Nothing Special   »   [go: up one dir, main page]

AU2004231172B2 - A method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine - Google Patents

A method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine Download PDF

Info

Publication number
AU2004231172B2
AU2004231172B2 AU2004231172A AU2004231172A AU2004231172B2 AU 2004231172 B2 AU2004231172 B2 AU 2004231172B2 AU 2004231172 A AU2004231172 A AU 2004231172A AU 2004231172 A AU2004231172 A AU 2004231172A AU 2004231172 B2 AU2004231172 B2 AU 2004231172B2
Authority
AU
Australia
Prior art keywords
phenol
diesel engine
trunk piston
piston diesel
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2004231172A
Other versions
AU2004231172A1 (en
Inventor
Laurent Chambard
Philip Skinner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Publication of AU2004231172A1 publication Critical patent/AU2004231172A1/en
Application granted granted Critical
Publication of AU2004231172B2 publication Critical patent/AU2004231172B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/045Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution and non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • C10M2203/1085Residual fractions, e.g. bright stocks used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

Pool Section 29 Regulation 3.2(2) AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Application Number: Lodged: Invention Title: A method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine The following statement is a full description of this invention, including the best method of performing it known to us: 2003M014 1 5 A METHOD OF REDUCING DEPOSIT FORMATION IN A CENTRIFUGE SYSTEM IN A TRUNK PISTON DIESEL ENGINE This invention concerns a method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine. 10 Trunk piston diesel engines are used in marine, power generation and rail traction applications and have a rated speed of between 300 and 1000 rpm. In trunk piston diesel engines a single lubricant composition is used for crankcase and cylinder lubrication. All major moving parts of the engine, i.e. the main and 15 big end bearings, camshaft and valve gear, are lubricated by a pumped circulation system. The cylinder liners are lubricated partially by splash lubrication and partially by oil from the circulation system which finds its way to the cylinder wall through holes in the piston skirt via the connecting rod and gudgeon pin. 20 Trunk piston diesel engines use a centrifuge system to remove contaminants such as, for example, soot or water, from the lubricant composition. The centrifuge system relies on the use of a sealing medium that is heavier than the lubricant. The sealing medium is generally water. When the lubricant 25 composition passes through the centrifuge system, it comes into contact with the water. The lubricant therefore needs to be capable of shedding the water and remaining stable in the presence of water. If the lubricant is unable to shed the water, the water builds up in the lubricant forming an emulsion, which leads to deposits building up in the centrifuge system and prevents the centrifuge system 30 from working properly. The centrifuge system normally operates at temperatures of less than 100 0 C, such as less than 95*C, e.g. around 90*C. Traditional trunk piston diesel engine lubricant compositions have a total base number of 30-40. However, the recent development of trunk piston diesel 35 engines having very low oil consumption has resulted in lubricant formulators 2003M014 2 5 increasing the total base number up to, for example, 50-60. Unfortunately, this increase in total base number affects the ability of the lubricant composition to shed any contamination with the sealing medium used in the centrifuge systems, resulting in deposits building up in the centrifuge system. 10 The aim of the present invention is to provide a method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine. In accordance with the present invention there is provided a method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine; the 15 method including the step of lubricating the trunk piston diesel engine with a trunk piston diesel engine lubricant composition having a total base number of more than 40 mg KOH/g, as determined by ASTM D2896, and including: - at least 40 mass % of an oil of lubricating viscosity; - at least one detergent, preferably at least two detergents; and 20 - at least 1.5 mass % of phenol, based on the total amount of the lubricant composition; with the proviso that if the trunk piston diesel engine lubricant composition includes at least one phenate detergent, the trunk piston diesel engine lubricant composition includes more than 1.7 mass %, preferably more than 1.9 mass %, 25 of phenol. The phenol may be added separately to the trunk piston diesel engine lubricant composition and/or it may be added as part of the detergent, for example, as part of the unreacted components present in the detergent. If the phenol is part of the 30 detergent, the amount of phenol present can be detected by persons skilled in the art using processes such as titration and chromatography. It is preferred that the trunk piston diesel engine lubricant composition includes a sulphurized or unsulphurized alkyl phenol. 35 2003M014 3 5 It is also preferred that the trunk piston diesel engine lubricant composition has a total base number of at least 50 mg KOH/g, and preferably at most 70 mg KOH/g. It has surprisingly been found that the trunk piston diesel engine lubricant 10 composition defined above is capable of shedding contamination with sealing mediums used in centrifuge systems in trunk piston diesel engines, even though it has a TBN of more than 40 mg KOH/g. The trunk piston diesel engine lubricant composition therefore exhibits a longer life when compared to trunk piston diesel engine lubricant compositions that are poor at shedding sealing mediums. 15 In accordance with the present invention there is also provided use of the trunk piston diesel engine lubricant composition defined above to reduce build-up of deposits in a centrifuge in a trunk piston diesel engine. 20 Oil of Lubricatin Viscosi The oil of lubricating viscosity (sometimes referred to as lubricating oil) may be any oil suitable for the lubrication of a trunk piston diesel engine. The lubricating oil may suitably be an animal, a vegetable or a mineral oil. Suitably the 25 lubricating oil is a petroleum-derived lubricating oil, such as a naphthenic base, paraffinic base or mixed base oil. Alternatively, the lubricating oil may be a synthetic lubricating oil. Suitable synthetic lubricating oils include synthetic ester lubricating oils, which oils include diesters such as di-octyl adipate, di-octyl sebacate and tridecyl adipate, or polymeric hydrocarbon lubricating oils, for 30 example liquid polyisobutene and poly-alpha olefins. Commonly, a mineral oil is employed. The lubricating oil may generally comprise greater than 60, typically greater than 70, mass % of the composition, and typically have a kinematic viscosity at 1 0 0 "C of from 2 to 40, for example for 3 to 15, mm 2 s 1 and a viscosity index of from 80 to 100, for example from 90 to 95. 35 2003M014 4 5 Another class of lubricating oils is hydrocracked oils, where the refining process further breaks down the middle and heavy distillate fractions in the presence of hydrogen at high temperatures and moderate pressures. Hydrocracked oils typically have a kinematic viscosity at 100 9 C of from 2 to 40, for example from 3 to 15, mm 2 s" and a viscosity index typically in the range of from 100 to 110, for 10 example from 105 to 108. The oil may include 'brightstock' which refers to base oils which are solvent extracted, de-asphalted products from vacuum residuum generally having a kinematic viscosity at 1 00 2 C of from 28 to 36 mm 2 s 2 ' and are typically used in a 15 proportion of less than 40, preferably less than 30, more preferably less than 20, mass %, based on the mass of the composition. The trunk piston diesel engine lubricant composition preferably includes at least 50 mass %, more preferably at least 60 mass %, even more preferably at least 20 70 mass %, of oil of lubricating viscosity, based on the total amount of the lubricant composition. Deterrents 25 A detergent is an additive that reduces formation of deposits, for example, high temperature varnish and lacquer deposits, in engines; it has acid-neutralising properties and is capable of keeping finely divided solids in suspension. It is based on metal "soaps", that is metal salts of acidic organic compounds, sometimes referred to as surfactants. 30 A detergent comprises a polar head with a long hydrophobic tail. Large amounts of a metal base are included by reacting an excess of a metal compound, such as an oxide or hydroxide, with an acidic gas such as carbon dioxide to give an overbased detergent which comprises neutralised detergent as the outer layer of 35 a metal base (e.g. carbonate) micelle.
2003M014 5 5 The detergent is preferably an alkali metal or alkaline earth metal additive such as an overbased oil-soluble or oil-dispersible calcium, magnesium, sodium or barium salt of a surfactant selected from phenol, sulphonic acid, carboxylic acid, salicylic acid and naphthenic acid, wherein the overbasing is provided by an oil 10 insoluble salt of the metal, e.g. carbonate, basic carbonate, acetate, formate, hydroxide or oxalate, which is stabilised by the oil-soluble salt of the surf actant. The metal of the oil-soluble surfactant salt may be the same or different from that of the metal of the oil-insoluble salt. Preferably the metal, whether the metal of the oil-soluble or oil-insoluble salt, is calcium. 15 The TBN of the detergent may be low, i.e. less than 50 mg KOH/g, medium, i.e. 50-150 mg KOH/g, or high, i.e. over 150 mg KOH/g, as determined by ASTM D2896. Preferably the TBN is medium or high, i.e. more than 50 TBN. More preferably, the TBN is at least 60, more preferably at least 100, more preferably 20 at least 150, and up to 500, such as up to 350 mg KOH/g, as determined by ASTM D2896. Surfactants for the surfactant system of the overbased detergent preferably contain at least one hydrocarbyl group, for example, as a substituent on an 25 aromatic ring. The term "hydrocarbyl" as used herein means that the group concerned is primarily composed of hydrogen and carbon atoms and is bonded to the remainder of the molecule via a carbon atom but does not exclude the presence of other atoms or groups in a proportion insufficient to detract from the substantially hydrocarbon characteristics of the group. Advantageously, 30 hydrocarbyl groups in surfactants for use in accordance with the invention are aliphatic groups, preferably alkyl or alkylene groups, especially alkyl groups, which may be linear or branched. The total number of carbon atoms in the surfactants should be at least sufficient to impart the desired oil-solubility.
2003M014 6 5 Phenols, for use in preparing the detergents may be non-sulphurized or, preferably, sulphurized. Further, the term "phenol" as used herein includes phenols containing more than one hydroxyl group (for example, alkyl catechols) or fused aromatic rings (for example, alkyl naphthols) and phenols which have been modified by chemical reaction, for example, alkylene-bridged phenols and 10 Mannich base-condensed phenols; and saligenin-type phenols (produced by the reaction of a phenol and an aldehyde under basic conditions). Preferred phenols may be derived from the formula OH A 15 Ry where R represents a hydrocarbyl group and y represents 1 to 4. Where y is greater than 1, the hydrocarbyl groups may be the same or different. 20 The phenols are frequently used in sulphurized form. Sulphurized hydrocarbyl phenols may typically be represented by the formula: OH OH S. Ry Ry 25 where x is generally from 1 to 4. In some cases, more than two phenol molecules may be linked by S, bridges.
2003M014 7 5 In the above formulae, hydrocarbyl groups represented by R are advantageously alkyl groups, which advantageously contain 5 to 100, preferably 5 to 40, especially 9 to 12, carbon atoms, the average number of carbon atoms in all of the R groups being at least 9 in order to ensure adequate solubility in oil. Preferred alkyl groups are nonyl (tripropylene) groups. 10 In the following discussion, hydrocarbyl-substituted phenols will for convenience be referred to as alkyl phenols. A sulphurizing agent for use in preparing a sulphurized phenol or phenate may 15 be any compound or element which introduces -(S),- bridging groups between the alkyl phenol monomer groups, wherein x is generally from 1 to about 4. Thus, the reaction may be conducted with elemental sulphur or a halide thereof, for example, sulphur dichloride or, more preferably, sulphur monochloride. If elemental sulphur is used, the sulphurization reaction may be effected by heating 20 the alkyl phenol compound at from 50 to 250, preferably at least 100, *C. The use of elemental sulphur will typically yield a mixture of bridging groups -(S)x- as described above. If a sulphur halide is used, the sulphurization reaction may be effected by treating the alkyl phenol at from -10 to 120, preferably at least 60, *C. The reaction may be conducted in the presence of a suitable diluent. The diluent 25 advantageously comprises a substantially inert organic diluent, for example mineral oil or an alkane. In any event, the reaction is conducted for a period of time sufficient to effect substantial reaction. It is generally preferred to employ from-0.1 to 5 moles of the alkyl phenol material per equivalent of sulphurizing agent. 30 Where elemental sulphur is used as the sulphurizing agent, it may be desirable to use a basic catalyst, for example, sodium hydroxide or an organic amine, preferably a heterocyclic amine (e.g., morpholine). 35 Details of sulphurization processes are well known to those skilled in the art.
2003M014 8' 5 Regardless of the manner in which they are prepared, sulphurized alkyl phenols useful in preparing overbased detergents generally comprise diluent and unreacted alkyl phenols and generally contain from 2 to 20 mass %, preferably 4 to 14 mass %, and most preferably 6 to 12 mass%, sulphur based on the mass 10 of the sulphurized alkyl phenol. As indicated above, the term "phenol" as used herein includes phenols that have been modified by chemical reaction with, for example, an aldehyde, and Mannich base-condensed phenols. 15 Aldehydes with which phenols may be modified include, for example, formaldehyde, propionaldehyde and butyraldehyde. The preferred aldehyde is formaldehyde. Aldehyde-modified phenols suitable for use are described in, for example, US-A-5 259 967. 20 Mannich base-condensed phenols are prepared by the reaction of a phenol, an aldehyde and an amine. Examples of suitable Mannich base-condensed phenols are described in GB-A-2 121 432. 25 In general, the phenols may include substituents other than those mentioned above provided that such substituents do not detract significantly from the surfactant properties of the phenols. Examples of such substituents are methoxy groups and halogen atoms. 30 Salicylic acids used in accordance with the invention may be non-sulphurized or sulphurized, and may be chemically modified and/or contain additional substituents, for example, as discussed above for phenols. Processes similar to those described above may also be used for sulphurizing a hydrocarbyl-substituted salicylic acid, and are well known to those skilled in the art. Salicylic acids are 35 typically prepared by the carboxylation, by the Kolbe-Schmitt process, of 2003M014 9 5 phenoxides, and in that case, will generally be obtained (normally in a diluent) in admixture with uncarboxylated phenol. Preferred substituents in oil-soluble salicylic acids from which overbased detergents in accordance with the invention may be derived are the substituents 10 represented by R in the above discussion of phenols. In alkyl-substituted salicylic acids, the alkyl groups advantageously contain 5 to 100, preferably 9 to 30, especially 14 to 20, carbon atoms. Sulphonic acids used in accordance with the invention are typically obtained by 15 sulphonation of hydrocarbyl-substituted, especially alkyl-substituted, aromatic hydrocarbons, for example, those obtained from the fractionation of petroleum by distillation and/or extraction, or by the alkylation of aromatic hydrocarbons. Examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, biphenyl or their halogen derivatives, for example, chlorobenzene, 20 chlorotoluene or chloronaphthalene. Alkylation of aromatic hydrocarbons may be carried out in the presence of a catalyst with alkylating agents having from 3 to more than 100 carbon atoms, such as, for example, haloparaffins, olefins that may be obtained by dehydrogenation of paraffins, and polyolefins, for example, polymers of ethylene, propylene, and/or butene. The alkylaryl sulphonic acids 25 usually contain from 7 to 100 or more carbon atoms. They preferably contain from 16 to 80, or 12 to 40, carbon atoms per alkyl-substituted aromatic moiety, depending on the source from which they are obtained. When neutralizing these alkylaryl sulphonic acids to provide sulphonates, 30 hydrocarbon solvents and/or diluent oils may also be included in the reaction mixture, as well as promoters and viscosity control agents. Another type of sulphonic acid that may be used in accordance with the invention comprises alkyl phenol sulphonic acids. Such sulphonic acids can be 35 sulphurized. Whether sulphurized or non-sulphurized these sulphonic acids are 2003M014 10 5 believed to have surfactant properties comparable to those of sulphonic acids, rather than surfactant properties comparable to those of phenols. Sulphonic acids suitable for use in accordance with the invention also include alkyl sulphonic acids, such as alkenyl sulphonic acids. In such compounds the 10 alkyl group suitably contains 9 to 100, advantageously 12 to 80, especially 16 to 60, carbon atoms. Carboxylic acids that may be used in accordance with the invention include mono- and dicarboxylic acids. Preferred monocarboxylic acids are those 15 containing 1 to 30, especially 8 to 24, carbon atoms. (Where this specification indicates the number of carbon atoms in a carboxylic acid, the carbon atom(s) in the carboxylic group(s) is/are included in that number.) Examples of monocarboxylic acids are iso-octanoic acid, stearic acid, oleic acid, palmitic acid and behenic acid. Iso-octanoic acid may, if desired, be used in the form of the 20 mixture of C 8 acid isomers sold by Exxon Chemicals under the trade name "Cekanoic". Other suitable acids are those with tertiary substitution at the a-carbon atom and dicarboxylic acids with more than 2 carbon atoms separating the carboxylic groups. Further, dicarboxylic acids with more than 35, for example, 36 to 100, carbon atoms are also suitable. Unsaturated carboxylic 25 acids can be sulphurized. Although salicylic acids contain a carboxylic group, for the purposes of the present invention they are considered to be a separate group of surfactants, and are not considered to be carboxylic acid surfactants. (Nor, although they contain a hydroxyl group, are they considered to be phenol surfactants.) 30 Examples of other surfactants which may be used in accordance with the invention include the following compounds, and derivatives thereof: naphthenic acids, especially naphthenic acids containing one or more alkyl groups, dialkylphosphonic acids, dialkylthiophosphonic acids, and dialkyldithiophosphoric 35 acids, high molecular weight (preferably ethoxylated) alcohols, dithiocarbamic 2003M014 11 5 acids, thiophosphines, and dispersants. Surfactants of these types are well known to those skilled in the art. Surfactants of the hydrocarbyl-substituted carboxylalkylene-linked phenol type, or dihydrocarbyl esters of alkylene dicarboxylic acids, the alkylene group being substituted with a hydroxy group and an additional carboxylic acid group, or alkylene-linked polyaromatic molecules, 10 the aromatic moieties whereof comprise at least one hydrocarbyl-substituted phenol and at least one carboxy phenol, may also be suitable for use in the present invention; such surfactants are described in EP-A-708 171. Further examples of detergents useful in the present invention are optionally 15 sulphurized alkaline earth metal hydrocarbyl phenates that have been modified by carboxylic acids such as stearic acid, for examples as described in EP-A- 271 262 (LZ-Adibis); and phenolates as described in EP-A- 750 659 (Chevron). Also suitable for use in the present invention are overbased metal compounds, 20 preferably overbased calcium detergents, that contain at least two surfactant groups, such as phenol, sulphonic acid, carboxylic acid, salicylic acid and naphthenic acid, that may be obtained by manufacture of a hybrid material in which two or more different surfactant groups are incorporated during the overbasing process. 25 Examples of hybrid materials are an overbased calcium salt of surfactants phenol and sulphonic acid; an overbased calcium salt of surfactants phenol and carboxylic acid; an overbased calcium salt of surfactants phenol, sulphonic acid and salicylic acid; and an overbased calcium salt of surfactants phenol and 30 salicylic acid. In the instance where at least two overbased metal compounds are present, any suitable proportions by mass may be used, preferably the mass to mass proportion of any one overbased metal compound to any other metal overbased 35 compound is in the range of from 5:95 to 95:5; such as from 90:10 to 10:90; more 2003M014 12 5 preferably from 20:80 to 80:20; especially from 70:30 to 30:70; advantageously from 60:40 to 40:60. The hybrid detergent preferably includes at least 5 mass% of salicylate, more preferably at least 10 mass% of salicylate. The hybrid detergent preferably 10 includes at least 5 mass% of phenate. The amount of salicylate and phenate in the hybrid detergent can be determined using techniques such as chromatography, spectroscopy and/or titration, well known to persons skilled in the art. The hybrid detergent may also include other surfactants such as sulphonate, sulphurized phenate, thiophosphate, naphthenate, or oil-soluble 15 carboxylate. The hybrid detergent may include at least 5 mass% of sulphonate. The surfactant groups are incorporated during the overbasing process. Particular examples of hybrid materials include, for example, those described in WO-A- 97/46643; WO-A- 97/46644; WO-A- 97/46645; WO-A- 97/46646; and 20 WO-A- 97/46647. By an "overbased calcium salt of surfactants" is meant an overbased detergent in which the metal cations of the oil-insoluble metal salt are essentially calcium cations. Small amounts of other cations may be present in the oil-insoluble metal 25 salt, but typically at least 80, more typically at least 90, for example at least 95, mole %, of the cations in the oil-insoluble metal salt, are calcium ions. Cations other than calcium may be derived, for example, from the use in the manufacture of the overbased detergent of a surfactant salt in which the cation is a metal other than calcium. Preferably, the metal salt of the surfactant is also calcium. 30 Preferably, the TBN of the hybrid detergent is at least 300 mg KOH/g, such as at least 330 mg KOH/g, more preferably at least 350 mg KOH/g, more preferably at least 400 mg KOH/g, most preferably in the range of from 400 to 600 mg KOH/g, such as up to 500 mg KOH/g, as determined by ASTM D2896. 35 2003M014 13 5 Preferably, the amount of overbased metal detergent in the lubricant is at least 0.5, preferably in the range of from 5 to 50, more preferably from 10 to 50, mass % based on the total amount of the lubricant composition. The overbased metal detergents may or may not be borated, and typically the 10 boron contributing compound, e.g the metal borate, is considered to form part of the overbasing. The detergent may include both a non-borated detergent and a borated detergent. The overbased metal detergents preferably have a sulphated ash content (as 15 determined by ASTM D874) of at least 0.85%, more preferably at least 1.0% and even more preferably at least 1.2%. The detergent or detergents may include phenol as an unreacted component and, if so, the amount of phenol contributes to the total phenol content present in 20 the trunk piston diesel engine lubricant composition. All of the phenol present in the trunk piston diesel engine lubricant composition may come from the detergent or detergents. Phenols 25 The trunk piston diesel engine lubricant composition includes at least 1.5 mass % of phenol, preferably at least 1.7 mass %, more preferably at least 1.9 mass %, based on the total amount of the lubricant composition. More preferably, the trunk piston diesel engine lubricant composition includes at least 2.0 mass % of 30 phenol, even more preferably at least 2.1 mass %, and most preferably at least 2.2 mass %, based on the total amount of the lubricant composition. If the trunk piston diesel engine lubricant composition includes at least one phenate detergent, the trunk piston diesel engine lubricant composition includes more than 1.7 mass % of phenol, preferably more than 1.9 mass %, even more 35 preferably more than 2.0 mass % of phenol, even more preferably more than 2.2 2003M014 14 5 mass %, and most preferably more than 2.4 mass %, based on the total amount of the lubricant composition. The phenol may be added separately to the trunk piston diesel engine lubricant composition and/or it may added as part of the detergent, usually as an 10 unreacted component. The phenol may be non-sulphurized or sulphurized. The term "phenol" as used herein includes phenols containing more than one hydroxyl group (for example, alkyl catechols) or fused aromatic rings (for example, alkyl naphthols) and 15 phenols which have been modified by chemical reaction, for example, alkylene bridged phenols and Mannich base-condensed phenols; and saligenin-type phenols (produced by the reaction of a phenol and an aldehyde under basic conditions). 20 Preferred phenols may be derived from the formula OH Ry where R represents a hydrocarbyl group and y represents 1 to 4. Where y is 25 greater than 1, the hydrocarbyl groups may be the same or different. R preferably includes 2 to 20 carbon atoms. The preferred phenols are nonyl-phenol, dodecyl-phenol or a mixture of C14, C16 and C1 8 -alkyl phenols. 30 2003M014 15 5 The phenols are frequently used in sulphurized form. Sulphurized hydrocarbyl phenols may typically be represented by the formula: OH OH SN Ry Ry 10 where x is generally from 1 to 4. In some cases, more than two phenol molecules may be linked by S, bridges. R preferably includes 2 to 20 carbon atoms. As indicated above, the term "phenol" as used herein includes phenols that have 15 been modified by chemical reaction with, for example, an aldehyde, and Mannich base-condensed phenols. Aldehydes with which phenols may be modified include, for example, formaldehyde, propionaldehyde and butyraldehyde. The preferred aldehyde is 20 formaldehyde. Aldehyde-modified phenols suitable for use are described in, for example, US-A-5 259 967. Mannich base-condensed phenols are prepared by the reaction of a phenol, an aldehyde and an amine. Examples of suitable Mannich base-condensed 25 phenols are described in GB-A-2 121 432. In general, the phenols may include substituents other than those mentioned above provided that such substituents do not detract significantly from the surfactant properties of the phenols. Examples of such substituents are methoxy 30 groups and halogen atoms.
2003M014 16 5 The trunk piston engine oil preferably also includes at least one dispersant, anti wear additive or anti-oxidant. Dispersants 10 The trunk piston diesel engine lubricant composition may include at least one dispersant. A dispersant is an additive for a lubricating composition whose primary function is to improve engine cleanliness. A noteworthy class of dispersants are "ashless", meaning a non-metallic organic 15 material that forms substantially no ash on combustion, in contrast to metal containing, hence ash-forming, materials. Ashless dispersants comprise a long chain hydrocarbon with a polar head, the polarity being derived from inclusion of, e.g. an 0, P or N atom. The hydrocarbon is an oleophilic group that confers oil solubility, having for example 40 to 500 carbon atoms. Thus, ashless 20 dispersants may comprise an oil-soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed. Examples of ashless dispersants are succinimides, e.g. polyisobutene succinic 25 anhydride; and polyamine condensation products that may be borated or unborated. If present, the dispersant is preferably present in an amount from 0.5 to 5 mass %, based on the total amount of the lubricant composition. 30 Anti-wear Additive The trunk piston diesel engine lubricant composition may include at least one anti-wear additive. The anti-wear additive may be metallic or non-metallic, 35 preferably the former.
2003M014 17 5 Dihydrocarbyl dithiophosphate metal salts are examples of the anti-wear additives. The metal in the dihydrocarbyl dithiophosphate may be an alkali or alkaline earth metal, or aluminium, lead, tin, molybdenum, manganese, nickel or copper. Zinc salts are preferred, preferably in the range of 0.1 to 1.5, preferably 10 0.5 to 1.3, mass %, based upon the total mass of the lubricating oil composition. They may be prepared in accordance with known techniques by firstly forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or a phenol with P 2
S
5 and then neutralizing the formed DDPA with a zinc compound. For example, a dithiophosphoric acid may be made by reacting 15 mixtures of primary and secondary alcohols. Alternatively, multiple dithiophosphoric acids can be prepared comprising both hydrocarbyl groups that are entirely secondary and hydrocarbyl groups that are entirely primary. To make the zinc salt, any basic or neutral zinc compound may be used but the oxides, hydroxides and carbonates are most generally employed. Commercial 20 additives frequently contain an excess of zinc due to use of an excess of the basic zinc compound in the neutralisation reaction. The preferred zinc dihydrocarbyl dithiophosphates are oil-soluble salts of dihydrocarbyl dithiophosphoric acids and may be represented by the following 25 formula: [(RO) (R'O) P(S)S] 2 Zn where R and R' may be the same or different hydrocarbyl radicals containing 30 from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R 1 groups are alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, n-propyl, 1-propyl, n-butyl, 1-butyl, sec-butyl, amyl, n-hexyl, 1-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylehexyl, phenyl, 35 butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl. In order to obtain 2003M014 18 5 oil-solubility, the total number of carbon atoms (i.e. in R and R 1 ) in the dithiophoshoric acid will generally be 5 or greater. The zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates. If present, the anti-wear additive is preferably present in an amount from 0.10 to 10 3.0 mass %, based on the total amount of the lubricant composition. Anti-oxidants The trunk piston diesel engine lubricant composition may include at least one 15 anti-oxidant. The anti-oxidant may be aminic or phenolic. As examples of amines there may be mentioned secondary aromatic amines such as diarylamines, for example diphenylamines wherein each phenyl group is alkyl substituted with an alkyl group having 4 to 9 carbon atoms. As examples of anti oxidants there may be mentioned hindered phenols, including mono-phenols and 20 bis-phenols. Preferably, the anti-oxidant, if present, is provided in the composition in an amount of up to 3 mass %, based on the total amount of the lubricant composition. 25 Other additives such as pour point depressants, anti-foamants, metal rust inhibitors, pour point depressants and/or demulsifiers may be provided, if necessary. 30 The terms 'oil-soluble' or 'oil-dispersable' as used herein do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible or capable of being suspended in the oil in all proportions. These do mean, however, that they are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is 2003M014 19 5 employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired. The lubricant compositions of this invention comprise defined individual (i.e. separate) components that may or may not remain the same chemically before 10 and after mixing. It may be desirable, although not essential, to prepare one or more additive packages or concentrates comprising the additives, whereby the additives can be added simultaneously to the oil of lubricating viscosity to form the lubricating oil 15 composition. Dissolution of the additive package(s) into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential. The additive package(s) will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration, and/or to carry out the intended function in the final formulation when the additive 20 package(s) (is/are combined with a predetermined amount of base lubricant. Thus, the additives may be admixed with small amounts of base oil or other compatible solvents together with other desirable additives to form additive packages containing active ingredients in an amount, based on the additive 25 package, of, for example, from 2.5 to 90, preferably from 5 to 75, most preferably from 8 to 60, mass % of additives in the appropriate proportions, the remainder being base oil. The final formulations may typically contain about 5 to 40 mass % of the additive 30 packages(s), the remainder being base oil. The present invention is illustrated by, but in no way limited to, the following examples.
2003M014 20 5 Examples The following examples use a centrifuge water shedding test which evaluates the ability of an oil to shed water from a prepared test mixture of oil and water. The test uses an Alfa Laval MAB1 03B 2.0 centrifuge coupled to a Watson Marlow 10 peristaltic pump. The centrifuge is sealed with 2 litres of water. A measurement is made of the amount of deposits formed in the centrifuge during the test. The test is carried out at 87*C. Pre-measured amounts of water and the test oil are mixed together and then passed through the centrifuge at a rate of 2 litres/min. The test is run for an hour and a half, allowing the mixture to pass through the 15 centrifuge about 10 times. The centrifuge is weighed before and after the test. A poor trunk piston diesel engine lubricant composition will produce a larger amount of deposits in the centrifuge system. Trunk piston engine oils ('TPEOs') were prepared having TBNs ranging from 30 20 to 50. The TPEOs were subjected to the centrifuge water shedding test. Details of the TPEOs and the test results are shown below in Table 1. Table 1 Comparative Comparative comparative Example 1 Example 2 Example 3 Example 1 Example 2 Example 3 TBN 30 50 50 50 50 50 168 BN 5.29 17.25 17.25 17.25 17.25 17.25 calcium Salicylate 280 BN 7.57 7.50 7.50 7.50 7.50 7.50 Calcium Salicylate Dispersant 1.00 1.00 1.00 1.00 Sulphurised 1.00 Dodecyl Phenol Unsulphurize 1.00 2003M014 21 d Dodecyl Phenol Mixture of 1.00 C14, C16 and Cia-alkyl phenols; ZDDP 1.06 0.77 0.77 0.77 0.77 0.77 Anti-foam 0.10 0.10 0.10 0.10 0.10 0.10 Brightstocks 12.00 12.00 12.00 12.00 12.00 12.00 SN600 73-98 62.38 61.38 60.38 60.38 60.38 Alkylphenol 0.45 0.99 0.99 1.99 1.99 1.99 content (%) Shedding Test Deposits at 53 109 127 27 33 33 End of Test (grams) 5 As shown in Table 1, as the TBN of the TPEO increases from 30 to 50 (see Comparatives Examples 1, 2 and 3), the amount of deposits produced also increases. Table 1 also shows that if the amount of alkylphenol is increased (see 10 Examples 1, 2 and 3), the amount of deposits can be reduced. In the following examples, the TPEOs include a phenate detergent: Table 2 15 Comparative Example 4 Example 5 Example 6 Example 7 Example 4 TBN 50 50 50 50 50 168 BN 17.25 17.25 17.25 17.25 17.25 Calcium Salicylate 2003M014 22 250 BN 8.40 8.40 8.40 8.40 8.40 Calcium Phenate Sulphurised 1.00 Nonyl-Phenol Sulphurised 1.00 Dodecyl-Phenol Unsulphurized 1.00 Dodecyl-Phenol Mixture of C14, 1.00 Cle and C1a alkyl phenols ZDDP 0.77 0.77 0.77 0.77 0.77 Anti-foam 0.10 0.10 0.10 0.10 0.10 Brightstocks 12.00 12.00 12.00 12.00 12.00 SN600 61.48 60.48 60.48 60.48 60.48 Alkylphenol 1.70 2.70 2.70 2.70 2.70 content (%) Shedding Test Deposits at End 270 182 82 130 188 of Test (grams) 5 Comparative Example 4, which includes only 1.7% alkylphenol, produces 270g of deposits. Examples 4, 5, 6 and 7 show that if the amount of alkylphenol is increased, the amount of deposits can be reduced. 10 In the following examples, the phenol is added to the TPEO as unreacted components of the detergents.
2003M014 23 5 Table 3 Comparative Example 8 Example 9 Example 10 Example 2 TBN 50 50 45 50 280 BN Calcium 17.25 Salicylate 250 BN Calcium 7.50 Salicylate 168 BN Calcium 17.90 17.90 25.00 Salicylate 64 BN Calcium 31.25 20.43 12.50 Salicylate ZDDP 0.77 0.77 0.77 0.77 Anti-foam 0.10 0.10 0.10 0.10 Brightstocks 12.00 10.00 10.00 10.00 SN600 68.03 39.98 50.80 51.63 Alkylphenol 0.99 2.06 1.62 1.63 content (%) Shedding Test Deposits at End 109 4 3 4 of Test (grams) Comparative Example 2, which includes only 0.99% alkylphenol, produces 109g of deposits. Examples 8, 9 and 10 show that if the amount of alkylphenol is 10 increased by the selection of detergents including more alkylphenol, the amount of deposits is reduced dramatically.

Claims (13)

1. A method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine; the method including the step of lubricating the trunk piston diesel engine with a trunk piston diesel engine lubricant composition having a 5 total base number of more than 40 mg KOH/g, as determined by ASTM D2896, and including: - at least 50 mass% of an oil of lubricating viscosity; - at least one detergent, preferably at least two detergents; and - at least 1.5 mass% of phenol, based on the total amount of the 10 lubricant composition; with the proviso that if the trunk piston diesel engine lubricant composition includes at least one phenate detergent, the trunk piston diesel engine lubricant composition includes more than 1.7 mass%, preferably more than 1.9 mass%, of phenol. 15
2. The method as claimed in claim 1, wherein the phenol in the composition is an unreacted component of the detergent.
3. The method as claimed in claim 1, wherein the phenol in the composition is not an unreacted component of the detergent.
4. The method as claimed in claim 1, wherein part of the phenol in the 20 composition is an unreacted component of the detergent and part of the phenol is not an unreacted component of the detergent.
5. The method as claimed in any one of the preceding claims, wherein the phenol is derived from the formula 2003M014 25 OH Ry where R represents a hydrocarbyl group and y represents 1 to 4; and where y is greater than 1, the hydrocarbyl groups may be the same or different.
6. The method as claimed in any one of the preceding claims, wherein the phenol is represented by the formula: OH OH Ry Ry where R represents a hydrocarbyl group and y represents 1 to 4; and where y is greater than 1, the hydrocarbyl groups may be the same or different; and x is from 1 to 4.
7. The method as claimed in any one of the preceding claims, wherein the detergent has a TBN of at least 60 mg KOH/g.
8. The method as claimed in any one of the preceding claims, the composition having a total base number of at least 45, preferably at least 50, preferably at most 70 mg KOH/g.
9. The method as claimed in any one of the preceding claims, further including at least one of the following: a dispersant, an anti-wear agent, an anti-oxidant, a pour point depressant, an anti-foamant and a demulsifier. 26
10. The method as claimed in any one of the preceding claims, wherein the centrifuge system uses a sealing medium that is water.
11. Use of the trunk piston diesel engine lubricant composition defined in any one of the preceding claims, to reduce build-up of deposits in a centrifuge system 5 of a trunk piston diesel engine.
12. A method of reducing deposit formation in a centrifuge in a trunk piston diesel engine, substantially as hereinbefore described with reference to the examples.
13. Use of a trunk piston diesel engine lubricant composition substantially as 10 hereinbefore described with reference to the examples. INFINEUM INTERNATIONAL LIMITED WATERMARK PATENT & TRADE MARK ATTORNEYS P24704AU00
AU2004231172A 2003-10-30 2004-10-29 A method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine Ceased AU2004231172B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03256867.7 2003-10-30
EP03256867 2003-10-30

Publications (2)

Publication Number Publication Date
AU2004231172A1 AU2004231172A1 (en) 2005-05-19
AU2004231172B2 true AU2004231172B2 (en) 2010-06-17

Family

ID=34486417

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2004231172A Ceased AU2004231172B2 (en) 2003-10-30 2004-10-29 A method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine

Country Status (6)

Country Link
US (1) US20050119140A1 (en)
JP (1) JP2005133098A (en)
CN (1) CN1624091A (en)
AU (1) AU2004231172B2 (en)
CA (1) CA2486328C (en)
SG (1) SG111278A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781385B2 (en) * 2006-08-08 2010-08-24 Infineum International Limited Lubricating oil composition
US7923420B2 (en) * 2007-07-03 2011-04-12 Infineum International Limited Lubricating oil composition
EP1889896B1 (en) * 2006-08-08 2019-05-29 Infineum International Limited Lubricating oil composition containing detergent additives
US20080153723A1 (en) * 2006-12-20 2008-06-26 Chevron Oronite Company Llc Diesel cylinder lubricant oil composition
US20090203559A1 (en) * 2008-02-08 2009-08-13 Bera Tushar Kanti Engine Lubrication
ES2644437T3 (en) * 2008-05-20 2017-11-29 Infineum International Limited Marine Engine Lubrication
EP2123740B1 (en) * 2008-05-20 2017-08-23 Infineum International Limited Marine engine lubrication
EP2135926A1 (en) * 2008-05-20 2009-12-23 Infineum International Limited Marine engine lubrication
GB2496732B (en) * 2011-11-17 2014-03-12 Infineum Int Ltd Marine engine lubrication
EP2607462B1 (en) * 2011-12-20 2014-03-12 Infineum International Limited Marine engine lubrication
ES2717430T3 (en) * 2013-05-03 2019-06-21 Infineum Int Ltd Marine engine lubrication
EP3778841B1 (en) * 2019-08-15 2021-11-24 Infineum International Limited Method for reducing piston deposits in a marine diesel engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026995A1 (en) * 1995-02-28 1996-09-06 Bp Chemicals (Additives) Limited Lubricating oil compositions
US5753598A (en) * 1994-06-28 1998-05-19 Exxon Research And Engineering Company Lubricating oil compositions or concentrates therefor providing enhanced water-shedding properties
US6521571B1 (en) * 2000-09-22 2003-02-18 Infineum International Ltd. Trunk piston engine lubrication
US6660697B2 (en) * 2000-11-27 2003-12-09 Infineum International Ltd. Lubricating oil compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292443A (en) * 1992-08-21 1994-03-08 Texaco Inc. Process for producing neutralized sulfurized alkylphenate lubricant detergent additive
GB9908771D0 (en) * 1999-04-17 1999-06-09 Infineum Uk Ltd Lubricity oil composition
EP1236791A1 (en) * 2001-02-16 2002-09-04 Infineum International Limited Overbased detergent additives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753598A (en) * 1994-06-28 1998-05-19 Exxon Research And Engineering Company Lubricating oil compositions or concentrates therefor providing enhanced water-shedding properties
WO1996026995A1 (en) * 1995-02-28 1996-09-06 Bp Chemicals (Additives) Limited Lubricating oil compositions
US6521571B1 (en) * 2000-09-22 2003-02-18 Infineum International Ltd. Trunk piston engine lubrication
US6660697B2 (en) * 2000-11-27 2003-12-09 Infineum International Ltd. Lubricating oil compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABBOTT ET AL: "Evaluation of marine diesel engine oil water separation procedures" in AMERICAN SOCIETY OF MECHANICAL ENGINEERS, Edited by M.R. Goyal. ICE 1990, vol.II, 1990, pages 39-50 *

Also Published As

Publication number Publication date
CN1624091A (en) 2005-06-08
SG111278A1 (en) 2005-05-30
AU2004231172A1 (en) 2005-05-19
CA2486328C (en) 2012-04-10
US20050119140A1 (en) 2005-06-02
JP2005133098A (en) 2005-05-26
CA2486328A1 (en) 2005-04-30

Similar Documents

Publication Publication Date Title
EP1154012B1 (en) Lubricating oil compositions
US8399392B2 (en) Method of reducing asphaltene precipitation in an engine utilizing a C22 hydrocarbyl salicylate
US7781385B2 (en) Lubricating oil composition
CA2596211C (en) Diesel engine lubricating oil compositions capable of shedding sealing mediums used in centrifuge systems
US7923420B2 (en) Lubricating oil composition
AU2004231172B2 (en) A method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine
EP1046698A1 (en) Marine diesel engine lubricating compositions
AU2004218713B2 (en) Lubricant composition
CA2799383C (en) Use of polyisobutylene in a lubricant to reduce deposit formation in a marine diesel engine
EP1528099A1 (en) A method of reducing deposit formation in a centrifuge system in a trunk piston diesel engine
EP1085076B1 (en) A Method for Lubricating Cylinders of a Two-stroke Diesel Engine
EP1229102A1 (en) Lubricating oil composition

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired