AU2014201215B2 - Globo h and related anti-cancer vaccines with novel glycolipid adjuvants - Google Patents
Globo h and related anti-cancer vaccines with novel glycolipid adjuvants Download PDFInfo
- Publication number
- AU2014201215B2 AU2014201215B2 AU2014201215A AU2014201215A AU2014201215B2 AU 2014201215 B2 AU2014201215 B2 AU 2014201215B2 AU 2014201215 A AU2014201215 A AU 2014201215A AU 2014201215 A AU2014201215 A AU 2014201215A AU 2014201215 B2 AU2014201215 B2 AU 2014201215B2
- Authority
- AU
- Australia
- Prior art keywords
- cancer
- ssea
- globo
- immunogenic composition
- tumor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002671 adjuvant Substances 0.000 title claims abstract description 94
- 229930186217 Glycolipid Natural products 0.000 title abstract description 58
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 title abstract description 50
- 229940022399 cancer vaccine Drugs 0.000 title description 19
- 239000000203 mixture Substances 0.000 claims abstract description 96
- 108091007433 antigens Proteins 0.000 claims abstract description 58
- 102000036639 antigens Human genes 0.000 claims abstract description 58
- 239000000427 antigen Substances 0.000 claims abstract description 57
- 230000002163 immunogen Effects 0.000 claims abstract description 49
- 150000004676 glycans Chemical class 0.000 claims abstract description 45
- 230000028993 immune response Effects 0.000 claims abstract description 32
- 102000014914 Carrier Proteins Human genes 0.000 claims abstract description 27
- 108010078791 Carrier Proteins Proteins 0.000 claims abstract description 27
- 230000004614 tumor growth Effects 0.000 claims abstract description 9
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 97
- 229960005486 vaccine Drugs 0.000 claims description 56
- 206010006187 Breast cancer Diseases 0.000 claims description 54
- 208000026310 Breast neoplasm Diseases 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 45
- 201000011510 cancer Diseases 0.000 claims description 44
- 239000012634 fragment Substances 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 108010071134 CRM197 (non-toxic variant of diphtheria toxin) Proteins 0.000 claims description 13
- 102000016607 Diphtheria Toxin Human genes 0.000 claims description 12
- 108010053187 Diphtheria Toxin Proteins 0.000 claims description 12
- 238000011282 treatment Methods 0.000 claims description 12
- 101710135378 pH 6 antigen Proteins 0.000 claims description 9
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 8
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 7
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 6
- 206010060862 Prostate cancer Diseases 0.000 claims description 6
- 208000020816 lung neoplasm Diseases 0.000 claims description 6
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 5
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 5
- 206010033128 Ovarian cancer Diseases 0.000 claims description 5
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 5
- 201000005202 lung cancer Diseases 0.000 claims description 5
- 229960000814 tetanus toxoid Drugs 0.000 claims description 5
- 206010005003 Bladder cancer Diseases 0.000 claims description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 4
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 4
- 206010009944 Colon cancer Diseases 0.000 claims description 4
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 4
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 claims description 4
- 206010038389 Renal cancer Diseases 0.000 claims description 4
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 4
- 229940098773 bovine serum albumin Drugs 0.000 claims description 4
- 201000010881 cervical cancer Diseases 0.000 claims description 4
- 206010017758 gastric cancer Diseases 0.000 claims description 4
- 230000005764 inhibitory process Effects 0.000 claims description 4
- 201000010982 kidney cancer Diseases 0.000 claims description 4
- 201000007270 liver cancer Diseases 0.000 claims description 4
- 208000014018 liver neoplasm Diseases 0.000 claims description 4
- 201000011549 stomach cancer Diseases 0.000 claims description 4
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 4
- 208000005016 Intestinal Neoplasms Diseases 0.000 claims description 3
- 206010061306 Nasopharyngeal cancer Diseases 0.000 claims description 3
- 230000002500 effect on skin Effects 0.000 claims description 3
- 201000002313 intestinal cancer Diseases 0.000 claims description 3
- 125000005630 sialyl group Chemical group 0.000 claims description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 2
- 229960003983 diphtheria toxoid Drugs 0.000 claims description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims 1
- 206010014733 Endometrial cancer Diseases 0.000 claims 1
- 206010014759 Endometrial neoplasm Diseases 0.000 claims 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 claims 1
- 206010023825 Laryngeal cancer Diseases 0.000 claims 1
- 206010031096 Oropharyngeal cancer Diseases 0.000 claims 1
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 claims 1
- 201000004101 esophageal cancer Diseases 0.000 claims 1
- 201000010175 gallbladder cancer Diseases 0.000 claims 1
- 206010023841 laryngeal neoplasm Diseases 0.000 claims 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims 1
- 201000005443 oral cavity cancer Diseases 0.000 claims 1
- 201000006958 oropharynx cancer Diseases 0.000 claims 1
- 201000002528 pancreatic cancer Diseases 0.000 claims 1
- 208000008443 pancreatic carcinoma Diseases 0.000 claims 1
- -1 Globo H Chemical class 0.000 abstract description 10
- 230000003472 neutralizing effect Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 76
- 241000699670 Mus sp. Species 0.000 description 45
- 230000014509 gene expression Effects 0.000 description 41
- 238000002493 microarray Methods 0.000 description 26
- 238000002255 vaccination Methods 0.000 description 26
- 230000003211 malignant effect Effects 0.000 description 25
- 241000699666 Mus <mouse, genus> Species 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 210000000130 stem cell Anatomy 0.000 description 21
- 102000004127 Cytokines Human genes 0.000 description 19
- 108090000695 Cytokines Proteins 0.000 description 19
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 18
- 239000002953 phosphate buffered saline Substances 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 18
- 238000009566 cancer vaccine Methods 0.000 description 17
- 230000003053 immunization Effects 0.000 description 17
- 238000002649 immunization Methods 0.000 description 17
- 150000001720 carbohydrates Chemical class 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- 230000001225 therapeutic effect Effects 0.000 description 16
- 235000014633 carbohydrates Nutrition 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 201000009030 Carcinoma Diseases 0.000 description 14
- 210000004881 tumor cell Anatomy 0.000 description 13
- 150000002148 esters Chemical class 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 11
- 210000001744 T-lymphocyte Anatomy 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 210000004443 dendritic cell Anatomy 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 102000019034 Chemokines Human genes 0.000 description 10
- 108010012236 Chemokines Proteins 0.000 description 10
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 10
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 10
- 108090000288 Glycoproteins Proteins 0.000 description 9
- 102000003886 Glycoproteins Human genes 0.000 description 9
- 230000005847 immunogenicity Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- 239000013543 active substance Substances 0.000 description 8
- 208000009956 adenocarcinoma Diseases 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 238000010186 staining Methods 0.000 description 8
- 102100032912 CD44 antigen Human genes 0.000 description 7
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 7
- 238000005481 NMR spectroscopy Methods 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 108091008874 T cell receptors Proteins 0.000 description 7
- 241000700605 Viruses Species 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 210000002919 epithelial cell Anatomy 0.000 description 7
- 210000000987 immune system Anatomy 0.000 description 7
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 241000283707 Capra Species 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 6
- 210000000481 breast Anatomy 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 210000002307 prostate Anatomy 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 5
- 206010025323 Lymphomas Diseases 0.000 description 5
- 206010061309 Neoplasm progression Diseases 0.000 description 5
- 102100038081 Signal transducer CD24 Human genes 0.000 description 5
- 230000024932 T cell mediated immunity Effects 0.000 description 5
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 208000029742 colonic neoplasm Diseases 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000013595 glycosylation Effects 0.000 description 5
- 238000006206 glycosylation reaction Methods 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 229920001542 oligosaccharide Polymers 0.000 description 5
- 150000002482 oligosaccharides Chemical class 0.000 description 5
- 239000008363 phosphate buffer Substances 0.000 description 5
- 210000000664 rectum Anatomy 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000829 suppository Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000005751 tumor progression Effects 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 206010003571 Astrocytoma Diseases 0.000 description 4
- 241001492234 Bamboo mosaic virus Species 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- 229940001007 aluminium phosphate Drugs 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 210000003679 cervix uteri Anatomy 0.000 description 4
- 210000001072 colon Anatomy 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000028996 humoral immune response Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- 210000000496 pancreas Anatomy 0.000 description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 210000001550 testis Anatomy 0.000 description 4
- 210000001541 thymus gland Anatomy 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 241000283073 Equus caballus Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 208000017604 Hodgkin disease Diseases 0.000 description 3
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 3
- 102000014150 Interferons Human genes 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- 108090000978 Interleukin-4 Proteins 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 101710169105 Minor spike protein Proteins 0.000 description 3
- 101710081079 Minor spike protein H Proteins 0.000 description 3
- 102100030626 Myosin-binding protein H Human genes 0.000 description 3
- 101710139548 Myosin-binding protein H Proteins 0.000 description 3
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 108010067787 Proteoglycans Proteins 0.000 description 3
- 102000016611 Proteoglycans Human genes 0.000 description 3
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 3
- 208000000453 Skin Neoplasms Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 210000005006 adaptive immune system Anatomy 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000001093 anti-cancer Effects 0.000 description 3
- 230000005875 antibody response Effects 0.000 description 3
- 239000011425 bamboo Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 230000009260 cross reactivity Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000000568 immunological adjuvant Substances 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 229940047124 interferons Drugs 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 230000001394 metastastic effect Effects 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 238000010208 microarray analysis Methods 0.000 description 3
- 210000000214 mouth Anatomy 0.000 description 3
- 210000000581 natural killer T-cell Anatomy 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- VQFKFAKEUMHBLV-BYSUZVQFSA-N 1-O-(alpha-D-galactosyl)-N-hexacosanoylphytosphingosine Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@H]([C@H](O)[C@H](O)CCCCCCCCCCCCCC)CO[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQFKFAKEUMHBLV-BYSUZVQFSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical group OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 241001330002 Bambuseae Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 201000000274 Carcinosarcoma Diseases 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 201000008808 Fibrosarcoma Diseases 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 101150096822 Fuca1 gene Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- VJLLLMIZEJJZTE-VNQXHBPZSA-N HexCer(d18:1/16:0) Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H]([C@H](O)\C=C\CCCCCCCCCCCCC)COC1OC(CO)C(O)C(O)C1O VJLLLMIZEJJZTE-VNQXHBPZSA-N 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 101000871708 Homo sapiens Proheparin-binding EGF-like growth factor Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 208000018142 Leiomyosarcoma Diseases 0.000 description 2
- 206010024305 Leukaemia monocytic Diseases 0.000 description 2
- 208000000265 Lobular Carcinoma Diseases 0.000 description 2
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 208000007054 Medullary Carcinoma Diseases 0.000 description 2
- 206010027145 Melanocytic naevus Diseases 0.000 description 2
- 206010027406 Mesothelioma Diseases 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 201000010133 Oligodendroglioma Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 102100033762 Proheparin-binding EGF-like growth factor Human genes 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 238000011579 SCID mouse model Methods 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000002707 ameloblastic effect Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 201000003714 breast lobular carcinoma Diseases 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 208000009060 clear cell adenocarcinoma Diseases 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000006862 enzymatic digestion Effects 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 210000004392 genitalia Anatomy 0.000 description 2
- 230000000762 glandular Effects 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 2
- 230000003118 histopathologic effect Effects 0.000 description 2
- 238000011532 immunohistochemical staining Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 description 2
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 210000000244 kidney pelvis Anatomy 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 208000003747 lymphoid leukemia Diseases 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 2
- 206010027191 meningioma Diseases 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 201000006894 monocytic leukemia Diseases 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 2
- 208000025113 myeloid leukemia Diseases 0.000 description 2
- DPBLXKKOBLCELK-UHFFFAOYSA-N n-pentylamine Natural products CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 239000002417 nutraceutical Substances 0.000 description 2
- 235000021436 nutraceutical agent Nutrition 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 208000007312 paraganglioma Diseases 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 229940100684 pentylamine Drugs 0.000 description 2
- 210000003800 pharynx Anatomy 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- PCMORTLOPMLEFB-ONEGZZNKSA-N sinapic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-ONEGZZNKSA-N 0.000 description 2
- PCMORTLOPMLEFB-UHFFFAOYSA-N sinapinic acid Natural products COC1=CC(C=CC(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-UHFFFAOYSA-N 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940126577 synthetic vaccine Drugs 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 150000004044 tetrasaccharides Chemical class 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 230000002485 urinary effect Effects 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- XILIYVSXLSWUAI-UHFFFAOYSA-N 2-(diethylamino)ethyl n'-phenylcarbamimidothioate;dihydrobromide Chemical compound Br.Br.CCN(CC)CCSC(N)=NC1=CC=CC=C1 XILIYVSXLSWUAI-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- 208000016557 Acute basophilic leukemia Diseases 0.000 description 1
- 208000004804 Adenomatous Polyps Diseases 0.000 description 1
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 1
- TWCMVXMQHSVIOJ-UHFFFAOYSA-N Aglycone of yadanzioside D Natural products COC(=O)C12OCC34C(CC5C(=CC(O)C(O)C5(C)C3C(O)C1O)C)OC(=O)C(OC(=O)C)C24 TWCMVXMQHSVIOJ-UHFFFAOYSA-N 0.000 description 1
- 229910017119 AlPO Inorganic materials 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 208000012791 Alpha-heavy chain disease Diseases 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- PLMKQQMDOMTZGG-UHFFFAOYSA-N Astrantiagenin E-methylester Natural products CC12CCC(O)C(C)(CO)C1CCC1(C)C2CC=C2C3CC(C)(C)CCC3(C(=O)OC)CCC21C PLMKQQMDOMTZGG-UHFFFAOYSA-N 0.000 description 1
- 206010065869 Astrocytoma, low grade Diseases 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 208000035821 Benign schwannoma Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000007690 Brenner tumor Diseases 0.000 description 1
- 206010073258 Brenner tumour Diseases 0.000 description 1
- 208000003170 Bronchiolo-Alveolar Adenocarcinoma Diseases 0.000 description 1
- 108050005711 C Chemokine Proteins 0.000 description 1
- 102000017483 C chemokine Human genes 0.000 description 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 102000001902 CC Chemokines Human genes 0.000 description 1
- 108010040471 CC Chemokines Proteins 0.000 description 1
- 108050006947 CXC Chemokine Proteins 0.000 description 1
- 102000019388 CXC chemokine Human genes 0.000 description 1
- 101100504320 Caenorhabditis elegans mcp-1 gene Proteins 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 206010007275 Carcinoid tumour Diseases 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 102000001327 Chemokine CCL5 Human genes 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 108010078239 Chemokine CX3CL1 Proteins 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 206010008583 Chloroma Diseases 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- AERBNCYCJBRYDG-UHFFFAOYSA-N D-ribo-phytosphingosine Natural products CCCCCCCCCCCCCCC(O)C(O)C(N)CO AERBNCYCJBRYDG-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 208000037162 Ductal Breast Carcinoma Diseases 0.000 description 1
- 208000006402 Ductal Carcinoma Diseases 0.000 description 1
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 1
- 208000007033 Dysgerminoma Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010014958 Eosinophilic leukaemia Diseases 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 201000006107 Familial adenomatous polyposis Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010053717 Fibrous histiocytoma Diseases 0.000 description 1
- 208000004463 Follicular Adenocarcinoma Diseases 0.000 description 1
- 102000013818 Fractalkine Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100036250 GPI mannosyltransferase 4 Human genes 0.000 description 1
- 206010017708 Ganglioneuroblastoma Diseases 0.000 description 1
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 description 1
- 208000008999 Giant Cell Carcinoma Diseases 0.000 description 1
- 208000002966 Giant Cell Tumor of Bone Diseases 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 208000005234 Granulosa Cell Tumor Diseases 0.000 description 1
- 208000006050 Hemangiopericytoma Diseases 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 208000002291 Histiocytic Sarcoma Diseases 0.000 description 1
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 1
- 101001074618 Homo sapiens GPI mannosyltransferase 4 Proteins 0.000 description 1
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 206010048643 Hypereosinophilic syndrome Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 208000007866 Immunoproliferative Small Intestinal Disease Diseases 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 description 1
- 206010073094 Intraductal proliferative breast lesion Diseases 0.000 description 1
- 201000008869 Juxtacortical Osteosarcoma Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 201000004462 Leydig Cell Tumor Diseases 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 102100035304 Lymphotactin Human genes 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000282553 Macaca Species 0.000 description 1
- 208000035771 Malignant Sertoli-Leydig cell tumor of the ovary Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- 201000009574 Mesenchymal Chondrosarcoma Diseases 0.000 description 1
- 206010054949 Metaplasia Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 206010057269 Mucoepidermoid carcinoma Diseases 0.000 description 1
- 208000010357 Mullerian Mixed Tumor Diseases 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000007871 Odontogenic Tumors Diseases 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 208000010191 Osteitis Deformans Diseases 0.000 description 1
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 1
- 208000027868 Paget disease Diseases 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 208000009077 Pigmented Nevus Diseases 0.000 description 1
- 208000019262 Pilomatrix carcinoma Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102220513293 Protein VAC14 homolog_G52E_mutation Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 208000000097 Sertoli-Leydig cell tumor Diseases 0.000 description 1
- 208000003252 Signet Ring Cell Carcinoma Diseases 0.000 description 1
- 208000009574 Skin Appendage Carcinoma Diseases 0.000 description 1
- 206010040914 Skin reaction Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 206010042553 Superficial spreading melanoma stage unspecified Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 201000009365 Thymic carcinoma Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 208000006336 acinar cell carcinoma Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 208000002517 adenoid cystic carcinoma Diseases 0.000 description 1
- 201000008395 adenosquamous carcinoma Diseases 0.000 description 1
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 1
- 208000007128 adrenocortical carcinoma Diseases 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- MGSDFCKWGHNUSM-QVPNGJTFSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->3)-beta-D-GlcpNAc Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@@H]2[C@H]([C@H](O)O[C@H](CO)[C@H]2O)NC(C)=O)O[C@H](CO)[C@H](O)[C@@H]1O MGSDFCKWGHNUSM-QVPNGJTFSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 206010065867 alveolar rhabdomyosarcoma Diseases 0.000 description 1
- 208000006431 amelanotic melanoma Diseases 0.000 description 1
- 208000010029 ameloblastoma Diseases 0.000 description 1
- 210000002255 anal canal Anatomy 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000011398 antitumor immunotherapy Methods 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 201000007436 apocrine adenocarcinoma Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 201000005476 astroblastoma Diseases 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 201000007551 basophilic adenocarcinoma Diseases 0.000 description 1
- 208000001119 benign fibrous histiocytoma Diseases 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 208000007047 blue nevus Diseases 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 201000011143 bone giant cell tumor Diseases 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 201000011054 breast malignant phyllodes tumor Diseases 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011545 carbonate/bicarbonate buffer Substances 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 201000002891 ceruminous adenocarcinoma Diseases 0.000 description 1
- 208000024188 ceruminous carcinoma Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 201000005217 chondroblastoma Diseases 0.000 description 1
- 201000010240 chromophobe renal cell carcinoma Diseases 0.000 description 1
- 208000021668 chronic eosinophilic leukemia Diseases 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 208000029664 classic familial adenomatous polyposis Diseases 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 208000011588 combined hepatocellular carcinoma and cholangiocarcinoma Diseases 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- KAKKHKRHCKCAGH-UHFFFAOYSA-L disodium;(4-nitrophenyl) phosphate;hexahydrate Chemical compound O.O.O.O.O.O.[Na+].[Na+].[O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 KAKKHKRHCKCAGH-UHFFFAOYSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000002518 distortionless enhancement with polarization transfer Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 208000028715 ductal breast carcinoma in situ Diseases 0.000 description 1
- 201000007273 ductal carcinoma in situ Diseases 0.000 description 1
- 210000000959 ear middle Anatomy 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 201000009409 embryonal rhabdomyosarcoma Diseases 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 201000010877 epithelioid cell melanoma Diseases 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 210000004996 female reproductive system Anatomy 0.000 description 1
- 201000001169 fibrillary astrocytoma Diseases 0.000 description 1
- 201000008825 fibrosarcoma of bone Diseases 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 208000015419 gastrin-producing neuroendocrine tumor Diseases 0.000 description 1
- 201000000052 gastrinoma Diseases 0.000 description 1
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 108700014624 globo H-KLH vaccine Proteins 0.000 description 1
- 201000002264 glomangiosarcoma Diseases 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 201000007574 granular cell carcinoma Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000006359 hepatoblastoma Diseases 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- 208000029824 high grade glioma Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- PFOARMALXZGCHY-UHFFFAOYSA-N homoegonol Natural products C1=C(OC)C(OC)=CC=C1C1=CC2=CC(CCCO)=CC(OC)=C2O1 PFOARMALXZGCHY-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 210000003026 hypopharynx Anatomy 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000037189 immune system physiology Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000003228 intrahepatic bile duct Anatomy 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 208000022013 kidney Wilms tumor Diseases 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 125000003473 lipid group Chemical group 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 201000000014 lung giant cell carcinoma Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 201000010953 lymphoepithelioma-like carcinoma Diseases 0.000 description 1
- 208000025036 lymphosarcoma Diseases 0.000 description 1
- 108010019677 lymphotactin Proteins 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000004995 male reproductive system Anatomy 0.000 description 1
- 208000018013 malignant glomus tumor Diseases 0.000 description 1
- 201000004102 malignant granular cell myoblastoma Diseases 0.000 description 1
- 201000006812 malignant histiocytosis Diseases 0.000 description 1
- 206010061526 malignant mesenchymoma Diseases 0.000 description 1
- 201000009020 malignant peripheral nerve sheath tumor Diseases 0.000 description 1
- 201000002338 malignant struma ovarii Diseases 0.000 description 1
- 201000000289 malignant teratoma Diseases 0.000 description 1
- 208000025848 malignant tumor of nasopharynx Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 208000027202 mammary Paget disease Diseases 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 208000000516 mast-cell leukemia Diseases 0.000 description 1
- 201000008749 mast-cell sarcoma Diseases 0.000 description 1
- 210000001370 mediastinum Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000000713 mesentery Anatomy 0.000 description 1
- 230000015689 metaplastic ossification Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 231100000324 minimal toxicity Toxicity 0.000 description 1
- 201000010225 mixed cell type cancer Diseases 0.000 description 1
- 208000029638 mixed neoplasm Diseases 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 201000010879 mucinous adenocarcinoma Diseases 0.000 description 1
- 208000010492 mucinous cystadenocarcinoma Diseases 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 201000005987 myeloid sarcoma Diseases 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- DDOVBCWVTOHGCU-QMXMISKISA-N n-[(e,2s,3r)-3-hydroxy-1-[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-4-en-2-yl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)N[C@H]([C@H](O)\C=C\CCCCCCCCCCCCCC)CO[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O DDOVBCWVTOHGCU-QMXMISKISA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 239000006218 nasal suppository Substances 0.000 description 1
- 208000014761 nasopharyngeal type undifferentiated carcinoma Diseases 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 201000011216 nasopharynx carcinoma Diseases 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 210000000441 neoplastic stem cell Anatomy 0.000 description 1
- 201000008026 nephroblastoma Diseases 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 208000027831 neuroepithelial neoplasm Diseases 0.000 description 1
- 208000029974 neurofibrosarcoma Diseases 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 208000027825 odontogenic neoplasm Diseases 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 210000002747 omentum Anatomy 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 210000003300 oropharynx Anatomy 0.000 description 1
- 208000012221 ovarian Sertoli-Leydig cell tumor Diseases 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 201000010210 papillary cystadenocarcinoma Diseases 0.000 description 1
- 208000024641 papillary serous cystadenocarcinoma Diseases 0.000 description 1
- 201000001494 papillary transitional carcinoma Diseases 0.000 description 1
- 208000031101 papillary transitional cell carcinoma Diseases 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000008024 pharmaceutical diluent Substances 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 125000003884 phenylalkyl group Chemical group 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- AERBNCYCJBRYDG-KSZLIROESA-N phytosphingosine Chemical compound CCCCCCCCCCCCCC[C@@H](O)[C@@H](O)[C@@H](N)CO AERBNCYCJBRYDG-KSZLIROESA-N 0.000 description 1
- 229940033329 phytosphingosine Drugs 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 208000021857 pituitary gland basophilic carcinoma Diseases 0.000 description 1
- 208000031223 plasma cell leukemia Diseases 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 210000004224 pleura Anatomy 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 201000008520 protoplasmic astrocytoma Diseases 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 210000000574 retroperitoneal space Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 201000007416 salivary gland adenoid cystic carcinoma Diseases 0.000 description 1
- 208000014212 sarcomatoid carcinoma Diseases 0.000 description 1
- 206010039667 schwannoma Diseases 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 201000008123 signet ring cell adenocarcinoma Diseases 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 201000002078 skin pilomatrix carcinoma Diseases 0.000 description 1
- 231100000430 skin reaction Toxicity 0.000 description 1
- 230000035483 skin reaction Effects 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000012066 statistical methodology Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 208000028210 stromal sarcoma Diseases 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 208000030457 superficial spreading melanoma Diseases 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 208000030901 thyroid gland follicular carcinoma Diseases 0.000 description 1
- 208000015191 thyroid gland papillary and follicular carcinoma Diseases 0.000 description 1
- 230000009258 tissue cross reactivity Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 208000029335 trabecular adenocarcinoma Diseases 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 206010044412 transitional cell carcinoma Diseases 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 201000007423 tubular adenocarcinoma Diseases 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000012447 xenograft mouse model Methods 0.000 description 1
- 238000002689 xenotransplantation Methods 0.000 description 1
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
The present invention provides for an immunogenic composition comprising (a) a glycan, such as Globo H, stage-specific embryonic antigen-3 (SSEA-3) or SSEA-4, conjugated to a carrier protein through a linker; (b) an adjuvant comprising a glycolipid, such as a-galactosyl-ceramide adjuvant, wherein the composition induces an immune response, such as a higher relative level of IgG isotype antibodies compared to IgM isotype antibodies, or neutralising antibodies against at least one antigen selected from the group consisting of Globo H, Gb4, SSEA-3, and SSEA-4. Uses of the immunogenic composition for treating or inhibiting tumour growth are also provided.
Description
WO 2010/005598 PCT/US2009/004519 GLOBO H AND RELATED ANTI-CANCER VACCINES WITH NOVEL GLYCOLIPID ADJUVANTS CROSS-REFERENCE TO RELATED APPLICATIONS [00011 This patent application is a continuation-in-part application of co-pending U.S. Patent Application Serial No. 12/485,546, titled "Compositions for inducing immune responses specific to Globo H and SSEA-3 and uses thereof in cancer treatment" filed June 16, 2009, which claims priority to U.S. Provisional Patent Application Serial No. 61/061,968, filed June 16, 2008. The contents of these patent applications are incorporated herein in their entirety by reference. TECHNICAL FIELD OF THE INVENTION [00021 This invention relates to the field of cancer vaccines. In particular, the application relates to a carbohydrate-based vaccine containing the B cell epitope, Globo H, which is conjugated to the immunogenic carrier DT-CRM 197. More particularly, the invention is directed at anti-cancer Globo H-DT vaccines administered with novel glycolipid adjuvants, such as C34. BACKGROUND OF THE INVENTION 100031 To design therapy against cancer, it is desirable to seek molecular targets of cancer or cancer stem cells that are absent from normal cells. Aberrant glycosylation is often associated with tumor progression and was first described by Meezan et al. in 1969 with the demonstration that cancer glycans differ from healthy cells. (Meezan E, et al. (1969) Biochemistry 8:2518-2524.) Aberrant glycosylations include loss or over-expression of certain structures, the persistence of truncated structures and the emergence of novel structures. The structural differences were later supported by many histological evidences using lectin-staining compared with healthy and malignant tissue.(Tumer GA (1992) Clin Chim Acta 208:149-171; Gabius HJ (2000) Naturwissenschaften 87:108-121.) 100041 More recently, tumor associated carbohydrate antigens were identified by monoclonal antibodies and mass spectrometry.(Shriver Z, et al. (2004) Mat Rev Drug Disc 3:863-873; Pacino G, et al. (1991) Br J Cancer 63:390-398.) To date, numerous tumor WO 2010/005598 PCT/US2009/004519 associated antigens expressed on cancer cells in the form of glycolipids or glycoproteins have been characterized and correlated to certain types of cancers. (Bertozzi CR, Dube DH (2005) Nat Rev Drug Discovery 4:477-488.) Although relatively little is known about the role of surface carbohydrates play in malignant cells, passively administered or vaccine induced antibodies against these antigens have correlated with improved prognosis. [00051 Of the tumor associated glycans reported, the glycolipid antigen Globo H (Fuca -+2 Galpl-+3 GalNAcpl-+3 Galal-+4 Galpl-4 Glc) was first isolated and identified in 1984 by Hakomori et al. from breast cancer MCF-7 cells. (Bremer EG, et al. (1984) JBiol Chem 259:14773-14777.) Further studies with anti-Globo H monoclonal antibodies showed that Globo H was present on many other cancers, including prostate, gastric, pancreatic, lung, ovarian and colon cancers and only minimal expression on luminal surface of normal secretory tissue which is not readily accessible to immune system. (Ragupathi G, et al. (1997) Angew Chem Int Ed 36:125-128.) In addition, it has been established that the serum of breast cancer patient contains high level of anti-Globo H antibody. (Gilewski T el al. (2001) Proc Natl Acad Sci USA 98:3270-3275; Huang C-Y, et aL. (2006) Proc Natl Acad Sci USA 103:15-20; Wang C-C, et al. (2008) Proc Nall Acad Sci USA 105(33):11661-11666) and patients with Globo H-positive tumors showed a shorter survival in comparison to patients with Globo H-negative tumors. (Chang, Y-J, et al. (2007) Proc Natl Acad Sci USA 104(25):10299-10304.) These findings render Globo H, a hexasaccharide epitope, an attractive tumor marker and a feasible target for cancer vaccine development. 10006] Globo H is a cancer antigen overly expressed in various epithelial cancers. It has been suggested that this antigen can serve as a target in cancer immunotherapy. While vaccines have been developed to elicit antibody responses against Globo H, their anti-cancer efficacies are unsatisfactory due to low antigenicity of Globo H. There is a need for a new vaccine capable of eliciting high levels of immune responses targeting Globo H. [00071 Stem cells are defined as a group of cells with the capacity for self-renewal and for differentiation into different types of cells and tissues. (Reya T et al., (2001) Nature 414:105 111.) As both malignant tumors and normal tissues contain heterogeneous populations of cells, cancer stem cells might play a key role in tumor growth and maintaining tumor heterogeneity. Cancer stem cells have been identified from a variety of solid tumors, such as brain, breast, colon, and prostate cancers. Breast cancer stem cells (BCSCs) were first shown 2 WO 2010/005598 PCT/US2009/004519 to reside in the CD24^CD44' subpopulation of breast cancer by Al-Hajj et al., based on their ability to generate tumors with phenotypic diversity on xenotransplantation into NOD/SCID mice (Al-Hajj M, et al., (2003) Proc Nall Acad Sci USA 100:3983-3988). The majority of early disseminated cancer cells in the bone marrow of breast cancer patients displayed the phenotype of CD24'CD44+ (Balic M et al., (2006) Clin Cancer Res 12:5615-5621), suggesting that BCSCs were capable of metastasis. Based on their capability for growth, differentiation, and metastasis and their resistance to radiation, BCSCs are a major target for therapy of breast cancer (Tang C. et al., (2007) FASEB J 21:1-9). [00081 In breast cancer, Globo H expression was observed in >60% of ductal, lobular, and tubular carcinoma, but not in nonepithelial breast tumors (Mariani-Constantini R et al., (1984) Am. J. Pathol, 115:47-56). Globo H is not expressed in normal tissue except for weak expression in the apical epithelial cells at lumen borders, a site that appears to be inaccessible to the immune system (Id.; Zhang S. et al., (1997) Int. J. Cancer 73:42-49). [00091 Globo H also is expressed in breast cancer stem cells (BCSCs). Flow cytometry revealed Globo H is expressed in 25/41 breast cancer specimens (61.0%). Non-BCSCs from 25/25 and BCSCs from 8/40 (20%) express Globo H. The stage-specific embryonic antigen 3 (SSEA-3), the pentasaccharide precursor of Globo H, is expressed in 31/40 (77.5%) tumors. Non-BCSCs from 29/31 and BCSCs from 25/40 (62.5%) expressed SSEA-3. (Chang W-W. et al., (2008) Proc Natl AcadSci USA 105(33):11667-11672.) 100101 Danishefsky and Livingston previously reported the preparation of Globo H-KLH vaccine (Gilewski T el al. (2001) Proc Natl Acad Sci USA 98:3270-3275; Ragupathi G, et al. (1997) Angew Chem Int Ed 36:125-128; Kudryashov V, et al. (1998) GlycoconjJ. 15:243 249; Slovin SF et al (1997) Proc Natl Acad Sci USA 96:5710-5715) and the heptavalent vaccine (containing GM2, Globo H, Lewis Y, Tn, STn, TF, and Tn-MUC I individually conjugated to KLH; Sabbatini PJ et al (2007) Clin Cancer Res 13:4170-4177) against a variety of cancers. However, patients immunized with the heptavalent vaccine induced antibody responses against only five of the seven antigens except GM2 and Lewis Y antibodies. Rather than ubiquitously expressed antigen such as GM2, Globo H exceptionally expressed on tumor cells with only minimal level on normal secretory tissue makes it a desirable target for vaccine development. In their studies, ozonolysis of Globo H aglycone was followed by reductive anination with KLH carrier protein to generate about 150 3 927 0390AUPR carbohydrate units per protein.( Ragupathi G, et a. (1997) Angew Chem In; Ed 36:125-128.) Further refinement increased the carbohydrate conjugation ratio to about 720:1 by using MMCCH linker. (Wang S-K, et al, (2008). Proc NadAcad Sci USA 105:3690-3695,) However, it was difficult to precisely characterize the glycoconjugate. In addition, the synthetic vaccine in combination with the immunological adjuvant QS-21 was shown to induce mainly IgM and to a lesser extent lgC antibodies in both prostate and nietastatic breast cancer patients, In the phase I clinical trial, the vaccine also showed minimal toxicity with transient local skin reactions at the vaccination site. (Cilewski T elal. (2001) Proc Nat/ Acad Sei USA 98:3270-3275: Ragupathi 3, et at (1997) Angcw Chem ha Ed 36:125-128; Slovin SF et al (1997) Proc Nar Acad Sci USA 96:5710-5715.) Mild flu-like symptoms which have been observed in some of the patients were probably associated with the side effect of QS-2 I. A pentavalent vaccine containing five prostate and breast cancer associated carbohydrate antigens -- Globo-H, GM2, STn, TF and Tn -- conjugated to naleimide-modified carrier protein KL-H has been reported to produce anti-obo H sera with higher tigers of Igo than IgM in ELISA assays, (Zhu J. et al. (2009) J. Am Chem Soc. 13 1(26):9298-9303). fN1011) Therefore, it is desirable to identify an alternative carrier and adjuvant to augment the antibody response to Globo H. especially with high titer of IgG, and to improve the vaccine efficacy with minimal side effects, [0011A] It is an object of the invention to provide an immunogenic composition, and/or the use of an immunogenic composition, and/or a method of treatment, and/or a vaccine which overcomes or ameliorates at least one disadvantage of known compositions, uses, methods and/or vaccines or to at least provide the public with a useful choice. SUMMARY OF THE INVENTION [0012] This invention relates to a carbohydrate based vaccine containing Globo H (B cell epitope) chemically conjugated to the immunogenic carrier diphtheria toxin cross-reacting material 197 (DT-CRM197) )Th epitope) via a p-nitrophenyl linker. The synthetic vaccine in combination with a glycolipid adjuvant induce IgG, IgGI and IgM antibodies and provided an exceptional immunogenicity in breast cancer models, showing delayed tumorigenesis in xenograft studies. Glycan array analysis of the antibodies induced Globo H-DT and the glycolipid C34 showed that the antibodies not only recognized Globo H but also SSEA-3 (Gb5) and SSEA-4 (sialyl Gb5) glycans, all specific for cancer cells and cancer stem cells. 4 927 039OAUPR [0013] The invention relates to an immunogenic composition comprising: (a) a glycan consisting essentially of Globo H or an immunogenic fragment thereof, wherein the glycan is conjugated with a carrier protein through a linker; and (b) an adjuvant comprising a glycolipid 4A WO 2010/005598 PCT/US2009/004519 capable of binding a CDld molecule on a dendritic cell, wherein the immunogenic composition induces an immune response that induces a higher relative level of IgG isotype antibodies as compared to IgM isotype antibodies. 100141 In some aspects, the carrier protein is diphtheria toxin cross-reacting material 197 (DT-CRM 197). In some aspects, the linker is a p-nitrophenyl linker. [00151 In some aspects, the adjuvant is a synthetic analog of a-galactosyl-ceramide (a GalCer). In some embodiments the adjuvant is C34, wherein C34 comprises the structure: HO OH 0 C34 HO "- F
C
12
H
25 0 OH [0016] In some aspects, the immune response is preferably oriented towards the production of IgG isotype antibodies. In some aspects, the immunogenic composition comprises at least one adjuvant able to induce a humoral and cellular immune response. [00171 In some aspects, the antibodies generated by the immune response neutralize antigens expressed on cancer cells or cancer stem cells. In some embodiments, the antibodies generated by the immune response neutralize at least one of the antigens Gb4, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4). In some embodiments, the antibodies that neutralize at least one of the antigens Gb4, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4) comprise a higher relative level of IgG isotype antibodies as compared to IgM isotype antibodies. [00181 The invention relates to a cancer vaccine comprising the immunogenic composition which is able to induce anti-cancer immune responses in a subject. In some aspects, the cancer vaccine is suitable for treating a cancer selected from the group consisting of: breast cancer, lung cancer, liver cancer, buccal cancer, stomach cancer, colon cancer, nasopharyngeal cancer, dermal cancer, renal cancer, brain tumor, prostate cancer, ovarian cancer, cervical cancer, intestinal cancer, and bladder cancer. [00191 In some aspects, the cancer tissue expresses a Globo H antigen on the surface of the cell. In some aspects, the Globo H antigen is expressed on an epithelial cell of a breast tumor. 5 WO 2010/005598 PCT/US2009/004519 100201 In some embodiments, the cancer vaccine generates antibodies that neutralize at least one of the antigens Globo H, Gb4, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4). In some aspects, the antigens are expressed on a breast cancer stem cell. 100211 The invention relates to a method of treatment comprising inhibition of tumor growth, the method comprising: (a) administering to a subject in need thereof, an immunogenic composition comprising: a glycan consisting essentially of Globo H or an immunogenic fragment thereof, wherein the glycan is conjugated with a carrier protein through a linker, and an adjuvant comprising a glycolipid capable of binding a CDId molecule on a dendritic cell; and (b) inducing an immune response that induces a higher relative amount of IgG isotype antibodies as compared to IgM isotype antibodies. 100221 In some embodiments of the method, the linker is p-nitrophenol, the carrier protein is diphtheria toxin cross-reacting material 197 (DT-CRM197) and the adjuvant is a synthetic analog of a-galactosyl-ceramide (a-GalCer). In one embodiment, the adjuvant is C34. [00231 In some embodiments of the method, the immunogenic composition further comprises a cancer vaccine, and further wherein one or more treatments with an effective amount of the cancer vaccine inhibits tumor growth. In some embodiments, administration of the cancer vaccine reduces the size of a tumor. 100241 In some embodiments of the method, wherein the immune response is preferably oriented towards the production of IgG isotype antibodies that neutralize at least one of the antigens Globo H, Gb4, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4). In some aspects, at least one of the antigens Globo H, stage specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4) is expressed on a breast cancer stem cell. In some aspects, the Globo H antigen is expressed on an epithelial cell of a breast tumor. [00251 The invention relates to a cancer vaccine comprising: (a) an immunogenic composition comprising: a glycan consisting essentially of Globo H or an immunogenic fragment thereof, wherein the glycan is conjugated with a carrier protein through a linker, and an adjuvant comprising a glycolipid capable of binding a CDId molecule on a dendritic cell, wherein the immunogenic composition induces an immune response that induces a higher 6 WO 2010/005598 PCT/US2009/004519 relative level of IgG isotype antibodies as compared to IgM isotype antibodies; and (b) a pharmaceutically acceptable excipient. [00261 In some aspects, the cancer vaccine comprises an immunogenic composition the linker is p-nitrophenol, the carrier protein is diphtheria toxin cross-reacting material 197 (DT CRM 197) and the adjuvant is a synthetic analog of a-galactosyl-ceramide (a-GalCer). In one embodiment, the adjuvant is C34. [00271 In some aspects, the cancer vaccine is used to treat a cancer, wherein one or more treatments with an effective amount of the cancer vaccine inhibits tumor growth. In some embodiments, administration of the cancer vaccine reduces the size of a tumor. In some embodiments, the cancer is selected from the group consisting of: breast cancer, lung cancer, liver cancer, buccal cancer, stomach cancer, colon cancer, nasopharyngeal cancer, dermal cancer, renal cancer, brain tumor, prostate cancer, ovarian cancer, cervical cancer, intestinal cancer, and bladder cancer. 100281 The invention relates to an immunogenic composition comprising: (a) a glycan consisting essentially of a Globo H-related glycan or an immunogenic fragment thereof, wherein the glycan is conjugated with a carrier protein through a linker; and (b) an adjuvant comprising a glycolipid capable of binding a CDI d molecule on a dendritic cell, wherein the Globo H-related glycan is selected from the group consisting of SSEA-3 and SSEA-4, and wherein the immunogenic composition induces an immune response that induces a higher relative level of IgG isotype antibodies as compared to IgM isotype antibodies. [00291 In some aspects of the immunogenic composition the carrier protein is diphtheria toxin cross-reacting material 197 (DT-CRM197), the adjuvant is a synthetic analog of a galactosyl-ceramide (a-GalCer) and the linker is a p-nitrophenyl linker. In one embodiment, the adjuvant is C34 [00301 The invention relates to a therapeutic against breast cancer stem cells, the therapeutic comprising: Globo H conjugated through a p-nitrophenyl linker with a diphtheria toxin cross-reacting material 197 (DT-CRM 197) carrier protein; and an adjuvant comprising a glycolipid capable of binding a CD Id molecule on a dendritic cell. In some embodiments of the therapeutic, the adjuvant is C34. 7 927 0390AUPR {00M The invention relates to a therapeutic against breast cancer stem cells, the therapeutic comprising: SSEA-3 conjugated through a p-nitrophenyl linker with a diphtheria toxin cross-reacting material 197 (DT-CRM197) carrier protein; and an adjuvant comprising a glycolipid C34 capable of binding a CDId molecule on a dendritic cell jOQ32j The invention relates to a therapeutic against breast cancer stem cells, the therapeutic comprising: SSEA~4 conjugated through a p-nitrophenyl linker with a diphtheria toxin cross-reacig material 197 (DT-CRMI97) carrier protein in some embodiments, the therapeutic further comprises an adjuvant composing a glycolipid capable of binding a CMd molecule on a dendritic cell [00331 Administration of the therapeutics of the invention to a subject induces production of antibodies that recognize an andgen expressed on a breast cancer stem cell (BCSC) wlherein the antigen is selected from the group consisting of Globo H. SSEA-3 and SSEA-4. The invention relates to a method of treating breast cancer comprising administration of a therapeutc of the invention. [0033A] In one particular embodiment of the invention there is provided an immunogenic composition comprising: (a) a glycan conjugate including 1) a carrier protein selected from the group consisting of diphtheria toxin cross-reacting material 197 (DT-CRM 197), diphtheria toxoid, tetanus toxoid and bovine serum albumin and, 2) a glycan selected from the group consisting of Globo H, an immunogenic fragment thereof, stage-specific embryonic antigen-3 (SSEA-3, Gb5), stage-specific embryonic antigen-4 (SSEA-4, Sialyl Gb5), Bb4, or Gb4, wherein the glycan is conjugated with the carrier protein through a linker; and (b) an a-galactosyl-ceramide (u-GalCer) adjuvant; wherein the composition induces an antibody that neutralizes at least one antigen selected from the group consisting of Globo H, Bb4, Gb4, SSEA-3 and SSEA-4. [0033B] In another particular embodiment of the invention there is provided the use of the immunogenic composition as described in paragraph [0033A] in the manufacture of a medicament for the treatment or inhibition of tumor growth, wherein administration of the medicament induces an antibody that neutralizes at least one of the antigens: Globo H, Bb4, Gb4, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4). 8 927 0390AUPR [0033C] In a further particular embodiment of the invention there is provided a method of treating or inhibiting tumor growth comprising administering an effective amount of an immunogenic composition as described in paragraph [0033A] to a subject in need thereof. [0033D] In a further particular embodiment of the invention there is provided a vaccine comprising: (a) an immunogenic composition as described in paragraph [0033A]; and, (b) a pharmaceutically acceptable excipient. BRIEF DESCRIPTION OF THE DRAWINGS [0034) The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present disclosure, the inventions of which can be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. The patent or application file contains at least one drawing executed in color Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. 100351 Figure 1 shows structures of Globo H and truncated derivatives. t00361 Figures A-C showbindig specificity of monoclnal antibodies VK9 and MbrI (to GJiobo H) and anti-SSEA-3, respectively. [00371 Figures 3AB-3 show serologic response of mice vaccinated with various Gobo H conjugates and a-GalCer Groups of three C57BU6 mice were vaccinated st. with I pIg of synthetic glycoconjugates with or without 2 pg glycolipd Mice Sera were diluted 1: 60 and 1:240 respectively for igM (Fig3A) and IgG (Fig, 38) antibody analysis, Cy3-anti-mouse 8A WO 2010/005598 PCT/US2009/004519 IgG or IgM secondary antibodies were used for fluorescence detection under 532 nim, PMT 500, Data represent as average fluorescence intensity of three mice ± the SEM. [00381 Figure 4 shows structures of a-GalCer and analogues [00391 Figure 5 shows IgM levels of mice vaccinated with Globo H conjugates and a GalCer derivatives. Mouse sera were collected and analyzed after 2 "d and 3P vaccinations, as shown. Cy3 secondary anti-mouse IgM was used for detection under 532 nm, PMT 400. The results represent average fluorescence intensity of three mice ± the SEM. [00401 Figure 6 shows fine specificity of mouse polyclonal antibody (anti-Globo H, anti Gb5, anti-SSEA-4 and anti-Gb4) after vaccination. Mice sera were obtained two weeks after the 3d vaccination of 1.6 pg GH-DT with or without 2 pg of adjuvant. (Female, Balb/c, i.m.) The IgG titers were analyzed by glycan microarray and defined as the highest dilution yielding the MFI greater than 1000 (10 folds over background), PMT 400. Each spot presents as individual mouse titer. [00411 Figure 7 shows IgM vs IgG antibody titers of Globo H-DT with different adjuvants. [0042] Figure 8 shows evaluation of the adjuvant activities with GH-KLH vaccines. Female Balb/c mice were vaccinated i.m. with 1.6 pg GH-KLH and 2 pg indicated adjuvants and bled every two weeks after vaccination. The sera were diluted and introduced to microarray analysis. 100431 Figure 9 shows antibody isotype profile after immunizations. Mice were vaccinated as described. Sera (1 : 60 dilutions) were introduced to microarray for antibody subclasses analysis (532 nm, PMT 300). Data presents as mean fluorescence of three mice ± the SEM. [00441 Figure 10 shows antibody titers of IgM vs IgG induced by SSEA-3-DT or SSEA-4 DT with different kind of glycolipid adjuvants. [00451 Figure 11 shows structures of 24 glycans on the cell surface. [00461 Figures 12A-12C show cross-reactivity studies of induced IgG by different vaccines. Figure 12 A: anti-Globo H IgG induced by Globo H-DT with Cl adjuvant; Figure 12 B: anti-Gb5 IgG induced by Gb5-DT with Cl adjuvant; Figure 12 C: anti-SSEA-4 IgG induced by SSEA-4-DT with CI adjuvant. 9 WO 2010/005598 PCT/US2009/004519 [0047] Figure 13 shows a mouse xenograft model. 2 x 10S 4T1 mouse metastatic mammary tumor cells were prepared in sterile PBS and injected subcutaneously to vaccinated Balb/c mice. Mouse tumor size was measured by Vernier caliper and defined as (length x width x width) / 2 (mm 3 ) [0048] Figure 14 shows a schematic for the synthesis of Globo H half ester and glycoconjugates. 100491 Figure 15 shows flow cytometric analysis of SSEA-4 expression in primary breast cancer stem cells. Expression of SSEA-4 on the surface of BCSCs and non-BCSCs was evaluated with four-color immunofluorescence staining and subsequent flow cytometric analysis. BCSCs were defined as CD45~/CD24~/CD44* cells, and non-BCSCs were defined as other populations of CD45- cells, as shown in left panel. Expression of antigens of interest on BCSCs and non-BCSCs is shown in the middle and right panel, respectively. The dotted line represents isotype control, and the numbers represent the percentage of positive cells. 100501 Figure 16 shows restricted expression of SSEA-4 in normal tissues. Immunohistochemical staining of normal tissue arrays was used to examine the expression of SSEA-4 in breast, small intestine, and rectum. Positive staining for SSEA-4 was restricted to the apical surface of epithelial cells. DETAILED DESCRIPTION OF THE INVENTION [00511 The present invention relates to the surprising finding that-DT-CRM197 is a promising carrier protein for Globo -1 and SSEA-4 not only because it has been widely used for human vaccination against diphtheria for decades, but also because of its highly immunogenic property. Most importantly, it has been approved by the FDA for various glycoconjugate vaccines. Diphtheria toxin cross-reacting material 197 (DT-CRM 197) is a nontoxic mutant (G52E) of DT that shares the immunological properties of the native molecule and its ability to bind to heparin-binding epidermal growth factor (HB-EGF), the specific cell-membrane receptor for DT that is often overexpressed in cancer. (Buzzi S. et al., Cancer Immunology, Immunotherapy (2004), 53(1l):1041-1048). 100521 Using C34 as adjuvant, both GH-DT and SSEA-4-DT showed the most effective immune response to induce more IgG than IgM antibodies against tumor antigens. The GH DT in combination with C34 induced antibodies which not only neutralize Globo H but also 10 WO 2010/005598 PCT/US2009/004519 SSEA-3 (Gb5) and SSEA-4, which all are specific for breast cancer cells and the cancer stem cells. [00531 Further, the disclosed glycan microarray offers a powerful platform for antibody specificity test and is useful for identification of patients for the vaccine trial and for the monitoring of their immune response after immunization. [00541 In the following description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments which may be practiced. These embodiments are described in detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the scope of the present invention. The following description of example embodiments is, therefore, not to be taken in a limited sense, and the scope of the present invention is defined by the appended claims. [0055] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications and patents specifically mentioned herein are incorporated by reference for all purposes including describing and disclosing the chemicals, cell lines, vectors, animals, instruments, statistical analysis and methodologies which are reported in the publications which might be used in connection with the invention. All references cited in this specification are to be taken as indicative of the level of skill in the art. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. 100561 Before the present materials and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, materials, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. 11 WO 2010/005598 PCT/US2009/004519 Definitions [00571 It must be noted that as used herein and in the appended claims, the singular forms a", "an", and "the" include plural reference unless the context clearly dictates otherwise. As well, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising", "including", and "having" can be used interchangeably. 100581 The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 1989); DNA Cloning, Volumes I and 11 (D. N. Glover ed., 1985); Culture Of Animal Cells (R. 1. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Antibodies: A Laboratory Manual, by Harlow and Lane s (Cold Spring Harbor Laboratory Press, 1988); and Handbook Of Experimental Immunology, Volumes [-IV (D. M. Weir and C. C. Blackwell, eds., 1986). [00591 As used herein, the term "lipid" refers to any fat-soluble (lipophilic) molecule that participates in cell signaling pathways. [00601 As used herein, the term "glycolipid" refers to a carbohydrate-attached lipid that serves as a marker for cellular recognition. [00611 As used herein, the term "alpha-galactosyl ceramide" and "cu-GalCer" refers to a glycolipid that stimulates natural killer T cells to produce both T helper (TH) I and TH2 cytokines. As used herein, the glycolipid derivative C34 has the following structure: 12 WO 2010/005598 PCT/US2009/004519 HO OH 0 C34 HO F HO HNH I I CHO
C
12
H
25 0 OH 100621 The a-GalCer analogs of the present disclosure include a-GalCer analogs of bacterial origin (Group 1: C2, C3 and Cl 4), a-GalCer analogs modified with sulfonation (Group II: C4, C5 and C9), phenyl-alkyl chain a-GalCer analogs (Group III: C6-C8, C10 C11, C15-C16, C18-C34, C8-5 and C8-6) and phytosphingosine truncated a-GalCer analogs (Group IV: C12, C13 and C17). The structures of C34 and other alpha-galactosyl ceramide analogs and their use as adjuvants are disclosed in detail in PCT patent Application No. PCT/US2008/060275 filed April 14, 2008. [0063] The synthetic a-GalCer analogs, including C34, are capable of forming complexes with a CDId molecule. Synthetic a-GalCer analogs are capable of being recognized by NKTs T-cell receptors. Synthetic a-GalCer analogs are capable of eliciting a THI-type, a TH2-type or a TH I-type and a TH2-type response. The a-GalCer analogs are capable of activating NKTs in vitro. a-GalCer analogs are capable of activating NKTs in vivo. [0064] As used herein, the term "glycan" refers to a polysaccharide, or oligosaccharide. Glycan is also used herein to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, glycopeptide, glycoproteome, peptidoglycan, lipopolysaccharide or a proteoglycan. Glycans usually consist solely of O-glycosidic linkages between monosaccharides. For example, cellulose is a glycan (or more specifically a glucan) composed of B-1,4-linked D-glucose, and chitin is a glycan composed of 3-1,4-l inked N acetyl-D-glucosamine. Glycans can be homo or heteropolymers of monosaccharide residues, and can be linear or branched. Glycans can be found attached to proteins as in glycoproteins and proteoglycans. They are generally found on the exterior surface of cells. 0- and N-linked glycans are very common in eukaryotes but may also be found, although less commonly, in prokaryotes. N-Linked glycans are found attached to the R-group nitrogen (N) of asparagine in the sequon. The sequon is a Asn-X-Ser or Asn-X-Thr sequence, where X is any amino acid except praline. 13 WO 2010/005598 PCT/US2009/004519 100651 As used herein, the term "glycoprotein" refers to a protein covalently modified with glycan(s). There are four types of glycoproteins: 1) N-linked glycoproteins, 2) O-linked glycoproteins (mucins), 3) glucosaminoglycans (GAGs, which are also called proteoglycans), 4) GPI-anchored. Most glycoproteins have structural micro-heterogeneity (multiple different glycan structures attached within the same glycosylation site), and structural macro heterogeneity (multiple sites and types of glycan attachment). 100661 As used herein, the term "antigen" is defined as any substance capable of eliciting an immune response. [00671 As used herein, the term "immunogen" refers to an antigen or a substance capable of inducing production of an antigen, such as a DNA vaccine. 100681 As used herein, the term "immunogenicity" refers to the ability of an immunogen, antigen, or vaccine to stimulate an immune response. [00691 As used herein, the term "immunotherapy" refers to an array of treatment strategies based upon the concept of modulating the immune system to achieve a prophylactic and/or therapeutic goal. 100701 As used herein, the term "CDld" refers to a member of the CDI (cluster of differentiation 1) family of glycoproteins expressed on the surface of various human antigen presenting cells. CDId presented lipid antigens activate natural killer T cells. CDId has a deep antigen-binding groove into which glycolipid antigens bind. CDI d molecules expressed on dendritic cells can bind and present glycolipids, including a-GalCer analogs such as C34. [00711 As used herein, the term "adaptive immune system" refers to highly specialized, systemic cells and processes that eliminate pathogenic challenges. The cells of the adaptive immune system are a type of leukocyte, called a lymphocyte. B cells and T cells are the major types of lymphocytes. [00721 As used herein, the term "T cells" and "Ts" refer to a group of white blood cells known as lymphocytes, that play a central role in cell-mediated immunity. T cells can be distinguished from other lymphocyte types, such as B cells and NKs by the presence of a special receptor on their cell surface called the T cell receptor (TCR). Several different subsets of T cells have been described, each with a distinct function. Helper T (TH) Cells are 14 WO 2010/005598 PCT/US2009/004519 the "middlemen" of the adaptive immune system. Once activated, they divide rapidly and secrete small proteins called cytokines that regulate or "help" the immune response. Depending on the cytokine signals received, these cells differentiate into TH 1, Tj2, TH 17, or one of other subsets, which secrete different cytokines. 100731 As used herein, the term "antigen-presenting cell" (APC) refers to a cell that displays foreign antigen complexed with major histocompatibility complex (MHC) on its surface. T-cells may recognize this complex using their TCR. APCs fall into two categories: professional or non-professional. Dendritic cells (DCs) fall under the professional category and are capable of presenting antigen to T cells, in the context of CDI. In an exemplary implementation, the DCs utilized in the methods of this disclosure may be of any of several DC subsets, which differentiate from, in one implementation, lymphoid or, in another implementation, myeloid bone marrow progenitors. 100741 As used herein, the term "naive cell" refers to an undifferentiated immune system cell, for example a CD4 T-cell, that has not yet specialized to recognize a specific pathogen. 100751 As used herein, the term "natural killer cells" and "NKs" refers to a class of lymphoid cells which are activated by interferons to contribute to innate host defense against viruses and other intracellular pathogens. [00761 As used herein, the term "natural killer T cells" (NKTs) refers to a subset of T cells that share characteristics/receptors with both conventional Ts and NKs. Many of these cells recognize the non-polymorphic CDI d molecule, an antigen presenting molecule that binds self- and foreign lipids and glycolipids. The TCR of the NKTs are able to recognize glycolipid antigens presented (chaperoned) by a CDId molecule. A major response of NKTs is rapid secretion of cytokines, including IL-4, IFN-y and IL- 10 after stimulation and thus influence diverse immune responses and pathogenic processes. The NKTs may be a homogenous population or a heterogeneous population. In one exemplary implementation, the population may be "non-invariant NKTs", which may comprise human and mouse bone marrow and human liver T cell populations that are, for example, CDId-reactive non invariant T cells which express diverse TCRs, and which can also produce a large amount of IL- 4 and IFN-y. The best known subset of CDld-dependent NKTs expresses an invariant TCR-alpha (TCR-a) chain. These are referred to as type I or invariant NKTs (iNKTs). These 15 WO 2010/005598 PCT/US2009/004519 cells are conserved between humans (Va24i NKTs) and mice (Val4i NKTs) and are implicated in many immunological processes. [00771 As used herein, the term "cytokine" refers to any of numerous small, secreted proteins that regulate the intensity and duration of the immune response by affecting immune cells differentiation process usually involving changes in gene expression by which a precursor cell becomes a distinct specialized cell type. Cytokines have been variously named as lymphokines, interleukins, and chemokines, based on their presumed function, cell of secretion, or target of action. For example, some common interleukins include, but are not limited to, IL-12, IL-18, IL-2, IFN- y, TNF, IL-4, IL-10, IL-13, IL-21 and TGF-B. 100781 As used herein, the term "chemokine" refers to any of various small chemotactic cytokines released at the site of infection that provide a means for mobilization and activation of lymphocytes. Chemokines attract leukocytes to infection sites. Chemokines have conserved cysteine residues that allow them to be assigned to four groups. The groups, with representative chemokines, are C-C chemokines (RANTES, MCP- 1, MIP- I a, and MIP- 11), C-X-C chemokines (IL-8), C chemokines (Lymphotactin), and CXXC chemokines (Fractalkine). [00791 As used herein, the term "TH2-type response" refers to a pattern of cytokine expression such that certain types of cytokines, interferons, chemokines are produced. Typical TH2 cytokines include, but are not limited to, IL-4, IL-5, IL-6 and IL-10. [00801 As used herein, the term "THl -type response" refers to a pattern of cytokine expression such that certain types of cytokines, interferons, chemokines are produced. Typical THI cytokines include, but are not limited to, IL-2, IFN-y, GMCSF and TNF-B. 100811 As used herein, the term "Tti biased" refers to am immunogenic response in which production of Til cytokines and/or chernokines is increased to a greater extent than production of TH2 cytokines and/or chemokines. 100821 As used herein, the term "epitope" is defined as the parts of an antigen molecule which contact the antigen binding site of an antibody or a T cell receptor. [00831 As used herein, the term "vaccine" refers to a preparation that contains an antigen, consisting of whole disease-causing organisms (killed or weakened) or components of such 16 WO 2010/005598 PCT/US2009/004519 organisms, such as proteins, peptides, or polysaccharides, that is used to confer immunity against the disease that the organisms cause. Vaccine preparations can be natural, synthetic or derived by recombinant DNA technology. 100841 As used herein, the term "immunologic adjuvant" refers to a substance used in conjunction with an immunogen which enhances or modifies the immune response to the immunogen. The a-GalCer analogs of the present disclosure are used as immunologic adjuvants to modify or augment the effects of a vaccine by stimulating the immune system of a patient who is administered the vaccine to respond to the vaccine more vigorously. In an exemplary implementation, the analog C34 is used as an adjuvant. [00851 As used herein, the term "alum adjuvant" refers to an aluminum salt with immune adjuvant activity. This agent adsorbs and precipitates protein antigens in solution; the resulting precipitate improves vaccine immunogenicity by facilitating the slow release of antigen from the vaccine depot formed at the site of inoculation. [00861 As used herein, the term "anti-tumor immunotherapy active agent" refers to antibody generated by a vaccine of the of the present disclosure that inhibits, reduces and/or eliminates tumors. 100871 As used herein, the term "antigen specific" refers to a property of a cell population such that supply of a particular antigen, or a fragment of the antigen, results in specific cell proliferation. [00881 As used herein, the term "Flow cytometry" or "FACS" means a technique for examining the physical and chemical properties of particles or cells suspended in a stream of fluid, through optical and electronic detection devices. 100891 Amino acid residues in peptides shall hereinafter be abbreviated as follows: Phenylalanine is Phe or F; Leucine is Leu or L; Isoleucine is Ile or I; Methionine is Met or M; Valine is Val or V; Serine is Ser or S; Proline is Pro or P; Threonine is Thr or T; Alanine is Ala or A; Tyrosine is Tyr or Y; Histidine is His or H; Glutamine is Gln or Q; Asparagine is Asn or N; Lysine is Lys or K; Aspartic Acid is Asp or D; Glutamic Acid is Glu or E; Cysteine is Cys or C; Tryptophan is Trp or W; Arginine is Arg or R; and Glycine is Gly or G. For further description of amino acids, please refer to Proteins: Structure and Molecular Properties by Creighton, T. E., W. H. Freeman & Co., New York 1983. 17 WO 2010/005598 PCT/US2009/004519 100901 The compositions disclosed herein can be included in a pharmaceutical or nutraceutical composition together with additional active agents, carriers, vehicles, excipients, or auxiliary agents identifiable by a person skilled in the art upon reading of the present disclosure. 100911 The pharmaceutical or nutraceutical compositions preferably comprise at least one pharmaceutically acceptable carrier. In such pharmaceutical compositions, the compositions disclosed herein form the "active compound," also referred to as the "active agent." As used herein the language "pharmaceutically acceptable carrier" includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions. A pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol, or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates, or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass or plastic. [00921 Subject as used herein refers to humans and non-human primates (e.g., guerilla, macaque, marmoset), livestock animals (e.g., sheep, cow, horse, donkey, and pig), companion animals (e.g., dog, cat), laboratory test animals (e.g., mouse, rabbit, rat, guinea pig, hamster), captive wild animals (e.g., fox, deer), and any other organisms who can benefit from the agents of the present disclosure. There is no limitation on the type of animal that could benefit from the presently described agents. A subject regardless of whether it is a human or non human organism may be referred to as a patient, individual, animal, host, or recipient. 18 WO 2010/005598 PCT/US2009/004519 100931 Pharmaceutical compositions suitable for an injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ.), or phosphate buffered saline (PBS). In all cases, the composition should be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin. 100941 Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation include vacuum drying and freeze-drying, which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. [00951 Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral 19 WO 2010/005598 PCT/US2009/004519 compositions can also be prepared using a fluid carrier for use as a mouthwash. Pharmaceutically compatible binding agents, or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. [00961 For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer. [0097] Systemic administration can also be transmucosal or transdermal. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration may be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery. [00981 According to implementations, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to cell-specific antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811, which is incorporated by reference herein. 20 WO 2010/005598 PCT/US2009/004519 [00991 It is advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. [01001 Toxicity and therapeutic efficacy of such compounds may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the
LD
50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /EDso. Compounds which exhibit ' high therapeutic indices are preferred. While compounds that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such compounds to the site of affected location to minimize potential damage to uninfected cells and, thereby, reduce side effects. [01011 The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the disclosure, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC 50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography. 101021 As defined herein, a therapeutically effective amount of the active compound (i.e., an effective dosage) may range from about 0.001 to 100 g/kg body weight, or other ranges that would be apparent and understood by artisans without undue experimentation. The skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health or age of the subject, and other diseases present. 21 WO 2010/005598 PCT/US2009/004519 10103] According to another aspect, one or more kits of parts can be envision ned by the person skilled in the art, the kits of parts to perform at least one of the methods herein disclosed, the kit of parts comprising two or more compositions, the compositions comprising alone or in combination an effective amount of the compositions disclosed herein according to the at least one of the above mentioned methods. 101041 The kits possibly include also compositions comprising active agents, identifiers of a biological event, or other compounds identifiable by a person skilled upon reading of the present disclosure. The kit can also comprise at least one composition comprising an effective amount of the compositions disclosed herein or a cell line. The compositions and the cell line of the kits of parts to be used to perform the at least one method herein disclosed according to procedure identifiable by a person skilled in the art. [01051 As used herein, the term "polypeptide" refers to any multimer or polymer of amino acid residues. A polypeptide may be composed of two or more polypeptide chains. A polypeptide includes a protein, a peptide, and an oligopeptide. A polypeptide can be linear or branched. A polypeptide can comprise modified amino acid residues, amino acid analogs or non-naturally occurring amino acid residues and can be interrupted by non-amino acid residues. Included within the definition are amino acid polymers that have been modified, whether naturally or by intervention, e.g., formation of a disulfide bond, glycosylation, lipidation, methylation, acetylation, phosphorylation, or by manipulation, such as conjugation with a labeling component. 101061 As used herein, the term "specifically binding," refers to the interaction between binding pairs (e.g., an antibody and an antigen). In various instances, specifically binding can be embodied by an affinity constant of about 10-6 moles/liter, about 1 0-7 moles/liter, or about 10- moles/liter, or less. Cancer Vaccines of the Invention 101071 One embodiment of this invention is a method of treating cancer by administering to a subject in need thereof an effective amount of an immune composition containing either Globo H or a fragment thereof (e.g., stage specific embryonic antigen-3 (SSEA-3, also known as Gb5), or SSEA-4) and an adjuvant. The types of target cancer include, but are not limited to, breast cancer (including stages 1-4), lung cancer (e.g., small cell lung cancer), liver cancer 22 WO 2010/005598 PCT/US2009/004519 (e.g., hepatocellular carcinoma), oral cancer, stomach cancer (including T-I T4), colon cancer, nasopharynx cancer, skin cancer, kidney cancer, brain tumor (e.g., astrocytoma, glioblastoma multiforme, and meningioma), prostate cancer, ovarian cancer, cervical cancer, bladder cancer, and endometrium, rhabdomyosarcoma, osteosarcoma, leiomyosarcoma, and gastrointestinal stromal tumor. [01081 Cancers classified by site include cancer of the oral cavity and pharynx (lip, tongue, salivary gland, floor of mouth, gum and other mouth, nasopharynx, tonsil, oropharynx, hypopharynx, other oral/pharynx); cancers of the digestive system (esophagus; stomach; small intestine; colon and rectum; anus, anal canal, and anorectum; liver; intrahepatic bile duct; gallbladder; other biliary; pancreas; retroperitoneum; peritoneum, omentum, and mesentery; other digestive); cancers of the respiratory system (nasal cavity, middle ear, and sinuses; larynx; lung and bronchus; pleura; trachea, mediastinum, and other respiratory); cancers of the mesothelioma; bones and joints; and soft tissue, including heart; skin cancers, including melanomas and other non-epithelial skin cancers; Kaposi's sarcoma and breast cancer; cancer of the female genital system (cervix uteri; corpus uteri; uterus, nos; ovary; vagina; vulva; and other female genital); cancers of the male genital system (prostate gland; testis; penis; and other male genital); cancers of the urinary system (urinary bladder; kidney and renal pelvis; ureter; and other urinary); cancers of the eye and orbit; cancers of the brain and nervous system (brain; and other nervous system); cancers of the endocrine system (thyroid gland and other endocrine, including thymus); lymphomas (Hodgkin's disease and non-Hodgkin's lymphoma), multiple myeloma, and leukemias (lymphocytic leukemia; myeloid leukemia; monocytic leukemia; and other leukemias). 101091 Other cancers, classified by histological type, that may be suitable targets for cancer vaccines according to the present invention include, but are not limited to, neoplasm, malignant; Carcinoma, NOS; Carcinoma, undifferentiated, NOS; Giant and spindle cell carcinoma; Small cell carcinoma, NOS; Papillary carcinoma, NOS; Squamous cell carcinoma, NOS; Lymphoepithelial carcinoma; Basal cell carcinoma, NOS; Pilomatrix carcinoma; Transitional cell carcinoma, NOS; Papillary transitional cell carcinoma; Adenocarcinoma, NOS; Gastrinoma, malignant; Cholangiocarcinoma; Hepatocellular carcinoma, NOS; Combined hepatocellular carcinoma and cholangiocarcinoma; Trabecular adenocarcinoma; Adenoid cystic carcinoma; Adenocarcinoma in adenomatous polyp; Adenocarcinoma, 23 WO 2010/005598 PCT/US2009/004519 familial polyposis coli; Solid carcinoma, NOS; Carcinoid tumor, malignant; Bronchiolo alveolar adenocarcinoma; Papillary adenocarcinoma, NOS; Chromophobe carcinoma; Acidophil carcinoma; Oxyphilic adenocarcinoma; Basophil carcinoma; Clear cell adenocarcinoma. NOS; Granular cell carcinoma; Follicular adenocarcinoma, NOS; Papillary and follicular adenocarcinoma; Nonencapsulating sclerosing carcinoma; Adrenal cortical carcinoma; Endometroid carcinoma; Skin appendage carcinoma; Apocrine adenocarcinoma; Sebaceous adenocarcinoma; Ceruminous adenocarcinoma; Mucoepidermoid carcinoma; Cystadenocarcinoma, NOS; Papillary cystadenocarcinoma, NOS; Papillary serous cystadenocarcinoma; Mucinous cystadenocarcinoma, NOS; Mucinous adenocarcinoma; Signet ring cell carcinoma; Infiltrating duct carcinoma; Medullary carcinoma, NOS; Lobular carcinoma; Inflammatory carcinoma; Paget's disease, mammary; Acinar cell carcinoma; Adenosquamous carcinoma; Adenocarcinoma w/ squamous metaplasia; Thymoma, malignant; Ovarian stromal tumor, malignant; Thecoma, malignant; Granulosa cell tumor, malignant; Androblastoma, malignant; Sertoli cell carcinoma; Leydig cell tumor, malignant; Lipid cell tumor, malignant; Paraganglioma, malignant; Extra-mammary paraganglioma, malignant; Pheochromocytoma; Glomangiosarcoma; Malignant melanoma, NOS; Amelanotic melanoma; Superficial spreading melanoma; Malig melanoma in giant pigmented nevus; Epithelioid cell melanoma; Blue nevus, malignant; Sarcoma, NOS; Fibrosarcoma, NOS; Fibrous histiocytoma, malignant; Myxosarcoma; Liposarcoma, NOS; Leiomyosarcoma, NOS; Rhabdomyosarcoma, NOS; Embryonal rhabdomyosarcoma; Alveolar rhabdomyosarcoma; Stromal sarcoma, NOS; Mixed tumor, malignant, NOS; Mullerian mixed tumor; Nephroblastoma; Hepatoblastoma; Carcinosarcoma, NOS; Mesenchymoma, malignant; Brenner tumor, malignant; Phyllodes tumor, malignant; Synovial sarcoma, NOS; Mesothelioma, malignant; Dysgerminoma; Embryonal carcinoma, NOS; Teratoma, malignant, NOS; Struma ovarii, malignant; Choriocarcinoma; Mesonephroma, malignant; Hemangiosarcoma; Hernangioendothelioma, malignant; Kaposi's sarcoma; Hemangiopericytoma, malignant; Lymphangiosarcoma; Osteosarcoma, NOS; Juxtacortical osteosarcoma; Chondrosarcoma, NOS; Chondroblastoma, malignant; Mesenchymal chondrosarcoma; Giant cell tumor of bone; Ewing's sarcoma; Odontogenic tumor, malignant; Ameloblastic odontosarcoma; Ameloblastoma, malignant; Ameloblastic fibrosarcoma; Pinealoma, malignant; Chordoma; Glioma, malignant; Ependymoma, NOS; Astrocytoma, 24 WO 2010/005598 PCT/US2009/004519 NOS; Protoplasmic astrocytoma; Fibrillary astrocytoma; Astroblastoma; Glioblastoma, NOS; Oligodendroglioma, NOS; Oligodendroblastoma; Primitive neuroectodermal; Cerebellar sarcoma, NOS; Ganglioneuroblastoma; Neuroblastoma, NOS; Retinoblastoma, NOS; Olfactory neurogenic tumor; Meningioma, malignant; Neurofibrosarcoma; Neurilemmoma, malignant; Granular cell tumor, malignant; Malignant lymphoma, NOS; Hodgkin's disease, NOS; Hodgkin's; paragranuloma, NOS; Malignant lymphoma, small lymphocytic; Malignant lymphoma, large cell, diffuse; Malignant lymphoma, follicular, NOS; Mycosis fungoides; Other specified non-Hodgkin's lymphomas; Malignant histiocytosis; Multiple myeloma; Mast cell sarcoma; Immunoproliferative small intestinal disease; Leukemia, NOS; Lymphoid leukemia, NOS; Plasma cell leukemia; Erythroleukemia; Lymphosarcoma cell leukemia; Myeloid leukemia, NOS; Basophilic leukemia; Eosinophilic leukemia; Monocytic leukemia, NOS; Mast cell leukemia; Megakaryoblastic leukemia; Myeloid sarcoma; and Hairy cell leukemia. [0110] The term "treating" as used herein refers to the application or administration of a composition including one or more active agents to a subject, who has cancer, a symptom of cancer, or a predisposition toward cancer, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the cancer, the symptoms of the cancer, or the predisposition toward the cancer. "An effective amount" as used herein refers to the amount of each active agent required to confer therapeutic effect on the subject, either alone or in combination with one or more other active agents. Effective amounts vary, as recognized by those skilled in the art, depending on route of administration, excipient usage, and co-usage with other active agents. 10111] The immune composition used in the above-described method can contain a glycan (i.e., a molecule containing a sugar moiety) that is Globo H or a fragment thereof and an adjuvant. Globo H is a glycan containing the hexasaccharide epitope (Fuca1 -+2 Gals1 -+3 GalNAcp1l-+3 Galal-+4 Galpl1-+4 Glc), and optionally, a non-sugar moiety. Its fragment is a glycan containing a fragment of the hexasaccharide epitope and, if applicable, the non-sugar moiety. These oligosaccharides can be prepared by routine methods. (See Huang et al., Proc. Na. Acad. Sci. USA 103:15-20 (2006)). If desired, they can be linked to a non-sugar moiety. [0 1121 The parent application U.S. Patent Application Serial No. 12/485,546, was based on unexpected discoveries that (1) SSEA-3, the immediate precursor of Globo H, is expressed at 25 WO 2010/005598 PCT/US2009/004519 a high level in breast cancer stem cells and therefore can serve as a suitable target for breast cancer treatment, and (2) a-galactosyl-ceramide (a-GalCer) is an effective adjuvant that promotes production of anti-Globo H and anti-SSEA-3 antibodies. [01131 U.S. Patent Application Serial No. 12/485,546 features an immune composition containing Globo H or its fragment (e.g., SSEA-3) and an adjuvant (e.g., a-GalCer). Globo H or its fragment can be conjugated with Keyhole Limpet Hemocyanin (KLH). When administered into a subject (e.g., a human), this immune composition elicits immune responses (e.g., antibody production) targeting Globo H or its fragment and, therefore, is effective in treating cancer (e.g., breast cancer, prostate cancer, ovarian cancer, and lung cancer). [0114] U.S. Patent Application Serial No. 12/485,546 relates to a method of producing antibody specific to Globo H or its fragment by administering to a non-human mammal (e.g., mouse, rabbit, goat, sheep, or horse) the immune composition described above and isolating from the mammalian antibody that binds to Globo H or its fragment. [01151 The Globo H or other glycans described in the instant disclosure is conjugated to a protein carrier, such as DT-CRMI197. They can then be mixed with an adjuvant, such as C34 and optionally a pharmaceutically acceptable carrier (e.g., a phosphate buffered saline, or a bicarbonate solution) to form an immune composition (e.g., a vaccine) via conventional methods. See, e.g., U.S. Patents. 4,601,903; 4,599,231; 4,599,230; and 4,596,792. The composition may be prepared as injectables, as liquid solutions, or emulsions and the carrier is selected on the basis of the mode and route of administration, as well as on the basis of standard pharmaceutical practice. Suitable pharmaceutical carriers and diluents, and pharmaceutical necessities for their use, are described in Remington's Pharmaceutical Sciences. The immune composition preferably contains a-GalCer as an adjuvant. Other examples of adjuvant include, but are not limited to, a cholera toxin, Escherichia coli heat labile enterotoxin (LT), liposome, immune-stimulating complex (ISCOM), or immunostimulatory sequences oligodeoxynucleotides (ISS-ODN). The composition can also nclude a polymer that facilitates in vivo delivery. See Audran R. et al. Vaccine 21:1250-5, 2003; and Denis-Mize et al. Cell Immunol., 225:12-20, 2003. When necessary, it can further contain minor amounts of auxiliary substances such as wetting or emulsifying agents, or pH buffering agents to enhance the ability of the composition to elicit immune responses against 26 WO 2010/005598 PCT/US2009/004519 the sugar moiety in Globo H or its fragment. The immune composition described herein can be administered parenterally (e.g., intravenous injection, subcutaneous injection or intramuscular injection). Alternatively, other modes of administration including suppositories and oral formulations may be desirable. For suppositories, binders and carriers may include, for example, polyalkalene glycols or triglycerides. Oral formulations may include normally employed incipients such as, for example, pharmaceutical grades of saccharine, cellulose, magnesium carbonate and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10 95% of the immune composition described herein. [01161 The immune composition described herein can be administered parenterally (e.g., intravenous injection, subcutaneous injection or intramuscular injection). Alternatively, other modes of administration including suppositories and oral formulations may be desirable. For suppositories, binders and carriers may include, for example, polyalkalene glycols or triglycerides. Oral formulations may include normally employed incipients such as, for example, pharmaceutical grades of saccharine, cellulose, magnesium carbonate and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10-95% of the immune composition described herein. [01171 The immune composition is administered in a manner compatible with the dosage formulation, and in an amount that is therapeutically effective, protective and immunogenic. The quantity to be administered depends on the subject to be treated, including, for example, the capacity of the individual's immune system to synthesize antibodies, and if needed, to produce a cell-mediated immune response. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner. However, suitable dosage ranges are readily determinable by one skilled in the art. Suitable regimes for initial administration and booster doses are also variable, but may include an initial administration followed by subsequent administrations. The dosage of the vaccine may also depend on the route of administration and varies according to the size of the host. [0118] The immune composition of this invention can also be used to generate antibodies in animals for production of antibodies, which can be used in both cancer treatment and diagnosis. Methods of making monoclonal and polyclonal antibodies and fragments thereof in 27 WO 2010/005598 PCT/US2009/004519 animals (e.g., mouse, rabbit, goat, sheep, or horse) are well known in the art. See, for example, Harlow and Lane, (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. The term "antibody" includes intact immunoglobulin molecules as well as fragments thereof, such as Fab, F(ab')2, Fv, scFv (single chain antibody), and dAb (domain antibody; Ward, et. al. (1989) Nature, 341, 544). Globo H-DT-CRMJ97 and related vaccines [01191 Globo H (1) and its fragments 2-10 were synthesized by methods described herein. For protein conjugation, purified Globo H half ester 12 was incubated with individual carrier proteins as shown in Figure 14. [0120] The Globo H-protein conjugates were characterized by MALDI-TOF analysis to determine the number of Globo H molecules on each carrier protein. The average number of Globo H incorporation is listed in Table 1. Table 1. MALDI-TOF analysis of Globo H incorporation. Ref Protein After Average Carbohydrate MW Gl ycosyliona Incorporation percentage S----------(n) GH-BSA 66431 66449 76029 8 14.4% GH-DT 58472 58326 62138 2~4 6.8% GH-TT 150682 155609 162902 6 4.5% GH-KLH* 8.6 x 106 -700 14.7% GH-Bamboo 25kDx1600 N.D. [01211 'Peak m/z in MALDI-TOF; N.D.: Not determined; *GH-KLH was provided by Optimer Inc. 10122] The GH-KLH conjugate showed the greatest number of Globo H incorporation, mostly due to the larger size and more Lys residues of KLH. The same coupling procedure using p-nitrophenyl linker was also applied to bamboo mosaic virus which contains more than 100,000 lysine residues on the coat of virus. However, the instability of the virus while reacting in sodium phosphate buffer (pH = 7.2) at 4 "C is a major concern for further development. Additionally, the GH-BaMV 16 limits its detection by MALDI-TOF analysis due to its tremendous size. [0123] The synthetic Globo H and truncated fragments (Fig 1) were attached with a pentylamine linker at the reducing ends and covalently immobilized onto the NHS-coated glass slide. Nine of the eleven oligosaccharides were selected to be printed on the microarray. 28 WO 2010/005598 PCT/US2009/004519 Each microarray slide was spotted with 50 pM of nine Globo H analogs (SSEA-4, GH, Gb5, Gb4, Gb3, Gb2, 1B4, 133, and B132) respectively in 12 replications. [01241 To validate the carbohydrates on the microarray, mouse monoclonal antibodies (VK9 and Mbrl for Globo H, and anti-SSEA-3) were used and respective secondary antibodies (goat anti-mouse IgG and IgM) were used to examine the binding specificity, and the results are shown in Fig 2A-2C. The data suggested that VK9 and Mbrl both recognized Globo H and the outer tetrasaccharide BB4. though MBrI also slightly recognized 133. In addition, anti-SSEA-3 antibody specifically recognized SSEA-3 antigen (Gb5) without any cross reactivity. The results indicated that the Globo H microarray could be employed to profile the specificity and potency of polyclonal antibodies from immunized mice. [01251 As previously reported, immunization of mice with a fully synthetic Globo H vaccine and co-administered with QS-21 resulted in the generation of antibodies against human breast cancer cells; however the mouse antibodies are mainly IgM, even after several boosting vaccinations. (Ragupathi G, et aL (1997) Angew Chem Int Ed 36:125-128). 101261 A group of mice were immunized with 1 pg synthetic Globo H-conjugates with or without the glycolipid adjuvant, a-GalCer (Cl) subcutaneously. It was found that GH-KLH, GH-DT and GH-BV are the most effective immunogens for IgM induction, followed by GH TT, and GH-BSA as summarized in Fig. 3A, and a-GalCer is capable of stimulating the immune response to induce high levels of IgM antibodies. A similar trend was also observed in mouse IgG antibodies (Fig. 313), and the relative IgG levels were higher than IgM levels. In brief, despite the lower carbohydrate density of the synthetic glycoconjugate, GH-DT exhibited a similar immunogenicity to GH-KLH, and the adjuvant a-GalCer was shown to enhance the immune response. 101271 Since a-GalCer has been shown to be an effective adjuvant for GH-DT, other glycolipids with better adjuvant activity than Cl were examined as shown in Figure 4. Groups of mice were immunized with GH-DT and GH-BV with or without glycolipids. Sera were obtained and introduced to glycan microarray analysis. In general, mouse anti-Globo H IgG titers increased as immunization proceeded but the IgM levels were almost independent of vaccination times (Fig. 5). Among the GH-BV vaccinated groups, there is no significant difference in the IgM level between glycolipid-vaccine treatment and the vaccine alone. 29 WO 2010/005598 PCT/US2009/004519 Although the results suggested that GH-BV in combination with glycolipid was not an effective immunization regimen, the poor immunogenicity may result from the unstable feature of BaMV. Nevertheless, the a-GalCer analogs, especially 7DW8-5 cooperated well with GH-DT to induce mouse immune response. 101281 Interestingly, the mouse polyclonal IgG antibodies generated by GH-DT and various glycolipid adjuvants not only neutralize Globo H but also cross-react with Gb5, SSEA-4 and Gb4 and C34 appears to be the most effective glycolipid adjuvant (Fig. 6). In order to search for a new composition of vaccine that can induce much higher titer of IgG than IgM, Globo H-DT conjugate and glycolipid CI or C34 or commercially available adjuvant AIPO 4 (aluminium phosphate) or MF59 were tested. 101291 Surprisingly, Globo H-DT with glycolipid C34 induces IgG antibody almost exclusively after the 3 1 vaccination (Fig. 7). To summarize, the novel glycolipid adjuvant 7DW8-5 combined with GH-DT conjugates was able to enhance both anti-Globo H IgG and IgM antibodies, and glycolipid adjuvant C34 combined with GH-DT can induce antibody titer of IgG much higher than IgM. They also exhibited diverse binding affinity to SSEA-3 (Gb5) and SSEA-4 antigens, both specifically expressed on the surface of breast cancer stem cells. [01301 In order to further compare the effect of different glycolipid adjuvants on Globo H vaccine, we immunized seven groups of mice with GH-KLH. The results suggested that mice vaccinated with glycolipids induced higher levels of anti-Globo H antibodies (Fig. 8). Although MF59 is a strong adjuvant it failed to collaborate with GH-KLH to induce antibodies against Globo H. APO 4 (aluminium phosphate) also showed no obvious impact on the induction of antibodies. On the other hand, GH-KLH along with C34 showed superior immunogenicity after the first and second vaccinations but exhibited no significant difference to Cl after the third vaccination. Overall, these findings suggest the potential of novel glycolipid derivatives as adjuvants for carbohydrate based vaccines. [01311 The nature of cellular and humoral immune response is influenced not only by antigen and adjuvant combinations but also by the carrier and route of immunization. As Sesardic and co-workers described, DT-CRM197, a mutant toxin devoid of toxic activity induces antigen specific T cell proliferation and elevates splenocyte production of IL-2, IFN-y and IL-6, suggesting its role in ThI driven pathway.(Miyaji EN et al. (2001) Infect Immun 69:869-874; 30 WO 2010/005598 PCT/US2009/004519 Godefroy S, et al. (2005) Infect Immun 73:4803-4809; Stickings P, et aL (2008) Infect Immun 76:1766-1773.) Despite the fact that the cytokine profile was predominantly ThI, subclasses of anti-CRM 197 antibodies were IgG I with no detectable IgG2a, which suggests a mixed Thl/Th2 response. These results prompted the evaluation of the antibody isotype profile of the Globo H vaccines, and present studies showed that GH-DT or GH-KLH in combination with glycolipid adjuvants induced mainly IgG I antibody with a trace amount of IgG2a (Fig. 9). [01321 Despite the fact that glycolipid adjuvants enhanced Thi biased cytokines secretion when administrated alone intravenously (i.v.), the antibody class switch (IgG2a) was not observed. Overall, the glycolipids play a pivotal role in enhancing both cellular and humoral immune response. Globo H, SSEA-3 and SSEA-4 Cancer Vaccines [0133] SSEA-3 (Gb5) and SSEA-4 conjugated with DT were synthesized and tested. After 3 vaccination, antibodies titer of IgM and IgG were compared and it was found that SSEA-3 DT and SSEA-4-DT also induced much higher titer of IgG than IgM (Fig. 10). [01341 Since GH-DT and C34 induced antibodies to recognize Globo H, Gb5 and SSEA-4, the specificity of SSEA-3-DT and SSEA-4-DT vaccines in the presence of adjuvants using an array of 24 glycans were examined with focus on the study of IgG (Fig. 11). [0135] As shown in Fig. 12, mice immunized with Globo H-DT and C34 adjuvant induced antibodies that can recognize Globo H, SSEA-3 (Gb5) and SSEA-4 with high selectivity, and vaccine SSEA-3-DT with adjuvant MF59 induced high immune response with low selectivity. On the other hand, SSEA-3-DT combined with adjuvant C34 only induced antibodies against Globo H, SSEA-3, and SSEA-4. [01361 Interestingly, SSEA-4-DT (sialyl-Gb5) in the presence or absence of adjuvants induced IgG and IgM antibodies specifically recognizing SSEA-4 and its truncated structures (SSEA-4 with head lactose deletion). Without being bound by theory, it is postulated that sialic acid is highly immunogenic and induces highly specific immune response. 101371 Immunization of mice with SSEA-3-DT-C34 induced antibodies reactive with Globo H, SSEA-3 and SSEA-4, suggesting that a Globo H-based vaccine can target tumor cells and breast cancer stem cells expressing Globo H, SSEA-3 and SSEA-4. 31 WO 2010/005598 PCT/US2009/004519 101381 Immunization of mice with Globo H-DT-C34 induced antibodies reactive with Globo H, SSEA-3 and SSEA-4, suggesting that a Globo H-based vaccine can target tumor cells and breast cancer stem cells expressing Globo H, SSEA-3 and SSEA-4. [01391 Immunization of mice with SSEA-4-DT induced antibodies reactive with SSEA-4, suggesting that a SSEA-4-DT -based vaccine can target tumor cells and breast cancer stem cells expressing SSEA-4. Tumor Size Reduction by Cancer Vaccines 101401 In order to directly assess the efficacy of the synthetic glycoconjugate vaccines, the tumor sizes were measured three times per week as shown in Fig. 13. In general, tumor grows 2 weeks after injection with 4T1, a Globo H bearing breast cancer cell line. All the vaccinated groups along with glycolipid adjuvants still showed comparative smaller tumor progression compared to GH-DT alone and PBS control at day 24. The data suggest that vaccination with GH-DT and a glycolipid adjuvant delayed some degree of the tumor progression in vivo. Expression of SSEA-3 and SSEA-4 in breast cancer and BCSCs [01411 The expression of Globo H in BCSCs, but at a lower frequency than non-BCSCs, and a higher frequency of SSEA-3 expression than Globo H expression in breast cancer and BCSCs has been shown. (Chang W-W. et al., (2008) Proc NAatl Acad Sci USA 105(33):11667 11672, incorporated herein by reference in its entirety.) 101421 The clinical characteristics of 35 patients with breast cancer in whom range of SSEA-3 or SSEA-4 expression was measured, are summarized in Table 2. The median age was 48 years (ranging from 31 to 82 years). They consisted of I stage 0, 10 stage 1, 19 stage II, and 5 stage III. A majority of the tumor specimens had the pathology of infiltrating ductal carcinoma (80.0%), with 51.4% positive for ER and 65.7% positive for node involvement. In Table 2, the ranges of SSEA-3 or SSEA-4 expression is represented by the percentage of positive cells within total cancer cells. A t test was used for statistical analysis of SSEA-3 or SSEA-4 expression relative to HER-2 or nodal involvement status. HER-2 expression was determined by immunohistochemistry. There was no significant correlation between expression level of SSEA-3 or SSEA-4 on tumors and various clinico-pathological factors, such as stage (SSEA-4: P = 0.3498; SSEA-3:, P=0.931 1), or HER-2 (SSEA-4: P = 0.0142; SSEA-3:, P=0.0128) (Table 2). 32 WO 2010/005598 PCT/US2009/004519 Table 2. Clinical characteristics of patients with breast cancer. Characteristic No. % SSEA4 SSEA3 Percent cells P value Percent cells with P value with expression expression Median (range) Median (range) Patients enrolled 35 100 Age, years Median 48 Range 31 82 Tumor type Infiltrating ductal carcinoma 28 80.0 Infiltrating lobular 1 2.8 carcinoma Ductal carcinoma in situ 1 2.8 Medullary carcinoma 1 2.8 Atypical medullary 1 2.8 carcinoma Metaplastic carcinoma 2 6.0 Inflammatory carcinoma 1 2.8 Stage 0.7880 0.9311 0 1 2.9 33.1(33.1) 1.4(1.4) 1 10 28.6 41.4 (0.5-69.1) 36.4 (0.0-55.9) II 19 54.3 39.3 (0.0-77.1) 30.9 (0.0-66.4) III 5 14.2 49.8 (7.7-70.7) 32.3 (0.0-36.1) Node involvement 0.0322 0.4925 Negative 23 65.7 37.8 (0.0-69.1) 30.9 (0.0-66.4) Positive 12 34.3 49.1 (17.4-77.1) 35.8 (0.0-60.7) ER 0.0142 0.0128 Negative 18 51.4 36.2 (0.5-60.3) 29.7 (0.0-38.6) Positive 17 48.6 48.5 (0.0-77.1) 40.0 (0.0-66.4) [01431 Primary tumor cells isolated from enrolled patients by enzymatic digestion were stained with specific antibodies to CD45, CD24, CD44, and CD45* cells were first gated out to eliminate the leukocytes. To compare the SSEA-3 or SSEA-4 expression between BCSCs and non-BCSCs, CD45- tumor cells were further separated into BCSCs and non-BCSCs based on their expressions of surface markers. The BCSCs were identified as CD45^/CD24--/CD44* cells; the rest of the CD45~ population were considered as non-BCSCs. 33 WO 2010/005598 PCT/US2009/004519 [01441 Using this approach, the expression of SSEA-3 or SSEA-4 in BCSCs and non-BCSCs were evaluated in 35 tumor specimens. Overall, SSEA-4 was detected in 34/35 (97.1%) and SSEA-3 in 27/35 (77.1%) of the tumors (Table 3). SSEA4 or SSEA3 expression was determined by flow cytometry. BCSCs were defined as CD45~CD24-CD44 cells and non BCSCs were defined as the remaining populations of CD45' cells. Range was calculated as percentage of positive cells in total cells. 101451 As summarized in Table 3, among the 27/35 (77.1%) samples expressing SSEA-3, the percentage of positive cells ranged from 1.4% to 66.4%. The non-BCSCs isolated from 25/35 tumors expressed SSEA-3, with the percentage of positive cells ranging from 24.3% to 70.4%. In comparison, BCSCs from 23 of 35 (65.7%) tumors showed positive staining for SSEA-3, with the percentage of positive cells ranging from 5.0% to 58.4%. 101461 Among the 34/35 (97.1%) samples expressing SSEA-4, the percentage of positive cells ranged from 0.5% to 77.1%. The non-BCSCs isolated from 32/35 tumors expressed SSEA-4, with the percentage of positive cells ranging from 24.0% to 78.1%. In comparison, BCSCs from 31 of 35 (88.6%) tumors showed positive staining for SSEA-4, with the percentage of positive cells ranging from 5.6% to 83.6%. Table 3. Comarison of SSEA4 and SSEA3 expression in BCSCs and non-BCSCs Glycan No. of patients Positive --- Population No. percent Cells with % of ... _ ex ression median (Range) Total SSEA-4 Total -- ---- _- 35 34 | 41.4 (0.5-77.1) 97.1 Non-BCSCs 35 32 43.7 (4.0-78.1) 91.4 BCSCs ..... 35 31 37.1 (5.6-83.6) - _---- 88.6 SSE A1-3 Total 35 27 36.4 (1.4-66.4) 77.1 Non-BCSCs 35 25 40.5 (24.3-70.4) 71.4 BCSCs 35 23 24.3 (5.0-58.4) 65.7 Expression of SSEA-4 in BCSCs [01471 To compare the SSEA-4 expression between BCSCs and non-BCSCs, CD45 tumor cells were further separated into BCSCs and non-BCSCs based on their expressions of surface markers. The BCSCs were identified as CD45-/CD24-/CD44* cells; the rest of the CD45 population were considered as non-BCSCs. The expression of SSEA-4 within each of these 34 WO 2010/005598 PCT/US2009/004519 two gated populations varied among tumor samples a shown in Figure 15. For instance, BCSCs of patient BC0264, which accounted for 5.7% of the total isolated tumor cells, were negative for SSEA-4, whereas 60.3% of the non-BCSCs expressed SSEA-4. For patient BC0266, SSEA-4 expression was detected in 59.4% of non-BCSCs and 55.7% of BCSCs. For patient BC0313, SSEA-4 expression was detected in 32.4% of non-BCSCs and 83.6% of BCSCs. Altogether, SSEA-4 was detected in 34/35 (97.1%) samples tested with the percentage of positive cells ranging from 0.5% to 77.1%). (Table 32). Expression of SSEA-3 and SSEA-4 in Normal Tissues 101481 Using tissue microarray, SSEA-4 expression was analyzed among 20 different organs by immunohistochemical staining, as shown in Table 4 (E, epithelial; C, connective tissue). Table 4: Expression of SSEA-4 in normal tissues Normal tissue Antigen SSEA4 Brain 0/5 Bone 0/5 Lymph node 0/5 - E C Breast 1/5 0/5 Colon* 2/4 0/4 Esophagus 0/5 0/5 Intestine 5/5 0/5 Kidney 2/5- 0/5 Liver 0/5 0/5 Lung 1/5 0/5 Ovary 1/5 0/5 Pancreas 1/5 0/5 Prostate 0/5 0/5 Rectum 5/5 0/5 Skin 0/5 0/5 Spleen 0/5 0/5 Stomach 4/5 0/5 Testis 4/5 0/5 Thymus gland 1/5 0/5 Uterine cervix 1/5 0/5 [01491 SSEA-4 is expressed on the epithelial cells of several glandular tissues, such as breast, colon, gastrointestinal tract, kidney, lung, ovary, pancreas, rectum, stomach, testes, thymus and uterine cervix (Table 4). Further, in a manner similar to Globo H and SSEA-3 (Chang W W. et al., (2008) Proc Natl Acad Sci USA 105(33):11667-11672), SSEA-4 expression was 35 WO 2010/005598 PCT/US2009/004519 confined mainly to the cytoplasm or apical surface of epithelial cells which were essentially inaccessible to the immune system, as shown in Figure 16. [01501 By comparison, Globo H is expressed on the epithelial cells of several glandular tissues, such as breast, gastrointestinal tract, pancreas, prostate, and uterine cervix. The distribution of SSEA3 is similar to that of Globo H except for its absence in normal breast tissues but presence in kidney, rectum, testis, and thymus, which were negative for Globo H (Chang W-W. et al., (2008) Proc Natl Acad Sci USA 105(33):11667-11672). EXAMPLES [01511 The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention. General Methods,Materials and Instrumentation Materials [01521 Commercial solvents and reagents were used as received without further purification and purchased from Sigma-Aldrich, Acros, Merck, Echo chemical and Senn Chemical. Monoclonal antibody Mbrl was purchased from ALEXIS biochemicals, Cy3- conjugated anti-mouse IgG (IgG, IgG 1, and IgG2a) and IgM antibodies were from Jackson Immuno Research. DT-CRM 197 Protein and Tetanus toxoid were purchased from Merck and Adimmune, respectively. Aluminium phosphate gel adjuvant (AlPO 4 ) was purchased from Brenntag Biosector. Bamboo virus and VK9 monoclonal antibody were prepared from Dr. Lin's and Dr. Yu's laboratory, respectively. Glycolipid derivatives were synthesized and provided by Dr. Wong's laboratory. General Methods 101531 Molecular sieves (MS, AW-300) used in glycosylations were crushed and activated before use. Reactions were monitored with analytical TLC plates (PLC silica gel-60, F 254 , 2 36 WO 2010/005598 PCT/US2009/004519 mm, Merck) and visualized under UV (254nm) or by staining with p-anisaldehyde. Flash column chromatography was performed on silica gel (40-63 p1m) or LiChroprep RP 18 (40-63 pm). Dialysis membrane (Cellulose Ester, MCCO = 10,000) was washed by ddH 2 O before use. Instrumentation 101541 Proton nuclear magnetic resonance ('H NMR) spectra, carbon nuclear magnetic resonance (1 3 C NMR) spectra were recorded by Bruker Advance 600 (600 MHz 1 150 MHz) NMR spectrometers. Chemical shifts for protons are reported in ppm (S scale) and referenced to tetramethylsilane (6 = 0). Chemical shifts for carbon are also reported in parts per million (ppm, 6 scale). DEPT 135 (Distortion-less enhancement by polarization transfer) was employed for determination of multiplicity. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration and coupling constant (J) in Hz. High resolution mass spectra were obtained by BioTOF II, and the MALDI-TOF MS were employed by Ultraflex II TOF/TOF200. EXAMPLE 1: Synthesis of Globo H coniugated with different carrier proteins [01551 Globo H (1; see Figure 11) and its fragments 2-10 were synthesized by using a programmable one-pot strategy. (Huang C-Y, et al. (2006) Proc Natl Acad Sci USA 103:15 20.) The reaction of I was carried with an efficient homobifunctional linker in anhydrous DMF solution at room temperature. (Wu X, et al. (2004) Org Lett 6:4407-4410; Wu X, Bundle DR (2005) J Org Chem 70:7381-7388.) The reaction was readily monitored by TLC. Once the disappearance of the free amine with a larger Rf product occurred, the reaction mixture was evaporated to remove DMF, and washed with dichloromethane and water to remove the excess amount of linker. Finally, the product was purified by reverse phase (C18) column chromatography, and gradually eluted with water containing 1% acetic acid to 40% methanol in water. The solution was then lyphophilized to yield the light yellow product 12. Finally, for protein conjugation, the purified Globo H half ester 12 (30-40 equiv) was incubated with individual carrier proteins in phosphate buffer (10 mM, pH 7.2) for 24 hours at room temperature (Figure 14). Importantly, the protein concentration must be adjusted to -5 mg/mL to maximize the coupling of lysine residues with Globo H half ester. After 24 h, the glycoconjugates were then diluted, and dialyzed against deionized water to remove the 37 WO 2010/005598 PCT/US2009/004519 remaining ofp-nitrophenyl group. The solution was then lyphophilized to a white powder to give 13, 14, and 15. [01561 The Globo H-protein conjugates were characterized by MALDI-TOF analysis to determine the number of Globo H molecules on each carrier protein. The average number of Globo H incorporation is listed in Table I shown supra. [01571 The glycoconjugates 13, 14, 15 were dissolved in ddH 2 0 to yield a final concentration around 1 pmol/pL. Sinapinic acid was selected as a matrix and mixed with freshly prepared acetonitrile and deionized water (1 : 1 v/v) to make the final matrix concentration in 10 mg/mL including 0.1% TFA. Each sample was detected under a linear positive mode to get the m/z spectrum. The molecular weight of each glycoconjugate was determined by m/z. The glycoconjugate 14 showed heterogeneity, indicating an average of 2-4 incorporations. The GH-KLH conjugate showed the greatest number of Globo H incorporation, mostly due to the larger size and more Lys residues of KLH. The same coupling procedure using p-nitrophenyl linker was also applied to bamboo mosaic virus which contains more than 100,000 lysine residues on the coat of virus. However, the instability of the virus while reacting in sodium phosphate buffer (pH = 7.2) at 4 "C is a major concern for further development. Additionally, the GH-BaMV 16 limits its detection by MALDI-TOF analysis due to its tremendous size. Finally, the lyphophilized glycoconjugates were stored at -30 "C and reconstituted with sterile water before immunization. EXAMPLE 2: Glycan microarray fabrication and validation: 101581 The synthetic Globo H and truncated fragments (Fig 1) were attached with a pentylamine linker at the reducing ends and covalently immobilized onto the NHS-coated glass slide. Nine of the eleven oligosaccharides were selected to be printed on the microarray. Serial oligosaccharide concentrations (1, 5, 10, 20, 40, 50, 80, 1 00JM) were tested to optimize the binding affinity and fluorescence intensity. Each microarray slide was spotted with 50 jpM of nine Globo H analogs (SSEA-4, GH, GbS, Gb4, Gb3, Gb2, BB4, 133, and 132) respectively in 12 replications. After reaction in 80% humidity atmosphere, the slides were stored at room temperature in desiccators before use. [01591 To validate the carbohydrates on the microarray, mouse monoclonal antibodies (VK9 and MbrI for Globo H, and anti-SSEA-3) and respective secondary antibodies (goat anti 38 WO 2010/005598 PCT/US2009/004519 mouse IgG and IgM) were used to examine the binding specificity, and the results are shown in Figs. 2A-2C. The data suggests that VK9 and Mbrl both recognized Globo H and the outer tetrasaccharide BB4, although MBrI also slightly recognized BB3. (Gilewski T el al. (2001) Proc Nati Acad Sci USA 98:3270-3275; Huang C-Y, et aL. (2006) Proc Natl Acad Sci USA 103:15-20.) In addition, anti-SSEA-3 antibody specifically recognized SSEA-3 antigen (Gb5) without any cross reactivity. The results indicated that the Globo H microarray could be employed to profile the specificity and potency of polyclonal antibodies from immunized mice. EXAMPLE 3: Mouse immunization [01601 In this study, a group of mice was immunized with I pg synthetic Globo H (GH) conjugates with or without the glycolipid adjuvant, a-GalCer (Cl) subcutaneously. Ten days after three vaccinations at weekly intervals, mice sera were collected and subsequently introduced to the glycan microarray to evaluate the antibody levels. It was found that GH KLH, GH-DT and GH-BV are the most effective immunogens for IgM induction, followed by GH-T, and GH-BSA as summarized in Fig. 3A, and a-GalCer is capable of stimulating the immune response to induce high levels of IgM antibodies. A similar trend was also observed in mouse IgG antibodies (Fig. 3B), and the relative IgG levels were higher than IgM levels. In brief, despite the lower carbohydrate density of the synthetic glycoconjugate, GH-DT exhibited a similar immunogenicity to GH-KLH, and the adjuvant a-GalCer was shown to enhance the immune response. [01611 Since Cl was shown to be an effective adjuvant for GH-DT, other glycolipids with better adjuvant activity than CI were examined as shown in Fig 4. (Fujio M, et aL. (2006) J Am Chem Soc 128:9022-9023.) 101621 Groups of mice were immunized intramuscularly with 1.6 pg of GH-DT and GH-BV with or without 2 pg of glycolipids twice a week. Sera were obtained two weeks after the third vaccination and introduced to glycan microarray analysis. In general, mouse anti-Globo H IgG titers increased as immunization proceeded but the IgM levels were almost independent of vaccination times (Fig. 5). Among the GH-BV vaccinated groups, there was no significant difference in the IgM level between glycolipid-vaccine treatment and the vaccine alone. Although the results suggested that GH-BV in combination with glycolipid 39 WO 2010/005598 PCT/US2009/004519 was not an effective immunization regimen, the poor immunogenicity may result from the unstable feature of BaMV. Nevertheless, the a-GalCer analogs, especially 7DW8-5 cooperated well with GH-DT to induce mouse immune response. [01631 Interestingly, the mouse polyclonal IgG antibodies generated by GH-DT and various glycolipid adjuvants not only neutralize Globo H but also cross-react with Gb5, SSEA-4 and Gb4 and C34 appears to be the most effective (Fig. 6). In order to search for a new composition of vaccine that can induce much higher titer of IgG than IgM, Globo H-DT conjugate and glycolipid Cl or C34 and commercially available adjuvant AIPO 4 (aluminium phosphate) or MF59 were tested. Surprisingly, Globo H-DT with glycolipid C34 can induce almost IgG antibody after 3 vaccination (Fig. 7). In summary, the novel glycolipid adjuvant 7DW8-5 combined with GH-DT conjugates was able to enhance both anti-Globo H IgG and IgM antibodies, and glycolipid adjuvant C34 combined with GH-DT can induce antibody titer of IgG much higher than IgM. They also exhibited diverse binding affinity to Gb5 and SSEA 4 antigens, both specifically expressed on the surface of breast cancer stem cells. 101641 In order to further compare the effect of different glycolipid adjuvants on Globo H vaccine, seven groups of mice with GH-KLH. were immunized The results suggested that mice vaccinated with glycolipids induced higher levels of anti-Globo H antibodies (Fig. 8). Although MF59 is a strong adjuvant it failed to collaborate with GH-KLH to induce antibodies against Globo H. AIPO 4 (aluminium phosphate) also showed no obvious impact on the induction of antibodies. On the other hand, GH-KLH along with C34 showed superior immunogenicity after the first and second vaccinations but exhibited no significant difference to CI after the third vaccination. [0165] DT-CRM197, a mutant toxin devoid of toxic activity induces antigen-specific T cell proliferation and elevates splenocyte production of IL-2, IFN-y and IL-6, suggesting its role in ThI driven pathway.(Miyaji EN et al. (2001) Infect Immun 69:869-874; Godefroy S, et al. (2005) Infect Immun 73:4803-4809; Stickings P, et al. (2008) Infect Immun 76:1766-1773.) Despite the fact that the cytokine profile was predominantly Thl, subclasses of anti-CRM197 antibodies were IgGI with no detectable IgG2a, which suggests a mixed ThI/Th2 response. These results prompted the evaluation of the antibody isotype profile of the Globo H vaccines, and present studies showed that GH-DT or GH-KLH in combination with glycolipid adjuvants induced mainly IgG1 antibody with a trace amount of IgG2a (Fig. 9). 40 WO 2010/005598 PCT/US2009/004519 101661 Despite the fact that glycolipid adjuvants enhanced Thi biased cytokines secretion when administrated alone intravenously (i.v.). the antibody class switch (IgG2a) was not observed. Overall, the glycolipids play a pivotal role in enhancing both cellular and humoral immune response. [01671 Gb5 and SSEA-4 conjugated with DT were also synthesized by the same strategy. After 3d vaccination, antibodies titer of IgM and IgG were compared and it was found that Gb5-DT and SSEA-4-DT also induced much higher titer of IgG than IgM (Fig. 10). EXAMPLE 4: Specificity studies of antibodies induced by different vaccine composition. [01681 Since GH-DT and C34 induced antibodies to recognize Globo H, Gbs (SSEA-3) and SSEA-4, the specificity of SSEA-3-DT and SSEA-4-DT vaccines in the presence of adjuvants using an array of 24 glycans with focus on the study of IgG were next examined (Fig. 11). 101691 As shown in Fig. 12, mice immunized with Globo H-DT and C34 adjuvant induced antibodies that can recognize Globo H, SSEA-3 (Gb5) and SSEA-4 with high selectivity, and vaccine SSEA-3-DT with adjuvant MF59 induced high immune response with low selectivity. On the other hand, SSEA-3-DT combined with adjuvant C34 only induced antibodies against Globo H, SSEA-3, and SSEA-4. [01701 Interestingly, SSEA-4-DT in the presence or absence of adjuvants induced IgG and IgM antibodies specifically recognizing SSEA-4 and its truncated structures (SSEA-4 with head lactose deletion). It is however not clear about the origin of the selectivity. [01711 In order to directly assess the efficacy of the synthetic glycoconjugate vaccines, the tumor sizes three times per week were measured as shown in Fig. 13. In general, tumor grows 2 weeks after injection with 4T1, a Globo H bearing breast cancer cell line. All the vaccinated groups along with glycolipid adjuvants still showed comparative smaller tumor progression compared to GH-DT alone and PBS control at day 24. The preliminary data suggested that vaccination with GH-DT and a glycolipid adjuvant indeed delayed some degree of the tumor progression in vivo. EXAMPLE 5: Preparation of Globo H half ester 101721 The GloboH half ester was prepared as follows: 41 WO 2010/005598 PCT/US2009/004519 HO OH HO IOH H OH HO- a NHAcH H -OH O O OH 0 HO o2H H O Globo H half ester (12) [01731 Globo H amine 1 (5 mg, 4.54 pmol) was dissolved in anhydrous DMF solution. p nitrophenyl ester linker (8.8 mg, 22.7 pmol) was then added and stirred for 1-3 hours at room temperature. The reaction was monitored by TLC (1% AcOH in methanol) and Ninhydrin test. The disappearance of free amine with a larger Rr product indicated the completion of the reaction. The reaction mixture was evaporated under reduced pressure without heating to remove DMF, and then extracted with CH 2
CI
2 and water containing 1% of acetic acid twice. The water solution was concentrated and purified by reverse phase (C 18) column chromatography, and gradually eluted with H 2 0 containing 1% of acetic acid to MeOI- : H20 = 4: 6. The solution was then lyphophilized to a light yellow solid product 12 (5.4 mg, Yield 88%) 'H NMR (600 MHz, D20) 6 8.25 (d, 2H, J= 9.0 Hz), 7.28 (d, 2H, J= 9.0 Hz), 5.12 (d, 1H, J= 3.9 Hz), 4.79 (d, I H, J= 3.7 Hz), 4.51 (d, 1H, J= 7.7 Hz), 4.44 (d, IH, J= 7.7 Hz), 4.39 (d, 1H, J= 7.7 Hz), 4.31-4.28 (t, 2H, J= 7.7 Hz), 4.15-4.11 (m, 2H), 3.99 (d, 1 H, J= 2.0 Hz), 3.92 (d, IH, J=: 2.8 Hz), 3.89-3.44 (m, 33H), 3.16 (t, IH, J= 8.6 Hz), 3.10 (t, 2H, J= 6.7 Hz), 2.62 (t, 2H, J= 6.9 Hz), 2.20 (t, 2H,1 = 6.6 Hz), 1.93 (s, 3H), 1.62-1.49 (m, 4H) 1.54 1.48 (m, 2H), 1.45-1.40 (m, 2H), 1.30-1.24 (m, 2H), 1.11 (d, 3H, J= 6.5 Hz) 1 3 C NMR (150 MHz, D)20 )6178.0, 176.1, 176.0, 156.9, 147.1, 127.3, 124.5, 105.7, 105.0, 103.7, 103.6, 102.2, 101.0. 80.5, 80.0, 78.9, 78.0, 77.8, 77.1, 76.7, 76.4, 76.3, 76.2, 75.2, 74.6, 73.8, 73.5, 72.5, 72.1, 71.8, 71.2, 70.9, 70.8, 70.1, 69.7, 69.5, 68.5, 62.6, 62.6, 62.0, 62.0, 61.7, 53.3, 40.8, 37.1, 35.0, 30.0, 29.7, 26.4, 25.0, 24.1, 23.9, 17.0 HRMS: C55H 8 7
N
3 0 35 Na [M+Na]* calculated: 1372.5018; found: 1372.5016. EXAMPLE 6: General procedure for generating alycoconiugates [01741 Glycoconjugates were manufactured as follows: 42 WO 2010/005598 PCT/US2009/004519 H O 13, n=8 (BSA) Globo H N, N 14, n=2-4 (CRM197) H 15, n=4 (Tetanus toxoid) 0 16, (Bamboo virus) n 101751 BSA, DT-CRM1 97, and Tetanus toxoid (Adimmune, Taiwan) was dissolved in 100 mM phosphate buffer pH 7.2 (-5 mg/ml), and 30 to 40 equivalents of Globo H half ester 35 were added to the solution. The mixture was stirred gently for 24 h at room temperature. The mixture was then diluted with deionized water and dialyzed against 5 changes of deionized water. The solution was then lyphophilized to a white powder. The obtained Globo H-protein conjugates can be characterized by MALDI-TOF analysis to determine the carbohydrate incorporation rate. 41 (GH-BSA), MALDI-TOF found 76029, 42 (GH-DT-CRMI197) found 62138, 43 (GH-T T) found 162902, 44(GH-BaMV) was not determined EXAMPLE 7: MALDI-TOF MS analysis for alvcoconiugates [01761 The glycoconjugates 41, 42, 43 and primary carrier proteins were reconstituted with ddH 2 O (~1 pg/il). The matrix, sinapinic acid, was freshly prepared with acetonitrile and deionized water 1 : 1, making final matrix concentration in 10 mg/ml including 0.1% TFA. Gently loaded and mixed the matrix solution and glycoconjugates, then air dried the plate. Calibration was imperative using bovine serum albumin before measurement. Each glycoconjugate and primary protein sample was detected under linear positive mode. The average molecular weight allows the calculation of the average number of carbohydrate incorporated on the carrier protein. EXAMPLE 8: Glyean microarray fabrication 101771 Microarray were printed (BioDot, Cartesian Technologies, USA) by robotic pin (SMP3, TeleChem International Inc., USA) deposition of -0.7 nL of various concentrations of amine-containing glycans in printing buffer (300 mM phosphate buffer, pH 8.5 containing 0.005% Tween-20) from a 96 well onto NHS-coated glass slides. Each microarray slide was spotted with 50 pM of nine Globo H analogs (SSEA-4, GH, Gb5, Gb4, Gb3, Gb2, BB4, BB3, and BB2) respectively in 12 replications. Printed slides were allowed to react in an 43 WO 2010/005598 PCT/US2009/004519 atmosphere of 80% humidity for an hour followed by desiccation overnight. These slides were stored at room temperature in a dessicator before used. EXAMPLE 9: Serologic assay (Glycan microarray) [0178] Mice sera were diluted 1: 60 with 0.05% Tween 20 in 3% BSA/PBS buffer (pH 7.4) as preliminary screening. The glycan microarray was blocked with 50 mM ethanolamine for I h, and washed twice with ddH 2 0 and PBS buffer before used. The serum dilutions were then introduced to the Globo H microarray, and incubated at room temperature for I h. The microarray slides were further washed three times with PBST (0.05% Tween-20 in PBS buffer) and PBS buffer, respectively. Next, Cy3-affiniPure goat anti-mouse IgG (H + L), IgGI, IgG2a or anti-mouse IgM was added to the microarray slide and then sealed for 1 hour incubation at room temperature. Finally, the slides were washed three times with PBST, PBS and ddH 2 0 in sequence. The microarray slides were dried before scanned at 532 nm with a microarray fluorescence chip reader (Genepix 4000B). Data were analyzed by software GenePix Pro 6.0 (Axon Instruments, Union City, CA, USA). To acquire the accurate measurement, PMT gain was adjusted to 400 avoiding fluorescence saturation. The local background was subtracted from the signal at each glycan spot. The spots with obvious defects or no detectable signal were omitted. The ultimate fluorescence intensity was defined as the average of "medians of F532 nm - B532 nmn" from replicate spots. EXAMPLE 10: Serologic assay (Enzyme-Linked Immunosorbent Assay) 101791 0.2 pg of Globo-H ceramide in 100 pl carbonate bicarbonate buffer (pH 10) was coated in 96-well plate (NUNC) at 4 "C for overnight. Washed with PBS and blocked with 3% bovine serum albumin for 30 minutes at room temperature. Serial dilutions of mice sera were added into each well and incubated for I h at room temperature, followed by washing with DPBST (Dulbecco's Phosphate Buffered Saline, 0.05% Tween20). Goat anti-mouse IgG-AP (I : 200, Southern Biotech., USA) was added and incubated for 45 minutes at room temperature. The plates were washed with PBST five times and then incubated with alkaline phosphatase substrate, p-nitrophenyl phosphate (Sigma) for 8 minutes at 37 "C. After incubation, the reaction was stopped by adding 3 M NaOH solution and the plates were read at 405 nrm on the ELISA reader (SpectraMax, Molecular Devices) The titer was defined as the highest dilution yielding an optical density greater than 0.1. 44 WO 2010/005598 PCT/US2009/004519 EXAMPLE 11: Dosage and Immunization [0180] (1) Groups of three mice (6-week-old female C57BL/6 mice, BioLASCO, Taiwan) were administered subcutaneously to abdomen region with GH-KLH (Optimer Inc.), GH BSA, GH-TT, GH-CRM 197, and GH-BaMV respectively with or without glycolipid adjuvant CI or 7DW8-5 for three times with weekly interval. Each vaccination contained 1 pg of Globo H and with or without 2 pg glycolipid adjuvant. Control mice were injected with phosphate buffer saline (PBS) only. Mice were bled before first immunization (pre-immune) and ten days after third immunization. (2) Groups of three mice (8-week-old female Balb/c mice, BioLASCO, Taiwan) were immunized intramuscularly three times at two weeks interval with GH-BaMV or GH-CRM197 with or without CI, C23, or 7DW8-5, respectively. Each vaccination contained 1.6 pg of Globo H and with or without 2 pUg of adjuvant. Control mice were injected with phosphate buffer saline (PBS). Mice were bled before immunization and 2 weeks after each vaccination. (3) Groups of three mice (8-week-old female Balb/c mice, BioLASCO, Taiwan) were immunized with GH-CRM197 or GH-KLH with or without adjuvant Cl, C17, 7DW8-5, C30, AIPO 4 , MF59 (1:1 mixture) as (2) described. All the sera were obtained by centrifugation under 4000 g for 10 minutes. The serologic responses were analyzed by glycan microarray or compared with conventional ELISA assay. EXAMPLE 12: Xenograft model 101811 (1) Five groups of immunized female Balb/c mice (PBS, GH-CRM197 alone or with Cl, C23 and 7DW8-5, respectively) were injected with 2 x 105 metastatic mouse mammary tumor cell lines, 4T1 (in sterile PBS) subcutaneously 8 weeks after final vaccination. (2) Seven groups of immunized female Balb/c mice (GH-KLH alone or with Cl, C17, 8-5, C30,
AIPO
4 and MF59, respectively) were injected with 2 x 105 metastatic mouse mammary tumor cell lines, 4T1 (in sterile PBS) subcutaneously 6 weeks after final vaccination. Mice anti Globo H sera were monitored before and after tumor xenografting. Mice tumor size was measured by Vernier caliper three times per week and defined as (length x height x width) / 2 (mm 3 ). 45 WO 2010/005598 PCT/US2009/004519 EXAMPLE 13: Isolation of Primary Tumor Cells from Human Breast Cancer Specimens 101821 Human breast cancer specimens were obtained from patients who had undergone initial surgery at the Tri- Service General Hospital (Taipei, Taiwan). Samples were fully encoded to protect patient confidentiality and were used under a protocol approved by the Institutional Review Board of Human Subjects Research Ethics Committee of Academia Sinica, Taipei, Taiwan. The tumor specimens were sliced to square fragments of 1 mm2 and subjected to enzymatic digestion by incubation in RPMI 1640 medium containing collagenase (1,000 U/ml), hyaluronidase (300 U/ml), and DNase I (100 pLg/ml) at 374C for 2 h. Primary breast tumor cells were collected after filtration through a 100-pm cell strainer (BD Biosciences) and resuspended in RPMI 1640 medium supplemented with 5% FBS. EXAMPLE 14: Flow Cytometry Analysis [0183] Primary breast cancer cells were prepared as I x 105 cells in 50 PIl of PBS containing 2% FBS and 0.1% NaN 3 . Cells were labeled with anti-CD24-PE, anti-CD44-APC, and anti CD45-PerCP-Cy5.5 antibody mixtures (I jl of each). Globo H expression was detected by staining with monoclonal anti-Globo H antibody (VK-9) conjugated with Alexa488. Analyses were performed on a FACSCanto flow cytometer (Becton Dickinson). BCSCs were defined as CD45~/CD24~/CD44+ cells, and non-BCSCs were defined as other populations of CD45 cells. Globo H expression was further analyzed in the gated region. EXAMPLE 15: Cell Sorting. 101841 The cells harvested from human breast tumor engrafted in mice were stained with anti CD24-PE, anti-CD44-APC, and anti-H2K -FITC antibody mixtures (BD Biosciences). Fluorescence activated sorting of antibody-labeled cells was carried out on a FACSAria cell sorter (Becton Dickinson). H2Kd~/CD24~/CD44 t cells were sorted as BCSCs, and other populations of H2Kd' cells were sorted as non-BCSCs. The typical purities of BCSCs and non-BCSCs were >85% and >90%, respectively. EXAMPLE 16: Immunohistochemistry [01851 For SSEA-4 expression on normal tissues, tissue microarray slides (Biomax) that contained 20 different organs, with each organ derived from five individuals, were used. Slides were dried overnight at 56*C, dewaxed in xylene, and rehydrated according to the 46 927 0390AUPR standard histopathologic procedures, followed by antigen retrieval with AR-1O solution pH 9.0 (BioGenex Laboratories). SSEA-4 expression was determined with the use of ani-SSEA 4 antibody (efioscience) Staining for SSEA-4 was detected by using anti-Nat gM as a secondary antibody and was developed by DAB substrate, Slides were counterstained with hematoxylin. Primary breast tumor BC0145 and tumor xenografts from NOD/SCID mice were fixed in 10% phosphate-buffered formalin and embedded i paraffin, Paraffin sections were cut at a thickness of 2 p.M. mounted on SuperFrost Plus microscopy slides (Menzel Gliiser), and dried ovemight at 5- 0 c The sections were dewaxed in xylene and rehydrated according to the standard histopathologic procedures, followed by staining with hematoxylin and Qosin {H&E). Before immunostaining the slides were first placed in the solution of 10 mmolfL citrate buffer (pH 6,0) and microwaved for 15 min. The slides were then incubated overnight with anti-ER. or anti-PR antibody Immunodetection was performed with the Super Sensitive Polymer-IRP IHK Detection Systen (lioGenexi. [01861 All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference, f0187I Mthough the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill In the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims. 101881 The Abstract is provided to comply with 37 CFR. l T172(b) to allow the reader to quickly ascertain the nature and gist of the technical disclosure. The Abstract is submitted with the understanding that it will not be used tointerpret or limit the scope or meaning of the claims. Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like, are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in the sense of "including, but not limited to". The reference to any prior art in the specification is not, and should not be taken as, an acknowledgement or any form of suggestion that the prior art forms part of the common general knowledge in Australia. 47
Claims (19)
1. An immunogenic composition comprising: (a) a glycan conjugate including 1) a carrier protein selected from the group consisting of diphtheria toxin cross-reacting material 197 (DT-CRM 197), diphtheria toxoid, tetanus toxoid and bovine serum albumin and, 2) a glycan selected from the group consisting of Globo H, an immunogenic fragment thereof, stage-specific embryonic antigen-3 (SSEA-3, Gb5), stage-specific embryonic antigen-4 (SSEA-4, Sialyl Gb5), Bb4, or Gb4, wherein the glycan is conjugated with the carrier protein through a linker; and (b) an a-galactosyl-ceramide (u-GalCer) adjuvant; wherein the composition induces an antibody that neutralizes at least one antigen selected from the group consisting of Globo H, Bb4, Gb4, SSEA-3 and SSEA-4.
2. The immunogenic composition of claim 1, wherein the carrier protein is diphtheria toxin cross-reacting material 197 (DT-CRM 197).
3. The immunogenic composition of claim 1 or 2, wherein the adjuvant has the following structure: OH OH _O HO 0 HN R O' (H2) ,C H 3 OH wherein R is (CH 2 ) 24 CH 3 , (CH 2 ) 7 PhF, (CH 2 )ioPhOPhF or (CH 2 )IoPhF.
4. The immunogenic composition of claim 1, wherein the linker is a p nitrophenyl linker.
5. The immunogenic composition of claim 1, wherein the glycan is Globo H.
6. The immunogenic composition of claim 1, wherein the glycan is SSEA-3. 48 927 0390AUPR
7. The immunogenic composition of claim 1, wherein the glycan is SSEA-4.
8. The immunogenic composition of any one of claims 1 to 7, further comprising a pharmaceutically acceptable excipient.
9. The immunogenic composition of claim 1, wherein the immunogenic composition induces an immune response that produces a higher relative level of IgG isotype antibodies as compared to IgM isotype antibodies.
10. Use of the immunogenic composition of any one of claims 1 to 9 in the manufacture of a medicament for the treatment or inhibition of tumor growth, wherein administration of the medicament induces an antibody that neutralizes at least one of the antigens: Globo H, Gb4, Bb4, stage-specific embryonic antigen-3 (SSEA-3) and stage specific embryonic antigen-4 (SSEA-4).
11. The use of claim 10, wherein the tumor is an epithelial-derived tumor.
12. The use of claim 11, wherein the tumor is breast cancer, lung cancer, cervical cancer, ovarian cancer, endometrial cancer, esophagus cancer, stomach cancer, pancreatic cancer, liver cancer, intestinal cancer, colorectal cancer, gallbladder cancer, bladder cancer, prostate cancer, renal cancer, cancer of oral cavity, buccal cancer, nasopharyngeal cancer, oropharyngeal cancer, laryngeal cancer, dermal cancer, or brain tumor.
13. The use of claim 10, wherein the tumor is a breast tumor, and the glycan is Globo H, SSEA-3, or SSEA-4.
14. A method of treating or inhibiting tumor growth comprising administering an effective amount of an immunogenic composition as claimed in any one of claims 1 to 9 to a subject in need thereof. 49 927 039OAUPR
15. A vaccine comprising: (a) an immunogenic composition of any one of claims 1 to 9; and, (b) a pharmaceutically acceptable excipient.
16. An immunogenic composition of claim 1, substantially as hereinbefore described with particular reference to any one or more of the examples and/or figures.
17. A use of claim 10, substantially as hereinbefore described with particular reference to any one or more of the examples and/or figures.
18. A method of claim 14, substantially as hereinbefore described with particular reference to any one or more of the examples and/or figures.
19. A vaccine of claim 15, substantially as hereinbefore described with particular reference to any one or more of the examples and/or figures. 50
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014201215A AU2014201215B2 (en) | 2008-06-16 | 2014-03-05 | Globo h and related anti-cancer vaccines with novel glycolipid adjuvants |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/061,968 | 2008-06-16 | ||
US12/485,546 | 2009-06-16 | ||
AU2009269127A AU2009269127B2 (en) | 2008-06-16 | 2009-08-06 | Globo H and related anti-cancer vaccines with novel glycolipid adjuvants |
AU2014201215A AU2014201215B2 (en) | 2008-06-16 | 2014-03-05 | Globo h and related anti-cancer vaccines with novel glycolipid adjuvants |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2009269127A Division AU2009269127B2 (en) | 2008-06-16 | 2009-08-06 | Globo H and related anti-cancer vaccines with novel glycolipid adjuvants |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2014201215A1 AU2014201215A1 (en) | 2014-04-03 |
AU2014201215B2 true AU2014201215B2 (en) | 2016-05-05 |
Family
ID=50389621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2014201215A Active AU2014201215B2 (en) | 2008-06-16 | 2014-03-05 | Globo h and related anti-cancer vaccines with novel glycolipid adjuvants |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2014201215B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109856400B (en) * | 2019-01-22 | 2022-02-01 | 上海交通大学医学院附属仁济医院 | Use of ceramide C24 as biomarker for diagnosing gallbladder cancer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003009812A2 (en) * | 2001-07-25 | 2003-02-06 | New York University | Use of glycosylceramides as adjuvants for vaccines against infections and cancer |
US6544952B1 (en) * | 1994-03-15 | 2003-04-08 | Sloan-Kettering Institute For Cancer Research | Synthesis of glycoconjugates of the globo-H epitope and uses thereof |
US20060116331A1 (en) * | 2002-09-27 | 2006-06-01 | Biomira, Inc. | Glycosylceramide analogues |
-
2014
- 2014-03-05 AU AU2014201215A patent/AU2014201215B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6544952B1 (en) * | 1994-03-15 | 2003-04-08 | Sloan-Kettering Institute For Cancer Research | Synthesis of glycoconjugates of the globo-H epitope and uses thereof |
WO2003009812A2 (en) * | 2001-07-25 | 2003-02-06 | New York University | Use of glycosylceramides as adjuvants for vaccines against infections and cancer |
US20060116331A1 (en) * | 2002-09-27 | 2006-06-01 | Biomira, Inc. | Glycosylceramide analogues |
Non-Patent Citations (3)
Title |
---|
GILEWSKI, T. et al. "Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: A phase I trial". PNAS. 2001. 98(6): 3270-3275 * |
SABBATINI, P.J. et al. "Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer". Clinical Cancer Research. 2007. 13: 4170-4177 * |
SLOVIN, S.F. et al., Vaccine, 2005, Vol. 23, pages 3114-3122 * |
Also Published As
Publication number | Publication date |
---|---|
AU2014201215A1 (en) | 2014-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9603913B2 (en) | Globo H and related anti-cancer vaccines with novel glycolipid adjuvants | |
KR101677279B1 (en) | Globo h and related anti-cancer vaccines with novel glycolipid adjuvants | |
AU2019200314B2 (en) | Compositions of a carbohydrate vaccine for inducing immune responses and uses thereof in cancer treatment | |
EP3193919B1 (en) | Immunogenic/therapeutic glycoconjugate compositions and uses thereof | |
TWI392502B (en) | Globo h and related anti-cancer vaccines with novel glycolipid adjuvants | |
AU2014201215B2 (en) | Globo h and related anti-cancer vaccines with novel glycolipid adjuvants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |