Nothing Special   »   [go: up one dir, main page]

AU2006202708A1 - Personal care compositions - Google Patents

Personal care compositions Download PDF

Info

Publication number
AU2006202708A1
AU2006202708A1 AU2006202708A AU2006202708A AU2006202708A1 AU 2006202708 A1 AU2006202708 A1 AU 2006202708A1 AU 2006202708 A AU2006202708 A AU 2006202708A AU 2006202708 A AU2006202708 A AU 2006202708A AU 2006202708 A1 AU2006202708 A1 AU 2006202708A1
Authority
AU
Australia
Prior art keywords
percent
personal care
mixtures
agents
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2006202708A
Inventor
Claudia Kaminski
Elvin R Lukenbach
Sandrine Pascal-Suisse
Monica Ruggiero
Maurice Tahar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Consumer Inc
Original Assignee
Johnson and Johnson Consumer Companies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU97359/01A external-priority patent/AU9735901A/en
Application filed by Johnson and Johnson Consumer Companies LLC filed Critical Johnson and Johnson Consumer Companies LLC
Priority to AU2006202708A priority Critical patent/AU2006202708A1/en
Publication of AU2006202708A1 publication Critical patent/AU2006202708A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)

Description

-1-
O
SAUSTRALIA
PATENTS ACT 1990 o COMPLETE SPECIFICATION SFOR A STANDARD PATENT (Ni
SORIGINAL
Name of Applicant/s: Johnson Johnson Consumer Companies, Inc.
Actual Inventor/s: Elvin R Lukenbach and Claudia Kaminski and Monica Ruggiero and Sandrine Pascal-Suisse and Maurice Tahar Address for Service is: SHELSTON IP Margaret Street Telephone No: (02) 9777 1111 SYDNEY NSW 2000 Facsimile No. (02) 9241 4666 CCN: 3710000352 Attorney Code: SW Invention Title: PERSONAL CARE COMPOSITIONS Details of Original Application No. 97359/01 dated 21 Dec 2001 The following statement is a full description of this invention, including the best method of performing it known to me/us:- File: 34168AUP01 500903540 1.DOC/5844 c PERSONAL CARE COMPOSITIONS CROSS REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of U.S. Serial No. 09/604,563, filed June 27.
S2000. the disclosure of which is hereby incorporated by reference.
BACKGROUND OF THE INVENTION 00 00 1. Field of the Invention This invention relates to compositions suitable for use in personal care applications, and in particular skin care compositions, which effectively deliver and/or deposit various benefit agents into and onto the skin and are relatively non-irritating and thus suitable for use by people having sensitive skin and eyes.
2. Description of the Prior Art Because of the wide variety of skin, hair and nail problems faced by consumers.
consumers have long sought personal care products which can deliver and/or deposit benefit materials that alleviate such problems. In order to be effective, the personal care products mus be capable of stabilizing the benefit agent in addition to deliverylng and/or depositing the benefit agent. Most delivery systems sacrifice aesthetics in order to achieve stability. Further, because some benefit agents, such as, anti-oxidants. anti-aging materials, are particularly unstable, they may need to be delivered into the outer layers of the skin rather than onto the skin to provide the desired benefit. Thus, not only must the personal care product be capable of stabilizing the benefit agent, but also must be capable of effectively delivering and/or depositing the benefit agent. Furthermore, such products should be of very low irritancy to the skin, in particular where the products are to be used on the face, and even more particularly, in the very sensittive regions surrounding the eyes.
Accordingly, it would be desirable to create such a composition that is capable of deliverying and/or depositing various active agents into and onto the skin. It would also be desirable to create such a composition having a low degree of ocular and skin irritation.
We have surprisingly found that personal care compositions comprising a combination of a water dispersible component and an ester provide the degree of aesthetics and safety to the most sensitive user, while at the same time being a suitable vehicle for delivery skin care benefit materials, including skin-care benefit materials of poor stability.
SUMMARY OF THE INVENTION In accordance with this invention, there is provided a personal care composition comprising a water dispersible component and an ester.
2 SAnother embodiment of this Invention is directed to a personal care system Scomprising: a. a water dispersible component; Sb. an ester; c. water; and 00 d. a polymeric emulsifier and/or thickener.
Yet another embodiment of the present invention is directed to a method for making an oil-in water emulsion comprised of 0 neutralizing a hydrophilic thickening agent in a hydrophilic phase comprised of a CN 10 polymeric emulsifier with an effective amount of a neutralizer under conditions sufficient after a lipophilic phase was combined with the hydrophilic phase.
Yet another embodiment of the present invention is directed to a method for making a water-in-oil emulsion comprised of: neutralizing a hydrophilic thickening agent in a hydrophilic phase comprised of a polymeric emulsifier with an effective amount of a neutralizer under conditions sufficient before combining a lipophilic phase with the hydrophilic phase.
Yet another embodiment of the present invention is directed to a method for depositing benefit agents into and onto the skin comprised of: topically applying an effective amount of the benefit agent with a composition comprised of an optional liquid silicone, a water dispersible component, and an ester to a desired location.
Yet another embodiment of the present invention is directed to a method for depositing a benefit agent into and/or onto the skin, hair and/or nails comprising applying a composition comprising: a. an optional liquid silicone; b. a water dispersible component; c. an ester; d. a polymeric emulsifier and/or thickener; and e. an effective amount of a benefit agent to a desired location on a human or animal.
3 SThe compositions of this invention are capable of effectively delivering and/ depositing various benefit agents into and onto the skin, hair and nails without signifcanty contributing to ocular irritation.sign ntly DESCRIPTION OF THE DRAWINGS The file of this patent contains at least one drawing executed in color. Copies of this 00 patent with color drawing(s) will be provided by the Patent and Trademark Office upon N" request and payment of the necessary fee.
SThe invention will be more fully understood and further advantages will become Sapparent when reference is made to the following detailed description of the invention and the accompanying drawing in which: N FIGS. 1 and are representations that illustrate the right side (FIG and left side (FIG. of a subject's face prior to treatment as viewed under a CG-395 Filter.
FIGS. 1(c) and are representations that illustrate the right side (FIG and left side (FIG. of a subject's face while possessing the formulation of Example 2 as viewed under a CG-395 Filter.
FIG. l(e) is a representation that illustrates the right side of a subject's face after the treatment of Example 2 was rinsed therefrom as viewed under a CG-395 Filter.
FIG. 1(f) is a representation that illustrates the left side of a subject's face after the treatment of Example 2 was wiped therefrom as viewed under a CG-395 Filter.
FIGS. 2 and are representations that illustrate the right side'(FIG. and left side (FIG. of a subject's face prior to treatment as viewed under a CG-395 Filter.
FIGS. 2(c) and are representations that illustrate the right side (FIG. and left side (FIG. of a subject's face while possessing the formulation of Example 2 as viewed under a CG-395 Filter.
FIG. 2(e) is a representation that illustrates the right side of a subject's face after the treatment of Example 2 was rinsed therefrom as viewed under a CG-395 Filter.
FIG. 2(f) is a representation that illustrates the left side of a subject's face after the treatment of Example 2 was wiped therefrom as viewed under a CG-395 Filter.
FIG. 3(a) is a graph of concentration of retinol in the formulation of Example 2 versus pixel intensity change.
FIG. 3(b) is a graph of concentration of retinol in the formulation of Example 3 versus pixel intensity change.
4 u DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS SIn one embodiment of the present invention, the personal care composition according cto the invention may suitably comprise, consist of, or consist essentially of, based upon the total weight of the personal care composition, a) from about 10 percent to about 80 percent, and preferably from about 10 percent to about 45 percent of a water dispersible component; 0 and b) from about 20 percent to about 90 percent, and preferably from 55 percent to about percent of an ester. Generally, the ratio of water dispersible component to ester ranges from 0about 1:9 to about 4:1, more preferably, from about 1:9 to about 1:1, most preferable from \about 1:9 to about 1:3.
The first component of the personal care composition of the present invention is a water dispersible component, which is preferably a water soluble solvent. As used herein, the term "water dispersible component" shall mean a material that produces a uniform, clear or hazy, mixture when combined with at least a weight equivalent of water. Examples of suitable water dispersible components nonexclusively include polyethylene glycol 400, hexylene glycol, propylene glycol, polypropylene glycol-10 methylglucose ether, ethoxydlglycol, polyethylene glycol-6 caprylic/capric glyceride, ethylene glycol monobutyl ether, polyethylene glycol-8 caprylic/capric glycerides, 3-methoxy-3-methyl-1-butanol, dimethyl isosorbide, and mixtures thereof. Most preferred water dispersible components include hexylene glycol, dimethyl isosorbide, polyethylene glycol-6 caprylic/capric glyceride, and mixtures thereof.
The second component of the personal care composition of the present invention is a lipophilic component that preferably is a liquid ester. Preferred esters for use in the composition of this invention include those liquid esters that either possess a structural means for ensuring its liquidity or are heterogeneous in nature. Examples of such structural means include the presence of "interruptions", such as: 1) chain branching; 2) olefinic unsaturation; 3) the presence of either a polyether or a monoalkoxylate in the structure; or 4) the presence of a substituent, e.g. an ethoxylated or propoxylated moiety, bonded between the acid group and the alcohol group. By "heterogeneity," it is meant that the lipophilic component is comprised of a mixture of compounds that vary in the number of carbon atoms in their respective chains.
Examples of suitable esters nonexclusively include: a) a branched Cs to Cu alkyl alcohol ester of an aromatic acid; b) a straight-chained or branched Csto C2 alkyl acid esters of optionally ethyoxylated/propoxylated polyols having from about 3 carbon atoms to about 7 carbon atoms;
O
c) branched C to C2 alkyl alcohol esters of branched polyacids: Sd) branched or straight-chained C 5 to C, alkyl acid esters of branched and/or n unsaturated Cs to C2 alkyl alcohols; e) branched or unsaturated Csto C, alkyl alcohol esters of an acid selected from the 00 5 group consisting of adipic acid, succinic acid, maleic acid, sebacic acid, and mixtures thereof
O
polyether interrupted fatty acid esters; i g) benzoic acid ester of heterogeneous alcohols having from about 8 carbon atoms IN to about 22 carbon atoms; and Sh) mixtures thereof, with straight-chained or branched Cs to C, alkyl acid esters of optionally ethyoxylated/propoxylated polyols, benzoic acid esters of heterogeneous alcohols, and mixtures thereof being particularly preferred.
Suitable branched Cs to C, alkyl alcohol esters of an aromatic acid include those wherein the aromatic acid is benzoic acid. Preferably, the alcohol of this ester is either branched or unsaturated, and may be either a primary alcohol or a secondary alcohol with the former being preferred. Optionally, the aromatic acid may be substituted with hydroxy or alkyl groups having from about 1 carbon atom to about 4 carbon atoms. Specific examples of these esters nonexclusively include, butylocty) salicylate; hexyldecyl benzoate; and butyloctyl benzoate, which are all available from C.P. Hall Co. under the tradename, "HallStar;" and mixtures thereof, with a mixture of hexyldecyl benzoate and butyloctyl benzoate being particularly preferred.
Another suitable ester includes a straight-chained or branched Cs to Cz alkyl acid ester of optionally ethyoxylated/propoxylated polyols, wherein the polyols contain from about 3 carbon atoms to about 7 carbon atoms. Preferably, if the polyol creates a branching point, then the acid group may be straight-chained. Suitable acids used to form these esters typically have from about 8 carbon atoms to about 22 carbon atoms, and preferably from about 8 carbon atoms to about 18 carbon atoms, and most preferably from about 8 carbon atoms to about 12 carbon atoms, and are either saturated or unsaturated, with octanoic acid, capric acid, and mixtures thereof being preferred. Such suitable acids are either straightchained or branched, and are preferably aliphatic. Suitable polyols used to form these esters typically have from about 3 carbon atoms to about 30 carbon atoms, and preferably from about 3 carbon atoms to about 7 carbon atoms. Examples of such suitable polyols nonexclusively include neopentyl alcohol; polyglycerol, e.g. diglycerol, triglycerol, hexaglycerol, and decaglycerol, wherein the polyglycerol may contain from about 2 to about 6 glycerol groups; glycerin; sorbitan; methyl glucose; trimethylolpropane; and mixtures thereof. Neopentyl alcohol, glycerin, trimethylolpropane, and mixtures thereof are the cpreferred polyols. Examples of suitable esters nonexclusively include pentaerythritol
L
C tetraoctanoate; trimethylolpropane trioctanoate: trioctanoin: pentaerythrityl tetrapelargonate; sorbitan trioleate; caprylic/capric triglyceride; neopentyl alcohol tetraoctanoate, and mixtures 0 0 thereof, with caprylic/capric triglyceride; pentaerythritol tetraoctanoate; trimethylolpropane trioctanoate: and pentaerythrityl tetrapelargonate being more preferred.
0 Another suitable ester includes the branched C, to C, alkyl alcohol esters of branched polyacids such as the tri-esters, tetra-esters, penta-esters, and mixtures thereof.
O 10 An example of such a polyacid is citric acid. Suitable alkyl alcohols for creating these esters C are optionally substituted, ethoxylated or propoxylated, contain from about 3 carbon atoms to about 22 carbon atoms, and preferably from about 3 carbon atoms to about 8 carbon atoms, and are either straight-chained or branched, with the branching being preferred. These alcohols may either be primary or secondary, and may either be saturated or unsaturated, with saturated being preferred for stability reasons. Specific examples of suitable esters nonexclusively include trioctyldodecyl citrate; triisopropylcitrate; and mixtures thereof.
Another suitable ester includes the branched or straight-chained Cs to C, alkyl acid esters of branched or unsaturated alkyl alcohols wherein the alkyl group of the alcohol has from about 1 carbon atoms to about 18 carbon atoms, and preferably from about 4 carbon atoms to about 10 carbon atoms, provided that the total number of carbon atoms In the ester is at least about 8. Suitable acids for use in making these esters typically have from about 2 carbon atoms to about 22 carbon atoms, and preferably from about 5 carbon atoms to about carbon atoms. However, if the number of acid carbon atoms exceeds the number of carbon atoms in the alcohol, then the acid preferably contains from about 6 carbon atoms to about 18 carbon atoms and the alcohol preferably contains from about 1 carbon atom to about 8 carbon atoms. If the number of acid carbon atoms is less than the number of carbon atoms in the alcohol, then the acid preferably contains from about 2 carbon atoms to about 6 carbon atoms and the alcohol preferably contains from about 8 carbon atoms to about 18 carbon atoms. Preferably, either: 1) the alcohol group or the acid group has branching and/or unsaturation, i.e. both the alcohol and the acid are not straight-chained; or 2) the ester possesses an asymmetrical alkyl distribution. By "asymmetrical alkyl distribution," it is meant that the ester is made from, for example, a short chain alcohol, i.e. having from about 1 carbon atom to about 8 carbon atoms, and a long chain acid, having greater than about 8 carbon atoms, such as, e.g. butyl stearate, or less preferably the ester is made from, a long chain alcohol, i.e. having greater than about 8 carbon atoms, and a short chain acid, i.e. having from about 1 carbon atom to about 8 carbon atoms. Examples of such suitable 7 esters nonexclusively include tridecyl neopentanoate, isostearyl palmitate, cetyl ricinoleate, Scetyl octanoate, isononyl isononanoate, butyl stearate, octyldodecyl soyate, tridecyl erucate.
octyldodecyl erucateleicosil erucate, and mixtures thereof, with cetyl octanoate, isostearyl C" palmitate, isononyl isononanoate, and mixtures thereof and being preferred.
Another suitable ester includes the branched or unsaturated Cr to C2 alkyl alcohol 00 esters of an acid selected from the group consisting of adipic acid, succinic acid, maleic acid, sebacic acid, and mixtures thereof. The alcohol of these esters, which has from about 3 Scarbon atoms to about 18 carbon atoms, and preferably from about 3 carbon atoms to about NO 8 carbon atoms, is preferably branched or unsaturated. Examples of such suitable alcohol esters nonexclusively include diisopropyl adipate, dioctyl sebacate, dioctyl succinate. dioctyl maleate, diisostearyl adipate, diethyl sebacate, and mixtures thereof, with diethyl sebacate, dioctyl sebacate, and diisostearyl adipate being preferred.
Another suitable ester includes polyether interrupted fatty acid esters. Examples of such suitable esters nonexclusively include: 1) laureth-2 benzoate: 2) C, to Ca fatty alkyl (optionally polypropylenoxy) polyethyleneoxy carboxylate esters derived from an alcohol having from about 1 carbon atom to about 22 carbon atoms, is either straight or branched, and may contain a phenyl group; and 3) mixtures thereof, with Ca to C. fatty alkyl (optionally polypropylenoxy) polyethyleneoxy carboxylate esters being preferred. Specific examples of preferred esters nonexclusively include isopropyl propylene glycol-2-isodeceth- 7 carboxylate, such as "Velsan D8P3" and other commercially available materials sold by Sandoz under the tradename, "Velsan." Another suitable ester includes the benzoic acid esters of heterogeneous alcohols having from about 8 carbon atoms to about 22 carbon atoms, such as the ester mixtures available from Finetex under the tradename, "Finsolv" and preferably is the to CIs alcohols benzoate available from Finetex under the tradename, "Finsolv TN." Preferred combinations of esters include at least one, preferably at least two, and more preferably three of the following esters: a) branched C s to C, alkyl alcohol esters of an aromatic acid; b) branched or straight-chained Cs to C 2 2 alkyl acid esters of branched or unsaturated alkyl alcohols; and c) straight-chained or branched C 5 to C, alkyl acid esters of optionally ethyoxylated/propoxylated polyols. In a preferred embodiment, the ester contains, based upon the total weight percent of the esters, from about 30 percent to about percent of branched or straight-chained Cs to alkyl acid esters of branched or unsaturated C 5 to alkyl alcohols; from about 10 percent to about 50 percent of branched Cs to alkyl alcohol esters of an aromatic acid; and from about 10 percent to about percent of straight-chained or branched C, to Cz 2 alkyl acid esters of optionally ethyoxylated/propoxylated polyols. In a more preferred embodiment, the ester contains, 8 Sbased upon the total weight percent of the esters, from about 15 percent to about 50 percent Sisononyl isononanoate, from about 15 percent to about 50 percent isostearyl palmitate, from C about 15 percent to about 50 percent cetyl octanoate, and from about 15 percent to about percent pentaerthritol tetraoctanoate.
00 5 An optional component of the personal care composition of the present invention is a volatile or nonvolatile liquid silicone, with the former being preferred. The silicone components adds to aesthetics, less greasy feel, of the compositions according to the C" invention. Examples of suitable silicones nonexclusively include the polydimethyl siloxanes IN and derivatives thereof such as hexamethylsiloxane, dimethicone, dimethiFonol, and cyclomethicone, with cyclomethicone being preferred. Examples of suitable cyclomethicones nonexclusively include cyclotetradimethyl siloxane; cyclopentadimethyl siloxane, cyclohexadimethyl siloxane, cycloheptadimethyl siloxane, and mixtures thereof.
Preferably, the silicone has a viscosity of from about 0.25 cp to about 350 cp.
Another embodiment of the present Invention is directed to a personal care system comprising, consisting, or consisting essentially of, based upon the total weight of the personal care system, a) at least about 3 percent and preferably at least about 5 percent of the personal care composition described above; b) from about 70 percent to about 98 percent, and preferably from about 80 percent to about 90 percent of water; c) from about 0.1 percent to percent, preferably, from about 0.5 percent to about 1.5 percent of a polymeric emulsifier, a thickener, or mixture thereof; and optionally e) from about 0.001 percent to about 5 percent of a benefit agent. In one embodiment, the personal care system may comprise, based upon-the total weight of the personal care system, from about 0.1 to about 5 percent, and preferably from about 0.5 percent to 1.5 percent of a polymeric emulsifier and/or from about 0.01 percent to about 2 percent, and preferably from about 0.01 percent to about 0.5 percent of a thickener.
More preferably, the personal care system contains, based upon the total weight of the personal care system, from about 5 percent to about 30 percent of the personal care composition.
The personal care system may be in the form of an oil-in-water emulsion, a water-inoil emulsion, or a dispersion.
In addition to the personal care composition, the personal care system is further comprised of polymeric emulsifiers and/or thickeners. As used herein, the term "polymeric emulsifier" shall mean those compounds capable of emulsifying systems whereby the polymeric emulsifiers have a molecular weight of at least about 5000, and preferably are block copolymers having a hydrophilic portion and a hydrophobic portion. When used at amounts effective for emulsifying the personal care system, the polymeric emulsifiers surprisingly do not cause significant eye sting, when the emulsifer-containing composition was used by 9
C
N consumers in the eye area, no more than about 5% of such users expressed discomfort around the eye area. Examples of suitable polymeric emulsifiers nonexclusively include polyethylene glycol-30 dipolyhydroxystearate available from Uniqema under the tradename, S'Ariacel P-135;" dimethicone copolyol, which is available from Goldschmidt Chemical Corporation under the tradename, "Abil EM 90"; substituted acrylates such as those available 00 from The Goodrich Corporation under the tradename, "Pemulen"; and mixtures thereof, with polyethylene glycol-30 dipolyhydroxystearate being preferred.
Examples of suitable hydrophilic thickeners nonexclusively include carbomers Savailable from B.F. Goodrich under the tradename. "Carbopol ETD 2020", acrylate copolymers, hydroxyethylcellulose modified with cetyl ether groups available from Hercules N under the tradename, "Natrosol Plus", polyvinylmethyl ether/maleic anhydride (PVM/MA) decadiene crosspolymer available from International Specialty Products under the tradename, "Stabileze QM," and copolymers and mixtures thereof, with carbomers being preferred. Examples of suitable acrylate copolymers nonexclusively include acrylate copolymers available from Rohm Haas under the tradename. "Aculyn 33," acrylates/aminoacrylates copolymer available from National Starch Chemical Company under the tradename, "Structure Plus." acrylates/steareth-20 itaconate copolymer available from National Starch Chemical Company under the tradename, "Structure 2001," itaconate copolymer available from National Starch Chemical Company under the tradename, "Structure 3001." acrylates/steareth-20 methacrylate copolymer available from Rohm Haas under the tradename, "Aculyn 22," and copolymers and mixtures thereof.
The personal care system of the present invention may also optionally contain a stability enhancer for the purpose of enhancing the stability of the benefit agent and/or the aesthetics of the personal care system. Generally, the stability enhancer is selected from a nonionic emulsifier, an essentially non-foaming surfactant or mixtures thereof. Examples of suitable nonionic emulsifiers include isocetheth-20, oleth-2. mixture of PEG-40 hydrogenated castor oil and trideceth-9 available from Dragoco Inc. under the tradename, "Dragoco Solubilizer 2/014160," Poloxamer 184, laureth-4, sorbitan trioleate, polyoxyethylene-(2) oleyl ether, sorbitan stearate, cetearyl glucoside, glyceryl oleate, trideceth-9, polyethylene glycolhydrogenated castor oil, and mixtures thereof.
Examples of suitable essentially non-foaming surfactants include non-foaming nonionic surfactants such as sucrose esters, sucrose cocoate, sucrose stearate and mixtures thereof, with sucrose cocoate being preferred. By "essentially non-foaming," it is meant that the surfactant, when used with the composition of the present invention, has a column height of less than about 20 mm as determined by the Ross-Miles Foam Generation 10 a Test. See 18 Oil Soap 99 102 (1941)r[Ross-Mlles Test"), which is incorporated by Sreference herein. The personal care composition and the personal care system may either Cbe rinseable with water or may be wiped-off. Preferably, the essentially, non-foaming surfactants are used in embodiments wherein the personal care system or the personal care composition is rinseable with water. For example, a preferred combination of hydrophilic components include, based upon the total weight percent of the personal care composition l or system, from about 0.1 percent to about 5.0 percent of hexylene glycol, from about 0percent to about 3.0 percent of sucrose cocoate non foaming surfactant, and from about IO percent to about 3.0 percent of polyoxyethylene-6 caprylic/capric triglyceride. An example of C 10 a suitable stability enhancer include a mixture of sorbitan stearate and sucrose cocoate available from Uniqema under the tradename, "Arlatone 2121." When desired, the personal care system contains, based upon the total weight of the personal care system, no more than about and preferably of the stability enhancers for cream formulations and no more than about and preferably no more than 1% of the stability enhancers in thin lotion/milk formulations.
The personal care system and personal care composition may also optionally contain a foaming surfactant. The foaming surfactant may be non-ionic, cationic, amphoteric, or anionic; nonionic surfactants are preferred. By "foaming," it is meant that the surfactant, when used with the composition of the present invention, has a column height of foam greater than about 20 mm as determined by the Ross-Miles Test. As used herein, the term "amphoteric" shall mean: 1) molecules that contain both acidic and basic sites such as, for example, an amino acid containing both amino (basic) and acid carboxylic acid, acidic) functional groups; or 2) zwitterionic molecules which possess both positive and negative charges within the same molecule. The charges of the latter may be either dependent on or independent of the pH of the composition. Examples of zwitterionic materials include, but are not limited to, alkyl betaines and amidoalkyl betaines. Examples of suitable and preferred surfactants may be found in International Patent Application Number W097/01196, which is incorporated by reference in its entirety herein.
The personal care system and personal care composition may further contain one or more benefit agents or pharmaceutically-acceptable salts thereof. As used herein, the term "benefit agent" includes any active ingredient that is to be delivered into and/or onto the skin, hair or nail at a desired location, such as a cosmetic agent or a pharmaceutical agent. By "cosmetic agent." it is meant any ingredient that is appropriate for cosmetically treating, providing nutrients to, and/or conditioning the hair, nail, and/or skin via topical application.
By "pharmaceutical agent," it is mean any drug that is either hydrophobic or hydrophilic in
I
11 nature and appropriate for topical use. As used herein "medicament agents" include those agents capable of promoting recovery from injury and illness.
CThe benefit agents useful herein may be categorized by their therapeutic benefit or their postulated mode of action. However, it is to be understood that the benefit agents useful herein may, in some circumstances, provide more than one thereapeutic benefit or 00
P
operate via greater than one mode of action. Therefore, the particular classifications provided herein are made for the sake of convenience and are not Intended to limit the Sbenefit agents to the particular application(s) listed. In addition, the compounds, which are identified below as being suitable for use as benefit agents, may be used in an amount over and above the amount that they may be used for other purposes in the personal care C composition or personal care system.
Examples of suitable benefit agents include, but are not limited to, depigmentation agents; reflectants; detangling/wet combing agents; film forming polymers; humectants: amino acids and their derivatives; antimicrobial agents; allergy inhibitors; anti-acne agents; anti-aging agents; anti-wrinkling agents, antiseptics; analgesics; antitussives; antipruritics; local anesthetics; anti-hair loss agents; hair growth promoting agents; hair growth inhibitor agents, antihistamines such as Mandragora Vernalis, Tanacetum Parthenium and the like; antiinfectives such as Acacia Catechu, Aloe Barbadensis, Convallaria Majalis, Echinacea, Eucalyptus, Mentha Piperita, Rosa Canina, Sassafras Albidum, and the like; inflammation inhibitors; anti-emetics; anticholinergics; vasoconstrictors; vasodilators; wound healing promoters; peptides, polypeptides and proteins; deodorants and anti-perspirants; medicament agents; skin emollients and skin moisturizers; skin firming agents, hair conditioners; hair softeners; hair moisturizers; vitamins; tanning agents; skin lightening agents; antifungals such as Centaurea Cyanus, Kalmia Latifolia and antifungals for foot preparations; depilating agents; shaving preparations; external analgesics; perfumes; counterirritants; hemorrhoidals; insecticides; poison ivy products; poison oak products; bum products; anti- diaper rash agents; prickly heat agents; make-up preparations; vitamins; amino acids and their derivatives; herbal extracts; retinoids; flavenoids; sensates; antioxidants; skin conditioners; hair lighteners; chelating agents; cell turnover enhancers; coloring agents; pigments: sunscreens, those active ingredients disclosed in United States Patent No. 6,063,397, which is incorporated herein by reference, anti-edema agents, collagen enhancers, and mixtures thereof.
Examples of suitable anti-edema agents nonexclusively include bisabolol natural, synthetic bisabolol, and mixtures thereof.
Examples of suitable vasoconstrictors nonexclusively include horse chestnut extract, prickly ash, and mixtures thereof.
12 Examples of suitable anti-inflammatory agents nonexclusively include benoxaprofen, ;Z centella asiatica, bisabolol, feverfew (whole), feverfew (parthenolide free), green tea extract, Sgreen tea concentrate, hydrogen peroxide, lycopene including "Lyc-o-Pen" available from C LycoRed Natural Products Industries, Ltd., oat oil, chamomile, and mixtures thereof.
Examples of collagen enhancers nonexclusively include vitamin A, vitamin C, and 00 mixtures thereof.
Examples of suitable skin firming, agent nonexclusively include dimethylaminoethanol
("DMAE").
C Examples of suitable antipruritics and skin protectants nonexclusively include O 10 oatmeal, betaglucan, feverfew, soy and derivatives thereof, bicarbonate of soda, colloidal oatmeal, surfactant based colloidal oatmeal cleanser, Anagallis Arvensis, Oenothera Biennis, Verbena Officinalis, and the like. These antipruritics may be used in an amount, based upon the total weight of the personal care composition, from about 0.01 percent to about 40 percent, and preferably from about 1 percent to about 5 percent.
As used herein, colloidal oatmeal means the powder resulting from the grinding and further processing of whole oat grain meeting United States Standards for Number 1 or Number 2 oats. The colloidal oatmeal has a particle size distribution as follows: not more than 3 percent of the total particles exceed 150 micrometers in size and not more than percent of the total particles exceed 75 micrometers in size. Examples of suitable colloidal oatmeals include, but are not limited to, "Tech-O" available from the Beacon Corporation and colloidal oatmeals available from Quaker.
Examples of suitable reflectants nonexclusively include mica, alumina, calcium silicate, glycol dioleate, glycol distearate, silica, sodium magnesium fluorosilicate, and mixtures thereof.
Suitable detangling/wet combing agents nonexclusively include hydroxypropyltrimonium guar, dioleoylamidoethyl hydroxyethylmonium methosulfate, di- (soyoylethyl) hydroxyethylmonium methosulfate, hydroxyethyl behenamidopropyl dimonium chloride, olealkonium chloride, polyquatemium- 4 7, stearalkonium chloride, tricetylmonium chloride, and mixtures thereof.
Suitable film forming polymers include those that, upon drying, produce a substantially continuous coating or film on the hair, skin, or nails. Nonexclusive examples of suitable film forming polymers include acrylamidopropyl trimonium chloride/acrylamide copolymer, corn starch/ acrylamide/ sodium acrylate copolymer; polyquatemium-10; polyquaternium- 4 7 polyvinylmethylether/maleic anhydride copolymer; styrene/acrylates copolymers; and mixtures thereof.
Commercially available humectants which are capable of providing moisturization and conditioning properties to the personal care composition are suitable for use in the present 13 invention. The humectant is preferably present in an amount of from about 0 percent to about percent, more preferably from about 0.5 percent to about 5 percent, and most preferably from about 0.5 percent to about 3 percent, based on the overall weight of the composition.
l Examples of suitable humectants nonexclusively include: 1) water soluble liquid polyols selected from the group comprising glycerine, propylene glycol, hexylene glycol, butylene 0 glycol, pentylene glycol, dipropylene glycol. and mixtures thereof; 2) polyalkylene glycol of the formula I.: O HO-(R"O)-H I.
Swherein R" is an alkylene group having from about 2 to about 4 carbon atoms and b is an integer of from about 1 to about 10, such as PEG 4; 3) polyethylene glycol ether of methyl glucose of formula II.:
CH
3 -CBHiO~(OC H2CH 2 )c-OH II.
wherein c is an integer from about 5 to about 4) urea; 5) fructose; 6) glucose; 7) honey; 8) lactic acid; 9) maltose; 10) sodium glucuronate; and 11) mixtures thereof, with glycerine being the preferred humectant.
Suitable amino acid agents include amino acids derived from the hydrolysis of various proteins as well as the salts, esters, and acyl derivatives thereof. Examples of such amino acid agents nonexclusively include amphoteric amino acids such as alkylamido alkylamines, i.e. stearyl acetyl glutamate, capryloyl silk amino acid, capryloyl collagen amino acids; capryloyl keratin amino acids; capryloyl pea amino acids; cocodimonium hydroxypropyl silk amino acids; corn gluten amino acids; cysteine; glutamic acid; glycine; hair keratin amino acids; amino acids such as aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, cystine, valine, methionine, isoleucine. leucine. tyrosine, phenylalanine, cysteic acid, lysine, histidine, arglnine, cysteine, tryptophan, citrulline; lysine; silk amino acids, wheat amino acids; and mixtures thereof Suitable proteins include those polymers that have a long chain, i.e. at least about carbon atoms, and a high molecular weight, i.e. at least about 1000, and are formed by self-condensation of amino acids. Nonexclusive examples of such proteins include collagen, deoxyribonuclease, iodized corn protein; milk protein; protease; serum protein; silk; sweet almond protein; wheat germ protein; wheat protein; alpha and beta helix of keratin proteins; hair proteins, such as intermediate filament proteins, high-sulfur proteins, ultrahigh-sulfur proteins, intermediate filament-associated proteins, high-tyrosine proteins, high-glycine tyrosine proteins, tricohyalin, and mixtures thereof.
Examples of suitable vitamins nonexclusively include vitamin B complex; including thiamine, nicotinic acid, biotin, pantothenic acid, choline, riboflavin, vitamin B6, vitamin B12, pyridoxine, inositol, carnitine; vitamins A,C,D,E,K and their derivatives such as vitamin A IND -14palmitate and pro-vitamins, e.g. panthenol (pro vitamin 135) and panthenol triacetate) and mixtures thereof.
Examples of suitable antibacterial agents nonexclusively include bacitracin, ;Z erythromycin, neomycin, tetracyclne, chlortetracycline, benzethonium chloride, phenol, and mixtures thereof.
Examples of suitable skin emollients and skin moisturizers nonexclusively include mineral oil, lanolin, vegetable oils, isostearyl isostearate, glyceryl laurate, methyl gluceth-jo, 00 methyl gluceth-20 chitosan, and mixtures thereof.
Examples of suitable hair conditioners nonexclusively include quatemnized compounds such as behenamidopropyl PG-dimonium chloride, tricetylmonium chloride.
dihydrogenated tallowamidoethyl hydroxyethylmonium methosulfate, and mixtures thereof as well as lipophilic compounds like cetyl alcohol, stearyl alcohol. hydrogenated polydecene, and mixtures thereof.
An example of a suitable hair softener nonexclusively includes silicone compounds, such as those that are either non-volatile or volatile and those that are water soluble or water insoluble. Examples of suitable silicones include organo-substituted polysiloxanes, which are either linear or cyclic polymers of monomeric silicone/oxygen monomers and which nonexclusively include cetyl dimethicone; cetyl triethylammonium dimethicone copolyol phthalate; cyclomethicone; dimethlcone copolyol; dimethicone copolyol lactate, hydrolyzed soy protein/dimethicone copolyol acetate; silicone quatemnium 13; stearalkonium dimethicone copolyol phthalate; stearamidopropyl dimethicone; and mixtures thereof.
Examples of suitable hair moisturizers nonexclusively include panthenyl ethyl ether, phytantriol, and mixtures thereof.
Examples of sunscreen agents nonexciusively include benzophenones, bomelone, butyl paba, cinnamidopropyl trimethyl ammonium chloride, disodium distyrylbiphenyl disulfonate, paba, potassium methoxycinnamate, butyl methoxydibenzoylmethane. octyl methoxycinnamate, oxybenzone, octocrylene. octyl salicylate, phenylbenzimidazole sulfonic acid, ethyl hydroxypropyl aminobenzoate, menthyl anthranilate, aminobenzoic acid, cinoxate, diethanolamine methoxycinnamate, glyceryl aminobenzoate, titanium dioxide, zinc oxide, oxybenzone, Padimate 0, red petrolatum, and mixtures thereof.
An example of a suitable tanning agent nonexclusively includes dihydroxyaceton e.
Examples of skin lightening agents nonexclusively include hydroquinone, catechol and its derivatives, ascorbic acid and its derivatives, and mixtures thereof.
Examples of suitable insecticides (including insect repellents, anti-scabies and antilice treatments) nonexclusively include permethrin, pyrethrin piperonyl butoxide, imidacloprid, N,N-diethyl toluamide, which refers to the material containing predominantly the
P--RNCH
2
-CH-K
15 (~Zj meta isomer. N,N-diethyl-m-toluamlde, which is also known as DEET; compounds of the formula 1ll.
00 wherein INO R. is a branched or unbranched alkyl group having about 1 to about 6 carbon atoms;
R
4 is H, methyl or ethyl; R. is a branched or unbranched alkyl or alkoxy group having from about 1 to about 8 carbon atoms; and K is a -CN or a -COOR, group, wherein R. is a branched or unbranched alkyl group having from about I to about 6 carbon atoms.
natural or synthetic pyrethroids, whereby the natural pyretbroids are contained in pyrethrum, the extract of the ground flowers of Chrysanthemum cinerariaefolium or C coccmneum: and mixtures thereof. Within the structure of Formula 1ll. are ethyl 3-(Nbutylacetamido)propionate, wherein R7 is a CH, group. Rs is an n-butyl group, N 4 is H. K is COOR; and R@ is ethyl, which is available commercially from Merck KGaA of Darmstadft.
Germany under the name, Insect Repellent 3535.' An example of an anti fungal for foot preparations nonexclusively includes tolnaflate.
Examples of suiable depilating agents nonexciusively include calcium thioglycolate, magnesium thioglycolate, potassium thioglycolate, strontium thioglycolate, and mixtures thereof.
Examples of suitable external analgesics and local anesthetics nonexclusively include benzocaine, dibucaine, benzyl alcohol, camphor, capsaicin, capsicum, capsicum oleoresin, juniper tar. menthol. methyl nicotinate. methyl salicylate, phenol, resorcinol.
turpentine oil, and mixtures thereof.
Examples of suitable antiperspirants and deodorants nonexclusively include aluminium chiorohydrates. alumlnium zirconium chlorohydrates. and mixtures thereof.
Examples of suitable counterirritants nonexciusively include camphor, menthol.
methyl salicylate, peppermint and clove oils, ichtammol. and mixtures thereof.
16 (NI An example of a suitable inflammation inhibitor nonexciusively includes hydrocortisone, Fragaria Vesca. Matricaria Chamomfia, and Salvia Officinalls.
Examples of suitable hemorrhoidal products nonexciusively include the anesthetics such as berizocalne, pramnoxine hydrochloride, and mixtures thereof; antiseptics such as benzethoniumn chloride; astringents such as zinc oxide, bismuth subgaliate. balsam Peru, 0C) and mixtures thereof, skin protectants such as cod liver oil, vegetable oil, and mixtures thereof.
C1 Most preferred benefit agents nonexciusively Include DMAE, soy and derivatives thereof, colloidal oatmeal, suffoniated shale oil, olive leaf, elubiof, 6-(1-plpe~idinyl)-2.4pyrimidlnediamine-3-oxide, llnasterlde, ketoconazole, salicylic: acid, zinc pyrithione, coal tar, benzoyl peroxide, selenium sulfide, hydrocortisone, sulfur. menthol, pramoxie hydrochloride, tricetylmonium chloride, polyquatemiumn 10, panthenol, panthenol triacetate, vitamin A and derivatives thereof, vitamin B arnd derivatives thereof, vitamin C and derivatives thereof, vitamin D and derivatives thereof. vitamin E and derivatives thereof.
vitamin K and derivatives thereof, keratin, lysine, arginine, hydrolyzed wheat proteins.
hydrolyzed silk proteins, octyl methoxycinnaniate, oxybenzorie, minoxidil, titanium dioxide, zinc dioxide, retinal, erthromycin, tretinoin. and mixtures thereof.
One preferred type of benefit agent Includes those therapeutic components that are effective In the treatment of dandruff, seborrheic dermatitis, and psoriasis as well as the symptoms associated therewith. Examples of such suitable benefits agents nolexclusively Include zinc pyrithione, anthralin, shale oil and derivatives thereof such as sulfoneated shale oil, selenium sulfide, sulfur. salicylic acid; coal tar. povidone-iodine, imidazoles such as ketoconazole, dichlomopheriyl Imidazolodioxalan, which Is commercially available from Janssen Pharrnaceutica, under the tradename, "Elubiol", dlotrimazole. itraconazole, miconazole. climbazole, tioconazole, sulconazole, butoconazole*. fluconazole. miconazole nitrate and any possible stereo isomers and derivatives thereof; piroctone olamine (Octopirox); selenium sulfide; ciclopirox olamine; anti-psoriasis agents such as vitamin D analogs, e.g. caicipotriol, calcitriol, and tacaleitrol; vitamin A analogs such as esters of vitamin A, e.g. vitamin A palmitate, retinoids, retinois, and retinoic acid; corticosteroids such as hydrocortisone. clobetasone, butyrate. clobetasol propionate and mixtures thereof.
The amount of benefit agent to be combined with the personal care composition or the emulsion may vary depending upon, tor example, the ability of the benefit agent to penetrate through the skin, hair or nail, the specific benefit agent chosen, the particular benefit desired, the sensitivity of the user to the benefit agent, the health condition, age, and skin, hair, and/or nail condition of the user, and the like. In sum,. the benefit agent is used in a -safe and effective amount." which is an amount that is high enough to deliver a desired skin, hair or nail benefit or to modify a certain condition to be treated, but is low enough to 17 Savoid serious side effects, at a reasonable risk to benefit ratio within the scope of sound ;Z medical judgment. Unless otherwise expressed herein, typically the benefit agent is present M in the personal care composition or personal care system in an amount, based upon the total Sweight of the composition/system, from about 0.01 percent to about 5.0 percent, and preferably from about 0.01 percent to about 2.0 percent, and more preferably from about 00 0.01 percent to about 1.0 percent.
Optionally, commercially available detergent thickeners that are capable of imparting 0 the appropriate viscosity to conditioning compositions are suitable for use in this invention. If N) used, the detergent thickeners should be present in the compositions In an amount sufficient to raise the Brookfield viscosity of the composition to a value of between about 500 to about S10,000 centipoise. Examples of suitable detergent thickeners nonexcusively include: mono or diesters of polyethylene glycol of formula IV.
HO-(CHCHzOH
IV.
wherein z is an integer from about 3 to about 200; fatty acids containing from about 16 to about 22 carbon atoms; fatty acid esters of ethoxylated polyols; ethoxylated derivatives of mono and diesters of fatty acids and glycerine; hydroxyalkyl cellulose: alkyl cellulose; hydroxyalkyl alkyl cellulose: and mixtures thereof. More specifically.
suitable detergent thickeners nonexclusively include behenalkonium chloride; cetyl alcohol, quatemium-46, hydroxyethyl cellulose, cocodimonium chloride, polyquatemium-6.
polyquatemium-7, quatemium-18, PEG-18 glycerol oleate/cocoate, a mixture of acrylate copolymer, laureth-3 and propylene glycol, which is commercially available from Goldschmidt under the tradename "Antil 208.' a mixture of cocamidopropylbetaine and glyceryl laurate which is commercially available from Goldschmidt under the tradename, 'Antil HS60,' a mixture of propylene glycol, PEG 55. and propylene glycol oleate. which is commercially available from Goldschmidt under the tradename, "Antil 414 liquid," and mixtures thereof. Preferred detergent thickeners include polyethylene glycol ester, and more preferably PEG-150 distearate which is available from the Stepan Company of Northfield, Illinois or from Comiel, S.pA of Bologna, Italy under the tradename, "PEG 6000 DS".
The above described personal care composition and personal care system may be prepared by combining the desired components in a suitable container and mixing them under ambient conditions in any conventional mixing means well known in the art, such as a mechanically stirred propeller, paddle, and the like.
In another preferred embodiment of the personal care system of the present invention wherein a polymeric emulsifier such as, for example, polyethylene dipolyhydroxystearate (hereinafter "PEG 30") or dimethicone copolyol, are used and water is 18 C used as the vehicle, an oil-in-water emulsion may be produced. Although both the PEG Sand dimethicone copolyol are marketed for use in formulating water-in-oil compositions, we Shave unexpectedly found that oil-in-water emulsions may be created due to the unique processing steps and conditions employed herein. More specifically, we found that when a thickening agent, preferably a hydrophilic thickening agent, is neutralized in the hydrophilic phase of the present invention comprising a polymeric emulsifier prior to adding the lipophilic O phase of the present invention thereto, the resulting emulsion is in the form of a water-in-oil emulsion. Conversely, when a thickening agent, preferably a hydrophilic thickening agent, is Sneutralized in the hydrophilic phase of the present invention comprising a polymeric emulsifier IN 10 after the lipophilic phase of the present invention is added to the hydrophilic phase, the Sresulting emulsion is unexpectedly in the form of a oil-in-water emulsion.
Personal care systems of the present invention that are emulsions may contain, based upon the total weight of the emulsion, from about 0.01 percent to about 2 percent, and preferably from about 0.01 percent to about 0.5 percent of hydrophilic thickeners. Suitable neutralizers include any known bases, such as sodium hydroxide, or acids, such as lactic acid, that are capable of neutralizing the hydrophilic thickening agent, in either the hydrophilic phase (if a water-in -oil emulsion is desired) or a mixture of both the hydrophilic phase and the lipophilic phase (if an oil-in-water emulsion is desired) of the present invention to a pH of about to about 7 under ambient temperature. In one embodiment, hydrophilic thickeners including acrylatestaminoacrylates copolymer, acrylates/steareth-20 itaconate copolymer, itaconate copolymer, are preferably neutralized with an acid, such as lactic acid. Hydrophilic thickeners including carbomers. modified hydroxyethylcellulose, polyvinylacetate/maleic anhydride (PVA/MA) decadiene crosspolymer, and methacrylate copolymer, are preferably neutralized with a base, such as sodium hydroxide In one embodiment, the hydrophilic phase may be comprised of one or more of the following components: water, thickener, stability enhancer, nonfoaming surfactant, and water dispersible component, and the lipophilic phase may be comprised of one or more of the following components: silicone, ester, and polymeric emulsifier.
We have also surprisingly found that the personal care composition and personal care system of the present invention possesses good aesthetic properties without causing any significant ocular discomfort to the user and are partiularty suitable for use on the area surrounding the eye. It is well-known in the art that most emulsifiers having a relatively low molecular weight are irritating regardless of their hydrophilic lipophilic balance (HLB) value.
However, we have surprisingly found that when the personal care system of the present invention is produced using the particular polymeric emulsifiers and/ or thickeners set forth 19 herein, the resulting composition is gentle and possesses a low degree of ocular and skin ;Z irritation.
SAnother embodiment of the present invention is directed to a method for depositing a benefit agent onto the skin, hair and/or nails comprised of applying either the abovedescribed personal care system or personal care composition with an effective amount of a 00 benefit agent to a desired location on a human or animal. While the frequency and amount t«s of the benefit agent-containing personal care composition/system to be applied will depend Supon, for example, the type and amount of benefit agent available, the intended usage of the I\ final composition, i.e. therapeutic versus maintenance regimen, the amount and type of detergent present, and the sensitivity of the individual user to the composition/emulsion, c 7 typically the benefit agent-containing personal care composition/system of the present invention should be topically applied to affected body parts at regular intervals, and preferably from about 2 to about 14 times per week. More preferably, the composition/emulsion is applied more frequently during the initial stages of treatment, e.g.
from about 5 to about 7 times per week until the desired effect is achieved, then less frequently when maintenance is desired, e.g. from about 2 to about 5 times per week.
We have unexpectedly found that the above-described personal care composition and personal care system are capable of efficiently mediating the deposition and permeation of various benefit agents, such as antidandruff agents, onto and into the skin following topical administration thereto. More specifically, we have surprisingly found that when benefit agents are combined with either the personal care composition or the personal care system of the present invention, the amount of benefit agents deposited onto and/or into the skin, hair, and/or nails is about 50% greater than the amount of benefit agents deposited onto and/or into the skin, hair, and/or nails after application of known, commercial benefit agent-containing compositions.
An alternative preferred embodiment of the present invention is directed to a method for treating hair loss, such as hair loss resulting from alopecia, comprising topically applying the above-described personal care composition/system and the hair loss benefit agent to a desired location on an animal or human, wherein the benefit agent is comprised of an effective amount of a hair loss treatment agent such as minoxidil or mixture thereof. As used herein, "hair loss treatment agents" shall include agents capable of growing hair and/or agents capable of preventing the loss of hair. By "effective amount," it is meant an amount effective for treating hair loss and preferably may range from, based upon the total weight of the personal care system, from about 0.001 percent to about 20 percent, and preferably from about 1 percent to about 5 percent.
Examples of benefit agents suitable for treating hair loss include, but are not limited to potassium channel openers or peripheral vasodilators such as minoxidil, diazoxide. and 20 compounds such as N'-cyano-N-(tert-pentyl)-N'-3-pyridinyl-guanidine ("P-1075") as disclosed in United States Patent No.: 5,244,664, which is incorporated herein by reference; Svitamins, such as vitamin E and vitamin C, and derivatives thereof such as vitamin E acetate and vitamin C palmitate; hormones, such as erythropoietin, prostaglandins, such as prostaglandin El and prostaglandin F2-alpha; fatty acids, such as oleic acid; diruretics such as spironolactone; heat shock proteins such as HSP 27 and HSP 72; calcium channel blockers, such as verapamil HCL, nifedipine, and diltiazemamiloride; immunosuppressant drugs, such as cyclosporin and Fk-506; 5 alpha-reductase inhibitors such as finasteride; growth factors such as, EGF, IGF and FGF; transforming growth factor 0 10 beta: tumor necrosis factor; non-steroidal anti-inflammatory agents such as benoxaprofen; CN retinoids such as tretinoin: cytokines, such as IL-6, IL-1 alpha, and IL-1 beta; cell adhesion molecules such as ICAM: glucorcorticoids such as betametasone; botanical extracts such as aloe, clove, ginseng, rehmannia, swertia, sweet orange, zanthoxylum, Serenoa repens (saw palmetto). Hypoxis rooperi, stinging nettle, pumpkin seeds, and rye pollen: other botanical extracts including sandlewood, red beet root, chrysanthemum, rosemary, burdock root and other hair growth promoter activators which are disclosed in DE 4330597 which is incorporated by reference in its entirety herein; homeopathic agents such as Kalium Phosphoricum D2. Azadirachta indica D2, and Joborandi DI; genes for cytokines, growth factors, and male-pattered baldness; antifungals such as ketoconazole and elubiol: antibiotics such as streptomycin; proteins inhibitors such as cycloheximide; acetazolamide: benoxaprofen; cortisone; diltiazem; hexachlorobenzene; hydantoin; nifedipine; penicillamine; phenothaiazines; pinacidil; psoralens, verapamil; zidovudine; alpha-glucosylated rutin having at least one of the following rutins: quercetin, isoquercitrin, hespeddin, naringin, and methylhesperidin, and flavonoids and transglycosidated derivatives thereof which are all disclosed in JP 7002677, which is incorporated by reference in its entirety herein; and mixtures thereof.
Preferred hair loss treatment agents include minoxidil, 6-(I-piperdinyl)-2,4pyrimidinediamine-3-oxide, N'-cyano-N-(tert-pentyl)-N'-3-pyridinyl-guanidine, finasteride, retinoids and derivatives thereof, ketoconazole, elubiol or mixtures thereof.
Another embodiment of the present invention is directed to a method for inhibiting hair growth comprising topically applying the above-described personal care composition/system combined with a benefit agent to a desired area on an animal or human for inhibiting hair growth, wherein the benefit agent is comprised of an effective amount of a hair growth inhibiting agent. In a preferred embodiment, the personal care system contains, based upon the total weight of the personal care composition/system, from about 0.001 percent to about 20 percent, and preferably from about 0.01 percent to about 5 percent hair growth inhibiting agent.
21 Examples of benefit agents suitable for use in Inhibiting hair growth include: serine ;Z proteases such as trypsin; vitamins such as aipha-tocophenol (vitamin E) and derivatives thereof such as tocophenol acetate and tocophenol palmitate; antineoplastic agents, such as.
doxorubicin. cyclophosphamide, chiormethine, methotrexate. fluorouracil, vincristine, daunorubicin, bleomycin and hydroxycarbamide: anticoagulants, such as heparin, 00 heparinoids. coumaerins, detran and indandiones; antIthyroid drugs, such as. iodine.
thiouracils and carbimazole; lithium and lithium carbonate; interferons, such as interferon alpha, interferon alpha-2a and interferon alpha-2b: reiinoids, such as retinol (vitamin A).
isotretinoin: giucocorticoids such as betamethasone, and dexamethosone; antihyperlipidaemic drugs, such as triparanol and clafibrate; thallium: mercury; aibendazole; aliopurinol; amiodarone; amphetamines: androgens; bromocriptine; butyrophenones; carbamazepine: cholestyramine; cimetidine; clofibrate; danazol; desipramine; dixyrazine:.
ethambutol; .etionamide; fluoxetine;, gentamicin, gold salts; hydantoins: ibuprofen; impramine: immunoglobulins; indandianes; indomethacin; intraconazole; levadopa; maprotiline; methysergide; metoprolol; metyrapone; nadolol; nicotinic acid; potassi um thiocyanate; propranolol; pyridostimine; salicylates; sulfasalazine; terfenadirie; thiamphenicol: thiouracils; trimethadione; troparanol; vaiproic acid; and mixtures thereof.
Preferred hair growth inhibitory agents include serene proteases. retinal, isotretinoin, betamnetihoisone, alpha-tocophenol and derivatives thereof, or mixtures thereof.
Mnother preferred embodiment of the present invention is directed to a method for treating acne and for reducing the signs of aging. i.e. wrinkles, fine lines, and other manifestations of photodamage. comprising topically applying the above-described pe rsonal care composition/system and the relevant benefit agent to the skin of an animal or human at a desired area, wherein the benefit agent is comprised of an effective amount of an antiacne agent or an anti-aging agent, respectively.
Examples of suitable anti-aging agents include, but are not limited to inorganic sunscreens such as titanium dioxide and zinc oxide: organic sunscreens such as octylmethoxy cinnamates and derivatives thereof-, retinoids; vitamins such as vitamin E, vitamin A. vitamin C. vitamin B, and derivatives thereof such as vitamin E acetate, vitamin C palmitate, and the like; antioxidants including beta carotene, alpha hydroxy acids such as glycolic acid, citric acid, lactic acid, malic acid, mandelic acid, ascorbic acid, alphahydroxybutyric acid, alpha-hydroxyisobutyric acid, aipha-hydroxyisocaproic acid, atrrolactic acid, alpha-hydroxyisovaleric acid, ethyl pyruvate, galacturonic acid, glucoheptonic acid.
glucoheptono 1 .4-lactone, gluconic acid, gluconolactone, glucuronic acid, glucuronolactone, glycolic acid, isopropyl pyruvate, methyl pyruvate, mucic acid, pyruvic acid, saccharic acid, saccaric acid 1 .4-lactone, tartaric acid, and tartronic acid, beta hydroxy acids such as betahydroxybutyric acid, beta-phenyl-lactic acid, beta-phenylpyruvic acid; botanical extracts such 22 as green tea, soy, milk thistle, algae, aloe, angelica, bitter orange, coffee, goldthread, grapefruit, hoellen, honeysuckle, Job's tears, lithospermum. mulberry, peony, puerarua, nice, safflower, and mixtures thereof.
LC Preferred anti-aging agents include retinoids, anti-oxidants, alpha-hydroxy acids and beta-hydroxy acid with retinol and tretinoin being most preferred.
00 Suitable amounts of anti-aging agents Include, based upon the total weight of the described personal care composition/system, from about 0.01 percent to about 10 percent, and preferably from about 0.04 percent to about 5 percent.
Examples of suitable anti-acne agents include, but are not limited to topical retinoids 010 (tretinoin, isotretinoin, motretinide, adapalene, tazarotene, azelaic acid, retinol); salicylic acid: Sbenzoyl peroxide; resorcinol; antibiotics such as tetracycline and isomers thereof, erythromycin, and the anti-Inflammatory agents such as ibuprofen, naproxen, hetprofen; botanical extracts such as alnus, arica, artemisia capillaris, asiasarum root, birrh, calendula, chamomile, cnidium, comfrey, fennel, galla rhois, hawthorn, houttuynia, hypericum, jujube, kiwi, licorice, magnolia, olive, peppermint, philodendron, salvia, sasa albo-marginata; imidazoles such as ketoconazole and elubiol, and those described in Gollnick, H et al. 196(1) Dermatology Sebaceous Glands, Acne and Related Disorders. 119- 157 (1998), which is incorporated by reference herein, and mixtures thereof.
Preferred anti-acne agents include benzoyl peroxide, retinol, elubiol, antibiotics, and salicylic acid, with retinol and tretinoin being most preferred.
Suitable amount of anti-acne agents include, based upon the total weight of the described personal care system, from about 0.01 percent to about 10 percent, and preferably from about 0.04 percent to about 5 percent.
Another preferred embodiment of the present invention is directed to a method for depigmenting the skin, comprising topically applying to skin at a desired area the abovedescribed personal care composition or system and an effective amount of the depigmentation benefit agent. Suitable effective amounts of depigmentation agents include, based upon the total weight of the described personal care system, from about 0.01 percent to about 10 percent, and preferably from about 0.04 percent to about 5 percent.
Examples of suitable depigmentation agents include, but are not limited to soy and derivatives thereof, retinoids such as retinol; Kojic acid and its derivatives such as, for example, kojic dipalmitate; hydroquinone and it derivatives such as arbutin; transexamic acid; vitamins such as niacin, vitamin C and its derivatives: azelaic acid; placertia; licorice; extracts such as chamomile and green tea, and mixtures thereof, with retinol, Kojic acid, and hydroquinone, being preferred.
An alternative preferred embodiment of the present invention is directed to a method for treating the symptoms and/or the diseases of dandruff, seborrheic dermatitis
I
23 and/or psoriasis, comprising topically applying the above-described personal care composition or system and the relevant benefit agent to a location desired wherein the benefit agent is comprised of an effective amount of a dandruff treatment agent, a seborrheic C dermatitis treatment agent, or a psoriasis treatment agent, respectively. As used herein, S "dandruff treatment agent," "seborrheic dermatitis treatment agent," or a "psoriasis treatment 00 agent," respectively, shall include agents capable of treating the symptoms and/or the diseases of dandruff, seborrheic dermatitis, and psoriasis, respectively. By "effective Samount," it is meant an amount effective for treating the disease and/or the symptoms N associated therewith and preferably may range from, based upon the total weight of the personal care composition or system, from about 0.001 percent to about 10 percent, and Spreferably from about 0.01 percent to about 5 percent.
Examples of benefit agents suitable for treating the symptoms and/or the diseases of dandruff, seborrheic dermatitis and/or psoriasis, respectively, nonexclusively include those set forth above with shale oil and derivatives thereof, elubiol, ketoconazole, coal tar, salicylic acid, zinc pyrithione, selenium sulfide, hydrocortisone, sulfur, menthol, pramoxine hydrochloride, and mixtures thereof being particularly preferred.
The compositions of the present invention may be directed applied to the skin or may be applied onto other delivery implements such as dry or wet wipes, sponges, brushes, and the like by means known in the art. The compositions may be used in products designed to be left on the skin, wiped from the skin, or rinsed off of the skin.
The invention illustratively disclosed herein suitably may be practiced in the absence of any component, ingredient, or step which is not specifically disclosed herein. Several examples are set forth below to further illustrate the nature of the invention and the manner of carrying it out. However, the invention should not be considered as being limited to the details thereof.
EXAMPLES
Example 1: Preparation of Water-in-Oil Emulsion Preparation of Lipoohilic Phase: g of isostearyl palmitate, available from Brooks Industries, under the tradename "Loronate OP," 20 g of isononyl isononanoate, available from Alzo, Inc. under the tradename, "Wickenol 151," 20 g of cetyl octanoate, available from Brooks Industries, under the tradename "Loronate CIO," 20 g of pentaerythritol tetraoctanoate available from Brooks Industries, under the tradename "Loronate PT," and 20 g of cyclomethicone available from Dow Coming under the tradename. "Dow 345 Fluid" were combined into a glass beaker at a temperature of 25 "C and stirred until homogeneous.
24 (N Preparation of Hvdrophilic Phase: SInto a primary glass beaker containing 859.7 g of deionized water, 5 g of carbomer available from B.F. Goodrich, Inc. under the tradename, "Carbopol Ultrez" was added thereto c with stirring at a temperature of 25 "C until homogenous. Into a separate beaker was added 7.5 g. of sucrose cocoate available from Croda, Inc. under the tradename, "Crodesta 0 0 7.5 g. of PEG -6 Capric/caprylic glycerides available from Croda, Inc. under the tradename, "Glycerox 767," 10 g of hexylene glycol, 3 g. of methylparaben and 0.5 g of propylparaben with hand stirring until homogeneous to produce a pre-mixture. The pre-mixture was then added to \0 the primary glass beaker with constant stirring until the resulting mixture was homogeneous.
Preparation of Final Composition: After the 6.8 g. of a 20% aqueous solution of sodium hydroxide was added to the hydrophilic phase with constant stirring at 25'C until homogeneous, the lipophilic phase was added thereto with stirring at a temperature of 25 The resulting mixture was then mixed for 15 minutes.
Example 2: Preparation of Oil-in-Water Emulsion Containing Retinol Preparation of Iipoohilic Phase: 11 g of PEG-30 dipolyhydroxystearate, available from Uniqema, Inc. under the tradename "Ariacel P-135." 50 g of isononyl isononanoate, available from Alzo, Inc. under the tradename, "Wickenol 151," and 50 g of a mixture of hexyldecyl benzoate and butyloctyl benzoate, available from C.P. Hall Company under the tradename, "Hallstar AB" were combined with continous mixing in a vessel and heated to a temperature of 45C until homogeneous. After the mixture was cooled to a temperature of 25 50 g of cyclomethicone available from Dow Coming under the tradename, "Dow 344 Fluid" and 6.9 g of a mixture of vitamin A alcohol and polysorbate 20 in a 1:1 weight ratio were added thereto with continuous mixing under an Argon blanket and under yellow light into a glass beaker containing a propeller stirrer until homogeneous. All subsequent procedures with this lipophilic phase were conducted under these conditions of argon blanket and yellow light until the formulation is placed into an oxygen and light impermeable container.
Preparation of Hydrophilic Phase: Into a primary glass beaker containing 795 g of deionized water, nitrogen was bubjbled therein until the subsequent addition of the lipophilic phase thereto so as to minimize exposure to oxygen. 5 g of PEG-8 caprylic/capric glycerides available from Trivent Inc. under the 25 tradena me, 'Trivasol 13W was then added thereto with stirring at 25 0 C; until homogeneous. For aiding in dispersion of the thickener in the formulation, 4 g of carbomer available from B.F.
Goodrich, Inc. under the tradename, "Carbopol Ultrez" were added to 30 g of M ~dimethylisosorbide available from Uniqlema, Inc. under the tradename, 'Arasolve DM1" in a separate beaker with hand stirring- Into the dimethylisosorbide mixture was then added 2 g. of 00) methylparaben arnd I g of propylparaben with hand stirring until homogeneous to produce a 0 pre-mixture. The pre-mixture was then added to the primary glass beaker with constant stirring until the resulting mixture was homogeneous.
Preparation of Final Composition: The lipophilic phase was then added to the hydrophilic phase with constant stirring at 25'C until homogeneous. 2 g of triethanolamine available from Union Carbide under the tradename, 'Trolamine 99%' was then added to the resulting mixture with stirring until homogeneous. The final emulsion contains the components as set forth in Table E: TablIe E: Emulsion Components IO- 26-
O
O
Example 3: Preparation of Water-in-Oil Emulsion Containing Retinol ;Z Preparation of Lipophilic Phase: 11 g of PEG-30 dipolyhydroxystearate, available from Uniqema, Inc. under the tradename "Arlacel P-135," 30 g of isononyl isononanoate, available from Alzo, Inc. under the 0 5 tradename, "Wickenol 151," and 30 g of a mixture of hexyldecyl benzoate and butyloctyl O benzoate, available from C.P. Hall Company under the tradename, "Hallstar AB" were C combined in a vessel with mixing and heated to a temperature of 45 °C until homogeneous.
SAfter the resulting mixture was cooled to a temperature of 25"C, 30 g of cyclomethicone N available from Dow Coming under the tradename, "Dow 344 Fluid" and 6.9 g of a mixture of vitamin A alcohol and polysorbate 20 in a 1:1 weight ratio were added thereto with continuous mixing under an Argon blanket and under yellow light into a glass beaker containing a propeller stirrer until homogeneous. All subsequent procedures with this lipophilic phase was conducted under these conditions of argon blanket and yellow light until the formulation is placed into an oxygen and light impermeable container.
Preparation of Hvdrophilic Phase: Into a primary glass beaker containing 863.2 g of deionized water, nitrogen was bubbled therein in order to eliminate dissolved oxygen contained therein. The nitrogen continued to be bubbled therein until the subsequent addition of the lipophilic phase thereto. g of PEG-8 caprylic/capric glycerides available from Trivent Inc. under the tradename, "Trivasol BW" was then added thereto with stirring at 25 0 C until homogeneous. For aiding in dispersion of the thickener in the formulation, 4 g of carbomer available from B.F. Goodrich, Inc. under the tradename, "Carbopol Ultrez" were added to 10 g of triisopropyl citrate available from Phoenix Chemical Company under the tradename, "PELEMOL TIPC" in a separate beaker with hand stirring. Into the triisopropyl citrate mixture was then added 2 g. of methylparaben and 1 g of propylparaben with hand stirring until homogeneous to produce a pre-mixture. The pre-mixture was then added to the primary glass beaker with constant stirring until the resulting mixture was homogeneous.
Preparation of Final Composition: 2 g of triethanolamine available from Union Carbide under the tradename, "Trolamine 99%" was then added to the hydrophilic phase with constant stirring at 250C until homogeneous. The resulting mixture was then added to the lipophilic phase at constant temperature with stirring until homogeneous. The final emulsion contains the components as set forth in Table F: 2006202708 23 Jun 2006 28 Table F: Emulsion Components Chemical Name 7 0 Hexyldecyl benzoate and Hallstar AB N butyloctyl benzoate 0 SCyclomethicone Dow 344 Fluid Vitamin A alcohol and Tween 20 Retinol 50C 0.69 Water Water 86.320 Carbomer Carbopol Ultrez 0.40 PEG-8 caprylic/capric glycerides Trivasol BW Methylparaben Methylparaben 0.20 Propylparaben Propylparaben 0.10 Triisopropyl citrate Pelemol TIPC NaOH NaOH 0.190 Example 4 Luminosity of the Formulation of Example 2 Digital images of the right side and the left side of a Caucasian woman's face was taken using a digital camera available from Fujix (Model No.: DCS 505) equipped with a mm macro lens under strobe light conditions at F8 and 1/125 seconds. The camera lens was filtered with a CG-395 filter, and the strobe light source was filtered with a combination of a UG-11 filler and a KG-5 filter. These images are illustrated in FIG. 1(a) and FIG. 1(b), respectively.
After approximately 0.09 grams of the 0.3% retinol formulation prepared in Example was applied to about a 20 cm 2 site on the suborbital (cheek) area of the right side and the left side of the woman's face, digital images were taken thereof under the above conditions as illustrated in FIG.. 1(c) and FIG. respectively. Using PHOTOSHOP software available from Adobe Inc., the digital image of each site was analyzed for average pixel intensity or luminosity. Luminosity, as used herein, is an indication of brightness of a given area as measured on a scale of 1 to 255, wherein the latter is the most luminescent. Using the 0.3% retinol concentration value, the pixel intensity change, as determined by the 29 Sdifference in pixel intensity between the base surface and the treated surface, for both the T ntreated right side and left side of the face was plotted as a function thereof as illustrated in M FIG. 2 The formulation was then rinsed from the right side of the face, and a digital image was taken of the site under the above conditions as illustrated in FIG. The formulation 00 was then wiped twice using a Kimwipe tissue available from Kimberly Clark from the left side Sof the face, and a digital image was taken of the site under the above conditions as illustrated in FIG. The pixel intensity change for the rinsed right side and the wiped left NO side was plotted on the graph of FIG. then the respective deposited retinol concentrations were interpolated therefrom to be 0.145% and respectively.
C This Example showed that the formulation of the present invention effectively deposits active agents, such as retinol, onto the skin. A significant amount of the agents remained on the skin after the formulation was removed therefrom. Moreover, this Example highlighted that when the personal care composition of the present invention contains a 0.3% retinol active agent, it deposited the same amount of retinol on the skin as a leave-on product containing 0.145% retinol (when the compositions was removed via rinsing with water) and a leave-on product containing a 0.1% retinol (when the composition was removed via wiping).
Example 5 Luminosity of the Formulation of Example 3 The procedure set forth in Example 4 was repeated using the formulation of Example 3 instead of that of Example 2. The pre-treatment images are ilfustrated in FIG.
1(a) and FIG. respectively.
The formulation-containing images are illustrated in FIG. 1(c) (right side) and FIG. 1 (left side). Using the 0.3% retinol concentration value, the pixel intensity change for the treated right side and left side of the face was plotted as a function thereof as illustrated in FIG. 2 The digital image of the washed site is illustrated in FIG. and the image of the wiped side is illustrated in FIG. The pixel intensity change for the rinsed right side and the wiped left side was plotted on the graph of FIG. then the respective deposited retinol concentrations were interpolated therefrom to be 0.135% and 0.072%, respectively.
This Example showed that the formulation of the present invention effectively deposited active agents, such as retinol, onto the skin. These agents remained present on the skin after the formulation was removed therefrom. Moreover, this Example highlighted that when the personal care composition of the present invention contained a 0.3% retinol active agent, the composition deposited the same amount of retinol on the skin as a leaveon product containing 0.135% retinol (when the compositions was removed via rinsing with 30 water) and a leave-on product containing a 0.072% retinol (when the composition was ;Z removed via wiping).
Example 6: Preparation of Oil-In-Water Emulsion Containing DMAE 005 Preparation of Linophilic Phase: g of steareth-2 available from Unlqema under the tradename "Brfj 72", 8.5 g of also available from Uniqema under the tradename 'Alasolve 200". 10 g. of isononyl isononanoate ~available from Aizo. Inc.. under the tradename VWickenol 151", 10 g. of IND Isostearyl palmitate available from Brooks Industries under the tradename "Loronate OP", 10 g of cetyl octanoate, available trorn Brooks Industries, under the tradename 'Loronate CIO." g of pentaerythritol tetraoclanoate also available from Brooks Industries, under the tradename "Loronate PT," and 10 g of cyclomethicone available from Dow Coming under the tradename, "Dow 345 Fluid' were combined into a glass beaker at a temperature of 50 OC and stirred until homogeneous.
Preparation of H-ydrgphilic Phase: 602.5 g of deionized water were weighed into a primary glass beaker and heated to 78-82 0 C. With constant agitatlon. 4 g of PVM/MA Decadiene Crosspolymer available from ISP under the tradename, "Stabileze QM" was added thereto' and held at 7M-2 0 C until homogenous. This mixture was then cooled to 40-50 0 C, during which time, 1 g. of disodium EDTA, 10 g. of hexylene glycol, 7.5 g. of PEG-6 caprylic/capric glycerides available from Croda, Inc. under the tradename, "Glycerox 767-, and 10 g. of PEG-150 pentaerythrityt tetrastearate also available from Croda under the tradename, "Crothix Liquid," were added to the primary beaker with constant stirring.
Prenaratio~n of Final Composition: When both the lipophilic phase and the hydrophilic phase were at a temperature of 0 C -50 0 C, the ipophilic phiase was added to the hydrophilic phase with constant stirring. In a separate beaker, 30 g. of 2-(dimethylamino) ethanol, available from BASF under the tradename DMAE, and 50 g. of L-tyrosine available from Ajinimnoto under the tradename OL-Tyrosine" were added to 150 g. of water, and mixed until homogenous. This premix was then added to the primary beaker with constant stirring. 10 g of Nylon-12 available from Kobo Products, Inc., under the tradename "SP-1 5 g of talc available from Luzenac America under the tradename, 'Windsor Talc 66". 10 g of silicone quatemium-13 available from Biosil Industries under the tradename, 'Biosil Basics SPO," and 10 grams of a phenoxyethanol, methylparaben, butylparaben, ethylparaben and propylparaben solution available from Nipa under the tradename "Phenonip" were added separately to the primary beaker with constant stirring. The 31 entire mixture was adjusted to a pH of 7.0-7.5 with a 70% aqueous solution of glycolic acid, and Z homogenized for 2 minutes at medium power with a Glfford-Wood homogenizer.
M After about 1 ml to about 10 ml of the resulting formulation is applied to the facial skin of consumers, the consumers perceive that their facial skin appears and feels firmer and "lifted." 00
O
C Example 7: Preparation of Oil in Water Emulsion Containing a Polymeric Emulsifier and Colloidal Oat Flour IO 10 Preoaration of Hvdroohilic Phase: SInto a primary glass beaker containing 850.70 g of deionized water, 10g of Colloidal Oat Flour available from Quaker was added thereto with stirring at 250C until a homogeneous, smooth slurry was achieved. 2.5 g. of Acrylates/C10-30 Alkyl Acrylate Crosspolymer available from 8.F. Goodrich, Inc. under the tradename. "Pemulen TR-1" and 2.5 g. of Carbomer, also available from B.F. Goodrich, Inc. under the tradename "Carbopol Ultrez" were then added to the primary beaker and mixed with slower agitation until homogenous. Into a separate beaker was added 7.5 g. of sucrose cocoate available from Croda, Inc. under the tradename.
"Crodesta SL-40," 7.5 g. of PEG -6 Capric/caprylic glycerides available from Croda. Inc. under the tradename, "Glycerox 767," 10 g of hexylene glycol, 3 g. of methylparaben and 0.5 g of propylparaben with hand stirring until homogeneous to produce a pre-mixture. The pre-mixture was then added to the primary glass beaker with constant stirring until the resulting mixture was homogeneous.
Preparation of Final Composition: 20 g of isostearyl palmitate, available from Brooks Industries, under the tradename "Loronate OP," 20 g of isononyl isononanoate, available from Alzo, Inc. under the tradename, VWickenol 151," 20 g of cetyl octanoate, available from Brooks Industries, under the tradename "Loronate CIO," 20 g of pentaerythritol tetraoctanoate available from Brooks Industries, under the tradename "Loronate PT," and 20 g of cyclomethicone available from Dow Coming under the tradename, "Dow 345 Fluid" were each added separately to the primary beaker with constant stirring at 25°C until homogeneous. 2.5 g of Tetrasodium EDTA and 6.8 g. of a aqueous solution of sodium hydroxide was then added thereto with stirring at a temperature of 25 The resulting mixture was then mixed for 15 minutes.
32 Example 8: Preparation of Ol in Water Emulsion ContaininQ a Polymeric Emulsifier and Colloidal Oat Flour Preparation of Preservative Pre-Blend OO 4 g of methylparaben, 1 g of propylparaben, 7.5 g of PEG-6 capric/caprylic glycerides O available from Croda, Inc. under the tradename, "Glycerox 767," 7.5 g of sucrose cocoate also N available from Croda, Inc. under the tradename, "Crodesta SL40," and 10 g of hexylene glycol were combined with mixing under ambient conditions until homogeneous.
O
SPreparation of Emulsion: Into a primary glass beaker containing 852.5 g of Purified Water (USP), 10g of Colloidal Oat Four available from Quaker were added thereto with stirring at about 200 rpm and a temperature of about 20 °C to about 30 "C until a homogeneous, smooth slurry was achieved. 2.5 g. of Acrylates/C10-30 Alkyl Acrylate Crosspolymer available from B.F.
Goodrich, Inc. under the tradename. "Pemulen TR-1" and 2.5 g. of Carbomer, also available from B.F. Goodrich, Inc. under the tradename "Carbopol Ultrez" were then added thereto and mixed with slower agitation until homogenous. After adding the Preservative Pre-blend with increased mixing at about 200 rpm thereto, the following components were sequentially added thereto with constant stirring at about 20 0 C to about 30 0 C until homogeneous, with intervals of minutes between the addition of each respective component: 20 g of isononyl isononanoate, available from Alzo, Inc. under the tradename, "Wickenol 151," 20 g of cyclomethicone available from Dow Coming under the tradename. "Dow 345 Fluid" 20 g of isostearyl palmitate, available from Brooks Industries, under the tradename "Loronate OP." 20 g of cetyl octanoate, available from Brooks Industries, under the tradename "Loronate CIO," 20 g of pentaerythritol tetraoctanoate available from Brooks Industries, under the tradename "Loronate PT." 2.5 g of Tetrasodium EDTA and enough of a a 20% aqueous solution of sodium hydroxide was then added thereto with stirring at a temperature of about 20°C to about 30"C to produce a final mixture having a pH of 5.9 to 6.5. The resulting mixture was then mixed until homogeneous.
33 EyamIe 9 Preprvrtion of Oil-in-Water Emulsion with Non-Ionic Emulsifier Preparation of LiDOphilic Phase.* g of isostearyl palmitate, available from Brooks Industries, under the tradename 00 5 "Loronate OP," 20 g of isononyl isononanoate, available from Aizo, Inc. under the tradename, "Wckenol 151.' 20 g of cetyl octanoate, available from Brooks Industries, under the tradename "Loronate CIO," 20 g of pentaerythritol tetraoctanoate available from Brooks Industries, under the tradename "Lofonate PT," were combined into a glass beaker at a temperature of 25 OC and stirred until homogeneous.
c-i Preparation of Hydrophilc Pas: Into a primary glass beaker containing 659.7 g of deionized water, 2 g of carbomer available from S.F. Goodrich, Inc. under the traderiame, 'Carbopol ETD 2020, and 1 g of C1O-C30 alkyl acrylate/cmosspolymer commercially available from B.F. Goodrich under the tradename, -Pemulen TRV1 were added thereto with stirring at a temperature of 25 *C until dispersed. While heating the mixture to 75 OC, 1.2 g of tromethamine, 1 g of EDTA, 7.5 g. of PEG 6 Capric/caprylic glycerides available from Croda. Inc- under the tradename, "Glycerox 767." 10 g of hexylene glycol, 4 g. of methylparaben and 1 g of propylparaben were added with constant stirring until the resulting mixture was homogeneous. After the mixture reached a temperature of 75 10 g. of a mixture of sorbitan stearate and sucrose cocoate available from Uniqema under the tradename, "alone 2121," were added thereto with. stirring for minutes at constant temperature.
Preparation of Final Composition: After the lipophilic phase was heated to a temperature of 75 it was then added to the hydrophilic phase with constant stirring at 750C until homogeneous. After the mixture was then cooled to 35 OC, 20 g of cyclomethicone available from Dow Coming under the tradename, "Dow 345 Fluid" was added thereto. After the mixture was cooled to 25 OC, 0.4 g.
of tromethamine was then added thereto with stirring at constant temperature such that the resulting mixture had a pH- of -34 Example 10; Preparaion of Personal Car^ omftion1: 9 Of CyClomethicone available from the Dow Corning Corporation under the tradenarne, -DOW CORNING 345," 15 g of hexylene glycol. and 65 g of a mixture of hexyl decyl benzoate and butyl octyl benzoate available from the C.P. Hall Company under the tradename, "Hallstar AS" are sequentially added to a vessel with mixing at about 100 rpm under ambient conditions until the final mixture is homogeneous.
00 About 1 ml to about 10 ml of the resulting personal care composition may be applied to the skin as a leave-on composition without the need for rinsing.

Claims (44)

  1. 2. The composition of claim 1, wherein the composition is comprised of. based upon the total weight of the composition, b. from about 10 percent to about 80 percent of the water dispersible component; and INO c. from about 20 percent to about 90 percent of the ester.
  2. 3. The personal care composition of claim 1, wherein the ratio of water dispersible component to ester ranges from about 1:9 to about 4:1.
  3. 4. The personal care composition of claim 1, further comprising a silicone component. The personal care composition of claim 1, wherein the water dispersible component is selected from the group consisting of polyethylene glycol 400, hexylene glycol, propylene glycol, polypropylene glycol-10 methylglucose ether, ethoxydiglycol, polyethylene glycol-6 caprylic/capric glycerides, ethylene glycol monobutyl ether, triisopropyl citrate. polyethylene glycol-8 caprylic/capric glycerides, 3-methoxy-3-methyl-l-butanol, dimethyl isosorbide. polyethylene-6 caprylic/capric triglyceride, and mixtures thereof.
  4. 6. The personal care composition of claim 5, wherein the water dispersible component is selected from the group consisting of hexylene glycol, dimethyl isosorbide. polyethylene glycol-6 caprylic/capric glyceride, and mixtures thereof.
  5. 7. The personal care composition of claim 1, wherein the water dispersible component is comprised of, based upon the total weight percent of the personal care composition, a) from about 5 percent to about 15 percent of hexylene glycol; b) from about 5 percent to about 10 percent of polyethylene-6 caprylic/capric triglyceride.
  6. 8. The personal care composition of claim 1, wherein the ester is selected from liquid esters that either possess a structural means for ensuring the liquidity of the ester or are heterogeneous in nature.
  7. 9. The personal care composition of claim 1, wherein the ester is selected from the group consisting of I 36 a) a branched C, to C2 alkyl alcohol ester of an aromatic acid; b) a straight-chained or branched C s to C, alkyl acid esters of optionally ethyoxylated/propoxylated polyols having from about 3 carbon atoms to about 7 carbon atoms; c) branched Cs to C, alkyl alcohol esters of branched polyacids; 00 d) branched or straight-chained C 5 to C, alkyl acid esters of branched and/or unsaturated C, to C, alkyl alcohols; 0 e) branched or unsaturated Cs to C, alkyl alcohol esters of an acid selected from the Sgroup consisting of adipic acid, succinic acid, sebacic acid, maleic acid, and mixtures thereof f) polyether interrupted fatty acid esters; g) benzoic acid ester of heterogeneous alcohols having from about 8 carbon atoms to about 22 carbon atoms; and h) mixtures thereof, The personal care composition of claim 9, wherein the ester is selected from the group consisting of straight-chained or branched Cs to C, alkyl acid esters of optionally ethyoxylated/propoxylated polyols; benzoic acid esters of heterogeneous alcohols: and mixtures thereof.
  8. 11. The personal care composition of claim 9, wherein the ester is selected from the group consisting of butyloctyl salicylate; hexyldecyl benzoate; and butyloctyl benzoate; alkyl benzoates having from about 12 carbon atoms to about 15 carbon atoms: and mixtures thereof.
  9. 12. The personal care composition of claim 11, wherein the ester is selected from the group consisting of hexyldecyl benzoate, butyloctyl benzoate, and mixtures thereof.
  10. 13. The personal care composition of claim 9, wherein the ester is selected from the group consisting of pentaerythritol tetraoctanoate; trimethylolpropane trioctanoate; trioctanoin; pentaerythrityl tetrapelargonate; sorbitan trioleate; caprylic/capric triglyceride; neopentyl alcohol tetraoctanoate, and mixtures thereof.
  11. 14. The personal care composition of claim 13, wherein the ester is selected from the group consisting of caprylic/capric trlglyceride; pentaerythritol tetraoctanoate; trimethylolpropane trioctanoate: pentaerythrityl tetrapelargonate; and mixtures thereof. The personal care composition of claim 9, wherein the ester is selected from the group consisting of branched alkyl alcohol esters of branched polyacids, wherein the alkyl 1 37 alcohol is optionally substituted and contains from about 3 carbon atoms to about 22 carbon Satoms. c
  12. 16. The personal care composition of claim 15, wherein the ester is trioctyldodecyl citrate and mixtures thereof. 00 5 17. The personal care composition of claim 9, wherein the ester is selected from the 0 group consisting of tridecyl neopentanoate, isostearyl palmitate, cetyl ricinoleate, cetyl Soctanoate, isononyl isononanoate, butyl stearate, octyldodecyl soyate, tridecy! erucate, Soctyldodecyl erucateleicosil erucate, and mixtures thereof. O
  13. 18. The personal care composition of claim 17, wherein the ester is selected from the group consisting of cetyl octanoate, isostearyl palmitate, isononyl isononanoate, and mixtures thereof.
  14. 19. The personal care composition of claim 9. wherein the ester is selected from the group consisting of diisopropyl adipate, dioctyl sebacate, dioctyl succinate. dioctyl maleate, diisostearyl adipate, diethyl sebacate, and mixtures thereof.
  15. 20. The personal care composition of claim 19, wherein the ester is selected from the group consisting of diethyl sebacate, dioctyl sebacate, diisostearyl adipate. and mixtures thereof.
  16. 21. The personal care composition of claim 9. wherein the ester is selected from the group consisting of laureth-2 benzoate; C, to Ca fatty alkyl (optionally polypropylenoxy) polyethyleneoxy carboxylate esters derived from an alcohol having from about 1 carbon atom to about 22 carbon atoms; and mixtures thereof.
  17. 22. The personal care composition of claim 21, wherein the ester is isopropyl propylene glycol-2-isodeceth-7 carboxylate.
  18. 23. The personal care composition of claim 9. wherein the ester is selected from at least two of the following esters: a) branched Cs to Cm alkyl alcohol esters of an aromatic acid; b) branched or straight-chained Cs to C 2 alkyl acid esters of branched or unsaturated Cs to C2 alkyl alcohols; and c) straight-chained or branched C, to C2 alkyl acid esters of optionally ethyoxylated/propoxylated polyols.
  19. 24. The personal care composition of claim 9, wherein the ester is a mixture of, based upon the total weight percent of the esters,: 38 N a) from about 30 percent to about 80 percent of branched or straight-chained Cs to SC2 alkyl acid esters of branched or unsaturated C. to C, alkyl alcohols: t' b) from about 10 percent to about 50 percent of branched C 5 to C2 alkyl alcohol C esters of an aromatic acid; and c) from about 10 percent to about 50 percent of straight-chained or branched Cs to 00 C alkyl acid esters of optionally ethyoxylated/propoxylated polyols. C 25. The personal care composition of claim 9, wherein the ester is a mixture N comprised of, based upon the total weight percent of the ester,: O a) from about 15 percent to about 50 percent isononyl isononanoate; b) from about 15 percent to about 50 percent isostearyl palmitate; c) from about 15 percent to about 50 percent cetyl octanoate; and d) from about 15 percent to about 50 percent pentaerthritol tetraoctanoate.
  20. 26. A personal care system comprising: a. the personal care composition of claim 1; b. water, and c. a polymeric emulsifier and/or a thickener.
  21. 27. The personal care system of claim 26 comprising, based upon the total weight of the personal care system: a. at least about 3 percent of the personal care composition of claim 1; b. from about 70 percent to about 98 percent of water: and c. from about 0.5 to about 1.5 percent of a polymeric emulsifier and/or thickener.
  22. 28. The personal care system of claim 26. wherein the polymeric emulsifier is polyethylene glycol-30 dipolyhydroxystearate; dimethicone copolyol; substituted acrylates; and mixtures thereof.
  23. 29. The personal care system of claim 26. wherein the thickener is selected from the group consisting of carbomers, acrylate copolymers, hydroxyethylcellulose modified with cetyl ether groups, polyvinylmethyl ether/maleic anhydride (PVM/MA) decadiene crosspolymer, and mixtures thereof.
  24. 30. The personal care system of claim 26, wherein the thickener is selected from the group consisting of acrylates/aminoacrylates copolymer, acrylates/steareth-20 methacrylate 39 (1 copolymer; acrylates/ceteth-20 itaconate copolymer, acrylates/steareth-20 itaconate §copolymer, carbomers, modified hydroxycellulose, polyvinylacetatelmaleic anhydride (PVA/MA) decadiene crosspolymer, and mixtures thereof. 1 31. The system of claim 30, further comprising a benefit agent.
  25. 32. The system of claim 31, wherein the benefit agent is selected from the group 00 0 consisting of vasoconstrictors, collagen enhancers, anti-edema agents, depigmentation agents: reflectants; detangling/wet combing agents; film forming polymers: humectants; Samino acid agents; antimicrobial agents; allergy Inhibitors; anti-acne agents; anti-aging DO agents: anti-wrinkling agents, antiseptics; analgesics; antitussives; antipruritics; local anesthetics; anti-hair loss agents; hair growth promoting agents; hair growth inhibitor agents; antihistamines; antiinfectives; inflammation inhibitors; anti-emetics; anticholinergics; vasoconstrictors; vasodilators: wound healing promoters; peptides, polypeptides and proteins; deodorants and anti-perspirants; medicament agents: skin emollients and skin moisturizers; skin firming agents, hair conditioners; hair softeners; hair moisturizers; vitamins: tanning agents; skin lightening agents; antifungals; depilating agents; shaving preparations; external analgesics; perfumes; counterirritants; hemorrhoidals; insecticides; poison ivy products; poison oak products; burn products; anti- diaper rash agents; prickly heat agents; make-up preparations; vitamins; amino acids and their derivatives; herbal extracts: retinoids; flavenoids; sensates; anti-oxidants; skin conditioners; hair lighteners; chelating agents; cell turnover enhancers; coloring agents; pigments; sunscreens and mixtures thereof.
  26. 33. The system of claim 31, wherein the benefit agent is selected from the group consisting of feverfew, centella asiatica, olive leaf, wheat protein, oat oil. lycopene, DMAE. soy and derivatives thereof, colloidal oatmeal, sulfonated shale oil, elubiol, 6-(1-piperidinyl)- 2,4-pyrimidinediamine-3-oxide, finasteride, ketoconazole, salicylic acid, zinc pyrithione, coal tar, benzoyl peroxide, selenium sulfide, hydrocortisone, sulfur, menthol, pramoxine hydrochloride, tricetylammonium chloride, polyquatemium 10, panthenol, panthenol triacetate, vitamin A and derivatives thereof, vitamin B and derivatives thereof, vitamin C and derivatives thereof, vitamin D and derivatives thereof, vitamin E and derivatives thereof, vitamin K and derivatives thereof, keratin, lysine, arginine, hydrolyzed wheat proteins, hydrolyzed silk proteins, octyl methoxycinnamate, oxybenzone, minoxidil, titanium dioxide, zinc dioxide, retinol, erthromycin, tretinoin, and mixtures thereof.
  27. 34. The system of claim 31, wherein the benefit agent is present in an amount, based upon the total weight of the system, from about 0.001 percent to about 5.0 percent.
  28. 35. The system of claim 26, further comprising a stability enhancer selected rom a nonionic emulsifier, an essentially non-foaming surfactant, and mixtures thereof. 40 S36. A method of treating hair loss comprising topically applying the system of claim 26 with an effective amount of a hair loss treatment agent to a desired location on an animal Sor human. c
  29. 37. The method of claim 36, wherein the hair loss treatment agent is selected from the group consisting of minoxidil, 6-(l-piperdinyl)-2,4-pyrimidinediamine-3-oxide, N'-cyano-N- 00 (tert-pentyl)-N'-3-pyridinyl-guanidine. finasteride, retinoids and derivatives thereof, ketoconazole. elubiol or mixtures thereof.
  30. 38. A method for inhibiting hair growth comprising topically applying the system of claim 26 with a hair growth inhibiting agent to a desired area on an animal or human for inhibiting hair growth. NC 39. The method of claim 38, wherein the benefit agent is selected from the group consisting of serine proteases, retinol, isotretinoin, betamethoisone, alpha-tocophenol and derivatives thereof, and mixtures thereof. A method for treating acne comprising topically applying a mixture of the system of claim 26 and an effective amount of an anti-acne agent to the skin of an animal or human at a desired area.
  31. 41. The method of claim 40, wherein the anti-acne agent is selected from the group consisting of benzoyl peroxide, retinol, elubiol, antibiotics, salicylic acid, and mixtures thereof.
  32. 42. A method for reducing the signs of aging and other manifestations of photodamage comprising topically applying a mixture of the system of claim 26 and an effective amount of an anti-aging agent to the skin of an animal or human at a desired area.
  33. 43. The method of claim 42, wherein the anti-aging agent is selected from the group consisting of retinoids. anti-oxidants, alpha-hydroxy acids, beta-hydroxy acids and mixtures thereof.
  34. 44. A method for depigmenting the skin comprising topically applying the system of claim 26 and an effective amount of a depigmentation benefit agent to the skin of an animal or human at a desired area. The method of claim 44, wherein the depigmentation agent is selected from the group consisting of retinol, Kojic acid, hydroquinone, and mixtures thereof.
  35. 46. A method for treating the symptoms and/or the diseases of dandruff, seborrheic dermatitis and/or psoriasis, comprising topically applying a mixture of the system of claim 26 and an effective amount of a benefit agent capable of treating the symptoms to the skin of an animal or human at a desired area.
  36. 47. The method of claim 46, wherein the benefit agent is selected from the group consisting of shale oil and derivatives thereof, elubiol, ketoconazole, coal tar, salicylic acid, r 41- zinc pyrithione, selenium sulfide, hydrocortisone, sulfur, menthol, pramoxine Shydrochloride, and mixtures thereof. S48. The system of claim 26, wherein said system is in the form of a gel, a bath, a wash, a mousse, a shampoo, a rinse, a lotion, a cream, a dry wipe, a wet wipe, a brush, 00oO a sponge, or a spray.
  37. 49. The system of claim 26, wherein said system is in the form of an oil-in-water (Ni Iemulsion. N 50. A method of delivering a benefit agent to hair, skin or nails comprised of applying the composition of claim 31 to a desired location.
  38. 51. A personal care composition, substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
  39. 52. A personal care system, substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
  40. 53. A method of treating hair loss, substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
  41. 54. A method of inhibiting hair growth, substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples. A method of treating acne, substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples. 42- S56. A method of reducing the signs of aging and other manifestations of ;photodamage, substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or 5 examples. oo 00
  42. 57. A method of depigmenting the skin, substantially as herein described with Sreference to any one of the embodiments of the invention illustrated in the INO Saccompanying drawings and/or examples.
  43. 58. A method of treating the symptoms and/or diseases of dandruff, seborrheic dermatitis and/or psoriasis, substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
  44. 59. A method of delivering a benefit agent to hair, skin or nails, substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples. DATED this 2 3 rd day of June 2006 Shelston IP Attorneys for: Johnson Johnson Consumer Companies, Inc.
AU2006202708A 2000-12-21 2006-06-23 Personal care compositions Abandoned AU2006202708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2006202708A AU2006202708A1 (en) 2000-12-21 2006-06-23 Personal care compositions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/745270 2000-12-21
AU97359/01A AU9735901A (en) 2000-12-21 2001-12-21 Personal care compositions
AU2006202708A AU2006202708A1 (en) 2000-12-21 2006-06-23 Personal care compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU97359/01A Division AU9735901A (en) 2000-12-21 2001-12-21 Personal care compositions

Publications (1)

Publication Number Publication Date
AU2006202708A1 true AU2006202708A1 (en) 2006-07-20

Family

ID=36702926

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2006202708A Abandoned AU2006202708A1 (en) 2000-12-21 2006-06-23 Personal care compositions

Country Status (1)

Country Link
AU (1) AU2006202708A1 (en)

Similar Documents

Publication Publication Date Title
US6762158B2 (en) Personal care compositions comprising liquid ester mixtures
US7074747B1 (en) Cleansing compositions
US7262158B1 (en) Cleansing compositions comprising a liquid silicone and ester mixture
US20020034489A1 (en) Personal care formulations
US20050009717A1 (en) Foaming make-up removing cleansing compositions
AU782857B2 (en) Novel detergent compositions with enhanced depositing, conditioning and softness capabilities
US20030069148A1 (en) Mild cleansing composition having stable foam
CN106999384B (en) Cleaning composition
EP1284135A2 (en) Mild cleansing composition having stable foam
EP1213007A2 (en) Personal care formulations
AU2006202708A1 (en) Personal care compositions
AU2007201504A1 (en) Cleansing compositions

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application