AU2015249059B2 - A process for preparation of biodegradable biocompostable biodigestible peplene polymer - Google Patents
A process for preparation of biodegradable biocompostable biodigestible peplene polymer Download PDFInfo
- Publication number
- AU2015249059B2 AU2015249059B2 AU2015249059A AU2015249059A AU2015249059B2 AU 2015249059 B2 AU2015249059 B2 AU 2015249059B2 AU 2015249059 A AU2015249059 A AU 2015249059A AU 2015249059 A AU2015249059 A AU 2015249059A AU 2015249059 B2 AU2015249059 B2 AU 2015249059B2
- Authority
- AU
- Australia
- Prior art keywords
- biodegradable
- plastic
- biocompostable
- preparation
- biodigestible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Biological Depolymerization Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Title: "A process for preparation of biodegradable biocompostable
biodigestible PEPlene polymer"
This invention relates to a process for preparation of biodegradable
biocompostable biodigestible PEPlene polymer comprising steps of:
- Mixing at least one peptide with at least one protein and enzyme,
- Adding a composting agent,
- Blending with at least one polymer in presence of additive to obtain
said PEPlene polymer material.
5/5
.. ....................................... .
.. .. .. ..
....a...
.. . . . . .. . . . .
... .. ..... .. .....
... ... ... ....... .. . . . . .. . . . . .. .
... .. ... .. .. .. .... ..
... .. . . . . . . . . . . . . .
.. ... . .. .. . .. .. .. .. .
.. ..............
.. .............
.. ..... .. ... .. .. ... .. .
.. .. .............. .. .. ... .. .. .. .. .. ..E.
.. .. .. .. ......
.. . . .. . . .... * .. .. ........ ... .. ..............
.. .. .. . . .. . . .. . .
. .......... ........ .
.... ...t... ...
.. .. ...,. .. .............. .. ..... ...
.. . . . . . . . . . . . .
.. .. .. .. ... ..... .. .. .. ..... ...
.. . .. .... .. ....
.. .. .. ..... ...
.. .. .. .. ... ..... .. .. .. ..... ...
.. .. .. .. ... .....
.. .. .. .. ... .....
.. .. .. .. ... ..... .. .. .. .. ... ...
.... .. . . .. . . . .. . .. .. .. ..... ... .. .. .. .. ... ..... .. .. .. ..... ... .. .. .. .. ... ..... .. .. . . . . . . . . . . .
.. .. .. ..... ...
.. .. .. .. ... ..... .. .. .. ..... ... .. .... .. ....
.. .. .. .. .. ..... .k .. .... .... ........ .. .............. .. ..... .. ...... ... .. .. .. ... ... ...
4% )u......bap......
Description
5/5
. .... .... a... .... .. . . . . .. . . .
. t... .... ... ... ,. .... ... .. ... ... ... .. ........ .. . .. .. .. . . . . . . . .. .
.... .... ... ... .. .. .... .. .. .. .... .... ... ... ..... ... .. .... .... .. .. .. ....... ... ....... .k .. ... .. .. .. .. .. .. .. . . .
4% )u......bap......
This invention relates to a biodegradable biocompostable biodigestible plastic and a process for preparation thereof.
Plastics are manufactured frorn petroleum namely polyethylene's, polypropyleneswhich takes several years to degrade in the environment and therefore pollute water, soil and air.
Environmental degradation of synthetic polymers occurs at varying rates and to varying degrees depending on the characteristics of polymer and its environment. Such degradations are catalyzed by light, heat, air, water, microorganisms, and mechanical forces such as wind, rain, vehicular traffic, etc. Enhancing the stability and/or the degradability of polymers is generally accomplished by additives, changing the polymer backbone, introduction of functional groups, or by blending with appropriate fillers to make the polymer/plastic material from hydrophobic to hydrophilic material. However, many of these techniques for degradation also result in detrimental properties for the polymer products.
Petroleumr based synthetic polyrriers/plastics to overcome the problems and limit of natural material owing to its excellent physical properties, light weight and cost effectiveness, plasticity is one of the modern scientific characteristics established by developing various hydrophilic polymers, especially hydrophilic plastic. However, each country in the present world is preparing for diversified counter measures as pollution problems from numerous plastic products are globally getting serious and it becomes a challenging matter to solve such pollution problems arising out of plastic wastes.
Recycling, incineration and landfill have been mainly used to solve these environmental pollution problems caused by various solid wastes, including plastic. However, disposal of wastes through landfill as well as recycling cannot solve the environmental pollution problems completely owning to its inherent problems.
Accordingly, great interest and studies on development of biodegradable and/or biocompostable plastic which can degrade itself at the life cycle end are increasing recently. The technology on degradable plastic is divided into photodegradable, oxo-degradable, oxo-biodegradable, biodegradable, bio photodegradable and a combination of photo- and/or oxo and/or biodegradable plastic formulation technologies which are increasing recently on the industrial scale of manufacturing.
While there are many kinds of biodegradable plastic, for example microorganism producing polymers like PHB (poly-f-hydroxybutylate), polymers using microorganism producing biochemical, or polymers having natural polymer like chitin or starch. The problems which are concerned with the present technology about polymers having various additives such as starch have been mentioned and improvements are described in the literature.
U.S. Pat. No.4, 021,388 by G. J. L. Griffin is directed to a process for preparing biodegradable film improved by treating the surface of starch with silane coupling agent to be hydrophobic, but it only increases physical interacting strength a little between matrix resin and starch. However, it has difficulty to solve the problem of degradation in the physical properties of films upon incorporating starch.
While U.S. Pat. Nos, 4,133,784 and 4,337,181 filed by F. H. Otey et. al. of USDA disclose processes for preparing biodegradable films by adding a-starch to ethylene-acrylic copolymer. It has difficulty to generalize for the high price of ethylene-acrylic copolymer and lowering of physical properties of the produced films.
Korean Patent Publication Nos.90-6336 and 91-8553 filed by Seonil Glucose Co., Korea are related to processes for increasing physical interacting strength between matrix resin and starch by increasing hydrophobic property of starch or increasing hydrophilic property of matrix resin to increase compatibility with matrix resin and starch.
US patent 5281681A describes photodegradable and biodegradable polyethylene formulation by co-processing ethylene and 2-methylene-1,3 dioxepane (MDOP) to produce terpolymer which exhibits better photodegradability than the copolymer, because the additional carbonyl groups in the polymer cleave upon absorbing light such as sunlight or UV light. The terpolymer can be both photodegradable and biodegradable because both the ester and the carbonyl functionalize.
US patent 5461094A describes biodegradable polyethylene composition chemically bonded with starch and a process for preparing thereof.
Therefore, it is desirable to provide high yield Peptide-polyethylene herein referred to as PEPlene, having good biodegradability/biocompostability/biodigestion in the environment.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each of the appended claims.
Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
It would be desirable to provide a biodegradable, biocompostable, and/or biodigestible plastic and a process for preparation thereof which overcomes disadvantages associated with the prior arts.
It would also be desirable to provide a biodegradable/ biocompostable/ biodigestible plastic and a process for preparation thereof which improves one or more of polymer biodegradability/biocompostability/biodigestion and desirably without the loss of physical strength and/or structural characteristics and also desirably being recyclable in the main recycling stream should the opportunity arise without affecting the stream.
It would also be desirable to provide a biodegradable /biocompostable /biodigestible plastic and a process for preparation thereof which is cost effective.
It would also be desirable to provide a biodegradable /biocompostable/ biodigestible plastic and a process for preparation thereof which is environment friendly.
In one aspect, there is provided a process for preparation of a biodegradable/ biocompostable/ biodigestible plastic comprising the steps of: - mixing cellulase or papain with protein from milk, soya bean or ladyfingers, - adding a composting agent, - blending with at least one polyolefin polymer in presence of additive selected from citric acid, lactic acid bacillus, hydrolyzed mutton tallow, yeast or any combination thereof, to obtain said plastic.
The present invention proposes Biodegradable/ Biocompostable /Biodigestible plastics or polymer products such as market carry bags, mulch film for agricultural use, packing films etc., to name a few plus replace the normal petroleum source plastics by incorporating biodegradable/biocompostable/biodigestible additives in the polymer processing to render them biodegradable/biocompostable/biodigestible. Thus, a plastic formulation has been developed by incorporating natural peptides/enzyme/protein from edible source to make non-biodegradable petroleum based polymers namely the polyolefin such as polyethylene, polypropylene and their different grades as Biodegradable/Biocompostable /Biodigestible polyolefin polymer.
Thus the present invention describes a biodegradable/biocompostable/biodigestible film prepared by chemical bonding of peptides/enzyme/protein and other additives with an example of polyethylene chains, which is a polyolefin having the most widest general
4A application, and a process for preparing thereof. The same can be the process technology for the other polyolefin's such as polypropylene etc.
Further objects and advantages of this invention will be more apparent from the ensuing description when read in conjunction with the accompanying drawings of exemplary embodiments of invention and wherein:
Fig.1: Environmental Biodegradation of the PEPlene film. Fig.2: 150 Days Environmental Soil Biodegradation of the PEPlene fihn. Fig.3: FTIR indicating the peptides/enzyme/protein incorporation in the PEPlene Master Batch. Fig.4: FTIR indicating the peptides/enzyme/protein incorporation in the PEPlene filn Fig.5: PEPlene Percentage Degree of Biodegradation
The instant invention makes a disclosure in respect of biodegradable biocompostable biodigestible plastic and a process for preparation thereof.
Accordingly, the Present invention provides a process for composition and composition thereof for accelerating the biodegradation/biocompostability/ biodigestion of PEPlene materials.
The process comprises preparing a composition by combing at least one peptide with at least one protein and enzyme, and a composting agent. This is followed by blending with at least one polymer in the presence of additive preferably at a temperature of 45-300°C so as to retain the essential catalytic properties and nature of the peptides/enzyre/protein.
The composition thus obtained can be directly used or encapsulated in a polymer constituting a coated composition or in liquid form. Various examples of above ingredients can be listed herein below:
Peptide - cellulase, papain, but not restricted to the examples herein.
Protein/enzyme - milk, vegetable. (Soya bean, lady finger). But not restricted to the examples herein.
Composting Agent - carboxy methyl cellulose, hydrolyzed mutton tallow. But not restricted to the examples herein.
Polymer - polyethylene, which can be at least one of linear low density polyethylene (LLDPE), high density polyethylene (HDPE), low density polyethylene (LDPE) medium density polyethylene, ethylene vinyl acetate (EVA) and ethylene butyl acrylate (EBA) and any combination thereof.
Additive- citric acid, lactic acid bacillus, hydrolyzed mutton tallow, yeast and any combination thereof to improve biodegradation/ biocompostability/ biodigestion properties of polymeric material.
The natural components of the composition of the present invention are food grade materials. This can also include other carbohydrates such as lactose, starch etc.
The present invention leads to reduction in production cost owing to simplification in the process for preparation of the composition. It avoids the problem of degradation in the physical properties of film by enhancing solely physical interacting strength between matrix resin and peptides/enzyme/protein. and added additives referred above.
Further according to another embodiment, a biodegradable/biocompostable /biodigestible polyethylene composition can be chemically bonded with starch.
The composition of PEPlene has molecular weight of at least about 7000 with good biodegradable/ biocompostable/ biodigestible characteristics fig.1.
In plastic polymer, x, y and z in space integers of the peptide/ enzyme / protein groups such as carboxyl are randomly or uniformly distributed in the polymer along the backbone of the polyethylene polymer, according to the varying concentrations of the functional groups Figure 3 and 4.
The blend of plastic composition is subjected to extrusion at a temperature of about 100 - 350°C. So that during the extrusion process, the composition infuses or penetrates into the cells or molecular structure of the polymer while the polymer is in a pre-molten state. The plastic products obtained from the present process include secondary packaging/plastic films, vest bags, bin liners, rubbish bags, agricultural mulch, and many other types of films. The present blend of composition is also suitable for the polymers e.g. 3D printing, fiber spun, and nonwoven material using injection molding and melted spun process technologies to name a few.
The mechanisms of biodegradation may include the following stages:
Action: Peptide/ enzyme / protein help to introduce the hydrophilicity in the chains of the polymer. While the polymer is in the pre-molten state during the process of extrusion the.Peptide/ enzyme / protein penetrates into the polymer so as to enable the hydrophilicity in the polymer formulation.
Thermal degradation: The hydrophilic nature polymer is processed further into a polymer film which undergoes a thermal degradation or breakdown into smaller fragments, under laboratory conditions this takes place due to temperature conditions and the moisture in the environment and also due to light and oxygen.
Soil action: After thermal degradation (either in laboratory conditions or in the natural environment) the presence of peptide/ enzyme /protein in the composition of the present invention due to hydrophilic nature attracts soil microorganisms which attack the polymer. Inherent moisture in the polymer formulation due to hydrophilicity of the composition and/or moisture in the soil (for example 58% moisture) enables the chain links ofthe polymer, already in a separated or weakened molecular state, to undergo a natural composting process wherein the products of depolymerisation provide nutrients for the soil microorganisms and the remaining products to become biomass.
Degradation: The ultimate products of biodegradation include carbon dioxide and water due to the microbial metabolism of the polymer.
In one example, the enzyme compositions of the present invention are blended with a pulverized co-polymer i.e. LLDPE. Polyethylene used for the manufacturing of films for secondary packaging like vest bags, bin liners, rubbish bags, agricultural mulch films need the co polymer LLDPE both for elasticity and scalability of the film. The presence of peptide/ enzyme /proteins and other additives in the polyethylene attracts the soil microorganisms to act on the composted material. The residue is biomass, water and carbon dioxide. However, in the present PEPene polymer the biodegradation residues are carbon dioxide and water.
Other products resulting from biodegradation or bio-refining include gases (e.g. Methane), Ketones (e.g. Acetone) and alcohols (e.g. methanol, Ethanol, Propanol, and Butanol). Products such as Methane and Ethanol are known sources of energy and it is envisaged that these, or other resulting products, may be captured for further use, such as to act as energy sources.
One advantage of the present invention is that the polymer products obtained by the present invention retain the desired mechanical properties and shelf life plus recycling of polymers equal to the non-biodegradable polymer - example polyethylene. Unlike the photo-oxidative or oxodegradable agents which initiate the degradation of the Polymer spontaneously and their-by reduce the shelf life of the polymer products, enzymatically initiated biodegradation/ biocompostability/biodigestion process begins only upon. exposure to microbes in the environment as life cycle end. The PEPIene films prepared using the peptide/ enzyme /protein composition either by directly dispersed or encapsulated in the present invention have been successfully tested as per ASTM D 5988, ISO 14855, ISO 17556 and EN 13432/ ASTM D6400 (and other national equivalents) test protocols for bio degradability and Eco toxicity and plant germination capability of the soil in which these films biodegrade. For example, EN protocols for cellulose based products require greater than 90% degradation within 180 days. Products according to the present invention start to degrade from 90 days under composting conditions Figure 1 and 2. Speed. of degradation is generally affected by environmental microbial conditions, the amount of peptide/ enzyme /protein composition and the thickness of the product. By way of example, degradation of products prepared according to the present invention has been achieved with extruded film of 5- 50 microns thickness.
Accordingly, a further advantage of the present invention is that the compositions comprise natural and food grade materials and leave no toxic residues after biodegradation and/or are within the heavy metal limits as prescribed by various countries for the plastic material/products.
The present invention product is also recyclable in accordance with ASTM D 7209 protocol and. EN 15347; The present invention product is also compostable according to standard EN 13432; and biodegradable according to standards ASTM D 5988, ISO 14855, ISO 17556 and EN 13432/ ASTM D6400 (and other national equivalents) test protocols for biodegradability Figure 5.
Also, the present invention evaluated under US FDA 177.1520 for food contact safety compliance. A further advantage of the present invention is that the materials prepared according to the invention biodegrade when subjected to suitably environmental conditions. The product PEPlene films of the present innovation are also stable until disposal, such as into soil, compost, landfill, bio-digester or the like and under anaerobic conditions. The materials are able to be metabolized into biomass by the colony forming bacterial groups present in the compositions of the present invention and the microorganisms available in the soil.
The compositions of the present invention with polyolefin such as polyethylene under aerobic conditions have shown that it is possible to subject poly films to complete biodegradation and bio-compostable by oxidative microbial attack.
It is to be noted that the present invention is susceptible to modifications, adaptations and changes by those skilled in the art. Such variant embodiments employing the concepts and features of this invention are intended to be within the scope of the present invention, which is further set forth under the following claims:
Claims (8)
1. A process for preparation of a biodegradable/ biocompostable/ biodigestible plastic comprising the steps of: - mixing cellulase or papain with protein from milk, soya bean or ladyfingers, - adding a composting agent, - blending with at least one polyolefin polymer in presence of additive selected from citric acid, lactic acid bacillus, hydrolyzed mutton tallow, yeast or any combination thereof, to obtain said plastic.
2. The process for preparation of the biodegradable/ biocompostable/ biodigestible plastic as claimed in claim 1, wherein said blending is carried out at a temperature of 45-300°C so as to retain the essential catalytic properties and nature of the mixture in the solid or liquid form.
3. The process for preparation of the biodegradable/ biocompostable/ biodigestible plastic as claimed in any one of the preceding claims, wherein the compositing agent is carboxymethyl cellulose.
4. The process for preparation of the biodegradable/ biocompostable/ biodigestible plastic as claimed in any one of the preceding claims, wherein the polyolefin polymer comprises polyethylene.
5. The process for preparation of the biodegradable/ biocompostable/ biodigestible plastic as claimed in claim 4, wherein the polyethylene comprises linear low density polyethylene (LLDPE), high density polyethylene (HDPE) or low density polyethylene (LDPE) MDPE EVA EBA or any combination thereof.
6. The process for preparation of the biodegradable/ biocompostable/ biodigestible plastic as claimed in any one of the preceding claims, wherein the mix of plastic is subjected to extrusion at temperature of up to 350°C to form blown/injection molded, melted spun and 3D printing plus numerous other products.
7. The process for preparation of the biodegradable/ biocompostable/ biodigestible plastic as claimed in any one of the preceding claims, wherein one or more plastic products obtained from the process include secondary packaging/plastic films, vest bags, bin liners, rubbish bags, agricultural mulch films, polymer fibers, or nonwoven spun materials.
8. A biodegradable/ biocompostable/ biodigestible plastic obtained by the process of any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015249059A AU2015249059B2 (en) | 2015-10-27 | 2015-10-27 | A process for preparation of biodegradable biocompostable biodigestible peplene polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015249059A AU2015249059B2 (en) | 2015-10-27 | 2015-10-27 | A process for preparation of biodegradable biocompostable biodigestible peplene polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2015249059A1 AU2015249059A1 (en) | 2017-05-11 |
AU2015249059B2 true AU2015249059B2 (en) | 2021-03-11 |
Family
ID=58667365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2015249059A Active AU2015249059B2 (en) | 2015-10-27 | 2015-10-27 | A process for preparation of biodegradable biocompostable biodigestible peplene polymer |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2015249059B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3907726A (en) * | 1972-03-24 | 1975-09-23 | Shinichi Tomiyama | Biologically disintegrable resin molding comprising carboxymethyl cellulose and inorganic filler |
US5446078A (en) * | 1992-05-12 | 1995-08-29 | Regents Of The University Of Minnesota | Biodegradable compositions produced by reactive blending of synthetic and naturally occurring polymers |
-
2015
- 2015-10-27 AU AU2015249059A patent/AU2015249059B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3907726A (en) * | 1972-03-24 | 1975-09-23 | Shinichi Tomiyama | Biologically disintegrable resin molding comprising carboxymethyl cellulose and inorganic filler |
US5446078A (en) * | 1992-05-12 | 1995-08-29 | Regents Of The University Of Minnesota | Biodegradable compositions produced by reactive blending of synthetic and naturally occurring polymers |
Non-Patent Citations (1)
Title |
---|
SAMARASEKARA et al., "Effect of Papain on the Biodegradability of Polyethylene Modified by Chitosan", 14th ERU Symposium, 2008: Faculty of Engineering, University of Moratuwa, Sri Lanka * |
Also Published As
Publication number | Publication date |
---|---|
AU2015249059A1 (en) | 2017-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3162841B2 (en) | A biodegradable biocompostable biodigestible plastic | |
CN110358264B (en) | Bio-based environment-friendly packaging bag and preparation method thereof | |
CA2113521C (en) | Melt processable biodegradable compositions and articles made therefrom | |
WO2019155398A1 (en) | Biodegradable plastic | |
KR102116694B1 (en) | Renewable resin composition and product prepared from the same | |
CN114729165A (en) | Biodegradable resin composition and method for producing same | |
US9925707B2 (en) | Process for preparation of biodegradable biocompostable biodigestible polyolefins | |
KR20210024448A (en) | Addition of additives that impart biodegradability to plastic materials | |
CN113845621A (en) | Compatibilizer and high-starch-content full-biodegradable film adopting same | |
CN113474262A (en) | Soil plant compostable biodegradable substrate and method for producing the same | |
JP2022539870A (en) | Blends of small particle starch and starch-based materials with synthetic polymers to improve strength and other properties | |
KR102579310B1 (en) | Biodegradable resin compositions including polyvinylalcohol and manufacturing methods thereof | |
CN106750714A (en) | Prepare it is biodegradable/biodegradable/can bio-digestion plastics method | |
JP6840459B2 (en) | The process of preparing biodegradable or biocomposable or biodigestible plastics | |
AU2015249059B2 (en) | A process for preparation of biodegradable biocompostable biodigestible peplene polymer | |
CA2910848C (en) | A process for preparation of biodegradable biocompostable biodigestible peplene polymer | |
KR102407611B1 (en) | A process for preparation of biodegradable biocompostable biodigestible peplene polymer | |
CN117844267B (en) | Multi-element combined synergistic refined biodegradable straw and preparation method thereof | |
CN112661638B (en) | Toughening intermediate, preparation method thereof and toughened mosquito-repellent high-molecular biodegradable composite material for 3D printing | |
Anuradha et al. | Environmentally degradable-thermoplastics: An overview | |
Arul Kumar et al. | Studies on the properties of photo/bio-degradable LDPE with benzophenone and hydrolysed starch | |
BR102015031336A2 (en) | A PROCESS FOR THE PREPARATION OF PEOPLE POLYMER BIODIGERIBLE BIOCOMPOSTABLE BIODEGRADABLE | |
TW201718770A (en) | A process for preparation of biodegradable biodigestible PEPlene polymer | |
Habsah | ECO-FRIENDLY NANOCOMPOSITE PLASTIC BASED ON PLA-PCL WITH FILLERCATECHINASAREPLACEMENTOFPETROCHEMICALPLASTIC | |
JP2023141764A (en) | Biodegradable composite composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |