yI-pyridine-3-carboxylic 3 392.2 acid amide N-[(3,4-Difluoro-phenyl )-methyl]-2-ethoxy-4 91 methyl-6-morpholin-4-yI-pyridine-3-carboxylic 3 392.2 acid amide 2-Ethoxy-4-methyl-6-morpholin-4-yl-N-[(2 92 phenyl-phenyl)-methyl]-pyridine-3-carboxylic 3 432.2 acid amide 2-Ethylsulfanyl-N-[[3-fluoro-5-(trifluoromethyl) phenyl]-methyl]-4-methyl-6-morpholin-4-y 93 pyridine-3-carboxylic acid amide 1 458.1 2-Ethylsulfanyl-N-[[2-fluoro-3-(trifluoromethyl) phenyl]-methyi]-4-methyl-6-morpholin-4-y 94 pyridine-3-carboxylic acid amide 1 458.1 2-Ethylsulfanyl-N-[[2-fluoro-5-(trifluoromethyl) phenyl]-methyl]-4-methyl-6-morpholin-4-y 95 pyridine-3-carboxylic acid amide 1 458.1 2-Ethylsulfanyl-N-(3-fluorophenyl)-methyl]-4 methyl-6-([1 ,4]oxazepane-4-y)-pyridine-3 96 carboxylic acid amide 5 404.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N [[4-(trifluoromethyloxy)-phenyl]-methyl] 97 pyridine-3-carboxylic acid amide 1 456.1 N-[(3-Fluorophenyl)-methyl]-2-methoxy-4 methyl-6-([1,4]oxazepan-4-yl)-pyridine-3 98 carboxylic acid amide 5 374.2 2-Ethoxy-N-[(3-fluorophenyl)-methyl]-4-methyl 6-([1,4]oxazepan-4-yl)-pyridine-3-carboxylic 99 acid amide 5 388.2 N-[(2,3-Difluoro-phenyl)-methyl]-2 ethylsulfanyl-4-methyl-6-morpholin-4-yl 100 pyridine-3-carboxylic acid amide 1 408.1 N-[(2,5-Difluoro-phenyl)-methyl]-2 ethylsulfanyl-4-methyl-6-morpholin-4-yl 101 pyridine-3-carboxylic acid amide 1 408.1 N-[(3-Cyano-phenyl)-methyl]-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 102 acid amide 1 397.2 2-Ethylsulfanyl-N-(2-isopropoxy-ethyl)-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 103 acid amide 1 368.2 N-(3,3-Dimethyl-butyl)-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 104 acid amide 1 366.2 N-(3-Cyclopentyl-propyl)-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 105 acid amide 1 392.2 N-(2-Cyclohexyl-ethyl)-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 106 acid amide 1 392.2 N-[(2,4-Difluoro-phenyl)-methyl]-2 ethylsulfanyl-4-methyl-6-morpholin-4-yl 107 pyridine-3-carboxylic acid amide 1 408.1 2-Ethylsulfanyl-N-[3-(4-fluorophenyl)-propyl]-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 108 acid amide 1 418.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N (3-pyridin-2-yl-propyl)-pyridine-3-carboxylic 109 acid amide 1 401.2 2-Butoxy-N-[(3-fluorophenyl)-methyl]-4-methyl 6-morpholin-4-yl-pyridine-3-carboxylic acid 110 amide 21 402.2 N-[(3-Fluorophenyl)-methyl]-4-methyl-6 morpholin-4-yl-2-propoxy-pyridine-3-carboxylic 111 acid amide 21 388.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(3-oxo-azetidin-1-yl)-pyridine-3 112 carboxylic acid amide 16 374.1 2-Ethylsulfanyl-N-[3-(3-fluorophenyl)-propyl]-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 113 acid amide 1 418.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N (3-pyridin-3-yl-propyl)-pyridine-3-carboxylic 114 acid amide 1 401.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N (3-pyridin-4-yl-propyl)-pyridine-3-carboxylic 115 acid amide 1 401.2 N-(5,5-Dimethyl-hexyl)-2-ethylsulfanyl-4 methyl-6-morpholin-4-y-pyridine-3-carboxylic 116 acid amide 1 394.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[methyl-(pyridin-4-yl-methyl)-amino] 118 pyridine-3-carboxylic acid amide 5 425.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[methyl-(pyridin-3-yl-methyl)-amino] 119 pyridine-3-carboxylic acid amide 5 425.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[methyl-(pyridin-2-yl-methyl)-amino] 121 pyridine-3-carboxylic acid amide 5 425.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(pyridin-3-yl-methylamino)-pyridine 122 3-carboxylic acid amide 5 411.2 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 124 acid amide 1 406.1 N-[(3-Chlorophenyl)-methyl]-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 125 acid amide 1 406.1 6-[Bis(2-methoxy-ethyl)-amino]-2 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 126 methyl-pyridine-3-carboxylic acid amide 5 436.2 2-(Ethyl-methyl-amino)-N-[(3-fluorophenyl) methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 127 carboxylic acid amide 20 387.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 (3-methoxy-propyl-methyl-amino)-4-methyl 128 pyridine-3-carboxylic acid amide 5 406.2 2-Ethylsulfanyl-N-[3-(2-fluorophenyl)-propyl]-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 129 acid amide 1 418.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yi-N [[3-(trifl uoromethyloxy)-phenyl]-methyl] 130 pyridine-3-carboxylic acid amide 1 456.1 2-Ethylsulfanyl-N-[[3-(methoxymethyl)-phenyl] methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 131 carboxylic acid amide 1 416.2 2-Ethoxy-4-methyl-6-morpholin-4-yl-N-[[4 (trifluoromethyl)-phenyl]-methyl]-pyridine-3 132 carboxylic acid amide 117 424.2 2-Ethoxy-4-methyl-6-morpholin-4-yI-N-(4,4,4 trifluoro-butyl)-pyridine-3-carboxylic acid 133 amide 117 376.2 N-(1,3-Benzodioxol-5-yl-methyl)-2 ethylsulfanyl-4-methyl-6-morpholin-4-yl 134 pyridine-3-carboxylic acid amide 1 416.2 2-Ethylsulfanyl-N-[[2-fluoro-4-(trifluoromethyl) phenyl]-methyl]-4-methyl-6-morpholin-4-yl 135 pyridine-3-carboxylic acid amide 1 458.1 6-(Azepan-1 -yl)-2-ethylsulfanyl-N-[(3 fluorophenyl)-methyl]-4-methyl-pyridine-3 136 carboxylic acid amide 5 402.2 2-Ethylsulfanyl-N-[(4-methoxyphenyl)-methyl] 4-methyl-6-morpholin-4-yl-pyridine-3 137 carboxylic acid amide 1 402.2 2-Methoxy-4-methyl-6-morpholin-4-yI-N-(4,4,4 trifluoro-butyl)-pyridine-3-carboxylic acid 140 amide 117 362.2 N-(3-Cyclopropyl-propyl)-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 141 acid amide 1 364.2 2-Ethylsulfanyl-N-[[3-fluoro-4-(trifluoromethyl) phenyl]-methyl]-4-methyl-6-morpholin-4-y 142 pyridine-3-carboxylic acid amide 1 458.1 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(3-oxo-piperazin-1 -yl)-pyridine-3 143 carboxylic acid amide 258 403.2 6-(4-Acetyl-piperazin-1 -yl)-2-ethylsulfanyl-N [(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 144 carboxylic acid amide 258 431.2 N-[(4-Cyano-phenyl)-methyl]-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 145 acid amide 1 397.2 2-Ethylsulfanyl-N-[[4-(methoxymethyl)-phenyl] methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 146 carboxylic acid amide 1 416.2 2-Ethylsulfanyl-N-[[3-fluoro-4 (methoxymethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid 147 amide 1 434.2 N-[(4-Dimethylaminophenyl)-methy]-2 ethylsulfanyl-4-methyl-6-morpholin-4-yl 148 pyridine-3-carboxylic acid amide 1 415.2 2-Ethylsulfanyl-N-[[4-fluoro-3 (methoxymethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yI-pyridine-3-carboxylic acid 149 amide 1 434.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(4-methyl-3-oxo-piperazin-1 -yl) 150 pyridine-3-carboxylic acid amide 5 417.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(6-oxa-2-azaspiro[3.3]heptan-2-yl) 151 pyridine-3-carboxylic acid amide 5 402.2 N-(4,4-Dimethyl-pentyl)-4-methyl-2 methylsulfanyl-6-morpholin-4-yl-pyridine-3 152 carboxylic acid amide 1 366.2 4-Methyl-2-methylsulfanyl-6-morpholin-4-yl-N (4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid 153 amide 1 378.1 N-[(3,4-Difluoro-phenyl)-methyl]-4-methyl-2 methylsulfanyl-6-morpholin-4-yl-pyridine-3 155 carboxylic acid amide 154 394.1 N-[(3,5-Difluoro-phenyl)-methyl]-4-methyl-2 methylsulfanyl-6-morpholin-4-yl-pyridine-3 156 carboxylic acid amide 154 394.1 4-Methyl-2-methylsulfanyl-6-morpholin-4-y-N [[4-(trifluoromethyl)-phenyl]-methyl]-pyridine-3 157 carboxylic acid amide 154 426.1 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(6-oxo-2,3,4,7,8,8a-hexahydro-1 H pyrrolo[1,2-a]pyrazin-2-yI)-pyridine-3 158 carboxylic acid amide 5 443.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(3-oxa-6-azabicyclo[2.2.1 ]heptan-6 159 yi)-pyridine-3-carboxylic acid amide 5 402.2 N-(3-Cyano-propyl)-2-ethylsulfanyl-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid 160 amide 1 349.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N (p-tolyl-methyl)-pyridine-3-carboxylic acid 161 amide 1 386.2 2-Ethylsulfanyl-4-methyl-N-(3-methylsulfonyl propyl)-6-morpholin-4-yl-pyridine-3-carboxylic 162 acid amide 1 402.1 N-(4-Cyano-butyl)-2-ethylsulfanyl-4-methyl-6 morpholin-4-yI-pyridine-3-carboxylic acid 163 amide 1 363.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N (m-tolyl-methyl)-pyridine-3-carboxylic acid 164 amide 1 386.2 N-[(4-Chlorophenyl)-methyl]-2-methoxy-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 165 acid amide 117 376.1 N-[(4-Chlorophenyl)-methyl]-2-ethoxy-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 166 acid amide 117 390.2 6-(2-Ethyl-morpholin-4-y)-2-ethylsulfanyl-N [(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 167 carboxylic acid amide 5 418.2 N-[(4-Chlorophenyl)-methyl]-4-methyl-2 methylsulfanyl-6-morpholin-4-yI-pyridine-3 168 carboxylic acid amide 154 392.1 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(methyl-pyridin-2-yl-amino)-pyridine 170 3-carboxylic acid amide 5 411.2 2-(Ethyl-methyl-amino)-N-[(4-fluorophenyl) methyl]-4-methyl-6-[(3R)-3-methyl-morpholin 173 4-yl]-pyridine-3-carboxylic acid amide 172 401.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[methyl-(tetrahydro-pyran-3-yl methyl)-amino]-pyridine-3-carboxylic acid 175 amide 5 432.2 2-Ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-4 methyl-6-[(3R)-3-methyl-morpholin-4-yl] 177 pyridine-3-carboxylic acid amide 176 404.2 6-(3-Ethyl-morpholin-4-yl)-2-ethylsulfanyl-N [(3-fluorophenyl)-methyl]-4-methyl-pyridine-3 178 carboxylic acid amide 258 418.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(3R)-3-(methoxymethyl)-morpholin-4-yl]-4 179 methyl-pyridine-3-carboxylic acid amide 258 434.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(3S)-3-(methoxymethyl)-morpholin-4-yl]-4 180 methyl-pyridine-3-carboxylic acid amide 258 434.2 N-[(4-Fluorophenyl)-methyl]-2-methoxy-4 methyl-6-[(3R)-3-methyl-morpholin-4-yl] 181 pyridine-3-carboxylic acid amide 176 374.2 2-Ethoxy-N-[(4-fluorophenyl)-methyl]-4-methyl 6-[(3R)-3-methyl-morpholin-4-y]-pyridine-3 182 carboxylic acid amide 176 388.2 2-Dimethylamino-N-(4,4-dimethyl-pentyl)-4 methyl-6-[(3R)-3-methyl-morpholin-4-yl] 183 pyridine-3-carboxylic acid amide 172 377.3 N-(4,4-Dimethyl-pentyl)-2-(ethyl-methyl amino)-4-methyl-6-[(3R)-3-methyl-morpholin 184 4-yl]-pyridine-3-carboxylic acid amide 172 391.3 N-(4,4-Dimethyl-pentyl)-2-isopropyl-4-methyl 6-[(3R)-3-methyl-morpholin-4-yl]-pyridine-3 185 carboxylic acid amide 169 376.3 N-(4,4-Dimethyl-pentyl)-2-methoxy-4-methyl 6-[(3R)-3-methyl-morpholin-4-yl]-pyridine-3 186 carboxylic acid amide 176 364.3 N-(4,4-Dimethyl-pentyl)-2-ethoxy-4-methyl-6 [(3R)-3-methyl-morpholin-4-y]-pyridine-3 187 carboxylic acid amide 176 378.3 2-(Ethyl-methyl-amino)-4-methyl-6-morpholin 4-yl-N-[[4-(trifluoromethyl)-phenyl]-methyl] 188 pyridine-3-carboxylic acid amide 174 437.2 N-(4,4-Dimethyl-pentyl)-2-(ethyl-methyl amino)-4-methyl-6-morpholin-4-yl-pyridine-3 189 carboxylic acid amide 174 377.3 2-(Ethyl-methyl-amino)-4-methyl-6-morpholin 4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 190 carboxylic acid amide 174 389.2 N-[(4-Chlorophenyl)-methyl]-2-(ethyl-methyl amino)-4-methyl-6-morpholin-4-yl-pyridine-3 191 carboxylic acid amide 174 403.2 N-(4,4-Dimethyl-pentyl)-4-methyl-6-[(3R)-3 methyl-morpholin-4-yl]-2-methylsulfanyl 192 pyridine-3-carboxylic acid amide 176 380.2 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4 methyl-6-[(3R)-3-methyl-morpholin-4-y] 193 pyridine-3-carboxylic acid amide 176 394.2 N-[(4-Fluorophenyl)-methyl]-4-methyl-6-[(3R) 3-methyl-morpholin-4-yl]-2-(1 -methyl-propyl) 194 pyridine-3-carboxylic acid amide 169 400.2 N-(4,4-Dimethyl-pentyl)-4-methyl-6-[(3R)-3 methyl-morpholin-4-yl]-2-(1 -methyl-propyl) 195 pyridine-3-carboxylic acid amide 169 390.3 2-Cyclopropyl-N-[(4-fluorophenyl)-methyl]-4 methyl-6-[(3R)-3-methyl-morpholin-4-yl] 196 pyridine-3-carboxylic acid amide 169 384.2 N-[(4-Fluorophenyl)-methyl]-4-methyl-6-[(3R) 3-methyl-morpholin-4-yl]-2-propyl-pyridine-3 197 carboxylic acid amide 169 386.2 2-Cyclopropyl-N-(4,4-dimethyl-pentyl)-4 methyl-6-[(3R)-3-methyl-morpholin-4-yl] 198 pyridine-3-carboxylic acid amide 169 374.3 N-(4,4-Dimethyl-pentyl)-4-methyl-6-[(3R)-3 methyl-morpholin-4-yl]-2-propyl-pyridine-3 199 carboxylic acid amide 169 376.3 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(methyl-pyridin-4-yl-amino)-pyridine 200 3-carboxylic acid amide 171 411.2 2-Ethylsulfanyl-N-[(4-fluoro-3-methyl-phenyl) methyl]-4-methyl-6-morphol in-4-y-pyrid i ne-3 201 carboxylic acid amide 1 404.2 2-Ethylsulfanyl-N-(2-hydroxy-3-phenyl-propyl) 4-methyl-6-morpholin-4-yI-pyridine-3 202 carboxylic acid amide 1 416.2 N-[(3,4-Difluoro-phenyl)-methyl]-2-(ethyl methyl-amino)-4-methyl-6-morpholin-4-y 203 pyridine-3-carboxylic acid amide 174 405.2 N-[(3,5-Difluoro-phenyl )-methyi]-2-(ethyl methyl-amino)-4-methyl-6-morpholin-4-y 204 pyridine-3-carboxylic acid amide 174 405.2 2-Dimethylamino-N-[(4-fluorophenyl)-methyl] 4-methyl-6-morpholin-4-y-pyrid ine-3 205 carboxylic acid amide 174 373.2 N-[(3,4-Difluoro-phenyl)-methyl]-2 dimethylamino-4-methyl-6-morpholin-4-yI 206 pyridine-3-carboxylic acid amide 174 391.2 N-[(4-Ch Iorophen yI)-methyl]-2-ethylsuifanyl-4 methyl-6-[(3R)-3-methyl-morpholin-4-y] 207 pyridine-3-carboxylic acid amide 5 420.1 N-[(3,5-Dimethyl-phenyl)-methyl]-2 ethyl sulfa nyl-4-meth yl-6-morphol in -4-yI 208 pyridine-3-carboxylic acid amide 1 400.2 2-Ethylsulfanyl-N-heptyl-4-methyl-6 morpholin-4-yI-pyrid ine-3-carboxylic acid 209 amide 1 380.2 6-Dimethylamino-N-(4,4-dimethyl-pentyl)-2 ethylsulfanyl-4-methyl-pyridine-3-carboxylic 210 acid amide 5 338.2 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-6-(2 methoxy-ethyl-methyl-amino)-4-methyl 211 pyridine-3-carboxylic acid amide 5 382.2 N-(4,4-Dimethyl-pentyl )-2-ethylsulfanyl-6-(3 methoxy-propyl-methyl-a mino)-4-methyl 212 pyridine-3-carboxylic acid amide 5 396.3 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(3-propyl-morpholin-4-yI)-pyridine-3 213 carboxylic acid amide 258 432.2 N-[(4-Chlorophenyl )-methyl]-2-methoxy-4 methyl-6-[(3R)-3-methyl-morpholin-4-y] 215 pyridine-3-carboxylic acid amide 214 390.2 N-[(3-Fluorophenyl)-methyl]-4-methyl-2-( 1 methyl-propyl)-6-morpholin-4-y-pyrid ine-3 216 carboxylic acid amide 23 386.2 2-Ethylsulfanyl-N-hexyl-4-methyl-6-morpholin 217 4-yI-pyridine-3-carboxylic acid amide 1 366.2 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4 methyl-6-(methyl-tetrahydro-furan-3-yl-amino) 218 pyridine-3-carboxylic acid amide 5 394.2 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4 methyl-6-(2-methyl-morpholin-4-yl)-pyridine-3 219 carboxylic acid amide 5 394.2 2-tert-Butyl-N-(4,4-dimethyl-pentyl)-4-methyl 6-morpholin-4-yl-pyridine-3-carboxylic acid 220 amide 23 376.3 N-(4,4-Dimethyl-pentyl)-4-methyl-2-(1-methyl propyl)-6-morpholin-4-yl-pyridine-3-carboxylic 221 acid amide 23 376.3 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(2-oxa-6-azaspiro[3.4]octan-6-y) 222 pyridine-3-carboxylic acid amide 5 416.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(2R)-2-(methoxymethyl)-morpholin-4-yl]-4 223 methyl-pyridine-3-carboxylic acid amide 5 434.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(2S)-2-(methoxymethyl)-morpholin-4-y]-4 224 methyl-pyridine-3-carboxylic acid amide 5 434.2 N-[(3,4-Difluoro-phenyl)-methyl]-2 ethylsulfanyl-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid 225 amide 176 422.2 N-[(3,4-Difluoro-phenyl)-methyl]-2-methoxy-4 methyl-6-[(3R)-3-methyl-morpholin-4-yl] 226 pyridine-3-carboxylic acid amide 176 392.2 2-Ethylsulfanyl-N-(3-hydroxy-3-phenyl-propyl) 4-methyl-6-morpholin-4-y-pyridine-3 227 carboxylic acid amide 1 416.2 2-Ethylsulfanyl-N-(2-hydroxy-4-methyl-pentyl) 4-methyl-6-morpholin-4-y-pyridine-3 228 carboxylic acid amide 1 382.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [2-(2-methoxy-ethyl)-morpholin-4-yl]-4-methyl 229 pyridine-3-carboxylic acid amide 5 448.2 2-Ethylsulfanyl-N-(5-hydroxy-4,4-dimethyl pentyl)-4-methyl-6-morpholin-4-yl-pyridine-3 230 carboxylic acid amide 1 396.2 2-Ethylsulfanyl-4-methyl-N-[(3-methylsulfonyl phenyl)-methyl]-6-morpholin-4-y-pyridine-3 231 carboxylic acid amide 1 450.1 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[2-(trifluoromethyl)-5,6,7,8 tetrahydro-[1,6]naphthyridin-6-yl]-pyridine-3 232 carboxylic acid amide 258 505.2 N-[(3,5-Difluoro-phenyl)-methyl]-2 ethylsulfanyl-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid 233 amide 176 422.2 N-[(3,5-Difluoro-phenyl)-methyl]-2-methoxy-4 methyl-6-[(3R)-3-methyl-morpholin-4-yl] 234 pyridine-3-carboxylic acid amide 176 392.2 2-Ethyls ulfanyl-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-N-(4,4,4-trifluoro-butyl) 235 pyridine-3-carboxylic acid amide 176 406.2 2-Methoxy-4-methyl-6-[(3R)-3-methyl morpholin-4-y]-N-(4,4,4-trifluoro-butyl) 236 pyridine-3-carboxylic acid amide 176 376.2 2-Ethylsulfanyl-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-N-[[4-(trifluoromethyl)-phenyl] 237 methyl]-pyridine-3-carboxylic acid amide 176 454.2 2-Methoxy-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-N-[[4-(trifluoromethyl)-phenyl] 238 methyl]-pyridine-3-carboxylic acid amide 176 424.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [3-(methoxymethyl)-azetid in-1 -yl]-4-methyl 239 pyridine-3-carboxylic acid amide 5 404.2 6-(2,5-Dimethyl-morpholin-4-yl)-2 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 240 methyl-pyridine-3-carboxylic acid amide 258 418.2 2-Dimethylamino-4-methyl-6-morpholin-4-yl-N [[4-(trifluoromethyl)-phenyl]-methyl]-pyridine-3 241 carboxylic acid amide 174 423.2 N-[(3,5-Difluoro-phenyl)-methyl]-2 dimethylamino-4-methyl-6-morpholin-4-yl 242 pyridine-3-carboxylic acid amide 174 391.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[2-(trifluoromethyl)-5,6,7,8 tetrahydro-imidazo[1,2-a]pyrazin-7-yl] 243 pyridine-3-carboxylic acid amide 5 494.2 N-[(4-Chlorophenyl)-methyl]-2-dimethylamino 4-methyl-6-morpholin-4-yl-pyridine-3 244 carboxylic acid amide 174 389.2 2-Dimethylamino-N-(4,4-dimethyl-pentyl)-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 245 acid amide 174 363.3 2-Dimethylamino-4-methyl-6-morpholin-4-yl-N (4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid 246 amide 174 375.2 2-Ethylsulfanyl-4-methyl-N-[(4-methylsulfonyl phenyl)-methyl]-6-morpholin-4-yl-pyridine-3 247 carboxylic acid amide 1 450.1 2-Ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-6 [(3R)-3-(methoxymethyl)-morpholin-4-yl]-4 248 methyl-pyridine-3-carboxylic acid amide 258 434.2 2-Ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-6 [(3S)-3-(methoxymethyl)-morpholin-4-yl]-4 249 methyl-pyridine-3-carboxylic acid amide 258 434.2 2-tert-Butyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 250 acid amide 23 386.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[4-(2,2,2-trifluoro-ethyl)-piperazin-1 251 yl]-pyridine-3-carboxylic acid amide 258 471.2 6-(2,2-Dimethyl-morpholin-4-yl)-2 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 252 methyl-pyridine-3-carboxylic acid amide 258 418.2 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6 [(2R)-2-(methoxymethyl)-morpholin-4-y]-4 254 methyl-pyridine-3-carboxylic acid amide 258 450.2 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6 [(2S)-2-(methoxymethyl)-morpholin-4-yl]-4 255 methyl-pyridine-3-carboxylic acid amide 258 450.2 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6 [(3R)-3-(methoxymethyl)-morpholin-4-yl]-4 256 methyl-pyridine-3-carboxylic acid amide 258 450.2 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6 [(3S)-3-(methoxymethyl)-morpholin-4-yl]-4 257 methyl-pyridine-3-carboxylic acid amide 258 450.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(4-methoxy-cyclohexyl)-methyl-amino]-4 259 methyl-pyridine-3-carboxylic acid amide 258 446.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[2-(trifluoromethyl)-morpholin-4-y] 260 pyridine-3-carboxylic acid amide 258 458.1 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(methyl-tetrahydro-pyran-3-y 261 amino)-pyridine-3-carboxylic acid amide 258 418.2 6-(3,5-Dimethyl-morpholin-4-yl)-2 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 262 methyl-pyridine-3-carboxylic acid amide 258 418.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(3R)-3-(hydroxymethyl)-morpholin-4-yl]-4 264 methyl-pyridine-3-carboxylic acid amide 263 420.2 N-[(4-Chlorophenyl)-methyl]-2-isopropyl-4 methyl-6-[(3R)-3-methyl-morpholin-4-y] 265 pyridine-3-carboxylic acid amide 169 402.2 N-[(4-Chlorophenyl)-methyl]-4-methyl-6-[(3R) 3-methyl-morpholin-4-yl]-2-propyl-pyridine-3 266 carboxylic acid amide 169 402.2 2-Ethylsulfanyl-N-(3-hydroxy-4,4-dimethyl pentyl)-4-methyl-6-morpholin-4-yl-pyridine-3 267 carboxylic acid amide 1 396.2 N-[(4-Cyano-3-fluoro-phenyl)-methyl]-2 ethylsulfanyl-4-methyl-6-morpholin-4-yl 268 pyridine-3-carboxylic acid amide 1 415.2 N-[(4-Chlorophenyl)-methyl]-2-(2-fluoro ethoxy)-4-methyl-6-morpholin-4-y-pyridine-3 269 carboxylic acid amide 176 408.1 N-[(4-Chlorophenyl)-methyl]-2-(2,2-difluoro ethoxy)-4-methyl-6-morpholin-4-y-pyridine-3 270 carboxylic acid amide 176 426.1 N-[(4-Chlorophenyl)-methyl]-2-(cyclopropyl methoxy)-4-methyl-6-morpholin-4-yl-pyridine 271 3-carboxylic acid amide 176 416.2 2-(2,2-Difluoro-ethoxy)-N-[(4-fluorophenyl) methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 272 carboxylic acid amide 176 410.2 N-[(4-Chlorophenyl)-methyl]-2-ethoxy-4 methyl-6-[(3R)-3-methyl-morpholin-4-y] 273 pyridine-3-carboxylic acid amide 176 404.2 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4 methyl-6-[(2S)-2-methyl-morpholin-4-yl] 274 pyridine-3-carboxylic acid amide 138 394.2 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4 methyl-6-[(2R)-2-methyl-morpholin-4-yl] 275 pyridine-3-carboxylic acid amide 139 394.2 2-(Cyclopropyl-methoxy)-N-[(4-fluorophenyl) methyl]-4-methyl-6-morpholin-4-y-pyridine-3 276 carboxylic acid amide 176 400.2 N-[(4-Chlorophenyl)-methyl]-2-isopropyl-6 [(3S)-3-(methoxymethyl)-morpholin-4-yl]-4 277 methyl-pyridine-3-carboxylic acid amide 258 432.2 N-(4,4-Dimethyl-pentyl)-4-methyl-2-(2-methyl butyl)-6-morpholin-4-yi-pyridine-3-carboxylic 278 acid amide 23 390.3 N-(4,4-Dimethyl-pentyl)-2-(1,1 -dimethyl propyl)-4-methyl-6-morpholin-4-y-pyrid ine-3 279 carboxylic acid amide 23 390.3 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-4 methyl-6-(methyl-tetrahydro-pyran-3-yl 280 amino)-pyridine-3-carboxylic acid amide 258 408.3 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N [(4-nitrophenyl)-methyl]-pyridine-3-carboxylic 281 acid amide 1 417.2 N-[(4-Chlorophenyl)-methyl]-2-cyclopropyl-4 methyl-6-[(3R)-3-methyl-morpholin-4-yl] 282 pyridine-3-carboxylic acid amide 169 400.2 N-[(4-Chlorophenyl)-methyl]-2-(2 dimethylaminoethyloxy)-4-methyl-6-morpholin 283 4-yl-pyridine-3-carboxylic acid amide 176 433.2 2-Ethylsulfanyl-N-[(4-fluoro-3-methoxy phenyl)-methyl]-4-methyl-6-morpholin-4-y 284 pyridine-3-carboxylic acid amide 1 420.2 2-Ethylsulfanyl-N-(3-hydroxy-4-methyl-pentyl) 4-methyl-6-morpholin-4-yl-pyridine-3 286 carboxylic acid amide 1 382.2 2-Ethylsulfanyl-N-[(3-fluoro-4-methoxy phenyl)-methyl]-4-methyl-6-morpholin-4-yl 287 pyridine-3-carboxylic acid amide 1 420.2 N-[[4-(Difluoro-methoxy)-phenyl]-methyl]-2 ethylsulfanyl-4-methyl-6-morpholin-4-yl 288 pyridine-3-carboxylic acid amide 1 438.2 N-(1,3-Dihydro-isobenzofuran-5-yl-methyl)-2 ethylsulfanyl-4-methyl-6-morpholin-4-yl 289 pyridine-3-carboxylic acid amide 1 414.2 N-[(4-Chlorophenyl)-methyl]-2-cyclopropyl-6 [(2S)-2-(methoxymethyl)-morpholin-4-yl]-4 290 methyl-pyridine-3-carboxylic acid amide 285 430.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(2S)-2-(hydroxymethyl)-morpholin-4-yl]-4 291 methyl-pyridine-3-carboxylic acid amide 263 420.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(2R)-2-(hydroxymethyl)-morpholin-4-y]-4 292 methyl-pyridine-3-carboxylic acid amide 263 420.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[methyl-(tetrahydro-furan-2-yl methyl)-amino]-pyridine-3-carboxylic acid 294 amide 5 418.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[(3R)-3-methyl-morpholin-4-y] 295 pyridine-3-carboxylic acid amide 171 404.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[(3S)-3-methyl-morpholin-4-yl] 296 pyridine-3-carboxylic acid amide 171 404.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-[methyl-[[4-(trifluoromethyl)-phenyl] methyl]-amino]-pyridine-3-carboxylic acid 297 amide 171 492.2 6-(Azetidin-1 -yl)-2-ethylsulfanyl-N-[(3 fluorophenyl)-methyl]-4-methyl-pyridine-3 299 carboxylic acid amide 293 360.1 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(methyl-tetrahydro-furan-3-yl-amino) 301 pyridine-3-carboxylic acid amide 171 404.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(N-methyl-anilino)-pyrid ine-3 302 carboxylic acid amide 171 410.2 6-(2,3-Dihydro-1 H-isoindol-2-yl)-2 ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 303 methyl-pyridine-3-carboxylic acid amide 171 422.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(1,2,3,4-tetrahydro-quinolin-1 -yl) 304 pyridine-3-carboxylic acid amide 171 436.2 6-(2,3-Dihydro-1 H-indol-1 -yl)-2-ethylsulfanyl N-[(3-fluorophenyl)-methyl]-4-methyl-pyrid ine 305 3-carboxylic acid amide 171 422.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N (2,4,4-trimethyl-pentyl)-pyridine-3-carboxylic 306 acid amide 1 394.2 N-(4,4-Difluoro-pentyl)-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 308 acid amide 1 388.2 N-[(4-Fluorophenyl)-methyl]-2-isopropyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 309 acid amide 23 372.2 N-[(3,4-Difluoro-phenyl)-methyl]-2-isopropyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 310 acid amide 23 390.2 2-Isopropyl-4-methyl-6-morpholin-4-yl-N-[[4 (trifluoromethyl)-phenyl]-methyl]-pyridine-3 311 carboxylic acid amide 23 422.2 N-(4,4-Dimethyl-pentyl)-4-methyl-6-morpholin 313 4-yl-2-propyl-pyridine-3-carboxylic acid amide 23 362.3 N-(4,4-Dimethyl-pentyl)-2-isopropyl-4-methyl 6-morpholin-4-yl-pyridine-3-carboxylic acid 314 amide 23 362.3 2-Isopropyl-4-methyl-6-morpholin-4-yl-N (4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid 315 amide 23 374.2 N-[(3,5-Difluoro-phenyl)-methyl]-2-isopropyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 316 acid amide 23 390.2 2-Ethylsulfanyl-N-(4-methoxy-4-methyl pentyl)-4-methyl-6-morpholin-4-yl-pyridine-3 318 carboxylic acid amide 1 396.2 2-Ethylsulfanyl-N-(4-fluoro-4-methyl-pentyl)-4 methyl-6-morpholin-4-yI-pyridine-3-carboxylic 319 acid amide 1 384.2 4-Methyl-6-morpholin-4-yl-2-propyl-N-(4,4,4 trifluoro-butyl)-pyridine-3-carboxylic acid 320 amide 23 374.2 N-[(3,4-Difluoro-phenyl)-methyl]-4-methyl-6 morpholin-4-yl-2-propyl-pyridine-3-carboxylic 321 acid amide 23 390.2 N-[(3,5-Difluoro-phenyl)-methyl]-4-methyl-6 morpholin-4-yl-2-propyl-pyridine-3-carboxylic 322 acid amide 23 390.2 4-Methyl-6-morpholin-4-yI-2-propyl-N-[[4 (trifluoromethyl)-phenyl]-methyl]-pyridine-3 323 carboxylic acid amide 23 422.2 N-(4,4-Dimethyl-2-oxo-pentyl)-2-ethylsulfanyl 4-methyl-6-morpholin-4-yl-pyridine-3 324 carboxylic acid amide 1 394.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(8-oxa-3-azabicyclo[3.2.1 ]octan-3 325 yl)-pyridine-3-carboxylic acid amide 258 416.2 N-[(4-Chlorophenyl)-methylJ-4-methyl-6 morpholin-4-yl-2-propyl-pyridine-3-carboxylic 326 acid amide 23 388.2 N-[(4-Chlorophenyl)-methyl]-2-isopropyl-4 methyl-6-morpholin-4-yi-pyridine-3-carboxylic 327 acid amide 23 388.2 2-Cyclopropyl-N-(4,4-dimethyl-pentyl)-4 methyl-6-morpholin-4-yI-pyridine-3-carboxylic 328 acid amide 355 360.3 2-Cyclopropyl-4-methyl-6-morpholin-4-yl-N (4,4,4-trifluoro-butyl)-pyridine-3-carboxylic acid 329 amide 355 372.2 2-Cyclopropyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 330 acid amide 355 370.2 2-Cyclopropyl-N-[(4-fluorophenyl)-methylJ-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 331 acid amide 355 370.2 2-Cyclopropyl-N-[(3,4-difluoro-phenyl)-methyl] 4-methyl-6-morpholin-4-yI-pyridine-3 332 carboxylic acid amide 355 388.2 2-Cyclopropyl-N-[(3,5-difluoro-phenyl)-methyl] 4-methyl-6-morpholin-4-yi-pyridine-3 333 carboxylic acid amide 355 388.2 2-Cyclopropyl-4-methyl-6-morpholin-4-y-N-[[4 (trifluoromethyl)-phenyl]-methyl]-pyridine-3 334 carboxylic acid amide 355 420.2 N-[(4-Chlorophenyl)-methyl]-2-cyclopropyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 335 acid amide 355 386.2 N-(4,4-Dimethyl-pentyl)-2-(2-methoxy ethylsulfanyl)-4-methyl-6-morpholin-4-yl 337 pyridine-3-carboxylic acid amide 2 410.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(4-fluorophenyl)-methyl-(3-methoxy-propyl) amino]-4-methyl-pyridine-3-carboxylic acid 338 amide 258 500.2 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N (3,4,4-trimethyl-pentyl)-pyridine-3-carboxylic 339 acid amide 1 394.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [3-(2-methoxy-ethyl)-morpholin-4-yl]-4-methyl 340 pyridine-3-carboxylic acid amide 258 448.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6 [(4-fluorophenyl)-methyl-(2-methoxy-ethyl) amino]-4-methyl-pyridine-3-carboxylic acid 342 amide 258 486.2 2-Ethylsulfanyl-4-methyl-N-[3-(3-methyl oxetan-3-y)-propyl]-6-morpholin-4-yl-pyridine 343 3-carboxylic acid amide 1 394.2 N-(4,4-Dimethyl-pent-2-ynyl)-2-ethylsulfanyl-4 methyl-6-morpholin-4-yl-pyridine-3-carboxylic 344 acid amide 1 376.2 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-6-(3-oxa-8-azabicyclo[3.2.1 ]octan-8 345 yi)-pyridine-3-carboxylic acid amide 258 416.2 N-[(4-Chlorophenyl)-methyl]-4-methyl-2-( 1 methyl-propyl)-6-morpholin-4-yl-pyridine-3 347 carboxylic acid amide 23 402.2 N-(4,4-Dimethyl-hexyl)-2-ethylsulfanyl-4 methyl-6-morpholin-4-y-pyridine-3-carboxylic 348 acid amide 1 394.2 N-(4,4-Dimethyl-pentyl)-2-(2-methoxy-ethoxy) 4-methyl-6-morpholin-4-yl-pyridine-3 349 carboxylic acid amide 176 394.3 2-Ethylsulfanyl-4-methyl-N-[3-(1-methyl cyclopropyl)-propylJ-6-morpholin-4-y-pyridine 350 3-carboxylic acid amide 1 378.2 2-Cyclopropyl-N-[[4-fluoro-3-(methoxymethyl) phenyl]-methyl]-4-methyl-6-morpholin-4-yl 351 pyridine-3-carboxylic acid amide 355 414.2 2-Ethylsulfanyl-N-[[4-fluoro-3 (methoxymethyl)-phenyl]-methyl]-4-methyl-6 [(3R)-3-methyl-morpholin-4-y]-pyridine-3 352 carboxylic acid amide 1 448.2 2-Ethylsulfanyl-N-[[4-fluoro-3-(hydroxymethyl) phenyl]-methyl]-4-methyl-6-morpholin-4-yl 353 pyridine-3-carboxylic acid amide 1 420.2 N-(4,4-Dimethyl-pentyl)-4-methyl-6-morpholin 4-yl-2-tetrahydro-pyran-4-yl-pyridine-3 362 carboxylic acid amide 354 403.3 Pharmacological experiments Method I. Fluorescence assay using a voltage sensitive dye (fluorimetry) Human CHO-K1 cells expressing KCNQ2/3 channels are cultivated adherently at 37 0 C, 5%
CO
2 and 95% humidity in cell culture bottles (e.g. 80 cm 2 TC flasks, Nunc) with DMEM-high glucose (Sigma Aldrich, D7777) including 10% FCS (PAN Biotech, e.g. 3302-P270521) or alternatively MEM Alpha Medium (1x, liquid, Invitrogen, #22571), 10% fetal calf serum (FCS) (Invitrogen, #10270-106, heat-inactivated) and the necessary selection antibiotics. Before being sown out for the measurements, the cells are washed with 1 x DPBS buffer Ca 2 +/Mg 2 +-free (e.g. Invitrogen, #14190-094) and detached from the bottom of the culture vessel by using Accutase (PAA Laboratories, #L1 1-007) (incubation with Accutase for 15 min at 37 0 C). The cell number is determined using a CASYTM cell counter (TCC, Schsrfe System). Depending on the optimal density for each individual cell line, 20,000-30,000 cells/well/100 ptl are seeded onto 96-well CorningTM CelIBINDTM assay plates (Flat Clear Bottom Black Polystyrene Microplates, #3340). Freshly seeded cells are then left to settle for one hour at room temperature, followed by incubation for 24 hours at 37 0 C, 5% CO 2 and 95% humidity. The voltage-sensitive fluorescent dye from the Membrane Potential Assay Kit (RedTM Bulk format part R8123 for FLIPR, MDS Analytical Technologies T M ) is prepared by dissolving the contents of one vessel Membrane Potential Assay Kit Red Component A in 200 ml of extracellular buffer (ES buffer, 120 mM NaCl, 1 mM KCI, 10 mM HEPES, 2 mM CaC 2 , 2 mM MgCl 2 , 10 mM glucose; pH 7.4). After removal of the nutrient medium, the cells are washed once with 200 pl of ES buffer, then loaded for 45 min at room temperature in 100 pl of dye solution in the dark. Fluorescence measurements are carried out in a BMG Labtech FLUOstar T M , BMG Labtech NOVOstarm or BMG Labtech POLARstar instrument (525 nm excitation, 560 nm emission, Bottom Read mode). After incubation with the dye, 50 pl of the test substances in the desired concentrations, or 50 pl of ES buffer for control purposes, are applied to the wells of the assay plate and incubated for 30 min at room temperature while being shielded from light. The fluorescence intensity of the dye is then measured for 5 min and the fluorescence value F, of each well is thus determined at a given, constant time. 15 pl of a KCI solution are then added to each well (final concentration of potassium ions 92 mM). The change in fluorescence intensity is subsequently monitored until all the relevant values have been obtained (mainly 5-30 min). At a given time post KCl application, a fluorescence value F 2 is determined, in this case at the time of the fluorescence peak. For calculation, the fluorescence intensity F 2 is corrected for the fluorescence intensity F 1 , and the activity (AF/F) of the target compound on the potassium channel is determined as follows: F2- lx100 = 1(%) F, F AF In order to determine whether a substance has agonistic activity, F can be related to FLK of control wells. (FiK is determined by adding to the well only the buffer solution instead of the test substance, determining the value FIK of the fluorescence intensity, adding the potassium ions as described above, and measuring a value F2K of the fluorescence intensity. F2K and F1K are then calculated as follows: F2K -IK x 100 = (%) FK F K AF A substance has an agonistic activity on the potassium channel if F is greater than (AF )K AF (A l F FK AF A Independently of the comparison of F with( AFR it is possible to conclude that a target AF compound has agonistic activity if F increases dose dependently. Calculations of EC5o and IC 50 values are carried out with the aid of 'Prism v4.0' software (GraphPad SoftwareTM).
Method II. Low-intensity tail flick test (rat) In the low-intensity tail flick test, the determination of the antinociceptive effect of the compounds according to the invention towards an acute noxious thermal stimulus is carried out by measuring the withdrawal reflex of the rat tail (tail flick) in response to a radiant heat beam (analgesia meter; model 2011 of the company Rhema Labortechnik, Hofheim, Germany) according to the method described by D'Amour and Smith (J. Pharm. Exp. Ther. 72, 74 79 (1941). To this end, the rats were placed in a plexiglas restrainer, and a low intensity radiant heat beam (48 0 C) was focused onto the dorsal surface of the tail root. The stimulus intensity was adjusted to result in a mean pre-drug control withdrawal latency of about 7 s, thus also allowing a supraspinal modulation of the spinally mediated acute nociceptive reflex. A cutoff time of 30 s was applied to avoid tissue damage. Male Sprague Dawley rats (Janvier, Le Genest St. Isle, Frankreich) with weights of 200-250 g were used. 10 rats were used per group. Before administration of a compound according to the invention, the animals were pre-tested twice in the course of five minutes and the mean of these measurements was calculated as the pre-test mean. The antinociceptive effect was determined at 20, 40 and 60 min after peroral compound administration. The antinociceptive effect was calculated based on the increase in the tail withdrawal latency according to the following formula and is expressed as percentage of the maximum possible effect (MPE [%]): MPE = [(T 1 -To)/(T 2 -To)]*100 In this, To is the control latency time before and T 1 the latency time after administration of the compound, T 2 is the cutoff time and MPE is the maximum possible effect. Employing variant analysis (repeated measures ANOVA) allowed testing of statistically significant differences between the compounds according to the invention and the vehicle group. The significance level was set to p 5 0.05. To determine the dose dependency, the particular compound according to the invention was administered in 3-5 logarithmically increasing doses, including a threshold dose and a maximum effective dose, and the ED 50 values were determined with the aid of regression analysis. The ED 50 calculation was performed at the time of maximum efficacy (usually 20 min after administration of the compounds). Pharmacological data The pharmacological effects of the compounds according to the invention were determined as described hereinbefore (pharmacological experiments, methods I and II respectively). The corresponding pharmacological data are summarized in Table 2.
Table 2: Example Fluorimetry Fluorimetry Low intensity tail flick, % efficacy ECso / ICso [nM] rat, peroral, ED 5 o or (retigabine MPE (dose) [mg/kg] = 100%) 1 160 56 78 (4.64) 2 171 134 4.3 3 132 233 4 158 124 94(10) 5 111 269 6 140 3875 7 44 8 71 442 9 174 740 10 176 181 81 (10) 11 41 175 12 210 2010 13 145 1094 14 16 15 93 7063 16 149 2521 17 21 18 224 98 19 155 736 79(10) 20 140 782 21 146 1221 22 166 790 23 182 113 24 210 308 25 162 211 26 155 132 27 132 151 29 185 236 30 144 1315 31 23 32 166 132 33 110 639 34 37 1832 35 153 635 36 125 6001 37 148 99 38 144 219 61(10) 39 143 645 40 168 587 84(10) 41 169 69 92 (6.81) 42 169 571 43 189 679 44 116 87 45 151 3136 46 143 4834 47 119 2607 48 145 217 Example Fluorimetry Fluorimetry Low intensity tail flick, % efficacy EC 50
IC
50 [nM] rat, peroral, ED 50 or (retigabine MPE (dose) [mg/kg] = 100%) 49 143 1463 50 -97 63 51 -84 541 52 122 235 53 191 248 54 103 2123 55 162 260 56 167 77 57 169 47 58 173 2286 59 128 70 60 128 126 61 110 528 62 164 47 63 157 585 64 137 216 65 238 1058 66 109 983 67 244 42 100(10) 68 134 7371 69 160 4479 70 175 163 71 -102 275 72 93 2085 73 67 3008 74 70 702 75 135 61 76 179 91 77 40 78 31 79 215 206 46(10) 80 147 2168 81 163 662 82 117 118 83 182 2804 84 203 357 85 -61 107 86 236 172 87 138 311 88 -83 253 89 268 138 90 134 122 91 127 117 92 -79 128 93 103 54 94 111 39 95 62 56 96 173 1098 97 136 67 98 146 2310 Example Fluorimetry Fluorimetry Low intensity tail flick, % efficacy EC 50 1 IC 50 [nM] rat, peroral, ED 50 or (retigabine MPE (dose) [mg/kg] = 100%) 99 134 899 100 98 118 101 100 133 102 138 1223 103 142 4522 104 100 1401 105 207 179 106 160 172 107 90 88 108 203 317 109 53 110 163 71 111 153 109 112 130 2742 113 192 212 114 126 9381 115 96 7972 116 210 131 117 128 268 118 3 119 91 2422 120 10 121 35 122 68 8894 123 67 124 149 82 125 152 87 126 145 2093 127 238 385 128 142 785 129 206 221 130 148 74 131 137 1247 132 122 110 133 235 392 134 159 1137 135 43 54 136 171 108 137 151 1066 138 125 170 139 146 770 140 227 1121 141 167 242 142 125 38 143 28 144 59 145 145 673 146 159 2493 147 153 530 148 105 3624 Example Fluorimetry Fluorimetry Low intensity tail flick, % efficacy EC 5 s / ICS [nM] rat, peroral, ED 50 or (retigabine MPE (dose) [mg/kg] = 100%) 149 136 451 150 98 9647 151 92 12116 152 249 63 153 210 676 154 154 394 155 158 152 156 167 157 157 127 166 158 60 159 149 1258 160 70 161 143 366 162 21 163 73 164 122 237 165 135 230 166 134 117 167 137 113 168 149 132 169 197 24 170 84 1238 171 62 1944 172 246 378 173 259 201 174 221 422 175 114 870 176 215 136 177 174 97 178 147 54 179 190 243 180 123 86 181 167 255 182 146 125 183 221 168 184 228 221 185 238 15 186 240 63 187 242 49 188 154 343 189 225 284 190 207 2504 191 214 265 192 236 46 193 246 29 194 189 31 195 242 13 196 197 103 197 211 142 198 246 19 Example Fluorimetry Fluorimetry Low intensity tail flick, % efficacy EC 50 / IC 50 [nM] rat, peroral, ED 50 or (retigabine MPE (dose) [mg/kg] = 100%) 199 232 50 200 22 201 127 135 202 129 5986 203 220 219 204 239 141 205 205 898 206 207 402 207 183 69 208 61 281 209 192 234 210 223 187 211 225 143 212 200 152 213 131 49 214 194 224 215 191 147 216 181 69 217 181 407 218 194 272 219 212 91 220 166 682 221 259 22 222 56 7306 223 137 3662 224 136 693 225 173 71 226 186 129 227 165 4193 228 180 2451 229 132 719 230 131 12909 231 61 10432 232 131 112 233 196 70 234 195 124 235 235 196 236 227 469 237 148 56 238 164 102 239 125 1820 240 174 394 241 160 558 242 214 366 243 105 1284 245 225 345 246 173 4103 247 38 248 223 313 249 129 82 Example Fluorimetry Fluorimetry Low intensity tail flick, % efficacy EC 50 / IC 50 [nM] rat, peroral, ED 50 or (retigabine MPE (dose) [mg/kg] = 100%) 250 196 371 251 97 1591 252 137 274 253 79 5737 254 113 943 255 121 169 256 221 101 257 125 23 258 170 301 259 133 298 260 127 149 261 96 786 262 182 374 263 114 4142 264 184 1562 265 206 28 266 210 57 267 223 247 268 142 286 269 119 147 270 97 24 271 128 93 272 96 78 273 163 137 274 217 234 275 208 63 276 102 143 277 129 17 278 225 36 279 172 430 280 165 302 281 109 311 282 182 40 283 22 284 94 648 285 126 157 286 198 1754 287 153 971 288 138 435 289 129 2816 290 136 314 291 53 7952 292 32 293 125 488 294 129 1034 295 188 50 296 222 189 297 125 177 298 127 4585 299 104 920 Example Fluorimetry Fluorimetry Low intensity tail flick, % efficacy EC 50 / IC 50 [nM] rat, peroral, ED 50 or (retigabine MPE (dose) [mg/kg] = 100%) 301 132 767 302 93 278 303 54 1148 304 81 348 305 57 306 33 307 104 178 308 249 397 309 168 71 310 174 43 311 146 45 312 135 6699 313 229 62 314 242 18 315 187 314 316 160 29 317 116 1123 318 193 2880 319 233 348 320 192 826 321 162 83 322 193 80 323 130 102 324 166 834 325 153 282 326 163 59 327 173 50 328 230 44 329 170 763 330 156 168 331 144 148 332 166 109 333 169 98 334 124 96 335 162 85 336 183 430 337 237 117 338 73 320 339 202 37 340 152 274 341 22 342 124 291 343 163 6843 344 253 41 345 200 122 346 157 729 347 156 41 348 228 22 349 216 284 350 226 79 Example Fluorimetry Fluorimetry Low intensity tail flick, % efficacy EC 50 i IC 50 [nM] rat, peroral, ED 50 or (retigabine MPE (dose) [mg/kg] = 100%) 351 118 489 352 166 287 353 46 354 204 1535 355 167 721 356 140 6322 357 17 358 234 1126 359 141 237
Claims (19)
1. A substituted compound of general formula (I-c) R 2 o R4I N I-*IR1 N N R 6 (I-c), wherein R represents a C1imo-aliphatic residue, unsubstituted or mono- or polysubstituted; a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; R2 represents F; Cl; Br; I; CN; CF 3 ; C(=O)H; NO 2 ; OCF 3 ; SCF 3 ; a C 1 . 4 -aliphatic residue, a C(=O)-C 1 . 4 aliphatic residue, a C(=O)-O-C 1 . 4 aliphatic residue, a C(=O)-NH-C 1 . 4 aliphatic residue, a C(=O)-N(C 1 . 4 aliphatic residue) 2 , wherein the C 1 . 4 aliphatic residue may be in each case be unsubstituted or mono- or polysubstituted; a O-C 1 . 4 -aliphatic residue, a O-C(=O)-C 1 . 4 -aliphatic residue, a S-C 1 . 4 -aliphatic residue, a S(=0) 2 -C 1 . 4 -aliphatic residue, a S(=0)2-0-C1.4 aliphatic residue, wherein the C 1 . 4 aliphatic residue may in each case be unsubstituted or mono- or polysubstituted; a C 3 . 6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 . 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; 210 R4 represents a C 1 io-aliphatic residue, unsubstituted or mono- or polysubstituted; a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted and in each case optionally bridged via a C 1 . 8 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted; on the condition that if R 4 denotes a 3 to 10 membered heterocycloaliphatic residue or a heteroaryl, the 3 to 10 membered heterocycloaliphatic residue or the heteroaryl is linked via a carbon atom; R3 5 denotes H or a C1o-aliphatic residue, unsubstituted or mono- or polysubstituted; or R 4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted; R6 denotes S-R 7 wherein R7 denotes a C 1 . 6 -aliphatic residue, selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, ethenyl and propenyl (-CH 2 CH=CH 2 , -CH=CH-CH 3 , -C(=CH 2 )-CH 3 ), in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-CI-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 -aliphatic residue, an NH(C 1 . 4 aliphatic residue) and an N(C 1 . 4 aliphatic residue) 2 , wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, 211 or denotes a C 3 . 6 -cycloaliphatic residue, or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, CF 3 , and a CI-aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the C 3 .io-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue in each case may be bridged via an unsubstituted C 1 aliphatic group, on the condition that if R 7 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or R6 denotes O-R 8 wherein R8 in each case denote a C 1 . 6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 . 4 -aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 4 -aliphatic residue, an NH(C 1 . 4 aliphatic residue), an N(C 1 4 aliphatic residue) 2 , CF 3 , and a C 1 4 -aliphatic residue, wherein the C 1 4 -aliphatic residue in each case is unsubstituted, or denotes a C 3 . 6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 . 4 aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, CF 3 , and a C 1 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1 . 4 -aliphatic residue, 212 and wherein the C 3 . 1 o-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue in each case may be bridged, via an unsubstituted C 1 . 4 aliphatic group, on the condition that if R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or R' denotes N(R R ), wherein R 9 denotes a C 1 . 6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 . 4 -aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 -aliphatic residue, CF 3 , and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, or denotes a C 3 . 6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, a C 1 . 4 -aliphatic residue and an 0 C 1 . 4 -aliphatic residue, even more preferably in each case unsubstituted, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, and wherein the C 3 - 6 -cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case optionally bridged via an unsubstituted C 1 . 4 aliphatic group, on the condition that if R 9 denotes a 3 to 6 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, R 10 denotes H or an unsubstituted C 1 . 4 -aliphatic residue, or R 9 and R 10 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 . 4 aliphatic residue, and a C 1 . 4 -aliphatic residue, 213 wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1 . 4 -aliphatic residue, in which an "aliphatic group" and an "aliphatic residue" can in each case be branched or unbranched, saturated or unsaturated, in which a "cycloaliphatic residue" and a "heterocycloaliphatic residue" can in each case be saturated or unsaturated, in which "mono- or polysubstituted" with respect to an "aliphatic group" and an "aliphatic residue" relates, with respect to the corresponding residues or groups, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , a NH-C(=O)-C 1 . 4 aliphatic residue, a NH S(=0) 2 -C 1 . 4 aliphatic residue, =0, OH, OCF 3 , a 0-C 1 . 4 -aliphatic residue, a 0-C(=0)-C1.4 aliphatic residue, SH, SCF 3 , a S-C 1 . 4 -aliphatic residue, S(=0) 2 OH, a S(=0) 2 -C 1 . 4 -aliphatic residue, a S(=0) 2 -0-C 1 . 4 -aliphatic residue, a S(=0) 2 -NH-C 1 . 4 -aliphatic residue, CN, CF 3 , CHO, COOH, a C 1 . 4 -aliphatic residue, a C(=O)-C 1 . 4 -aliphatic residue, a C(=0)-0-C1.4 aliphatic residue, a C 3 . 6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=O)-NH 2 , a C(=O)-NH(C 1 . 4 aliphatic residue), and a C(=O)-N(C 1 . 4 aliphatic residue) 2 ; in which "mono- or polysubstituted" with respect to a "cycloaliphatic residue" and a "heterocycloaliphatic residue" relates, with respect to the corresponding residues, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , a NH-C(=O)-C 1 . 4 aliphatic residue, a NH S(=0) 2 -C 1 . 4 aliphatic residue, =0, OH, OCF 3 , a 0-C 1 . 4 -aliphatic residue, a 0-C(=0)-C1.4 aliphatic residue, SH, SCF 3 , a S-C 1 . 4 -aliphatic residue, S(=0) 2 0H, a S(=0) 2 -C 1 . 4 -aliphatic residue, a S(=0) 2 -0-C 1 . 4 -aliphatic residue, a S(=0) 2 -NH-C 1 . 4 -aliphatic residue, CN, CF 3 , CHO, COOH, a C 1 . 4 -aliphatic residue, a C(=O)-C 1 . 4 -aliphatic residue, a C(=0)-0-C1.4 aliphatic residue, a C 3 . 6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, C(=O)-NH 2 , a C(=O)-NH(C 1 . 4 aliphatic residue), and a C(=O)-N(C 1 . 4 aliphatic residue) 2 ; 214 in which "mono- or polysubstituted" with respect to "aryl" and a "heteroaryl" relates, with respect to the corresponding residues, to the substitution of one or more hydrogen atoms each independently of one another by at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , ', O , , , ,an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , an NH-C(=O)-C 1 . 4 aliphatic residue, an NH-S(=0) 2 -C 1 . 4 aliphatic residue, OH, OCF 3 , a 0-C1. 4 -aliphatic residue, a O-C(=O)-C1. 4 -aliphatic residue, SH, SCF 3 , a S-C 1 . 4 -aliphatic residue, S(=0)20H, a S(=0) 2 -C 1 . 4 -aliphatic residue, a S(=0) 2 -0-C 1 . 4 -aliphatic residue, a S(=0) 2 -NH-C 1 . 4 -aliphatic residue, CN, CF 3 , C(=O)H, C(=O)OH, a C1. 4 -aliphatic residue, a C(=O)-C1. 4 -aliphatic residue, a C(=0)-0-C1.4 aliphatic residue, a C 3 . 6 -cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, aryl, heteroaryl, C(=O)-NH 2 , a C(=O)-NH(C 1 . 4 aliphatic residue), and a C(=O)-N(C1. 4 aliphatic residue) 2 ; in the form of the free compounds, the racemate, the enantiomers, diastereomers, mixtures of the enantiomers or diastereomers in any mixing ratio, or of an individual enantiomer or diastereomer, or in the form of the salts of physiologically acceptable acids or bases.
2. The compound according to claim 1, wherein R I denotes a C1o-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an 0 C1. 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1. 4 -aliphatic residue, a S(=0)2-C1.4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O)-OH, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, or denotes a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, a C3-6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, 215 wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O)-OH, and wherein the C 3 . 1 o-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C1.4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O)-OH, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, a S(=0) 2 -C 1 . 4 -aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , a C 3 - 6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, ', 1 >,A , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and 216 wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0 CH 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, and wherein the aryl or the heteroaryl residue may in each case be optionally bridged via a C 1 .s aliphatic group, preferably a C 1 . 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C1.4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN and C(=O)-OH, R2 represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; a C 1 . 4 -aliphatic residue, a S C 1 . 4 -aliphatic residue, or a O-C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 . 4 -aliphatic residue; a C 3 . 6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, a C 1 . 4 -aliphatic residue and an O-C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the C 3 - 6 -cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case be optionally bridged via a C 1 . 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one 217 substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an unsubstituted C 1 . 4 -aliphatic residue and an unsubstituted O-C 1 . 4 -aliphatic residue, R4 denotes a C 1 io-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an 0 C 1 . 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 -aliphatic residue, CF 3 , CN, a C1. 4 -aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, and C(=0)-OH, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, or denotes a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, a C(=O)-O-C 1 . 4 -aliphatic residue a C 3 . 6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, 218 and wherein the C 3 . 1 o-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue may in each case optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C1.4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, on the condition that if R 4 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , a C3-6 %O> Ni \0 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, l'O , ' , >, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0 CH 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , and 219 wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, and wherein the aryl or the heteroaryl residue may in each case be optionally bridged via a C 1 .s aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN and C(=O)-OH, R3 5 denotes H or a C 1 .o-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O)-OH, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, or R 4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, a C3.6 cycloaliphatic residue, and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and 220 wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R' together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , a C 3 - 6 cycloaliphatic 40 "%0 40O NO residue, a 3 to 6 membered heterocycloaliphatic residue, k'o, 1 , , 0, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with a C3. 10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, wherein the C 3 . 10 cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , =0, OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , a C3-6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and 221 wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0 CH 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, R6 denotes S-R 7 wherein R7 denotes a C 1 . 6 -aliphatic residue, selected from the group consisting of methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, ethenyl and propenyl (-CH 2 CH=CH 2 , -CH=CH-CH 3 , -C(=CH 2 )-CH 3 ), unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-CI-aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 aliphatic residue, an NH(C 1 . 4 aliphatic residue), and an N(C 1 . 4 aliphatic residue) 2 , wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, or denotes a C 3 . 6 -cycloaliphatic residue, or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, CF 3 , and a CI-aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1 . 4 -aliphatic residue, 222 and wherein the C 3 . 1 o-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue in each case may be bridged via an unsubstituted C1 aliphatic group, on the condition that if R 7 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or R6 denotes O-R 8 wherein R in each case denote a C 1 . 6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 . 4 -aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 -aliphatic residue, an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , CF 3 , and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, or denotes a C 3 . 6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 . 4 aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, CF 3 , and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the C 3 . 1 o-cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue in each case may be bridged, via an unsubstituted C 1 . 4 aliphatic group, on the condition that if R 8 denotes a 3 to 10 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, or R6 denotes N(R R ), 223 wherein R 9 denotes a C 1 . 6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 . 4 -aliphatic residue, a C(=O)-O-C 1 . 4 -aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 -aliphatic residue, CF 3 , and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, or denotes a C 3 . 6 -cycloaliphatic residue or a 3 to 6 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, a C 1 . 4 -aliphatic residue and an 0 C 1 . 4 -aliphatic residue, even more preferably in each case unsubstituted, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, and wherein the C 3 - 6 -cycloaliphatic residue or the 3 to 6 membered heterocycloaliphatic residue may in each case optionally bridged via an unsubstituted C 1 . 4 aliphatic group, on the condition that if R 9 denotes a 3 to 6 membered heterocycloaliphatic residue, the 3 to 10 membered heterocycloaliphatic residue is linked via a carbon atom, R 10 denotes H or an unsubstituted C 1 . 4 -aliphatic residue, or R 9 and R 10 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 . 4 aliphatic residue, and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with OH or an unsubstituted O-C 1 . 4 -aliphatic residue.
3. The compound according to claim 1 or 2, wherein 224 RI represents the partial structure (T1) - (CR12aR12b) --- R12c (TI), wherein m denotes 0, 1, 2, 3 or 4, R1 2 a and R1 2 b each independently of one another represent H, F, Cl, Br, I, NO 2 , NH 2 , a NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 aliphatic residue or C(=O)-OH, or together denote =0, and R 12 denotes a C 1 . 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an 0 C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, a S(=0)2-C1.4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O)-OH, or denotes a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, a C 3 - 6 cycloaliphatic residue and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O)-OH, 225 or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, a S(=0) 2 -C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , a C 3 - 6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, ' 1 >,' , benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=0)-OH, C(=0)-CH 3 , C(=0)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH.
4. The compound according to any one of the preceding claims, wherein R I represents the partial structure (T1), - (CR12aR12b)m R12c (TI), wherein m denotes 0, 1, or 2 or 3, 226 R1 2 a and R1 2 b each independently of one another represent H, F, Cl, Br, I, OH, an 0 C 1 . 4 aliphatic residue or a C 1 . 4 aliphatic residue or together denote =0, and R12c denotes a C 1 . 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C1.4 aliphatic residue, CN, a S(=0) 2 -C 1 . 4 -aliphatic residue, CF 3 , and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, or denotes a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an O-C 1 . 4 aliphatic residue, CF 3 , and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, or an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C1.4 aliphatic residue, OCF 3 , OCF 2 H, CF 3 , CN, a C 1 . 4 -aliphatic residue, CH 2 -OH, CH 2 -OCH 3 , S(=0) 2 -CH 3 , SCF 3 , NO 2 , N(C 1 . 4 aliphatic residue) 2 , O' , > , C(=0)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , a C 3 - 6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl or pyridyl, wherein benzyl, phenyl, thienyl and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 . 4 aliphatic residue, OCF 3 , CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=0)-CH 3 , C(=O)-C 2 H 5 , C(=0)-O CH 3 and C(=O)-O-C 2 H 5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 , O-CH 3 , CF 3 and OCF 3 , and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least 227 one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C1.4 aliphatic residue, OCF 3 , CF 3 a C 1 . 4 -aliphatic residue and C(=O)-OH.
5. The compound according to any one of the preceding claims, wherein R2 represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; a C 1 . 4 -aliphatic residue, a S C 1 . 4 -aliphatic residue, or a 0-C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, and an unsubstituted O-C 1 . 4 -aliphatic residue, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, 4 methylpiperazinyl, morpholinyl, or piperidinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an unsubstituted C 1 . 4 -aliphatic residue and an unsubstituted O-C 1 . 4 aliphatic residue, and wherein cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, 4-methylpiperazinyl, morpholinyl or piperidinyl may in each case be optionally bridged via an C 1 . 4 aliphatic group, which in turn may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an unsubstituted C 1 . 4 -aliphatic residue and an unsubstituted O-C 1 . 4 -aliphatic residue.
6. The compound according to any one of the preceding claims, wherein R4 represents the partial structure (T2) - (CR13aR13b n- R1 3c (T2), wherein n denotes 0, 1, 2, or 3, R1 3 a and R1 3 b each independently of one another represent H, F, Cl, Br, I, NO 2 , NH 2 , a NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 aliphatic residue or C(=O)-OH, or together denote =0, and 228 R 1c denotes a C 1 . 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an 0 C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C1. 4 -aliphatic residue and C(=O)-OH, or denotes a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, a C 3 - 6 cycloaliphatic residue and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , a C3-6 \0 'No 0 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, 'O , V0, F, benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and 229 wherein benzyl, phenyl, thienyl, pyridyl, furyl, thiazolyl and oxazolyl may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C1.4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=0)-OH, C(=0)-CH 3 , C(=0)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, R3 5 denotes H or a C 1 .o-aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, or R 4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, C(=O)-OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, and a C 1 . 4 -aliphatic residue, a C3.6 cycloaliphatic residue and a 3 to 6 membered heterocycloaliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, 230 wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=O) OH, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R' together with the nitrogen atom connecting them may optionally be condensed with aryl or heteroaryl, wherein the aryl or heteroaryl residues condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, a C 3 . 6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, P , , I>, )3, benzyl, phenyl, thienyl, and pyridyl, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with a C3. 10 cycloaliphatic residue, preferably cyclopropyl, cyclobutyl or cycclopentyl, or a 3 to 10 membered heterocycloaliphatic residue, preferably oxetanyl or oxiranyl, wherein the C 3 . 10 cycloaliphatic residue or the 3 to 10 membered heterocycloaliphatic residue condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , NH 2 , an NH(C 1 . 4 aliphatic residue), an N(C 1 . 4 aliphatic residue) 2 , =0, OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein benzyl, phenyl, thienyl, and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, an O-C 1 . 4 aliphatic residue, OCF 3 , O-CH 2 -OH, O-CH 2 -0-CH 3 , 231 SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue, and C(=O)-OH, and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, NO 2 , OH, =0, an O-C1.4 aliphatic residue, OCF 3 , SH, SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , CN, a C 1 . 4 -aliphatic residue and C(=0)-OH.
7. The compound according to any one of the preceding claims, wherein R4 represents the partial structure (T2), - (CR13aR13b n- R1 3c (T2), wherein n denotes 0, 1, 2 or 3, Ri 3 a and R1 3 b each independently of one another represent H, F, Cl, Br, I, an O-C1.4 aliphatic residue or a C 1 . 4 aliphatic residue or together denote =0, and R 1c denotes a C 1 . 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, an O-C 1 . 4 aliphatic residue, CF 3 , and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, or denotes a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an O-C 1 . 4 aliphatic residue, CF 3 , and a C 1 . 4 -aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, 232 or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0 C 1 . 4 aliphatic residue, OCF 3 , CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , a C 3 - 6 cycloaliphatic residue, a 3 to 6 membered heterocycloaliphatic residue, benzyl, phenyl, thienyl or pyridyl, wherein benzyl, phenyl, thienyl and pyridyl, may in each case may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 . 4 aliphatic residue, OCF 3 , CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O CH 3 and C(=O)-O-C 2 H 5 , preferably with at least one substituent selected from the group consisting of F, Cl, CH 3 , O-CH 3 , CF 3 and OCF 3 , and wherein the C 3 - 6 cycloaliphatic residue and the 3 to 6 membered heterocycloaliphatic residue may in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C1.4 aliphatic residue, OCF 3 , CF 3 a C 1 . 4 -aliphatic residue and C(=O)-OH, R3 5 denotes H or an unsubstituted C 1 . 4 -aliphatic residue or a C 1 . 4 -aliphatic residue monosubstituted with O-methyl, or R 4 and R 5 form together with the nitrogen atom connecting them a 3 to 10 membered heterocycloaliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, C(=O)-OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SCF 3 , a S C 1 . 4 aliphatic residue, CF 3 , and a C 1 . 4 -aliphatic residue, cyclopropyl, cyclobutyl and cyclopentyl, wherein the C 1 . 4 -aliphatic residue is in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, =0, CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the 3 to 10 membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with phenyl or pyridyl, wherein the phenyl or pyridyl residues condensed in this way can for 233 their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 . 4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , a C 1 . 4 -aliphatic residue, C(=O)-OH, and a C 3 . 6 cycloaliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case may be unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, OCF 3 , CF 3 and an unsubstituted O-C 1 . 4 -aliphatic residue, and wherein the C 3 - 6 cycloaliphatic residue may in each case may be unsubstituted or mono or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, =0, an O-C 1 . 4 aliphatic residue, OCF 3 , SCF 3 , a S-C 1 . 4 aliphatic residue, CF 3 , a C 1 . 4 -aliphatic residue and C(=O)-OH, and wherein the 3 to 10membered heterocycloaliphatic residue formed by R 4 and R 5 together with the nitrogen atom connecting them may optionally be condensed with a C3-6 cycloaliphatic residue, preferably cyclopropyl, cyclobutyl or cyclopentyl, or a 4 to 7 membered heterocycloaliphatic residue, preferably oxetanyl or oxiranyl, wherein the C 3 -6 cycloaliphatic residue or the 4 to 7 membered heterocycloaliphatic residue condensed in this way can for their part be respectively unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, OH, an 0 C 1 . 4 aliphatic residue, OCF 3 , SCF 3 ,, CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-OH, C(=O) CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 .
8. The compound according to any one of the preceding claims, wherein R6 denotes S-R7 or O-R8 wherein R 7 and R' in each case denote methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, ethenyl and propenyl (-CH 2 CH=CH 2 , -CH=CH-CH 3 , -C(=CH 2 )-CH 3 ), in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, N(C 1 . 4 aliphatic residue) 2 and an O-C 1 aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, 234 or in each case denote cyclopropyl, cyclobutyl, cyclopentyl cyclohexyl, oxetanyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, preferably cyclopropyl or oxetanyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, an O-CI-aliphatic residue, CF 3 , and a C 1 aliphatic residue, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, and wherein cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, oxetanyl, piperidinyl, tetrahydrofuranyl, and tetrahydropyranyl may in each case be optionally bridged via an unsubstituted C 1 aliphatic group, on the condition that if R 7 or R 8 denotes piperidinyl, oxetanyl, tetrahydrofuranyl, or tetrahydropyranyl, each of these residues is linked via a carbon atom, or R' denotes N(R R ), wherein R 9 denotes a C 1 . 6 -aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, =0, OH, and O-methyl, R 10 denotes H, methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl or tert. butyl, or R 9 and R 10 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 . 4 aliphatic residue, and a C 1 . 4 -aliphatic residue.
9. The compound according to any one of the preceding claims, wherein R6 denotes S-R7 or O-R8, 235 wherein R 7 and R 8 in each case denote methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, a N(C 1 . 4 aliphatic residue) 2 , and an O-CI-aliphatic residue, or in each case denote CH 2 -cyclopropyl or oxetanyl, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, or R' denotes N(R R ), wherein R 9 denotes methyl, ethyl, C(=O)-CH 3 , n-propyl, 2-propyl, n-butyl, isobutyl, sec. butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl, R 1 denotes H, methyl or ethyl, preferably methyl or ethyl, or R 9 and R 10 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted.
10. The compound according to any one of the preceding claims, wherein R I represents the partial structure (T1), - (CR12aR12b)m R12c (TI), wherein m is 0, 1 or 2, and R1 2 a and R1 2 b each independently of one another represent H, F, OH, CH 3 or OCH 3 , or together denote =0, 236 R 12 denotes a C 1 . 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, CN, OH, S(=0)2-CH3, an unsubstituted O-C 1 . 4 aliphatic residue, and CF 3 , or denotes a C 3 .io-cycloaliphatic residue or a 3 to 10 membered heterocycloaliphatic residue, , in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted O-C 1 . 4 aliphatic residue, CF 3 , and an unsubstituted C 1 . 4 -aliphatic residue, or wherein m is 0 or 2, and R1 2 a and R1 2 b each independently of one another represent H, F, OH, CH 3 or OCH 3 ; and R12c denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 . 4 aliphatic residue, OCF 3 , OCF 2 H, CH 2 -OH, CH 2 \O g\ OCH 3 , S(=0) 2 -CH 3 , SCF 3 , NO 2 , N(CH 3 ) 2 , 'o , F', CF 3 , CN, a C 1 . 4 -aliphatic residue, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 , C(=O)-O-C 2 H 5 and phenyl, wherein phenyl may be unsubstituted or mono- or polysubstituted, preferably unsubstituted or mono- or disubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an O-C 1 . 4 aliphatic residue, OCF 3 , CF 3 , CN, a C1.4 aliphatic residue, C(=O)-CH 3 , C(=O)-C 2 H 5 , C(=O)-O-CH 3 and C(=O)-O-C 2 H 5 , R2 represents F; Cl; Br; I; CN; CF 3 ; NO 2 ; OCF 3 ; SCF 3 ; methyl; ethyl; n-propyl; iso propyl; n-butyl; sec.-butyl; tert.-butyl; CH 2 -OH; CH 2 -0-CH 3 ; CH 2 -CH 2 -OH; CH 2 -CH 2 -OCH 3 ; O-methyl; O-ethyl; O-(CH 2 ) 2 -0-CH 3 ; O-(CH 2 ) 2 -OH; S-Methyl; S-Ethyl; cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl, R4 represents the partial structure (T2) -(CR13aR 13bn- R13c (T2), 237 wherein n denotes 0, 1, 2 or 3, Ri 3 a and R1 3 b each independently of one another represent H, F, CH 3 or OCH 3 , or together denote =0, R 1c denotes a C 1 . 4 aliphatic residue, unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, =0, an unsubstituted O-C 1 . 4 aliphatic residue, and CF 3 , or denotes cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, pyrrolidinyl, morpholinyl, piperazinyl, piperidinyl or tetrahydropyranyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, an unsubstituted O-C 1 . 4 aliphatic residue, CF 3 , and an unsubstituted C 1 . 4 -aliphatic residue, or denotes an aryl or heteroaryl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, Br, I, OH, an 0 C 1 . 4 aliphatic residue, OCF 3 , CF 3 , CN, and a C 1 . 4 -aliphatic residue, R3 5 denotes H, methyl or ethyl, C 2 H 4 0CH 3 or C 3 H 6 0CH 3 , or R 4 and R 5 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazepanyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, thiomorpholinyl, azepanyl, - -NZ O - -N 3O or , tetrahydroimidazo[1,2-a]pyrazinyl, octahydropyrrolo[1,2 a]pyrazinyl, - , dihydroindolinyl, or dihydroisoindolyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, =0, C(=O)-OH, 0-methyl, 0-ethyl, OCF 3 , SCF 3 , CF 3 , C(=0)-CH 3 , C(=0)-OCH 3 , CH 2 CF 3 , CH 2 0H, CH 2 -OCH 3 , CH 2 CH 2 -OCH 3 , methyl, ethyl, n-propyl, 2-propyl, cyclopropyl, and cyclobutyl, 238 R6 denotes S-R7 or O-R8 wherein R 7 and R 8 in each case denote methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl, in each case unsubstituted or mono- or polysubstituted with at least one substituent selected from the group consisting of F, Cl, OH, N(C 1 . 4 aliphatic residue) and an O-CI-aliphatic residue, or in each case denote CH 2 -cyclopropyl or oxetanyl, wherein the C 1 . 4 -aliphatic residue in each case is unsubstituted, or R6 denotes N(R9R ), wherein R 9 denotes methyl, C(=O)-CH 3 , ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, sec. butyl, tert.-butyl, n-pentyl, isopentyl, neopentyl, or n-hexyl, R 1 denotes methyl or ethyl, or R 9 and R 10 form together with the nitrogen atom connecting them a morpholinyl, piperidinyl, pyrrolidinyl, or azetidinyl, in each case unsubstituted.
11. The compound according to any one of the preceding claims, wherein the compound is selected from the group comprising 1 N-[(3,5-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 2 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide 3 N-[(3,5 -Difluoro-phenyl)-methyl] -2-methoxy-4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide 239 4 2-Ethyl sulfanyl-N- [(4-fluorophenyl)-methyl] -4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide 5 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(tetrahydro pyran-2-yl-methyl)-amino] -pyridine-3 -carboxyli c acid amide 6 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-(3 -methoxy-azetidin- 1-yl)-4 methyl-pyridine-3-carboxylic acid amide 7 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-(3 -hydroxy-azetidin- 1 -yl)-4 methyl-pyridine-3-carboxylic acid amide 8 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-[(4-fluorophenyl)-methyl amino] -4 methyl-pyridine-3-carboxylic acid amide 11 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-morpholin-4-yl-4 (trifluoromethyl)-pyridine-3-carboxylic acid amide 12 N-[(3-Fluorophenyl)-methyl]-4-methyl-2,6-dimorpholin-4-yl-pyridine-3-carboxylic acid amide 13 1-[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl-carbamoyl]-4-methyl-pyridin-2-yl] piperidine-4-carboxylic acid methyl ester 14 1-[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl-carbamoyl]-4-methyl-pyridin-2-yl] piperidine-4-carboxylic acid 15 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-(4-hydroxy-piperidin- 1 -yl)-4 methyl-pyridine-3-carboxylic acid amide 16 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl-6-(4-oxo-piperidin- 1 -yl) pyridine-3-carboxylic acid amide 17 2-Ethylsulfanyl-N-[(4-fluoro-2-methoxy-phenyl)-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 18 2-Ethylsulfanyl-N-[(4-fluoro-2-hydroxy-phenyl)-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 240 19 N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 20 2-Ethylamino-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 21 N-[(3-Fluorophenyl)-methyl]-2-(2-methoxy-ethoxy)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 24 N-[(3 -Fluorophenyl)-methyl] -4-methyl -6-morpholin-4-yl-2-pyrrolidin- 1-yl pyridine-3-carboxylic acid amide 25 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl-6-pyrrolidin- 1 -yl-pyridine 3-carboxylic acid amide 26 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(1,2,3,4-tetrahydro isoquinolin-2-yl)-pyridine-3-carboxylic acid amide 27 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[6-(trifluoromethyl) 1,2,3,4-tetrahydro-isoquinolin-2-yl]-pyridine-3-carboxylic acid amide 30 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-(3 -methoxy-pyrrolidin- 1 -yl)-4 methyl-pyridine-3-carboxylic acid amide 31 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(4-methyl-piperazin-1 yl)-pyridine-3-carboxylic acid amide 32 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl-6-piperidin- 1 -yl-pyridine-3 carboxylic acid amide 33 6-Dimethylamino-2-ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl-pyridine 3-carboxylic acid amide 34 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-methylamino-pyridine-3 carboxylic acid amide 35 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-(2-methoxy-ethyl-methyl -amino) 4-methyl-pyridine-3-carboxylic acid amide 241 36 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-(2-methoxy-ethylamino)-4-methyl pyridine-3-carboxylic acid amide 37 N-[(3-Fluorophenyl)-methyl]-2-(isopropylsulfanyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 38 2-Ethoxy-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 39 N-[(4-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 40 N-[(3-Fluorophenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 41 N-[(3,4-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 42 2-Ethyl sulfanyl-4-methyl-N-(3 -methyl-butyl)-6-morpholin-4-yl -pyridine-3 carboxylic acid amide 43 N-(Cyclopentyl-methyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 44 N-(2-Cyclopentyl-ethyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 45 2-Ethylsulfanyl-N-[(6-fluoro-pyridin-2-yl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 46 2-Ethylsulfanyl-N-[(5-fluoro-pyridin-2-yl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 47 N-(2,2-Dimethyl-propyl)-2-ethyl sulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 48 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(2-methyl-morpholin-4 yl)-pyridine-3-carboxylic acid amide 242 49 2-Ethylsulfanyl-N-[(3 -fluorophenyl)-methyl] -6-(4-methoxy-piperidin- l-yl)-4 methyl-pyridine-3-carboxylic acid amide 50 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[(2-phenyl-phenyl)-methyl] pyridine-3-carboxylic acid amide 51 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[[2-(trifluoromethyl)-phenyl] methyl]-pyridine-3-carboxylic acid amide 52 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(4-fluorophenyl)-methyl-methyl amino] -4-methyl-pyridine-3 -carboxylic acid amide 53 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(3-phenyl-propyl)-pyridine-3 carboxylic acid amide 54 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-phenethyl-pyridine-3-carboxylic acid amide 55 N-Benzyl-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide 56 N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-(propylsulfanyl) pyridine-3-carboxylic acid amide 57 2-(Butylsulfanyl)-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 59 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[[3-(trifluoromethyl)phenyl] methyl]-pyridine-3-carboxylic acid amide 60 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl] methyl]-pyridine-3-carboxylic acid amide 61 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(tetrahydro pyran-4-yl-methyl)-amino] -pyridine-3 -carboxyli c acid amide 62 N-[(3-Fluorophenyl)-methyl]-4-methyl-2-(2-methyl-propylsulfanyl)-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 243 63 N-[(3-Fluorophenyl)-methyl]-2-(2-methoxy-ethylsulfanyl)-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 64 2-Ethoxy-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 65 2-Dimethylamino-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 66 6-(2,6-Dimethyl-morpholin-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 67 N-(4,4-Dimethyl-pentyl)-2-ethyl sulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 68 2-Ethyl sulfanyl-4-methyl-6-morpholin-4-yl-N-(2-tetrahydro-pyran-2-yl-ethyl) pyridine-3-carboxylic acid amide 69 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(tetrahydro-pyran-2-yl-methyl) pyridine-3-carboxylic acid amide 70 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl-6-(4-methyl-piperidin- 1 yl)-pyridine-3-carboxylic acid amide 71 2-Ethylsulfanyl-N-[[2-(4-fluorophenyl)-phenyl]-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 72 2-[[6-Ethylsulfanyl-5-[(3-fluorophenyl)-methyl-carbamoyl]-4-methyl-pyridin-2 yl] -methyl-amino] -acetic acid ethyl ester 73 6-(4-Cyclopropyl-piperazin-1-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 74 6-(4,4-Dimethyl-piperidin- 1 -yl)-2-ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4 methyl-pyridine-3-carboxylic acid amide 75 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethylsulfanyl) phenyl]-methyl]-pyridine-3-carboxylic acid amide 244 76 N-(Cyclohexyl-methyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 77 2-Ethylsulfanyl-N-(2-methoxy-ethyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 78 2-Ethylsulfanyl-N-(3-methoxy-propyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 79 2-Ethyl sulfanyl-4-methyl-N-(4-methyl-pentyl)-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 80 N-Butyl-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide 81 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-pentyl-pyridine-3-carboxylic acid amide 82 2-Ethylsulfanyl-N-[[4-fluoro-3-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 83 N-(2-tert-Butoxy-ethyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 84 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide 85 2-Ethylsulfanyl-N-[[4-fluoro-2-(4-fluorophenyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 86 N-(4,4-Dimethyl-pentyl)-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 87 N- [(3,4-Difluoro-phenyl)-methyl] -2-methoxy-4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide 88 2-Methoxy-4-methyl-6-morpholin-4-yl-N-[(2-phenyl-phenyl)-methyl]-pyridine-3 carboxylic acid amide 245 89 N-(4,4-Dimethyl-pentyl)-2-ethoxy-4-methyl-6-morpholin-4-yl -pyridine-3 carboxylic acid amide 90 N-[(3,5-Difluoro-phenyl)-methyl]-2-ethoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 91 N-[(3,4-Difluoro-phenyl)-methyl]-2-ethoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 92 2-Ethoxy-4-methyl-6-morpholin-4-yl-N-[(2-phenyl-phenyl)-methyl]-pyridine-3 carboxylic acid amide 93 2-Ethylsulfanyl-N-[[3-fluoro-5-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 94 2-Ethylsulfanyl-N-[[2-fluoro-3-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 95 2-Ethylsulfanyl-N-[[2-fluoro-5-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 96 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-([1,4]oxazepan-4-yl) pyridine-3-carboxylic acid amide 97 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyloxy)-phenyl] methyl]-pyridine-3-carboxylic acid amide 98 N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-([1,4]oxazepan-4-yl) pyridine-3-carboxylic acid amide 99 2-Ethoxy-N- [(3 -fluorophenyl)-methyl] -4-methyl-6-([1,4] oxazepan-4-yl)-pyridine 3-carboxylic acid amide 100 N-[(2,3-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 101 N-[(2,5-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 246 102 N-[(3-Cyano-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 103 2-Ethylsulfanyl-N-(2-isopropoxy-ethyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 104 N-(3,3-Dimethyl-butyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 105 N-(3-Cyclopentyl-propyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 106 N-(2-Cyclohexyl-ethyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 107 N-[(2,4-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 108 2-Ethylsulfanyl-N-[3-(4-fluorophenyl)-propyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 109 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(3-pyridin-2-yl-propyl)-pyridine-3 carboxylic acid amide 110 2-Butoxy-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 111 N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-propoxy-pyridine-3 carboxylic acid amide 112 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl-6-(3 -oxo-azetidin- 1 -yl) pyridine-3-carboxylic acid amide 113 2-Ethylsulfanyl-N-[3-(3-fluorophenyl)-propyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 114 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(3-pyridin-3-yl-propyl)-pyridine-3 carboxylic acid amide 247 115 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(3-pyridin-4-yl-propyl)-pyridine-3 carboxylic acid amide 116 N-(5,5-Dimethyl-hexyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 117 2-Methoxy-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl]-methyl] pyridine-3-carboxylic acid amide 118 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(pyridin-4-yl methyl)-amino]-pyridine-3-carboxylic acid amide 119 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(pyridin-3-yl methyl)-amino]-pyridine-3-carboxylic acid amide 120 2-Ethyl sulfanyl-6- [(4-fluoro-benzoyl)-methyl-amino] -N-[(3 -fluorophenyl)-methyl] 4-methyl-pyridine-3-carboxylic acid amide 121 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(pyridin-2-yl methyl)-amino]-pyridine-3-carboxylic acid amide 122 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(pyridin-3-yl methylamino)-pyridine-3-carboxylic acid amide 123 6-(Acetyl-methyl -amino)-2-ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl pyridine-3-carboxylic acid amide 124 N-[(4-Chlorophenyl)-methyl] -2-ethyl sulfanyl-4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide 125 N-[(3 -Chlorophenyl)-methyl] -2-ethyl sulfanyl-4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide 126 6-[Bis(2-methoxy-ethyl)-amino]-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 127 2-(Ethyl-methyl-amino)-N-[(3-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 248 128 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-(3 -methoxy-propyl -methyl-amino) 4-methyl-pyridine-3-carboxylic acid amide 129 2-Ethylsulfanyl-N-[3-(2-fluorophenyl)-propyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 130 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[[3-(trifluoromethyloxy)-phenyl] methyl]-pyridine-3-carboxylic acid amide 131 2-Ethylsulfanyl-N-[[3-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 132 2-Ethoxy-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl]-methyl] pyridine-3-carboxylic acid amide 133 2-Ethoxy-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide 134 N-(1,3-Benzodioxol-5-yl-methyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 135 2-Ethylsulfanyl-N-[[2-fluoro-4-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 136 6-(Azepan- 1 -yl)-2-ethyl sulfanyl -N- [(3 -fluorophenyl)-methyl] -4-methyl-pyridine-3 carboxylic acid amide 137 2-Ethylsulfanyl-N-[(4-methoxyphenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 138 (2S)-2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(2-methyl morpholin-4-yl)-pyridine-3-carboxylic acid amide 139 (2R)-2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(2-methyl morpholin-4-yl)-pyridine-3-carboxylic acid amide 140 2-Methoxy-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide 249 141 N-(3-Cyclopropyl-propyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 142 2-Ethylsulfanyl-N-[[3-fluoro-4-(trifluoromethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 143 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxo-piperazin-1-yl) pyridine-3-carboxylic acid amide 144 6-(4-Acetyl -piperazin- 1 -yl)-2-ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl pyridine-3-carboxylic acid amide 145 N-[(4-Cyano-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 146 2-Ethylsulfanyl-N-[[4-(methoxymethyl)-phenyl]-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 147 2-Ethylsulfanyl-N-[[3-fluoro-4-(methoxymethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 148 N-[(4-Dimethylaminophenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 149 2-Ethylsulfanyl-N-[[4-fluoro-3-(methoxymethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 150 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(4-methyl-3-oxo piperazin-1-yl)-pyridine-3-carboxylic acid amide 151 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(6-oxa-2 azaspiro[3.3]heptan-2-yl)-pyridine-3-carboxylic acid amide 152 N-(4,4-Dimethyl-pentyl)-4-methyl-2-methylsulfanyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 153 4-Methyl-2-methylsulfanyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide 250 154 N-[(4-Fluorophenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 155 N-[(3,4-Difluoro-phenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 156 N-[(3,5-Difluoro-phenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 157 4-Methyl-2-methylsulfanyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl] methyl]-pyridine-3-carboxylic acid amide 158 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(6-oxo-2,3,4,7,8,8a hexahydro-1H-pyrrolo[1,2-a]pyrazin-2-yl)-pyridine-3-carboxylic acid amide 159 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxa-6 azabicyclo[2.2.1 ]heptan-6-yl)-pyridine-3 -carboxylic acid amide 160 N-(3 -Cyano-propyl)-2-ethyl sulfanyl-4-methyl -6-morpholin-4-yl-pyridine-3 carboxylic acid amide 161 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(p-tolyl-methyl)-pyridine-3 carboxylic acid amide 162 2-Ethyl sulfanyl-4-methyl-N-(3 -methyl sulfonyl-propyl)-6-morpholin-4-yl-pyridine 3-carboxylic acid amide 163 N-(4-Cyano-butyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 164 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(m-tolyl-methyl)-pyridine-3 carboxylic acid amide 165 N-[(4-Chlorophenyl)-methyl]-2-methoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 166 N-[(4-Chlorophenyl)-methyl]-2-ethoxy-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 251 167 6-(2-Ethyl-morpholin-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide 168 N-[(4-Chlorophenyl)-methyl]-4-methyl-2-methylsulfanyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 170 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-pyridin-2-yl amino)-pyridine-3-carboxylic acid amide 171 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-pyridin-3-yl amino)-pyridine-3-carboxylic acid amide 172 2-Dimethylamino-N-[(4-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 173 2-(Ethyl-methyl-amino)-N-[(4-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 174 2-(Ethyl-methyl-amino)-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 175 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(tetrahydro pyran-3 -yl-methyl)-amino] -pyridine-3 -carboxyli c acid amide 176 N-[(4-Fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-2 methylsulfanyl-pyridine-3-carboxylic acid amide 177 2-Ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 178 6-(3 -Ethyl-morpholin-4-yl)-2-ethyl sulfanyl-N-[(3 -fluorophenyl)-methyl] -4-methyl pyridine-3-carboxylic acid amide 179 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3R)-3-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 180 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3S)-3-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 252 181 N-[(4-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4 yl]-pyridine-3-carboxylic acid amide 182 2-Ethoxy-N-[(4-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl-morpholin-4 yl]-pyridine-3-carboxylic acid amide 183 2-Dimethylamino-N-(4,4-dimethyl-pentyl)-4-methyl-6-[(3R)-3 -methyl-morpholin 4-yl]-pyridine-3-carboxylic acid amide 184 N-(4,4-Dimethyl-pentyl)-2-(ethyl-methyl-amino)-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 186 N-(4,4-Dimethyl-pentyl)-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide 187 N-(4,4-Dimethyl-pentyl)-2-ethoxy-4-methyl-6- [(3R)-3 -methyl-morpholin-4-yl] pyridine-3-carboxylic acid amide 188 2-(Ethyl-methyl-amino)-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl) phenyl]-methyl]-pyridine-3-carboxylic acid amide 189 N-(4,4-Dimethyl-pentyl)-2-(ethyl-methyl-amino)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 190 2-(Ethyl-methyl-amino)-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl) pyridine-3-carboxylic acid amide 191 N-[(4-Chlorophenyl)-methyl]-2-(ethyl-methyl-amino)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 192 N-(4,4-Dimethyl-pentyl)-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-2 methylsulfanyl-pyridine-3-carboxylic acid amide 193 N-(4,4-Dimethyl-pentyl)-2-ethyl sulfanyl-4-methyl-6- [(3R)-3 -methyl-morpholin-4 yl]-pyridine-3-carboxylic acid amide 200 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-pyridin-4-yl amino)-pyridine-3-carboxylic acid amide 253 201 2-Ethylsulfanyl-N-[(4-fluoro-3-methyl-phenyl)-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 202 2-Ethylsulfanyl-N-(2-hydroxy-3-phenyl-propyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 203 N-[(3,4-Difluoro-phenyl)-methyl]-2-(ethyl-methyl-amino)-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 204 N-[(3,5-Difluoro-phenyl)-methyl]-2-(ethyl-methyl-amino)-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 205 2-Dimethylamino-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 206 N-[(3,4-Difluoro-phenyl)-methyl]-2-dimethylamino-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 207 N-[(4-Chlorophenyl)-methyl] -2-ethyl sulfanyl-4-methyl-6- [(3R)-3 -methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 208 N-[(3,5-Dimethyl-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 209 2-Ethylsulfanyl-N-heptyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide 210 6-Dimethylamino-N-(4,4-dimethyl-pentyl)-2-ethylsulfanyl-4-methyl-pyridine-3 carboxylic acid amide 211 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-6-(2-methoxy-ethyl-methyl-amino)-4 methyl-pyridine-3-carboxylic acid amide 212 N-(4,4-Dimethyl-pentyl)-2-ethylsulfanyl-6-(3-methoxy-propyl-methyl-amino)-4 methyl-pyridine-3-carboxylic acid amide 213 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-propyl-morpholin-4 yl)-pyridine-3-carboxylic acid amide 254 214 N-[(3-Fluorophenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4 yl]-pyridine-3-carboxylic acid amide 215 N-[(4-Chlorophenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4 yl]-pyridine-3-carboxylic acid amide 217 2-Ethylsulfanyl-N-hexyl-4-methyl-6-morpholin-4-yl-pyridine-3-carboxylic acid amide 218 N-(4,4-Dimethyl-pentyl)-2-ethyl sulfanyl-4-methyl-6-(methyl-tetrahydro-furan-3 yl-amino)-pyridine-3-carboxylic acid amide 219 N-(4,4-Dimethyl-pentyl)-2-ethyl sulfanyl-4-methyl-6-(2-methyl-morpholin-4-yl) pyridine-3-carboxylic acid amide 222 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(2-oxa-6 azaspiro[3.4]octan-6-yl)-pyridine-3-carboxylic acid amide 223 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(2R)-2-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 224 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(2S)-2-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 225 N-[(3,4-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 226 N-[(3,4-Difluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 227 2-Ethylsulfanyl-N-(3-hydroxy-3-phenyl-propyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 228 2-Ethylsulfanyl-N-(2-hydroxy-4-methyl-pentyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 229 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[2-(2-methoxy-ethyl)-morpholin-4 yl]-4-methyl-pyridine-3-carboxylic acid amide 255 230 2-Ethylsulfanyl-N-(5-hydroxy-4,4-dimethyl-pentyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 231 2-Ethylsulfanyl-4-methyl-N-[(3-methylsulfonyl-phenyl)-methyl]-6-morpholin-4-yl pyridine-3-carboxylic acid amide 232 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[2-(trifluoromethyl) 5,6,7,8-tetrahydro-[1,6]naphthyridin-6-yl]-pyridine-3-carboxylic acid amide 233 N-[(3,5-Difluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 234 N-[(3,5-Difluoro-phenyl)-methyl]-2-methoxy-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 235 2-Ethylsulfanyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-N-(4,4,4-trifluoro butyl)-pyridine-3-carboxylic acid amide 236 2-Methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-N-(4,4,4-trifluoro-butyl) pyridine-3-carboxylic acid amide 237 2-Ethylsulfanyl-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-N-[[4 (trifluoromethyl)-phenyl]-methyl]-pyridine-3-carboxylic acid amide 238 2-Methoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4-yl]-N-[[4-(trifluoromethyl) phenyl]-methyl]-pyridine-3-carboxylic acid amide 239 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-[3 -(methoxymethyl)-azetidin- 1 -yl] 4-methyl-pyridine-3-carboxylic acid amide 240 6-(2,5-Dimethyl-morpholin-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 241 2-Dimethylamino-4-methyl-6-morpholin-4-yl-N-[[4-(trifluoromethyl)-phenyl] methyl]-pyridine-3-carboxylic acid amide 242 N-[(3,5-Difluoro-phenyl)-methyl]-2-dimethylamino-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 256 243 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[2-(trifluoromethyl) 5,6,7,8-tetrahydro-imidazo[1,2-a]pyrazin-7-yl]-pyridine-3-carboxylic acid amide 244 N-[(4-Chlorophenyl)-methyl]-2-dimethylamino-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 245 2-Dimethylamino-N-(4,4-dimethyl-pentyl)-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 246 2-Dimethylamino-4-methyl-6-morpholin-4-yl-N-(4,4,4-trifluoro-butyl)-pyridine-3 carboxylic acid amide 247 2-Ethylsulfanyl-4-methyl-N-[(4-methylsulfonyl-phenyl)-methyl]-6-morpholin-4-yl pyridine-3-carboxylic acid amide 248 2-Ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-6-[(3R)-3-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 249 2-Ethylsulfanyl-N-[(4-fluorophenyl)-methyl]-6-[(3S)-3-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 251 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[4-(2,2,2-trifluoro-ethyl) piperazin-1-yl]-pyridine-3-carboxylic acid amide 252 6-(2,2-Dimethyl-morpholin-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 253 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(2-oxo-propyl) amino] -pyridine-3 -carboxyli c acid amide 254 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6-[(2R)-2-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 255 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6-[(2S)-2-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 256 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6-[(3R)-3-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 257 257 N-[(4-Chlorophenyl)-methyl]-2-ethylsulfanyl-6-[(3S)-3-(methoxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 258 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro pyran-4-yl-amino)-pyridine-3-carboxylic acid amide 259 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-[(4-methoxy-cyclohexyl)-methyl amino] -4-methyl-pyridine-3 -carboxylic acid amide 260 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[2-(trifluoromethyl) morpholin-4-yl]-pyridine-3-carboxylic acid amide 261 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro pyran-3-yl-amino)-pyridine-3-carboxylic acid amide 262 6-(3,5-Dimethyl-morpholin-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 263 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3S)-3-(hydroxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 264 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(3R)-3-(hydroxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 267 2-Ethylsulfanyl-N-(3-hydroxy-4,4-dimethyl-pentyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 268 N-[(4-Cyano-3-fluoro-phenyl)-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 269 N-[(4-Chlorophenyl)-methyl]-2-(2-fluoro-ethoxy)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 270 N-[(4-Chlorophenyl)-methyl]-2-(2,2-difluoro-ethoxy)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 271 N-[(4-Chlorophenyl)-methyl]-2-(cyclopropyl-methoxy)-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 258 272 2-(2,2-Difluoro-ethoxy)-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 273 N-[(4-Chlorophenyl)-methyl]-2-ethoxy-4-methyl-6-[(3R)-3-methyl-morpholin-4 yl]-pyridine-3-carboxylic acid amide 274 N-(4,4-Dimethyl-pentyl)-2-ethyl sulfanyl-4-methyl-6- [(2 S)-2-methyl -morpholin-4 yl]-pyridine-3-carboxylic acid amide 275 N-(4,4-Dimethyl-pentyl)-2-ethyl sulfanyl-4-methyl-6- [(2R)-2-methyl-morpholin-4 yl]-pyridine-3-carboxylic acid amide 276 2-(Cyclopropyl-methoxy)-N-[(4-fluorophenyl)-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 280 N-(4,4-Dimethyl-pentyl)-2-ethyl sulfanyl-4-methyl-6-(methyl-tetrahydro-pyran-3 yl-amino)-pyridine-3-carboxylic acid amide 281 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-[(4-nitrophenyl)-methyl]-pyridine-3 carboxylic acid amide 283 N-[(4-Chlorophenyl)-methyl]-2-(2-dimethylaminoethyloxy)-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 284 2-Ethylsulfanyl-N-[(4-fluoro-3-methoxy-phenyl)-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 286 2-Ethylsulfanyl-N-(3-hydroxy-4-methyl-pentyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 287 2-Ethylsulfanyl-N-[(3-fluoro-4-methoxy-phenyl)-methyl]-4-methyl-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 288 N-[[4-(Difluoro-methoxy)-phenyl]-methyl]-2-ethylsulfanyl-4-methyl-6-morpholin 4-yl-pyridine-3-carboxylic acid amide 289 N-( 1,3 -Dihydro-i sobenzofuran-5 -yl -methyl)-2-ethyl sulfanyl-4-methyl -6 morpholin-4-yl-pyridine-3-carboxylic acid amide 259 291 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(2S)-2-(hydroxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 292 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(2R)-2-(hydroxymethyl) morpholin-4-yl]-4-methyl-pyridine-3-carboxylic acid amide 293 6-(Benzyl-methyl-amino)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl pyridine-3-carboxylic acid amide 294 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-(tetrahydro furan-2-yl-methyl)-amino]-pyridine-3-carboxylic acid amide 295 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[(3R)-3-methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 296 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -4-methyl-6-[(3 S)-3 -methyl morpholin-4-yl]-pyridine-3-carboxylic acid amide 297 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-[methyl-[[4 (trifluoromethyl)-phenyl] -methyl] -amino] -pyridine-3 -carboxylic acid amide 298 6-(1,1-Dioxo-[1,4]thiazinan-4-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 299 6-(Azetidin- 1 -yl)-2-ethyl sulfanyl-N-[(3 -fluorophenyl)-methyl] -4-methyl-pyridine 3-carboxylic acid amide 301 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(methyl-tetrahydro-furan 3-yl-amino)-pyridine-3-carboxylic acid amide 302 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(N-methyl-anilino) pyridine-3-carboxylic acid amide 303 6-(2,3-Dihydro-1H-isoindol-2-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 304 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(1,2,3,4-tetrahydro quinolin-1-yl)-pyridine-3-carboxylic acid amide 260 305 6-(2,3-Dihydro-1H-indol-1-yl)-2-ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4 methyl-pyridine-3-carboxylic acid amide 306 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(2,4,4-trimethyl-pentyl)-pyridine-3 carboxylic acid amide 307 2-Ethyl sulfanyl-N- [(3 -fluorophenyl)-methyl] -6-[(3 -methoxy-cyclohexyl)-methyl amino] -4-methyl-pyridine-3 -carboxylic acid amide 308 N-(4,4-Difluoro-pentyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 312 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxo-morpholin-4-yl) pyridine-3-carboxylic acid amide 317 N-[(3-Fluorophenyl)-methyl]-4-methyl-6-morpholin-4-yl-2-(oxetan-3-yloxy) pyridine-3-carboxylic acid amide 318 2-Ethyl sulfanyl-N-(4-methoxy-4-methyl-pentyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 319 2-Ethyl sulfanyl-N-(4-fluoro-4-methyl-pentyl)-4-methyl-6-morpholin-4-yl-pyridine 3-carboxylic acid amide 324 N-(4,4-Dimethyl-2-oxo-pentyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 325 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(8-oxa-3 azabicyclo[3.2.1] octan-3 -yl)-pyridine-3 -carboxylic acid amide 336 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methoxy-6-morpholin-4-yl pyridine-3-carboxylic acid amide 337 N-(4,4-Dimethyl-pentyl)-2-(2-methoxy-ethylsulfanyl)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 338 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(4-fluorophenyl)-methyl-(3 methoxy-propyl)-amino]-4-methyl-pyridine-3-carboxylic acid amide 261 339 2-Ethylsulfanyl-4-methyl-6-morpholin-4-yl-N-(3,4,4-trimethyl-pentyl)-pyridine-3 carboxylic acid amide 340 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[3-(2-methoxy-ethyl)-morpholin-4 yl]-4-methyl-pyridine-3-carboxylic acid amide 341 2-(Acetyl -methyl -amino)-N-[(3 -fluorophenyl)-methyl] -4-methyl -6-morpholin-4-yl pyridine-3-carboxylic acid amide 342 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-6-[(4-fluorophenyl)-methyl-(2 methoxy-ethyl)-amino]-4-methyl-pyridine-3-carboxylic acid amide 343 2-Ethylsulfanyl-4-methyl-N-[3-(3-methyl-oxetan-3-yl)-propyl]-6-morpholin-4-yl pyridine-3-carboxylic acid amide 344 N-(4,4-Dimethyl-pent-2-ynyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 345 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-methyl-6-(3-oxa-8 azabicyclo[3.2.1] octan-8-yl)-pyridine-3 -carboxylic acid amide 346 2-Ethylsulfanyl-N-[(3-fluorophenyl)-methyl]-4-(methoxymethyl)-6-morpholin-4 yl-pyridine-3-carboxylic acid amide 348 N-(4,4-Dimethyl-hexyl)-2-ethylsulfanyl-4-methyl-6-morpholin-4-yl-pyridine-3 carboxylic acid amide 349 N-(4,4-Dimethyl-pentyl)-2-(2-methoxy-ethoxy)-4-methyl-6-morpholin-4-yl pyridine-3-carboxylic acid amide 350 2-Ethylsulfanyl-4-methyl-N-[3-(1-methyl-cyclopropyl)-propyl]-6-morpholin-4-yl pyridine-3-carboxylic acid amide 352 2-Ethylsulfanyl-N-[[4-fluoro-3-(methoxymethyl)-phenyl]-methyl]-4-methyl-6 [(3R)-3-methyl-morpholin-4-yl]-pyridine-3-carboxylic acid amide 353 2-Ethylsulfanyl-N-[[4-fluoro-3-(hydroxymethyl)-phenyl]-methyl]-4-methyl-6 morpholin-4-yl-pyridine-3-carboxylic acid amide 262 respectively in the form of the free compounds; the racemate; the enantiomers, diastereomers, mixtures of the enantiomers or diastereomers in any mixing ratio or of an individual enantiomer or diastereomer; or in the form of the salts of physiologically acceptable acids or bases.
12. A pharmaceutical composition comprising at least one compound according to any one of the preceding claims in the form of the free compounds; the racemate; the enantiomers, diastereomers, mixtures of the enantiomers or diastereomers in any mixing ratio or of an individual enantiomer or diastereomer; or in the form of the salts of physiologically acceptable acids or bases, and optionally at least one pharmaceutically acceptable auxiliary and/or optionally at least one further active ingredient.
13. The compound according to any one of claims 1 to 11 for use in the treatment and/or prophylaxis of disorders and/or diseases which are mediated, at least in part, by KCNQ2/3 K' channels, preferably for use in the treatment and/or prophylaxis of disorders and/or diseases selected from the group consisting of consisting of pain, preferably pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, migraine, cognitive diseases and dystonia associated dyskinesias.
14. The use of a compound according to any one of claims 1 to 11 for the manufacture of a medicament for the treatment and/or prophylaxis of disorders and/or diseases which are mediated, at least in part, by KCNQ2/3 K' channels.
15. The use according to claim 14 for the treatment and/or prophylaxis of pain.
16. The use according to claim 14 or claim 15 for the treatment and/or prophylaxis of pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, migraine, cognitive diseases and dystonia associated dyskinesias.
17. A method of treatment and/or prophylaxis of disorders and/or diseases, which are mediated, at least in part, by KCNQ2/3 K' channels, in a mammal, which comprises administering an effective amount of at least one compound according to any one of claims 1 to 11, or the pharmaceutical composition of claim 12, to the mammal. 263
18. The method of claim 17 wherein the disease and/or disorder is pain.
19. The method claim 17 or claim 18 wherein the disease and/or disorder is pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, muscular pain, visceral pain and inflammatory pain, epilepsy, urinary incontinence, anxiety, dependency, mania, bipolar disorders, migraine, cognitive diseases and dystonia associated dyskinesias. Gr0nenthal GmbH Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015201122A AU2015201122B2 (en) | 2010-10-20 | 2015-03-04 | Substituted 6-amino-nicotinamides as KCNQ2/3 modulators |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10013811.4 | 2010-10-20 | ||
AU2011317855A AU2011317855B2 (en) | 2010-10-20 | 2011-10-19 | Substituted 6-amino-nicotinamides as KCNQ2/3 modulators |
AU2015201122A AU2015201122B2 (en) | 2010-10-20 | 2015-03-04 | Substituted 6-amino-nicotinamides as KCNQ2/3 modulators |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011317855A Division AU2011317855B2 (en) | 2010-10-20 | 2011-10-19 | Substituted 6-amino-nicotinamides as KCNQ2/3 modulators |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2015201122A1 AU2015201122A1 (en) | 2015-03-26 |
AU2015201122B2 true AU2015201122B2 (en) | 2016-02-25 |
Family
ID=52727490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2015201122A Ceased AU2015201122B2 (en) | 2010-10-20 | 2015-03-04 | Substituted 6-amino-nicotinamides as KCNQ2/3 modulators |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2015201122B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010094644A1 (en) * | 2009-02-17 | 2010-08-26 | Neurosearch A/S | Substituted pyridine derivatives and their medical use |
US20100234429A1 (en) * | 2009-03-12 | 2010-09-16 | Grünenthal GmbH | Substituted nicotinamides as kcnq2/3 modulators |
US7812020B2 (en) * | 2005-03-03 | 2010-10-12 | H. Lundbeck A/S | Substituted pyridine derivatives |
-
2015
- 2015-03-04 AU AU2015201122A patent/AU2015201122B2/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7812020B2 (en) * | 2005-03-03 | 2010-10-12 | H. Lundbeck A/S | Substituted pyridine derivatives |
WO2010094644A1 (en) * | 2009-02-17 | 2010-08-26 | Neurosearch A/S | Substituted pyridine derivatives and their medical use |
US20100234429A1 (en) * | 2009-03-12 | 2010-09-16 | Grünenthal GmbH | Substituted nicotinamides as kcnq2/3 modulators |
Non-Patent Citations (1)
Title |
---|
PATANI, G. A. ET. AL. "Bioisosterism: A rational approach in drug design", Chem. Rev. 1996, 96, 3147-3176 * |
Also Published As
Publication number | Publication date |
---|---|
AU2015201122A1 (en) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011317855B2 (en) | Substituted 6-amino-nicotinamides as KCNQ2/3 modulators | |
CN104837829B (en) | Inhibitor compound | |
AU2011295406B2 (en) | Substituted 2-amino-quinoline-3-carboxamides as KCNQ2/3 modulators | |
US9278103B2 (en) | Substituted 6-amino-nicotinamides as KCNQ2/3 modulators | |
AU2011295407B2 (en) | Substituted quinoline-3-carboxamides as KCNQ2/3 modulators | |
AU2011295405B2 (en) | Substituted 2-oxy-quinoline-3-carboxamides as KCNQ2/3 modulators | |
AU2011295408B2 (en) | Substituted 2-oxo- and 2-thioxo-dihydroquinoline-3-carboxamides as KCNQ2/3 modulators | |
AU2011297937B2 (en) | Substituted 1-oxo-dihydroisoquinoline-3-carboxamides as KCNQ2/3 modulators | |
AU2015201122B2 (en) | Substituted 6-amino-nicotinamides as KCNQ2/3 modulators | |
EP2888233B1 (en) | Substituted 6-amino-nicotinamides bearing an oh-containing group as kcnq2/3 modulators | |
EP2844645A1 (en) | Substituted 4-aminobenzamides as kcnq2/3 modulators | |
WO2014082739A1 (en) | Substituted amino-arylcarboxamides as kcnq2/3 modulators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |