AU2011250795A1 - Radiolabelling methods - Google Patents
Radiolabelling methods Download PDFInfo
- Publication number
- AU2011250795A1 AU2011250795A1 AU2011250795A AU2011250795A AU2011250795A1 AU 2011250795 A1 AU2011250795 A1 AU 2011250795A1 AU 2011250795 A AU2011250795 A AU 2011250795A AU 2011250795 A AU2011250795 A AU 2011250795A AU 2011250795 A1 AU2011250795 A1 AU 2011250795A1
- Authority
- AU
- Australia
- Prior art keywords
- compound
- formula
- vector
- peptide
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Abstract The invention relates to radiodiagnostic and radiotherapeutic agents, including biologically active vectors labelled with radionuclides. It further relates to methods and reagents labelling a vector such as a peptide comprising reaction of a compound of formula (1) with a compound of formula (II): R*-L2 -N3 (II) or, a compound of formula (111) with a compound of formula (IV) in the presence of a Cu (1) catalyst. The resultant labelled conjugates are useful as diagnostic agents, for example, as radiopharmaceuticals morc specifically for usc in Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) or for radiotherapy. L - vector () R*-L2 -N 3 (11) N3 - L3- vector (111) R* - L4 (IV) C \)cuments and Settings\KXS\LocaI Selli ns\T Iem nl me Fils\0LK A\rO lodge diisional apphi, n 655M_1 DOC - 10/1 1/11
Description
A ustralian Patents Act 1990 - Regulation 3.2A ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Invention Title "Radiolabelling methods" The following statement is a full description of this invention, including the best method of" performing it known to me/us: C.\Documicnts and S tings\RXS\.xmal Seingsvrempoiary Intemet Files\OI.KA\pO lodge divkional application_306556-1_1 DOC - 10/11/11 RADIOLABELLING METHODS This is a divisional of Australian patent application No. 2005317903, the entire contents of which are incorporated herein by reference. The present invention relates to radiodiagnostic and radiotherapeutic agents, Including biologically active vectors labelled with radionuclides. It further relates to methods and reagents labelling a vector such as a peptide. The resultant labelled conjugates are useful as diagnostic agents, for example, as radiopharmaceuticals more specifically for use in Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) or for radiotherapy. The application of radiolabelled bioactive peptides for diagnostic imaging is gaining importance In nuclear medicine. Biologically active molecules which selectively interact with specific cell types are useful for the delivery of radioactivity to target tissues. For example, radiolabelled peptides have significant potential for the delivery of radionuclides to tumours, infarcts, and infected tissues for diagnostic imaging and radiotherapy. 'OF, with its half-life of approximately 110 minutes, is the positron-emitting nuclide of choice for many receptor imaging studies. Therefore, 'BF-labelled bloactive peptides have great clinical potential because of their utility in PET to quantitatively detect and characterise a wide variety of diseases. Other useful radionuclides include 11C, radlolodine such as 1251, 1231, 1241, 1311 and 9 9mTc. To date, a lack ~of rapid and generally applicable methods for peptide and biomolecule labelling has hampered the use of peptides and biomolecules as diagnostic agents. For example, almost all of the methodologies currently used today for the labelling of peptides and proteins with 1BF utilize active esters of the fluorine labelled synthon. As peptides and proteins may contain a multitude of functional groups capable of reaction with active esters these current methods are not site-specific. For example a peptide containing three lysine residues has three amine functions all equally reactive towards the labelled synthon. Therefore, there still exists a need for labelling agents such as 8F labelled prosthetic groups and methodologies, which allow rapid, -1chemoselective introduction of a label such as a radlonuclide, for example 18 F, particularly into peptides, under mild conditions to give labelled products in high radiochemical yield and purity. Additionally, there is a need for such methodologies which are amenable to automation to facilitate preparation of 5 diagnostic agents in the clinical setting. The present invention provides a method for labelling a vector comprising reaction of a compound of formula (1) with a compound of formula (11): L1-vector (1) 10 R*-L2 -N 3 (II) or, 15 a compound of formula (lll) with a compound of formula (IV) NL3 vector (Ill) R*-L4 (IV) 20 in the presence of a Cu (1) catalyst, wherein: L1, L2, L3, and L4 are each Linker groups; R* is a reporter moiety which comprises a radionuclide; 25 to give a conjugate of formula (V) or (VI) respectively: -2 - L1]vecor(V) N :/ Ll-1~ N-- L3 j vector(VI) N L4-R* wherein L1, L2, L3, L4, and R* are as defined above. The Linker groups Li, L2, L3, and L4 are each independently a C,.
6 o 5 hydrocarbyl group, suitably a C 1
.
3 0 hydrocarbyl group, optionally including 1 to 30 heteroatoms, suitably 1 to 10 heteroatoms such as oxygen or nitrogen. Suitable Linker groups include alkyl, alkenyl, alkynyl chains, aromatic, polyaromatic, and heteroaromatic rings any of which may be optionally substituted for example with one or more ether, thiooether, sulphonamide, or 10 amide functionality, monomers and polymers comprising ethyleneglycol, amino acid, or carbohydrate subunits. The term "hydrocarbyl group" means an organic substituent consisting of carbon and hydrogen, such groups may include saturated, unsaturated, or 15 aromatic portions. The Linker groups L1, L2, L3, and L4 may be chosen to provide good in vivo pharmacokinetics, such as favourable excretion characteristics in the resultant compound of formula (V) or (VI). The use of linker groups with different 20 lipophilicities and or charge can significantly change the in vivo pharmacokinetics of the peptide to suit the diagnostic need. For example, where it is desirable for a compound of formula (V) or (VI) to be cleared from the body by renal excretion, a hydrophilic linker is used, and where it is desirable for clearance to be by hepatobiliary excretion a hydrophobic linker is -3 used. Linkers including a polyethylene glycol moiety have been found to slow blood clearance which is desirable in some circumstances. R* is a reporter moiety which comprises a radionuclide for example a positron 5 emitting radionuclide. Suitable positron-emitting radionuclides for this purpose include "C, "'F, 75 Br, 76 Br, 1241, 82 Rb, 68 Ga, 64 Cu and 62 Cu, of which "C and " 8 F are preferred. Other useful radionuclides include 1231, 1251, 1311, 2 1 'At, 99 mTc, and 1 "in. Metallic radionuclides are suitably incorporated into a chelating agent, for example by direct incorporation by methods known to the person skilled in the 10 art. Chelation of a metallic reporter is preferably performed prior to reaction of the compound of formula (1) or (IV) with a compound of formula (ii) or (lll) respectively, to avoid chelation of the Cu(I) catalyst. Suitable chelating agents comprised in R*, include those of Formula X 15
R
2 A R2n R 2 A R2A R4A RAR2A R2A
R
2 A RiA HN R3A NH RIA R1 RIA RIA NN RA I~ H OH (X) where: each RiA, R 2 A, R 3 A and R 4 A is independently an RA group; 20 each RA group is independently H or C1.10 alkyl, C3.10 alkylaryl, C2-10 alkoxyalkyl, C1.10 hydroxyalkyl, C1.10 alkylamine,
C
1
.
10 fluoroalkyl, or 2 or more RA groups, together with the atoms to which they are attached form a carbocyclic, heterocyclic, saturated or unsaturated ring, or R* can comprise a chelating agent given by formula (i), (ii), (iii), or (iv) -4- C HN O CH, 01H r FIN 0 0 HN O HN NH 0 0 HO N N HN *H HO *-N N0 (iii) (iv) A preferred example of a chelating agent is represented by formula (v. NH HN N NH H N N (v)) iv Compounds of formula (I) or (IV) comprising chelating agents of Formula X can be radiolabelled to give good radlochemical purity (RCP), at room temperature, under aqueous conditions at near neutral pH. 1o ln formulae (1) and (1ll) and in other aspects of the invention unless specifically stated othenNise, suitable vectors for labelling are peptides, which may include somatostatin analogues, such as octreotide, bombesin, vasoactive intestinal peptide, chemnotactic peptide analogues, a-melanocyte stimulating hormone, -5 neurotensin, Arg-Gly-Asp peptide, human pro-insulin connecting peptide, insulin, endothelin, angiotensin, bradykinin, endostatin, angiostatin, glutathione, calcitonin, Magainin I and II, luteinizing hormone releasing hormone, gastrins, cholecystochinin, substance P, vasopressin, formyl-noreucyl-leucyl 5 phenylaany-norleucyl-tyrosyl-lysine, Annexin V analogues, Vasoactive Protein 1 (VAP-1) peptides, and caspase peptide substrates. Preferred peptides for labelling are Arg-Gly-Asp peptide and its analogues, such as those described in WO 01/77415 and WO 03/006491, preferably a peptide comprising the fragment s 0 S ~S 00' rH 0 1 0AYH 0 ( HN N N N H -H I H o o N NH HN HN(
NH
2 10 more preferably the peptide of formula (A): 0 (A) o O0HO NH H HN HNH -HNH2 -H.C 15 wherein X 7 is either -NH 2 or H H N
NH
2 0 0 wherein a is an integer of from 1 to 10, preferably a is 1. -6- As will be appreciated by the skilled person, the methods of the invention may also be used for radlolabelling of other biomolecules such as proteins, 5 hormones, polysaccarides, oligonucleotides, and antibody fragments, cells, bacteria, viruses, as well as small drug-like molecules to provide a variety of diagnostic agents. In formulae (1) and (Ill) and in other aspects of the invention unless specifically stated otherwise, particularly suitable vectors for radiolabelling are peptides, proteins, hormones, cells, bacteria, viruses, and 10 small drug-like molecules. The reaction of compound of formula (1) with compound of formula (11) or of compound of formula (1ll) with compound of formula (IV) may be effected in a suitable solvent, for example acetonitrile, a C1.4 alkylalcohol, 15 dimethylformamide, tetrahydrofuran, or dimethylsulphoxide, or aqueous mixtures of any thereof, or in water and at a non-extreme temperature of from 5 to 1000C, preferably at ambient temperature. The Cu(I) catalyst is present in an amount sufficient for the reaction to progress, typically either in a catalytic amount or in excess, such as 0.02 to to 1.5 molar equivalents relative to the 20 compound of formula (1) or (1ll). Suitable Cu(I) catalysts include Cu(I) salts such as Cul, CuOTf.C 6
H
6 or [Cu(NCCH 3 )4][PF6], but advantageously Cu(ll) salts such as copper (11) sulphate may be used in the presence of a reducing agent such as ascorbic acid or a 25 salt thereof for example sodium ascorbate, hydroquinone, quinone, metallic copper, glutathione, cysteine, Fe 2 +, or Cc 2 +. Cu(1) is also intrinsically presented on the surface of elemental copper particles, thus elemental copper, for example in the form of powder or granules may also be used as catalyst. It has been found that using a Cu(I) catalyst, particularly elemental copper, with 30 controlled particle size, leads to surprisingly improved radiochemical yields. Thus, in one aspect of the Invention, the Cu (1) catalyst particularly elemental copper, has a particle size in the range of from 0.001 to 1mm, preferably of from 0.1mm to 0.7mm, more preferably around 0.4mm. -7- The present invention provides a more chemoselective approach to radiolabelling where the exact site of introduction of the label is pre-selected during the synthesis of the peptide or vector precursor. The ligation reaction 5 occurring at a pre-determined site in the vector gives only one possible product. This methodology is therefore chemoselective, and its application is considered generic for a wide range of peptides , biomolecules and low-molecular weight drugs. Additionally, both alkyne and azide functionalities are stable under most reaction conditions and are unreactive with most common peptide 10 functionalities- thus minimising the protection and deprotection steps required during the labelling synthesis. Furthermore, the triazole ring formed during the labelling reaction does not hydrolise and is highly stable to oxidation and reduction, meaning that the labelled vector has high in vivo stability. The triazole ring is also comparible to an amide in size and polarity such that the 15 labelled peptides or proteins are good mimics for their natural counterparts. Compounds of formula (I) and (ill) wherein the vector is a peptide or protein may be prepared by standard methods of peptide synthesis, for example, solid phase peptide synthesis, for example, as described in Atherton, E. and 20 Sheppard, R.C.; "Solid Phase Synthesis"; IRL Press: Oxford, 1989. Incorporation of the alkyne or azide group in a compound of formula (I) or (111) may be achieved by reaction of the N or C-terminus of the peptide or with some other functional group contained within the peptide sequence, modification of which does not affect the binding characteristics of the vector. The alkyne or 25 azide groups are preferably introduced to a compound of formula (l) or (1ll) by formation of a stable amide bond, for example formed by reaction of a peptide amine function with an activated acid or alternatively reaction of a peptide acid function with an amine function and introduced either during or following the peptide synthesis. Methods for incorporation of the alkyne or azide group into 30 vectors such as cells, viruses, bacteria may be found in H.C.Kolb. and K.B. Sharpless, Drug Discovery Today, Vol 8 (24), December 2003 and the references therein. Suitable intermediates useful for incorporation of the alkyne or azide group in a compound of formula (1) or (ll) include:
H
2 NA H2N eiroaryl NH 2 OH SH NH 2 H2N, gar iiIII II I( III I i I 0rX/7 \- NH 2
NH
2 cNH
NH
2 0 2 H HO2a HO2C'eteroaryl CO2H R1C2H SOJH C0 2 H HN CO 2 H
HO
2 Cu SCN, H 2 N CO 2 H N Na-L3-NH 2 N-L3-CO2H N,- L3F C0 2 H 5 N3-L3-SO 3 H N,-L3- OH N,- L3 - SH In another aspect, the present invention provides novel prosthetic groups, useful for labelling vectors such as peptides and proteins, for example by the methods described above. Accordingly, there is provided a compound of 10 formula (11) or formula (IV): R*-L2 -N 3 (II) R* -- L4 -\ (IV) wherein L2 and L4 are each Linker groups as defined above and R' is a 15 reporter moiety as defined above. In one embodiment of this aspect of the invention, R* is 18 F such that the prosthetic groups are of formula (Ila) and (IVa): R*-L2 -N 3 (Ila) 1 F- L4 \ (IVa) 20 -9 wherein L2 and L4 are each Linker groups as defined above. Preferred compounds of formula (IV) include: F IF o o 0 OH 0 CH 3 5 In another aspect, the present invention provides a compound of formula (l) or (11l): Li vector (I) N3 -L3-- vector (Ill) 10 wherein LI and L3 are each Linker groups as defined above and the vector is as defined above. Suitably, in this aspect of the invention the vector is a peptide or protein. Preferred compounds of formula (i) and (Ilil) are those wherein the vector is Arg-Gly-Asp peptide or an analogue thereof such as those 15 described in WO 01/77415 and WO 03/006491, preferably a peptide comprising the fragment H5 H OHo ' H 0 HO HN HN=(
NH
2 more preferably the peptide of formula (A): 20 -10- NHH N H ~ l~ 0 H x H 0 H / 0 N H HN HN
OH
2 NH 2 -H20C wherein
X
7 is either -NH 2 or -{-- HNONH 2 0 0 5 wherein a is an integer of from 1 to 10, preferably a is 1. In a further aspect the present invention provides labelled vectors of formulae (V) and (VI), as defined above. Preferred compounds of formulae (V) and (VI), are those wherein the vector is Arg-Gly-Asp peptide or an analogue thereof, 1o such as those described in WO 01/77415 and WO 03/006491, preferably a peptide comprising the fragment -S -- s 0 H H OHN N o O NH HO HN HN=(
NH
2 more preferably the peptide of formula (A): 15 -11-- 0o 0 HNN X' (A) 0 :H NH HN HN=( O# 0 NH 2
-H
2 C wherein X' is either -NH 2 or H
NH
2 0 0 5 wherein a is an integer of from 1 to 10, preferably a is 1. Compounds of formula (II) wherein R* comprises a 11 C radiolabel may be prepared for example according to the scheme:
"C"H
3 1 N3X\ OH Na O CH3 COH N 3 base
SOCH
3 1 1
CH
3 1
N
3 H2bas N N3CH3 11
CH
3 1
N
3 Na - N 3 0CH base 1 1
CH
3 1 N -L2-NuH bas N--L2-Nu"CH3 10 wherein -NuH is a nucleophilic reactive centre such as a hydroxyl, thiol or amine functionality. Compounds of formula (II) wherein R* is 18 F, may be prepared by either -12electrophilic or nucleophilic fluorination reactions, for example OH I)NaN 3 OTs 11F Br II)TsCI Kryptofix 222 N3 Et 3 N 1BF Unker - Leaving group 18F
N
3 Kryptofix 222 No
N
3 - L2--\ Leaving group 5 Suitable radiofluorination methods for preparation of a compound of formula (II) include reaction of the precursor incorporating a leaving group (such as an alkyl or aryl sulphonate, for example mesylate, triflate, or tosylate: nitro, or a trialkylammonium salt) with 18F in the presence of a phase transfer agent such as a cyclic polyether, for example 18-Crown-6 or Kryptofix 2.2.2. . This reaction 1o may be performed in solution phase (using an aprotic solvent such as acetonitrile as solvent) under standard conditions known in the art [for example, M.J. Welch and C.S. Redvanly "Handbook of Radiopharmaceuticals", published by Wiley], or using a solid support to facilitate purification of the compound of formula (11) using the methods described in WO 031002157. 15 Compounds of formula (IV) may be prepared from suitable acetylene precursors by methods analogous to those described for synthesis of compounds of formula (11). 20 The present invention also provides a radiopharmaceutical composition comprising an effective amount (e.g. an amount effective for use in in vivo imaging, suitably PET or SPECT) of a compound of general formula (V) or (VI) as defined above; together with one or more pharmaceutically acceptable adjuvants, excipients or diluents. Preferably, the vector in the compound of 25 formula (V) or (VI) is Arg-Gly-Asp peptide or an analogue thereof, as described above. -13- A further embodiment of the invention relates to a compound of general formula (V) or (VI) as defined above, for medical use and particularly for use in in vivo imaging (suitably by PET or SPECT). Preferably, the vector in the 5 compound of formula (V) or (VI) is Arg-Gly-Asp peptide or an analogue thereof, as described above. The labelled vectors of formulae (V) and (VI) may be administered to patients for in vivo imaging in amounts sufficient to yield the desired signal, typical 10 radionuclide dosages for PET or SPECT imaging of 0.01 to 100 mCi, preferably 0.1 to 50 mCi will normally be sufficient per 70kg bodyweight. The labelled vectors of formula (V) or (VI) may therefore be formulated for administration using physiologically, acceptable carriers or excipients in a 15 manner fully within the skill of the art. For example, the compounds, optionally with the addition of pharmaceutically acceptable excipients, may be suspended or dissolved in an aqueous medium, with the resulting solution or suspension then being sterilized. 20 Viewed from a further aspect the invention provides the use of a labelled vector of formula (V) or (VI) for the manufacture of a pharmaceutical for use in a method of in vivo imaging, suitably PET; involving administration of said pharmaceutical to a human or animal body and generation of an image of at least part of said body. 25 Viewed from a still further aspect the invention provides a method of generating an image of a human or animal body involving administering a pharmaceutical to said body, e.g. into the vascular system and generating an image of at least a part of said body to which said pharmaceutical has distributed using an in vivo 30 imaging technique such as PET, wherein said pharmaceutical comprises a labelled vector of formula (V) or (VI). -14- Viewed from a further aspect the invention provides a method of monitoring the effect of treatment of a human or animal body with a drug to combat a condition, said method comprising administering to said body a labelled vector of formula (V) or (VI) and detecting the uptake of said labelled vector, said 5 administration and detection optionally but preferably being effected repeatedly, e.g. before, during and after treatment with said drug. In yet another embodiment of the instant Invention, there is provided a kit for the preparation of a radiofluorinated tracer comprising a prosthetic group of 1o formula (II) or (IV) or a precursor thereof and a compound of formula (1) or (lll). In use of the kits, the precursor compound would be converted to the corresponding compound of formula (11) or (IV), using methods described above. The compounds of formula (II) and (IV) may be used in unpurified form, 15 but preferably, the compound of formula (11) and (IV) may be separated from waste reactants by passing the reaction mixture through a Solid Phase Extraction (SPE) cartridge, by chromatography, or by distillation. The compound of formula (II) and (IV) would then be added to the compounds of formula (I) and (Ill) respectively which may suitably be dissolved in a suitable 20 solvent as described herein. After reaction at a non-extreme temperature for 1 to 90 minutes, the labelled peptide may be purified, for example, by SPE and collected. The chemistry described herein may also be used to prepare libraries of 25 radiolabelled vectors suitable for screening as diagnostic drugs or in vivo imaging agents. Thus, a mixture of prosthetic groups of formula (II) or (IV) may be reacted with one or more compounds of formula (I) or (ll) respectively using the methods described above to yield a library of radiolabelled vectors. 30 EXAMPLES The invention is illustrated by way of examples in which the following abbreviations are used: HPLC: high performance liquid chromatography DMF : N,N-dimethylformamide DMSO: dimethylsulphoxide 5 ESI-MS : Electrospray lonisation Mass Spectrometry r.t. : room temperature TOF-ESI-MS: time of flight electrospray ionisation mass spectrometry FT-IR: Fourier transform infrared ppm: parts per million 10 TFA: trifluoroacetic acid ACN: acetonitrile Preparation of Reference Compounds - N Namwb4 II~~o R FF 2. tDA Hp)R R= #J)-K-cooH 1 NH2 4 -COOH Ac N 6 15 Example 1 - Preparation of compound (2) - 1--Azido 2-fluoroethane Toluene-4-sulfonic acid 2-fluoro-ethyl ester, compound (1), was prepared as described by E. U. T. van Velzen et al. in Synthesis (1995) 989-997. Compound (1) (128 mg, 0.586 mmol) and sodium azide (114 mg, 1.758 mmol) were mixed 20 with anhydrous DMF (10 ml) and stirred at room temperature for 48 hours. The reaction mixture was filtered, but product (2) was not isolated from the reaction solution. -16- Example 2 - Preparation of compound (3) - 1-(2-Fluoro-ethyl -4-phenl-1H [1,2,3Ltriazole Phenylacetylene (105 i, 0.977 mmol) in DMF (1 ml) was added under nitrogen 5 to a stirring solution of copper(II) sulphate pentahydrate (12 mg, 0.0489 mmol) and L-ascorbic acid (16 mg, 0.0977 mmol) in water (0.3 ml). After addition of compound (2) (1.172 mmol) in DMF (5 ml), stirring was continued at room temperature for 21 hours. The reaction mixture was diluted with water (5 ml), and the crude product was extracted with dichloromethane (3 x 5 ml) and io washed with sodium bicarbonate solution (10 %, 3x10 ml), and brine (1 x 5 mI). After drying over sodium sulphate, the solvent is removed under reduced pressure and the crude material purified using flash chromatography (silica, hexane/ethylacetate). Yield: 32 mg (17 %) white crystals, m.p. 83-85 0 C 15 'H-NMR (CDCl 3 ): 6 = 4.70 (m, IH, CH 2 ), 4.76 (m, IH, CH 2 ), 4.80 (m, 1H, CH 2 ), 4.89 (m, 1H, CH 2 ), 7.35 (tt, 1.0 Hz, 7.5 Hz, 1H, HAr), 7.44 (m, 2 H, HAr), 7.84 (m, 2H, HAr), 7.89 (d, 1Hz, 1H, CH-triazole) ppm GC-MS: mIz = 191 TOF-ESI-MS: found m/z = 192.0935 [MHf, calculated for C 10 HoN 3 EF [MH]* m/z 20 = 192.0932 Example 3 - Preparation of compound (4) - 4-[1-(2-Fluoro-ethyl)-1H [_1,2,31triazol4--Vl-phnvlamine 4-Ethynylaniline (40 mg, 0.344 mrol) in DMF (0.7 ml) was added under 25 nitrogen to a stirring solution of copper(II) sulphate pentahydrate (129 mg, 0.516 mmol) and L-ascorbic acid (182 mg, 1.032 mmol) in water (1.2 ml). After addition of compound (2) (0.287 mmol) in DMF (2.45 ml), stirring was continued at room temperature for 4 hours. The reaction mixture was quenched with sodium hydroxide solution (1M, 5 ml). The product was extracted with ethyl 30 acetate (3 x 5 ml), washed with water (5 ml), and brine (2 ml). After drying over sodium sulphate, the solvent was removed under reduced pressure and the crude material purified using flash chromatography (silica, hexane/ethylacetate). Yield: 15 mg (25 %) beige crystals, m.p. 79-82 "C 1 H-NMR (CDCla): 6 = 4.70 (m, 1H, CH 2 ), 4.72 (m, 1H, CH 2 ), 4.77 (m, IH, CH 2 ), 4.88 (m, 1H, CH 2 ), 6.74 (m, 2 H, HAr), 7.63 (m, 2H, HAr), 7.74 (d, 0.1 Hz, 1H, CH-triazole) ppm TOF-ESI-MS: found m/z = 207.1030 [MH]*, calculated for C 10
H
11
N
4 F [Ml-]* m/z 5 = 207.1040 Example 4 - Preparation of compound_(5) -- 1(2-Fluoro-ethyl)-1H [1,2,31triazole-4-carboxylic acid benzvlamide Propynoic acid benzylamide (50 mg, 0.314 mmol) that was prepared following 10 the protocol of G. M. Coppola and R. E. Damon in Synthetic Communications 23 (1993) 2003-2010, was dissolved in DMF (1 ml) and added under nitrogen to a stirring solution of copper(II) sulphate pentahydrate (3.9 mg, 0.0157 mmol) and L-ascorbic acid (11 mg, 0.0628 mmol) in water (0.4 ml). After addition of compound (2) (0.377 mmol) in DMF (3.2 ml), stirring was continued at room 15 temperature for 48 hours. The reaction mixture was diluted with sodium bicarbonate (10 %, 5 ml), and the crude product was extracted with dichloromethane (3 x 5 ml) and washed with brine (5 ml). After drying over sodium sulphate, the solvent was removed under reduced pressure and the crude material purified by recrystallization from ethylacetate/diethylether. 20 Yield: 8 mg (10 %) white crystals, m.p. 165-167 0 C 'H-NMR (CDC13): 6 = 4.70 (m, 6H, CH 2 ), 7.34 (m, 5H, HAr), 7.46 (m, 1H, NH), 8.20 (s, 1H, CH-triazole) ppm TOF-ESI-MS: found m/z = 249.1143 [MH]*, calc. for C 12
H
13
N
4 0F [MH] rn/z 249.1146 25 Example 5 - Preparation of compound (6) - N-Benzvl--3-1-(2-fluoro-ethyl)-1H [1 ,231triazol-4-ll-roionamide Pent-4-ynoic acid benzylamide - This compound was synthesised using a similar method as described by G. M. Coppola and R. E. Damon (see example 30 4) except with isolating of the N-succinimidyl intermediate. Yield: 100 mg (53 %) white needles, m.p. 50-55 'C 'H-NMR (CDC13): 6 = 1.98 (m, 1H, alkyne-CH), 2.44 (m, 2H, CH 2 ), 2.56 (m, 2HCH 2 ), 4.46 (d, 2H, CH 2 N), 7.29-7.25 (m, 5H, HAr) ppm -- 18 - FT-lR (film): 1651, 1629 cm TOF-ESI-MS: found m/z = 188.1073 [MH]*, caIc. for C 12
H
13 NO [MH]* m/z = 188.1070 N-Benzyl-3-[1-(2-fluoro-ethyl)-1H-[1,2,3]triazol-4-yI]-propionamide - Pent-4 5 ynoic acid benzylamide (50 mg, 0.267 mmol) in methanol (0.5 ml), compound (2) (0.320 mmol) in DMF (2.62 ml), and diisopropylamine (0.233 ml, 1.335 mmol) are added under nitrogen to a stirring suspension of copper(l) iodide (255 mg, 1.335 mmol) in methanol (0.8 rnl). Stirring was continued at room temperature for 2 hours. The reaction mixture was quenched with a solution of 1o sodium hydrogenphosphate (1 g) in water (10 ml) and filtered through Celite. The crude product was extracted with ethyl acetate (3 x 20 ml), and washed with brine (20 ml). After drying over sodium sulphate, the solvent was removed under reduced pressure and the crude material purified by column chromatography using silica and ethylacetate/hexane. 15 Yield: 19 mg (26 %) white crystals, m.p. 127-133 0C 'H-NMR (CDC1 3 ): 6 = 2.66 (t, 7.0 Hz, 2H, CH 2 ), 3.09 (t, 7.0 Hz, 2H, CH 2 ), 4.40 (d, 5.7 Hz, 2H, benzyl-CH2), 4.56 (m, 2H, CH 2 ), 4.61 (m, 2H, CH 2 ), 4.70 (n, 2H,
CH
2 ), 4.80 (m, 2H, CH 2 ), 6.0 (s, IH, NH), 7.0-7.3 (m, 5H, HAr), 7.44 (s, 1H, CH triazole) ppm 20 TOF-ESI-MS: found m/z = 277.1474 [MH]*, calc. for C 12
H
13
N
4 0F [MH]* m/z = 277.1459 Example 6 - Preparation of compound (7) - 4-[1-(2-Fluoro-ethyl)-1H [1,2,3]triazol-4-yll-benzoic acid 25 Sodium 4-ethynylbenzoate (50 mg, 0.297 mmol) in DMF (1.5 ml) was added under nitrogen to a stirring solution of copper(ll) sulphate pentahydrate (3.7 mg, 0.0149 mmol) and L-ascorbic acid (10.5 mg, 0.0595 mmol) in water (0.2 ml). After addition of compound (2) (0.356 mmol) in DMF (0.76 ml), stirring was continued at room temperature for 12 hours. The reaction mixture was diluted 30 with HCI (20 ml, 1 M). The crude product was extracted with ethyl acetate (3 x 10 ml) and washed with brine (10 mi). After drying over sodium sulphate, the solvent was removed under reduced pressure and the crude material recrystalized from ethylacetate/hexane. -19- Yield: 37 mg (52 %) white crystals, m.p. 236-240 *C 'H-NMR (DMSO-d 6 ): 6 = 4.74 (m, 1H, CH 2 ), 4.80 (m, 2H, CH 2 ), 4.90 (m, 1H,
CH
2 ), 8.70 (s, 1Hz, 1H, CH-triazole) ppm TOF-ESI-MS: found m/z = 236.0838 [MH]*, calc. for CIH 10
N
3 0 2 F [MH]* m/z = 5 236.0830 Example 7 -- Preparation of compound (8) - 1-(2Fluoro-eth -1H [1,2,31triazole-4-carboxvilc acid Propiolic acid (60 1i, 0.977 mmol) in DMF (0.5 ml) was added under nitrogen to io a stirring solution of copper(ll) sulphate pentahydrate (12 mg, 0.0489 mmol) and L-ascorbic acid (34 mg, 0.135 mmol) in water (0.4 ml). After addition of compound (2) (1.172 mmol) in DMF (2.5 ml), stirring was continued at room temperature for four hours. The reaction mixture was quenched with HCI (20 ml, 1M), and the crude product was extracted with ethyl acetate (3 x 20 ml). 15 After washing with brine (5 ml) and drying over sodium sulphate, the solvent was removed under reduced pressure and the product purified by recrystallisation from ethyl acetate/hexane. Yield: 16 mg (10 %) white crystals, m.p. 160-165 0C 'H-NMR (DMSO-d 6 ): 6 = 4.74 (m, 1H, CH 2 ), 4.80 (m, 2H, CH 2 ), 4.90 (m, 1H, 20 CH 2 ), 8.71 (s, IH, CH-triazole) ppm TOF-ESI-MS: found m/z = 160.0518 [MH)*, calc. for C 5
H
6
N
3 0 2 F [MH]* m/z = 160.0517 Example 8 - Preparation of compound 9) -2-Acettylamlno-3[r1-(2-fluoroethyl 25 1H-1 ,2,31triazol-4-vi-propionic acid ethyl ester 2-Acetylamino-pent- 4 -ynoic acid ethyl ester (200 mg, 1.09 mmol) in methanol (1 ml) was added under nitrogen to copper powder (200 mg, 40 mesh), followed by a solution of compound (2) (1.09 mmol) in DMF (3 ml). The mixture was stirred for 90 minutes and then heated at 80 0C for three hours. Compound (9) 30 was isolated by reverse phase flash chromatography (acetonitrile/water). Yield: 145 mg (49 %) oil, crystals upon storing at 4 "C, m.p. 55-60 0C 1 H-NMR (CDC3l): 6 = 1.13 (t, 3H, CH 2
CH
3 ), 1.82 (s, 3H, CH 3 ), 2.97 (dd, 2 J 14.9 Hz, 3 J = 8.5 Hz, IH, propionic-CH2), 3.07 (dd, 2 J = 14.9 Hz, 3 J = 6.0 Hz, -20- IH, propionic-CH2), 4.05 (m, 2H, OCH 2 CH3), 4.47 (m, 1H, CH), 4.46 (m, IH,
CH
2 ), 4.64 (m, 1H, CH 2 ), 4.70 (m, IH, CH 2 ), 4.81 (m, 1H, CH 2 ), 7.89 (s, 1H, triazole-CH), 8.31 (d, 1H, NH) ppm TOF-ESI-MS: found m/z = 273.1372 [MH]*, calc. for C 11
H
17
N
4 0 3 F [MH m/z = 5 273.1357 10 Radiochemistry . [18FKF-[2.2.2] N NsO'a -- F MecN, 15 min @ 80 oC 1011 Example 9 - Preparation of compound (11 - 1 F11-Azido-2-fluoro-ethane 15 18 F-Fluoride was produced by a cyclotron using the 18O(p,n)"F nuclear reaction with 19 MeV proton irradiation of an enriched
[
8 0]H 2 0 target. After the irradiation, a mixture of Kryptofix@ (5 mg), potassium carbonate (1 mg), and acetonitrile (1 ml) was added to 18 F-water (1 ml). The solvent was removed by heating at 80 0C under a stream of nitrogen (100 mI/min). Afterwards, 20 acetonitrile (0.5 ml) was added and evaporated under heating and nitrogen stream. This procedure was repeated twice. After cooling to room temperature, a solution of compound (10) [1.5 gI; prepared according to the method of Z. P. Demko and K. B. Sharpless, Org. Lett. 3 (2001) 4091) in anhydrous acetonitrile (0.2 ml) was added. The reaction mixture was stirred for 30 min at 80 C. 25 Compound (11) was isolated with a decay-corrected radiochernical yield of 40±14 % (n = 7) through distillation [efficiency: 76±8 % (n = 7)]. Example 10 - PreparatiOn of compounds (12)-(16) - F1BE[1-(2-Fiuro-ethyIl)-H [1,2,31triazoles -21- R Compound R R.C.Y.* 12 39% i7% 13 14 <1 % 15 COOH 69% .Et >99 % HN Ac * by HPLC, " isolated, one-pot reaction A solution of the alkyne reagent (0.015 mmol) in DMF (0.1 ml) was added to a mixture of copper(II) sulphate (5 equivalents) and L-ascorbic acid (20 equivalents) under nitrogen. A solution of compound (11) in acetonitrile (0.2 ml) 5 was added. After stirring for 30 min at 80 *C, the reaction mixture was analyzed by HPLC. Example 11 - Preparation of compound (18) - [ 1 (S)6-Amino-2-(2-{(S)-2-[2 ((S)-6-amino-2-{[4-(2-fluoro-ethyl)-[1,2,31triazole-1 -carbonvl-amino} 10 hexanovlamino)-acetylaminol-3-phenyl-propionylamino-acetylamino)hexanoic acid
NH
2
NH
2
NH
2
NH
2
H
0 ~ -. NN~'kJ ~ N~' OH Mi 4 5 min @8 0 0C H O H H 0 o o pH 6.0, cu(0) 1F (ci-N-Propynyl)-Lys-Gly-Phe-Gly-Lys 17 18 -22- Compound (17) (1 mg, 1.7 ptmol) was dissolved in sodium phosphate buffer (pH 6.0, 0.25 M, 0.05 ml). Compound (11) (175 p.Ci, 6.5 MBq) in acetonitrile (0.05 ml) was added followed by copper granules (400 mg, 10-40 mesh). The mixture was heated for 5 minutes at 80 *C. HPLC analysis shows 86 % of radiolabelled 5 peptide (18). Example 12 - Preparation of compound (20) HNN 11 30 min @ 80 OC Cu(O) 0 0 0 N~ lH, ;0 20 10 (i) Preparation of comoound 19: Cs2-6; cCHCO-Lys(DL-Pra-Ac)-Cvs-Ar Gly-Asp-Cys-Phe-Cvsj-CCX6-NH 2 Ac-DL-Pra-OH (31 mg), (7-Azabenzotriazole-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyAOP) (104 mg) and N-methylmorpholine (NMM) (88 15 pL) were dissolved in dimethylformamide (DMF) (3 mL) and the mixture stirred for 5 minutes prior to addition of CICH2CO-Lys-Cys(tBu)-Arg-Gly-Asp-Cys(tBu) Phe-Cys-PEG-NH2 (126 mg) prepared as described in W02005/003166 dissolved in DMF (4 mL). The reaction mixture was stirred for 45 minutes. More CICH2CO-Lys-Cys(tBu)-Arg-Gly-Asp-Cys(tBu)-Phe-Cys-PEG-NH2 (132 mg) -23and NMM (44 pL) were added and stirring continued for 45 minutes. DMF was then evaporated in vacuo, the residue (5 mL) diluted with 10 % acetonitrile (ACN)/water (100 mL) and the product purified using preparative HPLC. Purification and characterisation 5 Purification by preparative HPLC (gradient: 10-40 % B over 60 min where A =
H
2 0/0.1 % TFA and B = ACN/0.1 % TFA, flow rate 50 mL/min, column: Phenomenex Luna 5p C18 (2) 250 x 50 mm, detection: UV 214 nm, product retention time: 31.3 min) of the diluted residue afforded 170 mg pure Al 112145, io The pyre product was analysed by analytical HPLC (gradient: 10-40 % B over 10 min where A = H 2 0/0.1 % TFA and B = ACN/0.1 % TFA, flow rate: 0.3 mL/min, column: Phenomenex Luna 3p C18 (2) 50 x 2 mm, detection: UV 214 nm, product retention time: 6.32 min). Further product characterisation was carried out using electrospray mass spectrometry (MH* calculated: 1395.5, MH* 15 found: 1395.7). (ii) Preparation of Compound 20 Compound (19) (0.5 mg, 0.35 ltmol) was dissolved in sodium phosphate buffer (pH 6.0, 50 mM) and mixed with a solution of compound (11) (25 il, 728 vCi/25 MBq) and copper powder (200 mg, 40 mesh). After heating for 15 minutes at 20 700C, the mixture is analysed by radio HPLC. The conjugation product (20) was isolated using semipreparative HPLC (column Luna C18(2), 100x1O mm, flow rate 2.0 mil/min; solvent A: water (0.085 % phosphoric acid v/v), solvent B: water (30 % ethanol v/v), gradient: 50 % B to 100 % B in 15 minutes. The labelled peptide (20) was obtained with a decay 25 corrected radiochemical yield of 10 % and a radiochemical purity of >99 %. The identity of the radioactive product peak (k' = 2.03) was confirmed by co-injection with a standard sample of compound (20). 30 -24- Example 13 - Optimization of reaction parameters for the Preparation of compound (20) 5 General procedure: To a solution of compound (19) (0.5 mg, 0.35 pmol) in buffer (50 p1; buffer A: sodium phosphate, pH 6.0, 50 mM; buffer B: sodium carbonate, pH 9.3, 50 mM) is added compound (11) (0.1 mCi, 3.7 MBq) in acetonitrile (100 [1), followed by copper catalyst (catalyst 1: copper granules 10+40 mesh, catalyst 2: copper powder -40 mesh, catalyst 3: copper powder, 10 dendritic, 3 .tm). The mixture was incubated for 15 minutes at 80 0 C and analyzed by HPLC. Table 2. Labelling efficiency of compound (19) to form compound (20) depending on pH and catalyst (400 mg) as measured by HPLC 15 Suffer Catalyst 1 Catalyst 2 Catalyst 3 -12 % % B~ ..
33% * no UV peak for peptide precursor found Table 3. Labelling efficiency of compound (19) to form compound (20) depending amount of catalyst 3 at pH 6.0 (buffer A). 20 Amount of catalyst 3 Labelling efficiency of compound (20) 200 mg 23 % 100 mg 37% 50 mg 27 % The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended 25 as illustration of several aspects of the invention. Any equivalent embodiments -25are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates. -26-
Claims (18)
1. A method for labelling a vector comprising reaction of a compound of formula (1) with a compound of formula (1l): 5 \ L-vector (I) R*-L2 -N 3 (II) 10 or, a compound of formula (ll) with a compound of formula (IV) N-L3 vector (Ill) R*-- L4 --- (IV) 15 in the presence of a Cu (1) catalyst, wherein: L1, L2, L3, and L4 are each Linker groups; R* is a reporter moiety which comprises a radionuclide; 20 to give a conjugate of formula (V) or (VI) respectively: -L1 ver(V) N'N L3-decr (VI) IL4 N L4-R* -2'7 - wherein Li, L2, L3, L4, and R* are as defined above.
2. A method according to claim 1 wherein R* comprises a positron-emitting radionuclide, preferably "C or 18F. 5
3. A method according to claim 1 or 2 wherein the vector is a peptide, protein, hormone, cell, bacterium, virus, or small drug-like molecule, most suitably a peptide. 10
4. A method according to any of claims 1 to 3 wherein the vector is Arg-Gly Asp peptide or an analogue thereof.
5. A method according to any one of claims 1 to 4 wherein the vector Is a peptide comprising the fragment: 0o, H 1 01 HN N N O HO NH H HN HN=( NH 15 2
6. A method according to any one of claims I to 5 wherein the vector is the peptide of formula (A): 0 HN NH NA N (A) H O 0 NHO HN HNN O NH2 -H 2 C 20 -28- wherein X 7 is either -NH 2 or -{-H~ go O O H NH2 0 0 wherein a is an integer of from I to 10, preferably a is 1. 5
7. A method according to any one of claims 1 to 6 wherein elemental copper is used as source of the Cu(I) catalyst.
8. A method according to claim 7 wherein the elemental copper has a particle size in the range of from 0.001 to 1mm, preferably of from 0.1mm to 0.7mm, io more preferably around 0.4mm.
9. A compound of formula (11) or formula (IV): R*-L2 -N 3 (II) 15 ~R* - L4 - \ (IV) wherein L2 and L4 are each Linker groups and R* is a reporter moiety as defined in claim I or 2.
10. A compound of formula (V) or (VI): L1 vetr(V) N' -/ Ll-jM~ R*-L2 L3 ve (VI) NN 20 L4-R* wherein L1, L2, L3, L4, R* and the vector as defined in any of claims 1 to 6. -29-
11. A compound of formula (V) or (VI) according to claim 10 wherein the vector is Arg-Gly-Asp peptide or an analogue thereof.
12. A compound of formula (V) or (VI) according to claim 10 or 11 wherein the 5 vector is a peptide comprising the fragment: s 0] S- S0 0 o 0 H HN NN H O / 0 NH HN HN( NH 2 more preferably the peptide of formula (A): HN NN..'' NN ox (A) 0 N H H : H H NH H / HN HN=( 0 NH 2 10 -H 2 C wherein X 7 is either -NH 2 or H NH 2 0 0 wherein a is an integer of from I to 10, preferably a is 1. 15
13. A compound of formula (I) or (Ill): L -vector (I) -30- Ng-- L3- vector (1ll) wherein Li and L3 are each Linker groups and the vector is as defined in any one of claims 10 to 12. 5
14. A radiopharmaceutical composition comprising an effective amount of a compound according to any one of claims 10 to 12; together with one or more pharmaceutically acceptable adjuvants, excipients or diluents.
15. A compound according to any one of claims 10 to 12 for medical use. 10
16. Use of a compound according to any one of claims 10 to 12 for the manufacture of a radiopharmaceutical for use in a method of in vivo imaging.
17. A method of generating an image of a human or animal body comprising 15 administering a compound according to any one of claims 10 to 12 to said body and generating an image of at least a part of said body to which said compound has distributed using PET.
18. A method of monitoring the effect of treatment of a human or animal body 20 with a drug to combat a condition associated with cancer, preferably angiogenesis, said method comprising administering to said body a compound according to any one of claims 10 to 12 and detecting the uptake of said cocompound by cell receptors said administration and detection optionally but preferably being effected before, during and after treatment with said drug. 25 -31-
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2011250795A AU2011250795A1 (en) | 2004-12-22 | 2011-11-15 | Radiolabelling methods |
AU2013204443A AU2013204443A1 (en) | 2004-12-22 | 2013-04-12 | Radiolabelling methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0428012.9 | 2004-12-22 | ||
AU2011250795A AU2011250795A1 (en) | 2004-12-22 | 2011-11-15 | Radiolabelling methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2005317903A Division AU2005317903C1 (en) | 2004-12-22 | 2005-12-09 | Radiolabelled conjugates of RGD-containing peptides and methods for their preparation via click-chemistry |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013204443A Division AU2013204443A1 (en) | 2004-12-22 | 2013-04-12 | Radiolabelling methods |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2011250795A1 true AU2011250795A1 (en) | 2011-12-08 |
Family
ID=45465654
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011250795A Abandoned AU2011250795A1 (en) | 2004-12-22 | 2011-11-15 | Radiolabelling methods |
AU2013204443A Abandoned AU2013204443A1 (en) | 2004-12-22 | 2013-04-12 | Radiolabelling methods |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013204443A Abandoned AU2013204443A1 (en) | 2004-12-22 | 2013-04-12 | Radiolabelling methods |
Country Status (1)
Country | Link |
---|---|
AU (2) | AU2011250795A1 (en) |
-
2011
- 2011-11-15 AU AU2011250795A patent/AU2011250795A1/en not_active Abandoned
-
2013
- 2013-04-12 AU AU2013204443A patent/AU2013204443A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2013204443A1 (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005317903B2 (en) | Radiolabelled conjugates of RGD-containing peptides and methods for their preparation via click-chemistry | |
US8409547B2 (en) | Radiolabelling methods | |
EP2680889B1 (en) | Radiolabelled octreotate analogues as pet tracers | |
EA026305B1 (en) | Alpha-emitting complexes | |
US8444955B2 (en) | Radiofluorination methods | |
Failla et al. | Peptide-based positron emission tomography probes: Current strategies for synthesis and radiolabelling | |
US20100069609A1 (en) | Chemical methods and apparatus | |
AU2011250795A1 (en) | Radiolabelling methods | |
Floresta et al. | RSC Medicinal Chemistry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |