Nothing Special   »   [go: up one dir, main page]

AU2002255715A1 - A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same - Google Patents

A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same

Info

Publication number
AU2002255715A1
AU2002255715A1 AU2002255715A AU2002255715A AU2002255715A1 AU 2002255715 A1 AU2002255715 A1 AU 2002255715A1 AU 2002255715 A AU2002255715 A AU 2002255715A AU 2002255715 A AU2002255715 A AU 2002255715A AU 2002255715 A1 AU2002255715 A1 AU 2002255715A1
Authority
AU
Australia
Prior art keywords
yeast
metschnikowia fructicola
fruit
metschnikowia
fructicola
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002255715A
Other versions
AU2002255715B2 (en
Inventor
Samir Droby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STATE OF ISRAEL- MINISTRY OF AGRICULTURE AGRICULTURAL RESEARCH ORGANISATION
Original Assignee
STATE OF ISRAEL- MINISTRY OF AGRICULTURE AGRICULTURAL RESEARCH ORGANISATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STATE OF ISRAEL- MINISTRY OF AGRICULTURE AGRICULTURAL RESEARCH ORGANISATION filed Critical STATE OF ISRAEL- MINISTRY OF AGRICULTURE AGRICULTURAL RESEARCH ORGANISATION
Priority claimed from PCT/US2002/007525 external-priority patent/WO2002072777A2/en
Publication of AU2002255715A1 publication Critical patent/AU2002255715A1/en
Application granted granted Critical
Publication of AU2002255715B2 publication Critical patent/AU2002255715B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

A NOVEL ANTAGONISTIC YEAST USEFUL IN CONTROLLING SPOILAGE OF AGRICULTURAL PRODUCE, METHODS OF USE THEREOF AND COMPOSITIONS
CONTAINING SAME This application claims priority from United States Provisional Patent Application 60/275,526 filed on March 14, 2001.
FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same. Specifically, the present invention relates to the yeast Metschmkowia fructicola and to use thereof to inhibit growth of unwanted microorganisms on a portion of a plant, for example, foliage, flowers, fruit, roots or vegetables.
One of the most serious problems in the modern produce (fruit, vegetable and flower) industry is decay or spoilage of produce after harvest. It is estimated that postharvest losses of fruits and vegetables are 50%. This loss is attributable to fungal and bacterial infections to a great degree. In developing countries, postharvest losses are often severe due to the lack of adequate handling and refrigerated storage facilities. While developed nations have adequate refrigeration, consumers in these countries often purchase produce which has been shipped great distances and stored for prolonged periods of time. Postharvest decay of fruits and vegetables can be traced to infections that occur either between flowering and fruit maturity or during harvesting and subsequent handling and storage.
Synthetic fungicides such as imazalil and thiabendazole (TBZ) have traditionally been a primary means of controlling postharvest produce loss. However, there is increasing global pressure to reduce the use of toxic chemicals in the food industry. Consumers are concerned about chemical residues on fruit and vegetables in general and are especially uncomfortable with the idea of postharvest application of chemicals.
In addition, environmentalists are becoming increasingly vocal about chemical pesticide disposal and levels of chemical residues on fresh produce. Concurrently, fungicide-resistant strains of pathogens have emerged to most commonly used fungicides (e.g. TBZ, Imazalil, Rovral). Finally, some of the more effective fungicides such as Captan and Benlate have been deregistered and are no longer available. Further, postharvest treatment of some types of produce is not permitted. In addition, much postharvest spoilage is the result of pathogens which colonized produce prior to harvest. All of these factors have contributed to increased interest in the development of effective alternatives which pose no risk to human health and the environment. Use of biological approaches such as natural compounds, induced resistance and antagonistic microorganisms in plants have all been proposed as potential alternatives to synthetic fungicides for prevention or control of decay of agricultural produce.
Natural compounds are typically expensive to produce and of limited efficacy. Of the biological approaches, they hold the least promise.
Induced resistance holds considerable promise in theory but has suffered from two problems in other instances where it has been tried. Induced resistance based on genetically modified organisms (GMOs) has often had disappointing results because pathogens mutate when the GMOs are widely deployed in the field. However, the more complicated problem with GMOs has proven to be resistance to GMOs in general by consumers and environmental i sts.
This leaves development of antagonistic microorganisms as the remaining "acceptable" biological approach.
In recent years, research on the use of microbial biocontrol agents for the control of postharvest diseases of fruits has gained considerable attention and has moved from the laboratory to commercial application. From these efforts, a large body of information regarding the use of microbial biocontrol agent to control postharvest diseases is now available (Droby et al., 2001). The selection of putative microbial antagonists has been based mainly on the ability of antagonists to rapidly colonize fruit surfaces and wounds, out compete the pathogen for nutrients, and survive and develop under a wide range of temperature conditions. Antagonists which can be used in the presence of agricultural chemicals, including antibiotics, have not been previously characterized. A simple and reliable screening technique for selecting antagonists has been developed utilizing the wound site as a selective medium. Utilizing these procedures and other comparable protocols, several antagonistic bacteria, yeasts, and filamentous fungi have been isolated and shown to protect a variety of harvested commodities including citrus and pome fruit against postharvest decay (Droby et al., 1989; Janisiewicz and Roitman, 1988; Chalutz and Wilson, 1990; Roberts, 1990; Droby et al., 1991 ; Gullino et al., 1991 ; Janisiewicz, 1994; Lurie et al., 1995; Chand-Goyal and Spotts, 1996; El Ghaouth et al., 1998; Ippolito et al., 2000). The success of some of these microbial antagonists in laboratory and large scale studies has generated interest by several agro-chemical companies in the development and promotion of postharvest biological products for control rots of fruits and vegetables. A number of microbial antagonists have been patented and evaluated for commercial use in postharvest treatment of produce. Currently, four antagonistic microorganisms, two yeasts, Candida oleophila, and Cryptococcus albidus and two strains of a bacterium, Pseudomonas syringae are commercially available under the trade names ASPIRE, YieldPlus, and BIOSAVE-1 10 and BIOSAVE-1 1 1 respectively.
Patents describing use of bacteria and yeasts for biological control of fungal diseases of agricultural commodities include US pat. Nos. 5,314,691 (Coffey et al.); 5,270,059 (Janisiwicz et al.); 5,266,316 (Elad et al); 5,244,680 (Roberts); 5,238,690 (Elad et al.); 5,041,384 (Wilson and Chalutz); 5,71 1,946 (Goyal and Roberts) and PCT publications WO 92/18009 (Shanmuganathan) and WO 91/01641 (Wilson et al.). Each of these prior art teachings is narrowly defined as a composition or method containing/employing a disclosed species or strain of bacteria, fungus or yeast. None of these teachings includes a micro-organism which has proved effective against a wide range of fungal pathogens in a wide range of agricultural commodities. Further, none of these patents contain a hint or a suggestion that yeast of the genus Metschmkowia are useful in preventing post harvest loss of produce.
Metschmkowia pulcherrima is known to have some efficacy in biological control of a few deleterious micro-organisms on fruit (DeCurtis et al. (1996) Ann. Microbiol. Enzymol. 46: 45-55 and Piano et al. (1997) Postharvest Biol. Technol. 1 1 :131-140), however it is a separate and distinct species from Metschmkowia fructicola. Further, the apparently limited spectrum of antagonist activity of Metschmkowia pulcherrima renders it ill suited for use in the produce industry. Thus far, only a limited spectrum of biocontrol activity for M. pulcherrima has been demonstrated. This renders it ill suited to commercial prevention pre- and postharvest in a wide variety of agricultural settings.
There is thus a widely recognized need for, and it would be highly advantageous to have, a novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same devoid of the above limitations. SUMMARY OF THE INVENTION
According to one aspect of the present invention there is provided A biologically pure culture of a yeast of the species Metschmkowia fructicola identified as NRRL Y-27328, the culture capable of competitively inhibiting growth of a deleterious micro-organism on a fruit to which a biologically effective amount of the culture is applied. Metschmkowia fructicola (MF), is referred to herein as strain #277 and has been deposited in the NRS culture collection (NRRL) National Center for Agricultural Utilization Research, Peoria, Illinois, USA where it has been assigned deposit number NRRL Y-27328. This deposit has been made in compliance with the terms of the Budapest Treaty. According to another aspect of the present invention there is provided a composition for use in protection of agricultural produce includes, as an active ingredient, a biologically effective amount of yeast of biologically pure Metschmkowia fructicola the composition further containing a carrier.
According to yet another aspect of the present invention there is provided a method of inhibiting growth of a deleterious micro-organism on a portion of a plant, the method includes applying at least one time an agriculturally effective amount of biologically pure culture of a yeast of the genus Metschmkowia to the portion of a plant. Application may be pre-harvest, concurrent with harvest or post-harvest.
According to still another aspect of the present invention there is provided an article of manufacture includes packaging material and a composition identified for use in protection of agricultural produce from a deleterious micro-organism includes, as an active ingredient, a biologically effective amount of yeast of biologically pure Metschmkowia fructicola the composition further containing a carrier.
According to further features in preferred embodiments of the invention described below, there is provided a biologically pure strain of Metschmkowia fructicola having all of the identifying characteristics of the biologically pure culture of NRRL Y-27328. According to still further features in the described preferred embodiments there is provided a biologically pure mutant of Metschmkowia fructicola, having all of the identifying characteristics of the biologically pure culture of NRRL Y-27328. According to still further features in the described preferred embodiments the deleterious micro-organism is selected from the group consisting of Botrytis cinerea, Aspergillus niger, Penicillium digitatum, Peniciilium expansum, Rhizopus stolonifer Alternaria spp., Molinilia spp. and Fusarium spp.
According to still further features in the described preferred embodiments the portion of a plant is selected from the group consisting of a stone fruit, a pome fruit, a citrus fruit, grapes, a vegetable, a flower bulb, an herb, a grain, a root, a leaf, a grain and berries.
According to still further features in the described preferred embodiments the yeast is supplied in a physiologic state selected from the group consisting of active and dormant.
According to still further features in the described preferred embodiments the yeast is supplied in a physical form selected from a liquid suspension, an emulsion, a powder, granules, a lyophylsate and a gel.
According to still further features in the described preferred embodiments the composition further includes a chemical antibiotic.
According to still further features in the described preferred embodiments the chemical antibiotic is a fungicide or an antimicrobial agent or a pesticide. According to still further features in the described preferred embodiments the fungicide includes at least one chemical selected from the group consisting of Iprodione, Thiabendazole, Imazalil (l-(2-2,4-Dichlorophenyl)-2(2-propenyloxy -ethyl)- 1 Himidazol), Fenhexamide, Pyrimethamil and a combination of Fludioxonyl and Cyprodinil (e.g. Rovral, TBZ, Imazalil, Teldor, Mitos or Switch). According to still further features in the described preferred embodiments the yeast of the genus Metschmkowia has all of the identifying characteristics of the species Metschmkowia fructicola identified as NRRL Y-27328 or of any strain thereof or of any mutant of such a strain.
According to still further features in the described preferred embodiments article of manufacture further includes an applicator designed and constructed to apply the yeast to the agricultural produce.
The present invention successfully addresses the shortcomings of the presently known configurations by providing a novel antagonistic yeast of the genus Metschmkowia useful in controlling spoilage of many types agricultural produce caused by a broad spectrum of micro-organisms. The present invention further provides methods of use of the yeast, compositions containing the yeast and articles of manufacture containing the compositions. The present invention is expected to enjoy wide acceptance because it can provide post-harvest production from a pre-harvest application.
BRIEF DESCRIPTION OF THE DRAWINGS The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. In the drawings: Fig. 1 is a graph of cell number as a function of time for the yeasts Metschnikowia fructicola (Mf) of the present invention and Metshnikowia reukafii (231) and kluyveromyces thermotolerance (414) incubated at 4 °C indicating that Mf grows faster than other yeasts in the cold.
Fig. 2 is a graph of colony forming units (cfu) per wound as a function of time for the yeast Metschnikowia fructicola (Mf) of the present invention in citrus fruit surface wounds.
Fig. 3 is a histogram illustrating reduction of % decay caused by Penicillium digitatum (Pd) infection of red grapefruit by Metschnikowia fructicola (Mf) of the present invention and the effect of addition of exogenous nutrients obtained from macerated grapefruit peel.
Fig. 4 is a histogram illustrating that response of green mold decay, caused by P. digitatum, on grapefruit to Metschnikowia fructicola (Mf) of the present invention is concentration dependent.
Fig. 5 is a photo of Petri dishes illustrating lack of long distance inhibition of different postharvest pathogens by Metschnikowia fructicola (Mf) of the present invention in solid growth medium. Fig. 6 is a histogram illustrating the correlation between of chitinolytic activity of
Metschnikowia fructicola (Mf) of the present invention and yeast isolates #47 and #273 with their biocontrol activity against Penicillium expansum on apples. The inset shows that the yeast Mf produces high amounts of chitinases relative to the other yeast isolates.
Fig. 7 is a histogram illustrating the synergistic effect of the yeast Metschnikowia fructicola (Mf) of the present invention with the fungicide Rovral (Iprodione) against Botrytis cinerea of table grapes.
Fig. 8 is a graph of cfu as a function of time for Metschnikowia fructicola (Mf) of the present invention with various fungicides used to control Botrytis cinerea and Penicilliun sp. Data presented indicate that Mf is compatible/ unaffected- with tested fungicides.
Fig. 9 is a graph of cfu/berry as a function of time for Metschnikowia fructicola (Mf) of the present invention, Metshnikowia reukafii (231) and kluyveromyces thermotolerance (414) on table grapes (cv. Superior) between field application and harvest.
Fig. 10 is a histogram comparing the effect of Metschnikowia fructicola (Mf) of the present invention to other yeast isolates on decay of table grapes caused by Aspergillus niger . Fig. 11 is a histogram comparing the effect of Metschnikowia fructicola (Mf) of the present invention to other yeast isolates on decay caused by Botrytis of table grapes in a laboratory assay.
Figs. 12 A and B are histograms of disease, index and % decayed clusters respectively and the effect of Metschnikowia fructicola (Mf) of the present invention at 108 cells/ml applied in the fieldas compared to untreated controls and chemically treated grapes. Growth of pathogens Aspergillus, Botrytis and Rhizopus is shown.
Figs. 13 A and B are histograms of disease index and % decayed clusters respectively as a result of Rhizopus infection in the field and the effect of Metschnikowia fructicola (Mf) of the present invention relative to M. raukaufili and K. thermotolerance.
Fig 14 is a histogram showing decayed berries/3 Kg. for untreated (control) and grapes treated in the field with Metschnikowia fructicola (108 cells/ml (MF) and 107 cells/ml(MF-1)) of the present invention. Decay was caused by Botrytis cinerea which developed postharvest.
Fig. 15 is a histogram showing decayed berries/Kg as a result of storage comparing untreated (control) and grapes treated with Metschnikowia fructicola (108 (MF) cells/ml and 107 (MF'1) cells/ml) of the present invention. Decay was caused by Botrytis cinerea, Rhizopus stolonifer and Aspergillus niger.
Fig. 16 is a histogram comparing efficacy of the yeast Metschnikowia fructicola (Mf) of the present invention to Metchnikowia reukafii (231) and Kluyveromyces thermotolerance (414) and Mitos in controlling damage to grapes in the field caused by Aspergillus and Botrytis and Rhizopus pathogens.
Figs. 17A and B are histograms illustrating efficacy of the yeast Metschnikowia fructicola (Mf) of the present invention, as compared to C. oleophila and B. subtilis in controlling Fusarium oxysporum rot on Easter Lilly bulbs.
Figs. 18 A and B are histograms illustrating efficacy of the yeast Metschnikowia fructicola (Mf) of the present invention, as compared to C. oleophila and B. subtilis in controlling Penicillium hirsutum rot on Easter Lilly bulbs.
Fig. 19 is a histogram illustrating total percent decay from natural infection of nectarines with various pathogens during storage at OC for 30 days and additional 10 days of room temperature storage in the presence of Metschnikowia fructicola (Mf) of the present invention or Candida oleophila.
Fig. 20 is a histogram illustrating % infected wounds after artificial infection of nectarines with Penicillium expansum in the presence of Metschnikowia fructicola (Mf) of the present invention or Candida oleophila.
Fig. 21 is a histogram illustrating that the percentage of infected wounds from artificial infection of nectarines with Penicillium expansum decreases proportionally to the applied dose of Metschnikowia fructicola (Mf) of the present invention.
Fig. 22 is a histogram illustrating that total percent decay of apples after artificial infection with Penicillium expansum varies with the applied concentration of Metschnikowia fructicola (Mf) of the present invention.
Figs. 23 A and B are a graph and a histogram respectively, illustrating the effect of pre-harvest application of Metschmkowia fructicola (Mf) of the present invention on the development of Botrytis rot of strawberries in the field (23 A) and during post harvest storage (23B). Teldor 50% (WG power formulation) - 015%; Teldor 500 (liquid formulation - 0.15%;
Switch - 0.06% (60 g/dunam); Switch 0.1% (100 g/duman).
Fig. 24 is a series of histograms illustrating total % decay from green mold decay in grapefruit in the presence or absence of Metschnikowia fructicola (Mf) of the present invention oτ Metschnikowia raukafii (231) or Candida oleophila (182). Fig. 25 is a histogram showing concentration dependence of decay % of cherry tomatoes artificially infected with Botrytis cinerea to applied Metschnikowia fructicola (Mf).
Fig. 26 is a histogram of % decayed fruits illustrating the ability of Metschnikowia fructicola (Mf; 108 cells/ml) of the present invention and of C. oleophila to reduce natural decay from (Botrytis cinerea) on sweet cherry during and after cold storage (30 days at 0°C and after an additional 4 days of storage at 24°C).
Fig. 27 is a histogram illustrating % decay from Botrytis cinerea (5 x 104 spores/ml) on cherry tomato in the presence or absence of Metschnikowia fructicola (Mf) of the present invention and at different storage temperatures.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is of a new yeast species Metschnikowia fructicola which can be applied to agricultural produce to reduce pre- harvest and postharvest decay via competitive inhibition of a wide range of micro-organisms. Metschnikowia fructicola is referred to herein as strain #277 and/or Mf and has been deposited in the NRS culture collection (NRRL) National Center for Agricultural Utilization Research, Peoria, Illinois, USA where it has been assigned deposit number NRRL Y-27328. This deposit has been made in compliance with the terms of the Budapest Treaty.
Specifically, the present invention can be used to reduce the incidence and/or severity of fungal pathogens of grapes, citrus fruit, pome fruit, stone fruit, strawberries, flower bulbs, vegetables, roots, grains, foliage and herbs.
"Grapes", as used in this specification and the accompanying claims, includes table grapes and wine grapes.
"Citrus fruit", as used in this specification and the accompanying claims, includes, but is not limited to, oranges, grapefruit, tangerines, Clementines, lemons, limes, kumqwat, citroen, pomello, mandarin and hydrids derived therefrom.
"Pome fruit", as used in this specification and the accompanying claims, includes, but is not limited to, apples, pears and quinces.
"Stone fruit", as used in this specification and the accompanying claims, includes, but is not limited to, peaches, plums, nectarines, apricots, mangos.
For purposes of this specification and the accompanying claims the terms "inhibiting" and "inhibition" refer to retardation or delay of a process. As such, inhibition may be deemed to occur if the process occurs at a reduced rate as a result of application of a claimed yeast, a composition containing such a yeast, or as a result of practice of a claimed method. The invention is further of methods of use of the claimed yeast, compositions containing the claimed yeast and articles of manufacture including those compositions. The principles and operation of protection of agricultural produce against unwanted decay via competitive inhibition according to the present invention may be better understood with reference to the figures and accompanying descriptions.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
According to one aspect of the present invention there is provided A biologically pure culture of a yeast of the species Metschnikowia fructicola identified as NRRL Y-27328. This culture is capable of competitively inhibiting growth of a wide range of deleterious micro-organisms on a portion of a plant to which a biologically effective amount of the culture is applied. Identifying characteristics of Metschnikowia fructicola are set forth in " Metschnikowia fructicola, a New Ascoropic Yeast with Potential for Biocontrol of Postharvest Fruit Rots" ( Kurtzman and Droby (2001) System Appl. Microbiol 2A:in press) which is fully incorporated herein by reference. Briefly, NRRL Y-27328 differs from other members of the genus Metschnikowia in the D1/D2 domain of the 26S rDNA sequence. Specifically, NRRL Y-27328 differs by 2.2% from Metschnikowia pulcheirma, which is its closest known relative. It is well accepted that differences of 1% are sufficient for differentiation between species (Kurtzman and Robnett (1998) Antonie Leeuwenhoek 73:331-371). Therefore, Metschnikowia which differ from Mf by less than 1% in the D1/D2 domain of the 26S rDNA sequence are deemed to be within the scope of the present invention.
Thus, any biologically pure strain of Metschnikowia fructicola, whether physically derived from the original deposit or independently isolated, is part of the present invention so long as it possesses all of the identifying characteristics of NRRL Y-27328. This includes biologically pure mutants of Metschnikowia fructicola, so long as they retain all of the identifying characteristics of NRRL Y-27328. For purposes of this specification and the accompanying claims, the term "mutant" includes both naturally occurring mutations and purposeful genetic modifications such as introduction of point mutations, plasmids, phages, phagemids, cosmids and artificial chromosomes.
The deleterious micro-organism which Mf protects against include, but are not limited to, Botrytis cinerea, Aspergillus niger, Penicillium digitatum, Penicilium italicum, Penicillium expansum, Geotrichum candidum, Rhizopus stolonifer, Alternaria spp., Molinilia spp, and Fusarium spp.
The present invention is further embodied by a composition for use in protection of agricultural produce. The composition includes, as an active ingredient, a biologically effective amount of yeast of biologically pure Metschnikowia fructicola. The composition further contains a carrier. As illustrated in examples set forth hereinbelow, Metschnikowia fructicola is biologically effective when delivered at a concentration in excess of 106 cells/ml, preferably in excess of 107 cells/ml, more preferably 10 cells/ml, most preferably 109 cells/ml or more.
The yeast of the composition may be supplied in any physiologic state such as active or dormant. Dormant yeast may be supplied, for example, frozen (e.g in DMSO/glycerol), dried or lyophilized. Further, the yeast of the composition may be supplied in any physical form including, but not limited to a liquid suspension, an emulsion, a powder, granules, a lyophylisate or a gel.
The composition may be applied as spray or drench or as an aerosolized powder or ointment. If the composition includes dormant yeast, they may require re-activation prior to use, for example by rehydration and or incubation in a nutrient medium. Preferably, dormant yeast will become active when applied or subsequent to application.
In order to increase the overall efficacy of the composition, a chemical antibiotic may be further included. Preferably, the chemical antibiotic is a compatible fungicide, for example Iprodione (e.g. Rovral) or Thiabendazole (e.g. Apl-Luster, Arbotect, Mertect, Mycozol, TBZ, Tecto, and Thibenzole), Imazalil (i.e. l-(2-2,4-Dichlorophenyl)-2(2-propenyloxy -ethyl)- lHimidazol; e.g. Bromazil, Deccozil, Fungaflor, Freshgard, or Fungazil), Fenhexamide (e.g. Teldor), Pyrimethamil (e.g. Mitos) or a combination of Fludioxonyl and Cyprodinil (e.g. Switch) or a chemical equivalent thereof or a combination including same. Alternately, or additionally, the chemical antibiotic includes an antimicrobial agent or a pesticide. The invention is further embodied by a method of inhibiting growth of a deleterious micro-organism on a portion of a plant, the method includes applying at least one time an agriculturally effective amount of a biologically pure culture of a yeast of the genus Metschnikowia to the portion of a plant. Preferably, the yeast of the genus Metschnikowia has all of the identifying characteristics of the species Metschnikowia fructicola identified as NRRL Y-27328 or of any strain thereof or of any mutant of such a strain.
The invention is further embodied by an article of manufacture which includes packaging material and a composition identified for use in protection of agricultural produce from a deleterious micro-organism. The article of manufacture includes, as an active ingredient, a biologically effective amount of yeast of biologically pure Metschmkowia fructicola and further contains a carrier. Preferably, the article of manufacture further includes an applicator designed and constructed to apply the yeast to the agricultural produce. As used in this specification and the accompanying claims, the term "carrier" refers to any substance or diluent that does not cause significant irritation to agricultural produce or plants and does not abrogate the biological activity and properties of the administered active ingredient. As such, the term specifically includes, but is not limited to, aqueous solutions such as culture media, inert powders, and inert solvents (e.g. water). The claimed yeast species, compositions and articles of manufacture including same and methods of use thereof are expected to find great utility in commercial agriculture. Their utility stems from their broad spectrum of activity against important pathogens and from the wide range of plants/fruits to which they may be efficaciously applied. In addition, Mf may be applied in the field, or concurrent with harvest, or during storage. Further, as demonstrated in examples herein below, Mf is useful under a wide variety of storage conditions. Thus, the present invention allows preharvest application of a benign yeast as a means of preventing post-harvest decay of agricultural produce.
Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.
EXAMPLES Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.
Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989); "Current Protocols in Molecular Biology" Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Baltimore, Maryland (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley & Sons, New York (1988); Watson et al., "Recombinant DNA", Scientific American Books, New York; Birren et al. (eds) "Genome Analysis: A Laboratory Manual Series", Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; "Cell Biology: A Laboratory Handbook", Volumes I-III Cellis, J. E., ed. (1994); "Current Protocols in Immunology" Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), "Basic and Clinical Immunology" (8th Edition), Appleton & Lange, Norwalk, CT (1994); Mishell and Shiigi (eds), "Selected Methods in Cellular Immunology", W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791 ,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901 ,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011 ,771 and 5,281,521; "Oligonucleotide Synthesis" Gait, M. J., ed. (1984); "Nucleic Acid Hybridization" Hames, B. D., and Higgins S. J., eds. (1985); "Transcription and Translation" Hames, B. D., and Higgins S. J., eds. (1984); "Immobilized Cells and Enzymes" IRL Press, (1986); "A Practical Guide to Molecular Cloning" Perbal, B., (1984) and "Methods in Enzymology" Vol. 1-317, Academic Press; "PCR Protocols: A Guide To Methods And Applications", Academic Press, San Diego, CA (1990); Marshak et al., "Strategies for Protein Purification and Characterization - A Laboratory Course Manual" CSHL Press (1996); all of which are incorpotaed by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.
EXAMPLE 1 Isolation of Metschnikowia fructicola
The novel yeast species Metschnikowia fructicola was isolated from the surface of grape berries (cv. Superior) grown in the central part of Israel. At various stages, individual berries were submersed in sterile distilled water in 100 ml beakers and shaken vigorously for 2 hours on rotary shaker at 120 rpm. Aliquots of 100 μl were removed from the wash liquid and plated on PDA (Potato Dextrose Agar; DIFCO Laboratories, U.S.A.) medium. Following 4-5 days of incubation, yeast colonies were picked randomly according to colony characteristics (color and morphology) and streaked individually on fresh medium to obtain biologically pure cultures.
Cultures were further purified by repeated streaking on PDA. Identification and characterization of the new species was done at the Microbial Genomics and Bioprocessing center,
USDA-ARS, Peoria, IL, USA. Metschnikowia fructicola was deposited at the NRRL under the number Y-27328.
EXAMPLE 2 Propagation of Metschnikowia fructicola Metschmkowia fructicola is propagated under aerobic conditions at temperatures ranging from 5 °C to 37 °C. Optimal growth temperature is 20 - 27 °C. The growth is in liquid medium (nutrient broth; Droby et al., 1989) with a neutral pH. The cell density of the yeast reaches its maximum (stationary stage) growth in 24 - 48 hours. For laboratory and small scale tests growth in Erlenmeyer flasks containing the medium and shaken on a rotary shaker is suitable. For large scale and commercial tests, fermentation tanks and industrial growth media are preferred. The yeast cells are harvested by centrifugation using conventional laboratory or industrial centrifuges. One ordinarily skilled in the art of fermentation culture will be able to scale up culture volumes using suitable growth media and commercially available equipment.
EXAMPLE 3 Laboratory Assay of activity of Metschnikowia fructicola on grapes and cherry tomato
Individual grapes or cherry tomatoes were removed from clusters. Surface disinfection was accomplished by dipping for 1 min in 1% (v/v) sodium hypochlorite (pH 1 1.5). Disinfected fruit was mounted on masking tape strips glued to PVC pads within an incubation box. The fruit was punctured with a pin to a depth of 2 mm and 10 μl of an antagonist (Metschnikowia fructicola or as indicated) cell suspension were pippeted onto the wound site and left to dry for
1 -2 hours. Fruit was then inoculated with 10 μl of conidial suspension of an appropriate fungal pathogen (B. cinerea or as indicated). Conidial suspensions were obtained from one-week-old pathogen cultures incubated at room temperatures. Spore concentration was adjusted to 1 - 5 x 10 conidia/ml. Each treatment was applied to three replicates of 7 -10 individual fruit. Following the treatment, wet filter paper was placed in the incubation boxes which were covered with polyethylene to maintain high relative humidity. The percentage of decayed berries/fruits in each replicate was evaluated after 4- 5 days at 20 C. This assay was employed in examples 16, 17, 26 and 28 described hereinbelow.
EXAMPLE 4
Field test of activity of Metschnikowia fructicola on grape The efficacy of Metschnikowia fructicola and other yeast antagonists against bunch rot of wine and table grapes was evaluated on various varieties of grapes in vineyards located in the northern, central and southern coastal plains of Israel. Thompson Seedless and 'Superior Seedless' (table grapes) and 'Sauvignon blanc' (wine grapes) were tested. Experimental plots consisted of one to seven vines per treatment in the different experiments, arranged as randomized blocks with at least four replicates. The yeast antagonist and chemical standards (Mitos 0.25%) were applied weekly up to 4 times until run-off, with hand driven back-sprayer.
The incidence of decay (% decayed bunches) in the grape experiments in the field was determined on the day of harvest (field evaluation). Forty clusters were sampled from each plot and scored according to the causal agent of the decay and percentage of rot. For table grapes, the rot was also evaluated in storage. Approximately 3-5 Kg of grapes were harvested from each plot and packed in plastic bags which were wrapped in polyethylene bags to create high relative humidity. Rot development was evaluated after 3-4 weeks of storage at 0°C followed by 4-7 days at 20°C (cold storage ) or for 10 days at 20 (shelf life). S02 standard treatment was used as a comparison. Data summarized in Figures 12A and B indicates that Mf is comparable in its effectiveness to the chemical antifungal.
EXAMPLE 5 Metschnikowia fructicola Inhibits decay of sweet cherries
The effect of the yeast antagonists Metschnikowia fructicola (MF) of the present invention and Candida oleophila (1-182) on the development of postharvest decay on sweet cherries were tested at a concentration of 10 cells/ml. Cherries were dipped for 1 min. in yeast cell suspensions, allowed to air dry and then stored under various conditions: up to 6 days at 24°C; 30 days at 0°C followed by 4 days at shelf life (room temperature); and 30 days at 0°C under modified atmosphere (MA) packaging (P-Plus, Sidlaw Packaging, Bristol-UK) followed by 4 days of shelf life. The atmosphere in the bag used for MA packaging was determined by removing an aliquot of air and injecting it into a GC gas chromatograph with a TDC detector and a Poropak column (Supelco, Bellepenta, PA, USA). Number of decayed berries was determined following the storage and shelf life period. Data, summarized in figure 26, indicate that Mf is more effective than Candida oleophila.
EXAMPLE 6 Growth Characteristics of Metschnikowia fructicola Under refrigeration
In order to demonstrate that Mf is useful under conditions of cold storage, yeast cells were grown in Erlenmeyer flasks (50ml media/ 100 ml flasks) containing liquid medium consisting of nutrient broth, yeast extract and D-glucose (NYDB: Droby et al., 1989) on rotary shakers placed in cold room at 4 C. Aliquots (1 ml) were aseptically withdrawn from the growth medium at 1 day intervals, serially diluted and plated on solid medium (NYDA: Droby et al., 1989). After 3-4 days incubation at 25 °C the number of colonies growing on the medium were counted and expressed as Log number of cells/ml. Data are summarized in Figure 1. Mf grew much faster than M. raukaufii or K. thermotolerance during 6 days under refrigeration. This indicates that MF is more suited to biological control of post harvest rot under cold storage conditions than M. reukaufii i or K. thermotolerance.
EXAMPLE 7 Metschnikowia fructicola Colonizes wounds in citrus fruit peel
In order to demonstrate that Mf is capable of protecting wounds in a fruit surface, its ability to colonize and grow at the wound site on a fruit surface was tested. The fruit was wiped with 95% ethanol and wounded (3x3 mm wounds) using a dissecting needle at four sites.
An aliquot (20 μl) of the yeast cell suspension (2 x 106 cells/ml) was pipetted into each wound.
The fruit was incubated at 20°C and at intervals of 1, 24 and 48 h, a 5 X 5 mm piece was cut from each of the four wounds and vigorously shaken in 10 ml of sterilized distilled water for 1 h. Serial one-tenth dilutions of the washing liquid werte prepared and 100 μl of each dilution was plated on NYDA. The number of colonies was counted during 48 h of incubation at 25 °C.
Each fruit containing four wounds represented a single replicate, and each treatment contained
6 replicates. Data (summarized in Figure 2) are presented as cfu (colony forming units) of
Metschnikowia fructicola (MfVwound. Results indicate that Mf is capable of replicating and colonizing a fruit surface wound at room temperature. EXAMPLE 8
Colonization by Metschnikowia fructicola Protects s wounds in citrus fruit peel by competition for nutrients
In order to establish that mf is capable of competing for nutrients surface sterilized grapefruits were wounded around the stem end, with three wounds per fruit. Each wound was made by inserting a dissecting needle to a depth of 3 mm. Thirty μl of a water suspension of the antagonist Mf cells was pipetted into each wound. One to two hours later, 20 μl of a spore suspension of P. digitatum (5 X 104 spores/ml) was applied to each wound. Macerated grapefruit peel was prepared from water soaked peel at the margins of P. digitatum induced lesions on grapefruit. Ten grams of the peel was homogenized in blender, diluted with distilled water to 20% strength and then autoclaved. Aliquots of concentrated spore suspension of P. digitatum were added to the peel macerate to give a final spore concentration of 5 X 104 spores/ml, which was used to inoculate fruit wounds pretreated with a cell suspension of Metschnikowia fructicola (Mf). Control fruits were inoculated with a similar spore suspension of P. digitatum in water. Each fruit was inoculated at three sites. Twelve fruits were used for each treatment to give a total of 36 inoculation sites per treatment. Percent wound infection was measured after 5 days incubation at 24 °C. Data are summarized in Figure 3. Results indicate that Metschnikowia fructicola (Mf) successfully protects against Penicillium digitatum (Pd) infection of red grapefruit, but fails to do so in the presence of supplementary nutrients extracted from the peel. These results clearly indicate that competition for nutrients plays a major role in Mfs protective capability.
EXAMPLE 9 Metschnikowia fructicola protects against Green mold decay in a concentration dependent manner In order to demonstrate that the protective effect of Mf is concentration dependent, surface sterilized grapefruits were wounded around the stem end, as in Example 8. Thirty microliters of a water suspension of the antagonist Mf cells was pipetted into each wound. One to two hours later, 20 ul of a spore suspension of P. digitatum (5 X 104 spores/ml) was applied to each wound. Percent of decay was determined 1 week after incubation in humid conditions in plastic trays at 24 C. Twelve fruits per treatment were used. Data are summarized in Figure
4. Results indicate that complete inhibition of decay was achieved at a concentration of 108 cfu with partial protection achieved at 107 and 10° cfu.
EXAMPLE 10 Metschnikowia fructicola does not produce antibiotics Because there is great concern about widespread use of antibiotics, the mechanism by which mf protects fruit was examined. In order to determine if the ability of Mf to protect fruit is mediated by antibiotic production, Mf was screened against three major fruit pathogens (Aspergillus niger, Botrytis cinerea, Penicillium digitatum). Yeast cells were streaked on one side of PDA plates. Agar plug (0.5 X 0.5 mm) containing the fungal culture was placed on the other side of the plate and then plates were incubated at 25 C for one week.
Representative results are presented in Figure 5. No inhibition of the three tested pathogens was observed. This demonstrates that Mf does not produce diffusible antibiotics. EXAMPLE 11
Inhibition by Metschnikowia fructicola correlates to chitinase activity
To test relative biocontrol efficacy of Mf and other yeasts, apples were washed with tap water, dried, uniform wounds of 4 mm depth and 2-3 mm in diameter were made on the side of each fruit. Each wound was inoculated with 40 μl of yeast suspension at a concentration of 108 cells/ml. After 3 h, 20 μl of suspension containing 104 spore/ml of P. expansum were added to each wound. Treated apples were stored at ambient temperature and high relative humidity Percent wound decay was determined 10 days after inoculation. The number of infected (decayed) woun eachds was determined. Each treatment consisted of 3 replicates of 10 fruits. Each fruit was wounded at one location. Results are summarized in Figure 6. Detection of chitinase activity (insert) was performed as follows: Sodium dodecyl sulfate (SDS)-PAGE was performed at pH 8.9 by using a 15%) (w/v) polyacrylamid gel containing 0.01%(w/v) glycol chitin as substrate and 0.1% (w/v) SDS. The crude enzyme preparation, obtained from the supernatant of the yeasts liquid cultures were boiled for 2 min in 10% (w/v) sucrose and 2% SDS in 125mM Tris-HCl (pH 6.7). Elecrophoresis was run at room temp, for 1.5 h at 20 mA. After Elecrophoresis, the gel was incubated overnight at 37 C on rotating apparatus in 200 ml of 100 mM sodium acetate buffer (pH 5). At the end of incubation period the gel was stained with 0.01% (w/v) Calcoflour white M2R in 0.3 M Tris-HCl (pH 8.9) for 5 min, and destained by incubating the gel in 100 ml of distilled water with a gentle shaking for 2 h. Lytic zones were visualized by placing the gel on under UV light. Because Calcoflour white M2R does not stain hydrolyzed chitin, black bands in the Mf lane indicate that the yeast Mf produces high quantities of chitinase compared with the other tested yeasts Results presented in figure 6 clearly indicate that the superior ability of Mf to protect apples against Penicillium expansum is well correlated to chitinolytic activity. Other yeasts lacking this activity (isolates #47 and #273) were less effective against Penicillium expansum. This data indicate that chitinolytic activity, as well as competition, contribute to the protective effect of Mf. EXAMPLE 12 Effect of temperature on Metschnikowia fructicola
The ability Mf to remain viable after prolonged exposure to temperatures ranging from
0 to 42 °C was tested on solid potato dextrose agar plates. Mf was lightly streaked on the surface of PDA plates and incubated at the indicated temperatures for 4 days and then moved to
25°C for an additional 4 days. Growth was evaluated visually. Results are summarized in Table
Table 1: Growth of the yeast Metschnikowia fructicola (Mf) at different temperatures. Initial 4 day Incubation Time (days) at 25°C incubation at After initial incubation
Temp. °C
4+
0 - - +++
5 + + +++
10 ++ ++ +++
20 +++ +++ +++
28 +++ +++ +++
37 - - +++ 42
No growth: Weak Growth: +
Moderate Growth: ++
Normal Growth: +++
These results indicate that Mf remains viable after storage at 0-5°C and that Mf is able to withstand temperatures lower than 37 °C.
EXAMPLE 13
Metschnikowia fructicola acts synergisticallywith chemical fungicides
Individual grapes (cv. Superior; table grapes) were surface disinfected by dipping for 1 min in 1% (v/v) sodium hypochlorite (pH 11.5) and mounted on masking tape strips glued to PVC pads within an incubation box. The grapes were punctured with a pin to a depth of 2 mm and 20 μl of an antagonist cell suspension (107 cells/ml) or Rovral brand of Iprodione (5 ppm) or both were pippeted onto the wound site and left to dry for 1 -2 hours. Grapes were then inoculated with 10 μl of conidial suspension of B. cinerea obtained from one-week-old pathogen cultures incubated at room temperatures. Spore concentration was adjusted to 1 - 5 x 104 conidia/ml. Each treatment was applied to three replicates of 7 -10 grapes. Following the treatment, wet filter paper was placed in the incubation boxeswhich were covered with polyethylene to maintain high relative humidity. The percentage of decayed grapes in each replicate was evaluated after 4- 5 days at 20 °C Results, summarized in Figure 7, indicate that there is significant synergy between Rovral brand of Iprodione and Mf .
EXAMPLE 14 Metschnikowia fructicola is compatible witha varirty of agrochemicals
In order to establish that Mf is suitable for combination with a variety of commonly employed chemical pesticides, ten percent strength of liquid medium (NYDB) with various concentrations of common agrochemicals added was inoculated with a cell suspension of Mf (25 ml of 10 cell/ml) and incubated on a rotary shaker at room temperature. The following commercially available agrochemicals were employed:TBZ(0.02%); Teldor (0.015%); Mitos (0.025%); Rovral (0.02%); Switch (0.01 %); and Imazalil (0.005%). Samples were aseptically withdrawn from the at 0 time, 24 h and 48 h of incubation. Samples were serially diluted and aliquots of 30 μl of the dilutions were plated on PDA. Plates were incubated at 25 °C for 3 - 4 days and colony forming units (CFU) were counted. Results, summarized in Figure 8, indicate that MF is not affected by the tested agrochemicals, even fungicides except Switch (0.01%) and Imazalil (0.005%) which slowed, but did not prevent, its growth
EXAMPLE 15 Metschnikowia fructicola survives under field conditions In order to demonstrate that that Mf is more suited for use in the field than others yeast strains, grapes were collected from experimental plots designated to evaluate the efficacy of the yeast antagonist Mf in controlling pre and postharvest rots of table grapes in the central coastal area of Israel (Truman). Weekly spraying of the yeasts (starting from 21/6) at concentration of 10 cells/ml using 23l(Metchnikowia reukafii), 414 (Kluyveromyces thermotolerance) and Mf was conducted. Grapes were collected on the first spraying date, after the clusters had dried and thereafter before each spray.
At each collection, five grapes per plot were sampled aseptically into 150 ml sterile plastic cups containing 20 ml of water and shaken on a rotary shaker at 200 rpm for 1 h. After 1 :10 serial dilutions, 20 ul of each dilution were plated in Petri dishes containing Basal yeast agar medium (BYA) containing 20 g glucose, 1 g yeast extract, 10 g protease peptone and 15 g agar amended with 250 mg Penicillin G (to suppress growth of bacteria) in 1 liter of distilled water. The Petri dishes were incubated at room temperature for 3 - 4 days, after which the number of colonies were counted. Yeast viability is expressed as CFU/berry. Results, summarized in Figure 9, indicate that Metschnikowia fructicola (Mf) survives better in the field than Metshnikowia reukafii (231) or kluyveromyces thermotolerance (414) on table grapes (cv. Superior).
EXAMPLE 16 Metschnikowia fructicola inhibits growth of Aspergillus niger and Botrytis cinerea on grapes
In order to show that Mf is effective against important grape pathogens, individual grapes were removed from clusters, surface disinfected by dipping for 1 min in 1% (v/v) sodium hypochlorite (pH 11.5) and mounted on masking tape strips as described hereinabove. The grapes were punctured with a pin as described hereinabove and an antagonist cell suspension was applied to the wound site and left to dry as described hereinabove. 30 μl of cell suspension of each strain at concentration of 108 cell/ml was used. Grapes were then inoculated with 10 μl of conidial suspension of Aspergillus niger (Figure 10) or Botrytis cinerea (Figure 1 1). Conidial suspensions prepared and spore concentration was adjusted as described hereinabove.
Each treatment was applied to three replicates of 7 -10 grapes. Following the treatment, wet filter paper was placed in the boxes which were covered with polyethylene to maintain high relative humidity. The percentage of decayed grapes in each replicate was evaluated after 4- 5 days at 20 °C. Figures 10 and 11 clearly indicate that Mf is the most effective of the assayed yeast strains in controlling growth of Aspergillus niger and Botrytis cinerea on wounds of table grapes. In Figure 1 1 A42 indicates Candida guilliemondii, 495 indicates Debaryomyces hansenii and strains243 and 509 are unidentified yeasts.
EXAMPLE 17 Metschnikowia fructicola controlsbunch rot of grapes
In order to further demonstrate the superior qualities of Mf in the field, the efficacy of
Mf relative to a chemical fungicide spray (mitos) against bunch rot of wine and table grapes was evaluated on various varieties in vineyards located in the northern, central and southern coastal plains of Israel on Thompson Seedless and 'Superior Seedless' (table grapes) and 'Sauvingnon blanc' (wine grapes).
Experimental plots consisted of one to seven vines per treatment in the different experiments, arranged as randomized blocks with at least four replicates. The yeast antagonist and chemical controls were applied weekly 4 times until run-off, with a hand driven back-sprayer. The incidence of decay in the wine and table grape experiments was determined on the day of harvest. Forty clusters were sampled from each plot and scored according to the causal agent of the decay and percentage of rot. In the table grapes experiments, the rot was also evaluated in storage. Approximately 3-5 Kg of grapes were harvested from each plot and packed in plastic bags which were wrapped in polyethylene bags to create high relative humidity. Rot development was evaluated after 3-4 weeks of storage at 0°C followed by 4-7 days at 20°C.
Figures 12 A and 12 B clearly show that Mf applied to wine grapes at a concentration of
10 cells/ml was more effective than Mitos (0.25%) in controlling bunch rot caused by Aspergillus, Botrytis and Rhizopus.
Figures 13 A and 13 B clearly show that preharvest application of the yeast MF at concentrations as low as 10 cells/ml was more effective in controlling Rhizopus rot developed on grape bunches in the filed than M.raukaufii or K. thermotolerance.
Figure 14 clearly shows that Mf applied to table grapes (Cv. Superior)... at concentrations of 108 (Mf) and 107 (Mf ')cells/ml reduced disease severity after cold storage.
Figure 15 clearly shows that Mf applied to table grapes (Cv. Thompson) at concentrations of 108 and 107 cells/ml prior to harvest was superior to chemical treatment with one S02 saturated pad per carton in controlling bunch rot caused by Aspergillus for up to2 weeks of storage at 20°C. Figure 16 clearly shows that Mf is more effective than Metchnikowia reukafii (231),
Kluyveromyces thermotolerance (414) or mitos in controlling damage to grapes caused by
Aspergillus + Botrytis +Rhizopus pathogens.
In summary, these results indicate that use of Mf as a fungal antagonist is as effective as commonly employed chemical fungicides for control of pre and postharvest bunch rot in grapes.
EXAMPLE 18
Metschnikowia fructicola protects flower bulbs from a variety of pathogens
Easter Lilly bulbs were injured at one site and dipped for 1 min in cell suspension of the yeast Metschnikowia fructicola (Mf), Candida oleophila or Bacillus subtilis at concentration of 10 cells/ml, allowed to dry for 2 - 3 h and inoculated with spore suspension of Fusarium oxysporum (105 spores/ml; Figures 17A and B) or of Penicillium hirsutum (105 spores/ml; Figures 18 A and B) by spraying the bulbs until run off. Bulbs sprayed with water were used as controls. Percent of infected bulbs was determined following storage period of two weeks at 9
C followed by 1 week of storage at 20 C.
Data summarized in figures 17 A and B show that Mf is more efficient in controlling
Fusarium oxysporum rot on Easter Lilly bulbs than B. subtilis. Data summarized in figures 18 A and B show that Mf is more efficient in controlling Penicillium hirsutum rot on Easter Lilly bulbs than C. oleophila. In summary, Mf offers broader protection for lily bulbs than C. oleophila or B. subtilis.
EXAMPLE 19 Metschnikowia fructicola inhibits Natural infection of stone fruit In order to evaluate the effect of the yeast antagonists Metschnikowia fructicola (Mf) and Candida oleophila on development of natural decay of stone fruit, 'Flavortop' nectarines were employed. Fruit was dipped into a cell suspension (108 cells. ml"1) of either Mf or Candida oleophila . Fruit dipped in tap water (20 C) served as a negative control. Treated fruit was stored at 0°C for 30 days and then held for 10 days at 24 °C. At the end of this second incubation, decay incidence was determined. In all experiments, each treatment included three replicates of 30 fruit each.
Results summarized in Figure 19 indicate that Mf was more effective than Candida oleophila in preventing natural infection of nectarines with Alternaria spp., Monilinia fructicola, R. Stolonifer, B. cinerea, and P. expansum. EXAMPLE 20
Metschnikowia fructicola inhibits Penicillium infection of stone fruit wounds
Stone fruit ('Flavortop' nectarines and 'Swelling' peaches) was wounded with a dissecting needle (1-2 mm deep) and 30 μl of the yeasts-cell suspensions (10 cells ml" ) were applied into each wound. The yeast antagonists used were either C. oleophila or Metschnikowia fructicola (Mf). Treated fruit was allowed to air dry and then inoculated with 20 μl of
Penicillium expansum spore suspension (105 spores.ml"1) and kept in plastic trays at 24 C under humid conditions. The percentage of infected wounds was determined 4 and 5 days after inoculation. Results summarized in Figure 20 indicate that Metschnikowia fructicola (Mf) was more effective than Candida oleophila in preventing wound colonization by Penicillium expansum.
EXAMPLE 21 Metschnikowia fructicola inhibition of Penicillium infection of stone fruit is concentration dependent Stone fruit ('Flavortop' nectarines and 'Swelling' peaches) were wounded as described in example 20 and 30 μl of varying Mf suspensions (107, 108 and 109 cells/ml) were applied into each wound. Treated fruit were handled as in example 20 hereinabove. Results, summarized in figure 21, indicate that 10 cells/ml of Mf was completely effective in competitively inhibiting wound colonization by Penicillium expansum while lower concentrations provided significant degrees of protection.
EXAMPLE 22 Metschnikowia fructicola inhibitsPenicillium infection of pome fruit
Golden delicious apples were wounded with a dissecting needle (1-2 mm deep) and 30 ul of varying Mf yeast-cell suspensions (10 and 109 cells.f ) were applied into each wound.
Treated fruits were allowed to air dry and were then inoculated with 20 μl of Penicillium expansum spore suspension (10 spores.ml"1) and stored as in examples 20 and 21 hereinabove.
The percentage of infected wounds was determined at 5 days after inoculation.
Results summarized in Figure 22 indicate that in pome fruit, as in stone fruit, 109 cells/ml of Mf was completely effective in competitively inhibiting wound colonization by
Penicillium expansum and that lower concentrations provided significant degrees of protection.
EXAMPLE 23
Pre-harvest application of Metschnikowia fructicola inhibits
Botrytis in strawberry In order to demonstrate the practicality of pre-harvest application of a yeast antagonist,
MF cell suspension at a concentration of 10 cells/ml was applied by back sprayer to strawberry plants in a commercial field at weekly intervals. The first application was given at the time of flowering. The yeast treatment was compared with different commercial fungicides at rates indicated in Fig. 23. After the fourth application, the number of decayed fruits in the field was counted in each treatment (Figure 23 A). In addition, fruit were harvested, stored at 1 °C for 3 days followed by 3 days at 24°C to determine the percentage of decayed fruit (Figure 23B).
These results demonstrate that Mf applied in the field provide protection from rot in the field and during post harvest storage. Mf treatment gave a protection level comparable to that of commercial pesticides. EXAMPLE 24
Metschnikowia fructicola inhibits Green Mold in Grapefruit
In order to demonstrate the versatility of Mf in preventing post harvest decay, green mold decay was determined in grapefruit after 6, 14, 18, 24 days of storage at 20°C. The experiment was done in a pilot scale citrus packing line which simulated commercial operation. At the entering station the fruit received an extensive wash with plain water followed by drying under fans blowing warm air. Fruit were then drenched with an Mf, Metschnikowia raukafii
(231) or Candida oleophila (182) cell suspension (10 cells/ml), dryed under warm air blowers, waxed and packed in commercial cartons. The fruit was kept at 20°C and checked after different periods of incubation for the presence of decay.
Results summarized in figure 24 clearly indicate that Metschnikowia fructicola (Mf) was more effective than Metschnikowia raukafii (231) or Candida oleophila (182) in preventing development of green mold decay in grapefruit
EXAMPLE 25 Metschnikowia fructicola inhibits Botrytis on Tomatoes
In order to demonstrate the utility of Mf in protecting vegetables, as well as fruits, during storage an assay was conducted on cherry tomatoes. Details of the assay are given in
Example 3. Results, summarized in Figure 25, clearly indicate that concentrations of Mf as low as 106 inhibit development of Botrytis cinerea after artificial infection of cherry tomatoes. EXAMPLE 26
Metschnikowia fructicola inhibits Botrytis on Cherries
In order to examine the relative efficacy of Mf in protecting stone fruit, the ability of C. oleophila and MF to retard development of postharvest decay on sweet cherries was tested.
Each yeast antagonist was applied at a concentration of 108 cells/ml. Cherries were dipped for 1 min in various salt solutions or yeast cell suspensions, allowed to air dry and then stored for 30 days at 0°C followed by 4 days at 24°C. Results, summarized in Figure 26, clearly indicate
Metschnikowia fructicola (Mf) is superior to C. Oleophila in retarding development of natural decay from Botrytis cinerea on sweet cherries both under refigeration and subsequent storage at room temperature. EXAMPLE 27
Metschnikowia fructicola inhibits Botrytis on Tomatoes under various storage conditions
In order to determine the efficacy of Mf in protecting Cherry tomatoes under various storage conditions, tomatoes were treated with yeast and inoculated with B. cinerea as described hereinabove (Example 3). Tomatoes treated with water and inoculated with B. cinerea served as control. After treatment tomatoes were divided into three groups. One group was incubated at 5°C for 14 days, the second group was incubated at 10°C for 14 days and the third group was incubated at 20°C for 5 days. Results, summarized in Figure 27, clearly indicate that MF provides significant protection under all conditions tested. Especially impressive is the complete protection afforded tomatoes by Mf under refrigeration.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
REFERENCES
Chalutz, E., and Wilson, C.L., 1990, Postharvest biocontrol of green and blue moldand sour rot of citrus by Debaryomyces hansenii. Plant Dis. 74:134-137.
Droby, S., Chalutz, E., Wilson, C.L., and Wisniewski, M.E., 1989,. Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can. J. Microbiol. 35: 794-800.
Droby, S., Wilson, C.L., Wisniewski, M., and El-Ghaouth, A. 2001. Biologically based technology for the control of postharvest diseases of fruits and vegetables. In: Microbial Food Contamination, C.L. Wilson and S. Droby (eds.). CRC Press, Boca Raton, FL. Gullino, M.L., Aloi, C, Palitto, M., Benzi, D., and Garibaldi, A., 1991, Attempts atbiocontrol of postharvest diseases of apple. Med. Fac. Landbouw. Rijksuiv. Gent, 56: 195.
Janisiewicz, W. and Roitman, J.,1988, Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathol. 78: 1697-1700. Janisiewicz, W.J., Peterson, D.L., and Bors,, R., 1994, Control of storage decay of apples with Sporobolomyces roseus. Plant Disease 78:466-470.
Droby, S., Chalutz, E., and Wilson, C.L., 1991, Antagonistic microorganisms as biological control agents of postharvest diseases of fruits and vegetables. Postharvest News and Information 2: 169-173.
Lurie, S., Droby, S., Chalupowicz, L., and Chalutz, E., 1995, Efficacy of Candida oleophila strain 182 in preventing Penicillium expansum infection of nectarine fruits. Phytoparasitica 23:231-234.
Roberts, R.G., 1990, Biological control of mucor rot of pear by Cryptococcus laurentii, C. flavus, and C. albidus. Phytopathol. 80: 1051.
Chand-Goyal, T., and Spots, R. A. 1996. Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with low doses of thiabendazole. Postharv. Biol. Technol. 7:51-64.
Ippolito, A., El Ghaouth, A., Wilson, C. L., and Wisniewski, M. 2000. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharv. Biol. Technol. 19:265-272. El Ghaouth, A., Wilson, C. L., Wisniewski, M. 1998. Ultrastructural and cytochemical aspect of the biocontrol activity of Candida saitoana in apple fruit. Phytopathol 88: 282-291.

Claims (21)

  1. WHAT IS CLAIMED IS:
    I . A biologically pure culture of a yeast of the species Metschnikowia fructicola identified as NRRL Y-27328, said culture capable of competitively inhibiting growth of a deleterious micro-organism on a portion of a plant to which a biologically effective amount of the culture is applied.
  2. 2. A biologically pure strain of Metschnikowia fructicola having all of the identifying characteristics of the biologically pure culture of claim 1.
  3. 3. A biologically pure mutant of Metschnikowia fructicola, having all of the identifying characteristics of the biologically pure culture of claim 1.
  4. 4. The yeast of the species Metschnikowia fructicola of claim 1, wherein said deleterious micro-organism is selected from the group consisting of Botrytis cinerea, Aspergillus niger,
    Penicillium digitatum, Penicillium expansum, Geotrichum candidum, Rhizopus stolonifer, Fusarium spp and Molinilia spp.
  5. 5. The yeast of the species Metschnikowia fructicola of claim 1, wherein said portion of a plant is selected from the group consisting of a stone fruit, a pome fruit, a citrus fruit, a grape, a berry, a vegetable and an herb.
  6. 6. A composition for use in protection of agricultural produce comprising, as an active ingredient, a biologically effective amount of yeast of biologically pure Metschnikowia fructicola said composition further containing a carrier.
  7. 7. The composition of claim 6, wherein said yeast is supplied in a physiologic state selected from the group consiting of active and dormant.
  8. 8. The composition of claim 6, wherein said yeast is supplied in a physical form selected from a liquid suspension, an emulsion, a powder, granules, a lyophylsate and a gel.
  9. 9. The composition of claim 6, further comprising a chemical antibiotic.
  10. 10. The composition of claim 9, wherein said chemical antibiotic is selected from the group consisting of a fungicide, an antimicrobial agent and a pesticide.
  11. I I . The composition of claim 9, wherein said fungicide includes at least one chemical selected from the group consisting of Iprodione, Thiabendazole, Imazalil (l-(2-2,4-Dichlorophenyl)-2(2-propenyloxy -ethyl)- lHimidazol), Fenhexamide, Pyrimethamil and a combination of Fludioxonyl and Cyprodinil.
  12. 12. A method of inhibiting growth of a deleterious micro-organism on a portion of a plant, the method comprising applying at least one time an agriculturally effective amount of biologically pure culture of a yeast of the genus Metschnikowia to the portion of a plant,
  13. 13. The method of claim 12, wherein said yeast of the genus Metschnikowia has all of the identifying characteristics of the species Metschnikowia fructicola identified as NRRL
    Y-27328.
  14. 14. The method of claim 13, wherein said yeast of the genus Metschnikowia comprises a strain of the Metschnikowia fructicola of claim 13 having all of the identifying characteristics thereof.
  15. 15. The method of claim 13, wherein said yeast of the genus Metschnikowia comprises a mutant of Metschnikowia fructicola having all of the identifying characteristics thereof.
  16. 16. The method of claim 12, wherein the portion of a plant is selected from the group consisting of a pome fruit, a stone fruit, a citrus fruit, a grape variety, a vegetable and a flower bulb.
  17. 17. The method of claim 12, wherein said deletyerious micr-organism is selected from the group consisting of Botrytis cinerea, Aspergillus niger and Rhizopus stolonifer.
  18. 18. An article of manufacture comprising packaging material and a composition identified for use in protection of agricultural produce from a deleterious micro-organism comprising, as an active ingredient, a biologically effective amount of biologically pure yeast of the species Metschnikowia fructicola said composition further containing a carrier.
  19. 19. The article of manufacture of claim 18, further comprising an applicator designed and constructed to apply said yeast to the agricultural produce.
  20. 20. The article of manufacture of claim 18, wherein the agricultural produce is selected from the group consisting of a pome fruit, a stone fruit, a citrus fruit, a grape variety, a flower bulb and a vegetable.
  21. 21. The article of manufacture of claim 18, wherein said deleterious micr-organism is selected from the group consisting of Botrytis cinerea, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Geotrichum candidum and Rhizopus stolonifer.
AU2002255715A 2001-03-14 2002-03-13 A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same Expired AU2002255715B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27552601P 2001-03-14 2001-03-14
US60/275,526 2001-03-14
PCT/US2002/007525 WO2002072777A2 (en) 2001-03-14 2002-03-13 A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same

Publications (2)

Publication Number Publication Date
AU2002255715A1 true AU2002255715A1 (en) 2003-03-20
AU2002255715B2 AU2002255715B2 (en) 2008-05-01

Family

ID=23052685

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002255715A Expired AU2002255715B2 (en) 2001-03-14 2002-03-13 A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same

Country Status (11)

Country Link
US (1) US6994849B2 (en)
EP (1) EP1372384B1 (en)
JP (1) JP2004528030A (en)
AU (1) AU2002255715B2 (en)
BR (2) BR122013017459B1 (en)
ES (1) ES2401004T3 (en)
IL (1) IL157883A (en)
NZ (1) NZ528225A (en)
PT (1) PT1372384E (en)
WO (1) WO2002072777A2 (en)
ZA (1) ZA200208692B (en)

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCS20070015A1 (en) * 2007-03-19 2008-09-20 Uni Degli Studi Del Molise COMPOSITIONS, METHOD AND USE OF COMPOUNDS BASED ON MICRO-ORGANISMS FOR THE CONTROL OF PHYTOPATOGENIC AND / OR MYCOTOSSINOGENIMYCOTOSXYGEN MUSHROOMS AND CONTAINMENT OF MYCOTOSSINE LEVELS
EP2269454A1 (en) * 2009-06-24 2011-01-05 Bayer CropScience AG Combinations of fungicidally active yeast and fungicides
EP2269455A1 (en) 2009-06-24 2011-01-05 Bayer CropScience AG Combinations of biological control agents and insecticides
US20180064110A1 (en) * 2009-06-24 2018-03-08 Bayer Cropscience Ag Combinations of fungicidally active yeast and fungicides
WO2011128297A2 (en) 2010-04-14 2011-10-20 Bayer Cropscience Ag Active compound combinations
EP2460407A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Agent combinations comprising pyridylethyl benzamides and other agents
EP2502495A1 (en) * 2011-03-16 2012-09-26 Bayer CropScience AG Use of a dithiino-tetracarboxamide for the protection of harvested products against phytopathogenic fungi
PL2720543T3 (en) 2011-06-14 2019-03-29 Bayer Cropscience Ag Use of an enaminocarbonyl compound in combination with a biological control agent
EP2540165A1 (en) 2011-06-30 2013-01-02 Bayer CropScience AG Use of a halogenated pesticide in combination with a biological pest control agent
ITMI20111292A1 (en) 2011-07-11 2013-01-12 Uni Degli Studi Del Molise "NEW BREEDS OF YEAST AND THEIR USE FOR THE CONTROL OF PHYTOPATOGENIC MUSHROOMS"
EP2606732A1 (en) 2011-12-19 2013-06-26 Bayer CropScience AG Use of an anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biological control agent
WO2013110591A1 (en) 2012-01-25 2013-08-01 Bayer Intellectual Property Gmbh Active compounds combination containing fluopyram bacillus and biologically control agent
US20150011389A1 (en) 2012-01-25 2015-01-08 Bayer Intellectual Property Gmbh Active Compound Combinations Containing Fluopyram and Biological Control Agent
US20150257383A1 (en) 2012-10-12 2015-09-17 Basf Se Method for combating phytopathogenic harmful microbes on cultivated plants or plant propagation material
US20150307459A1 (en) 2012-11-27 2015-10-29 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol Compounds and Their Use as Fungicides
WO2014082879A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted [1,2,4]triazole compounds
CN104955813A (en) 2012-11-27 2015-09-30 巴斯夫欧洲公司 Substituted [1, 2, 4] triazole compounds
WO2014082881A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
WO2014086856A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a biopesticide
WO2014086854A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a plant growth regulator
WO2014086850A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a fungicidal inhibitor of respiratory complex ii
EP2746278A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746266A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746264A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
CN104981459A (en) 2012-12-19 2015-10-14 巴斯夫欧洲公司 New substituted triazoles and imidazoles and their use as fungicides
WO2014095381A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746262A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds for combating phytopathogenic fungi
EP2746263A1 (en) 2012-12-19 2014-06-25 Basf Se Alpha-substituted triazoles and imidazoles
WO2014095555A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746255A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
WO2014095534A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP3173406A1 (en) 2012-12-19 2017-05-31 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
EP2746277A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746256A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
BR112015014579A2 (en) 2012-12-19 2017-07-11 Basf Se compounds of formula i, use of a compound of formula i, method for combating harmful fungi and seeds.
EP2746279A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746257A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746258A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746259A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746260A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
WO2014124850A1 (en) 2013-02-14 2014-08-21 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2975940A1 (en) 2013-03-20 2016-01-27 BASF Corporation Synergistic compositions comprising a bacillus subtilis strain and a biopesticide
SE537424C2 (en) * 2013-05-07 2015-04-21 Method of controlling insects using an insect pathogen and a microorganism naturally associated with insect larvae
WO2015011615A1 (en) 2013-07-22 2015-01-29 Basf Corporation Mixtures comprising a trichoderma strain and a pesticide
WO2015036059A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
US20160221964A1 (en) 2013-09-16 2016-08-04 Basf Se Fungicidal pyrimidine compounds
BR112016008555A8 (en) 2013-10-18 2020-03-10 Basf Agrochemical Products Bv uses of the active pesticide carboxamide compound and method of protecting plant propagation material
EP3080092B1 (en) 2013-12-12 2019-02-06 Basf Se Substituted [1,2,4]triazole and imidazole compounds
WO2015091645A1 (en) 2013-12-18 2015-06-25 Basf Se Azole compounds carrying an imine-derived substituent
WO2015104422A1 (en) 2014-01-13 2015-07-16 Basf Se Dihydrothiophene compounds for controlling invertebrate pests
EP2924027A1 (en) 2014-03-28 2015-09-30 Basf Se Substituted [1,2,4]triazole and imidazole fungicidal compounds
WO2015104698A2 (en) 2014-04-17 2015-07-16 Basf Se Combination of novel nitrification inhibitors and biopesticides as well as combination of (thio)phosphoric acid triamides and biopesticides
EP2962568A1 (en) 2014-07-01 2016-01-06 Basf Se Mixtures comprising a bacillus amyliquefaciens ssp. plantarum strain and a pesticide
EP2949649A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicide substituted [1,2,4]triazole and imidazole compounds
EP2949216A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicidal substituted alkynyl [1,2,4]triazole and imidazole compounds
EP2952506A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2952507A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2952512A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
RU2707051C2 (en) 2014-10-24 2019-11-21 Басф Се Non-ampholytic, quaternizable and water-soluble polymers for modifying surface charge of solid particles
WO2016128239A1 (en) 2015-02-11 2016-08-18 Basf Se Pesticidal mixture comprising a pyrazole compound and a biopesticide
US11219211B2 (en) 2015-03-11 2022-01-11 Basf Agrochemical Products B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
WO2016142456A1 (en) 2015-03-11 2016-09-15 BASF Agro B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
FR3036706B1 (en) * 2015-05-27 2019-06-21 Terrena PROCESS FOR THE PRODUCTION OF WINE WITH REDUCED CONTENT OF SULFITES, SULFITES OF WINE WITHOUT SULFITES
EP3111763A1 (en) 2015-07-02 2017-01-04 BASF Agro B.V. Pesticidal compositions comprising a triazole compound
EP3383183B1 (en) 2015-11-30 2020-05-27 Basf Se Compositions containing cis-jasmone and bacillus amyloliquefaciens
EP3205209A1 (en) 2016-02-09 2017-08-16 Basf Se Mixtures and compositions comprising paenibacillus strains or metabolites thereof and other biopesticides
EP3512337A1 (en) 2016-09-13 2019-07-24 Basf Se Fungicidal mixtures i comprising quinoline fungicides
EA201991199A1 (en) 2016-11-16 2019-11-29 MATERIALS AND METHODS OF COMBATING NEMATODES
JP2020501595A (en) 2016-12-21 2020-01-23 クリエイタス バイオサイエンシス インコーポレイテッド Xylitol-producing Methinicobia species
WO2018149754A1 (en) 2017-02-16 2018-08-23 Basf Se Pyridine compounds
AU2018241406B2 (en) 2017-03-28 2021-11-11 Basf Se Pesticidal compounds
CN110475772A (en) 2017-04-06 2019-11-19 巴斯夫欧洲公司 Pyridine compounds
AU2018260098A1 (en) 2017-04-26 2019-10-31 Basf Se Substituted succinimide derivatives as pesticides
UA125047C2 (en) 2017-05-10 2021-12-29 Басф Се Bicyclic pesticidal compounds
CN110691776A (en) 2017-05-30 2020-01-14 巴斯夫欧洲公司 Pyridine and pyrazine compounds
WO2018229202A1 (en) 2017-06-16 2018-12-20 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
EP3642203A1 (en) 2017-06-19 2020-04-29 Basf Se Substituted pyrimidinium compounds and derivatives for combating animal pests
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se Substituted cyclopropyl derivatives
US11324224B2 (en) * 2017-07-27 2022-05-10 Locus Agriculture Ip Company, Llc Efficient production of Pichia yeasts and their use for enhancing plant and animal health
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
WO2019057660A1 (en) 2017-09-25 2019-03-28 Basf Se Indole and azaindole compounds with substituted 6-membered aryl and heteroaryl rings as agrochemical fungicides
EP3694852A1 (en) 2017-10-13 2020-08-19 Basf Se Imidazolidine pyrimidinium compounds for combating animal pests
CN107904180A (en) * 2017-12-15 2018-04-13 北京工商大学 One plant of strange yeast of drupe plum and its preparation and application method for being used for postharvest disease of fruits and vegetables prevention
WO2019121143A1 (en) 2017-12-20 2019-06-27 Basf Se Substituted cyclopropyl derivatives
UA127604C2 (en) 2017-12-21 2023-11-01 Басф Се Pesticidal compounds
CA3087313A1 (en) 2018-01-09 2019-08-01 Basf Se Silylethynyl hetaryl compounds as nitrification inhibitors
WO2019137995A1 (en) 2018-01-11 2019-07-18 Basf Se Novel pyridazine compounds for controlling invertebrate pests
CN108077319B (en) * 2018-01-16 2020-10-20 河北省农林科学院石家庄果树研究所 Biocontrol bacterium fermentation liquor for preventing and treating fruit tree rot and preparation method thereof
JP7444780B2 (en) 2018-02-28 2024-03-06 ビーエーエスエフ ソシエタス・ヨーロピア Use of N-functionalized alkoxypyrazole compounds as nitrification inhibitors
AU2019226360A1 (en) 2018-02-28 2020-08-27 Basf Se Use of alkoxypyrazoles as nitrification inhibitors
EP3758491A1 (en) 2018-02-28 2021-01-06 Basf Se Use of pyrazole propargyl ethers as nitrification inhibitors
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
JP2021522792A (en) 2018-05-08 2021-09-02 ローカス アグリカルチャー アイピー カンパニー エルエルシー Microbial-based products to promote plant root and immune health
WO2019224092A1 (en) 2018-05-22 2019-11-28 Basf Se Pesticidally active c15-derivatives of ginkgolides
WO2020002472A1 (en) 2018-06-28 2020-01-02 Basf Se Use of alkynylthiophenes as nitrification inhibitors
EP3826982B1 (en) 2018-07-23 2023-11-01 Basf Se Use of a substituted thiazolidine compound as nitrification inhibitor
EP3826983B1 (en) 2018-07-23 2024-05-15 Basf Se Use of substituted 2-thiazolines as nitrification inhibitors
EP3613736A1 (en) 2018-08-22 2020-02-26 Basf Se Substituted glutarimide derivatives
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
EP3643705A1 (en) 2018-10-24 2020-04-29 Basf Se Pesticidal compounds
EP3887357A1 (en) 2018-11-28 2021-10-06 Basf Se Pesticidal compounds
EP3670501A1 (en) 2018-12-17 2020-06-24 Basf Se Substituted [1,2,4]triazole compounds as fungicides
WO2020126591A1 (en) 2018-12-18 2020-06-25 Basf Se Substituted pyrimidinium compounds for combating animal pests
EP3696177A1 (en) 2019-02-12 2020-08-19 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3730489A1 (en) 2019-04-25 2020-10-28 Basf Se Heteroaryl compounds as agrochemical fungicides
BR112021019416A2 (en) 2019-05-29 2021-12-07 Basf Se Compounds, composition, methods of protecting crops and combating, controlling, preventing or protecting against infestations, non-therapeutic method of treating infested animals, seed and use
EP3769623A1 (en) 2019-07-22 2021-01-27 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
EP3766879A1 (en) 2019-07-19 2021-01-20 Basf Se Pesticidal pyrazole derivatives
WO2021050927A2 (en) * 2019-09-13 2021-03-18 California Safe Soil, LLC Yeast-hydrolysate compositions and methods of their use
WO2021170463A1 (en) 2020-02-28 2021-09-02 BASF Agro B.V. Methods and uses of a mixture comprising alpha-cypermethrin and dinotefuran for controlling invertebrate pests in turf
EP3903581A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i
EP3903582A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii
EP3903583A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii
EP3903584A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv
BR112022021631A2 (en) 2020-04-28 2022-12-06 Basf Se COMPOUNDS, COMPOSITION, METHODS TO COMBAT OR CONTROL INVERTEBRATE PEST, TO PROTECT GROWING PLANTS AND TO TREAT OR PROTECT AN ANIMAL, SEED AND USE OF A COMPOUND
EP3909950A1 (en) 2020-05-13 2021-11-17 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2021249800A1 (en) 2020-06-10 2021-12-16 Basf Se Substituted [1,2,4]triazole compounds as fungicides
EP3945089A1 (en) 2020-07-31 2022-02-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v
EP3960727A1 (en) 2020-08-28 2022-03-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi
EP3939961A1 (en) 2020-07-16 2022-01-19 Basf Se Strobilurin type compounds and their use for combating phytopathogenic fungi
WO2022017836A1 (en) 2020-07-20 2022-01-27 BASF Agro B.V. Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol
EP3970494A1 (en) 2020-09-21 2022-03-23 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii
US20230397607A1 (en) 2020-10-27 2023-12-14 BASF Agro B.V. Compositions comprising mefentrifluconazole
WO2022090069A1 (en) 2020-11-02 2022-05-05 Basf Se Compositions comprising mefenpyr-diethyl
WO2022106304A1 (en) 2020-11-23 2022-05-27 BASF Agro B.V. Compositions comprising mefentrifluconazole
EP4011208A1 (en) 2020-12-08 2022-06-15 BASF Corporation Microparticle compositions comprising fluopyram
CN112586559B (en) * 2020-12-15 2022-05-20 西南大学 Application of arginine in preparation of preservative for improving procymidone acid generating capacity and biocontrol effect of citriodora
US20240010971A1 (en) 2020-12-17 2024-01-11 Basf Se Spore compositions, production and uses thereof
AR124796A1 (en) 2021-02-02 2023-05-03 Basf Se SYNERGIC ACTION OF DCD AND ALCOXYPYRAZOLES AS INHIBITORS OF NITRIFICATION
EP4043444A1 (en) 2021-02-11 2022-08-17 Basf Se Substituted isoxazoline derivatives
IL308529A (en) 2021-05-18 2024-01-01 Basf Se New substituted pyridines as fungicides
US20240270728A1 (en) 2021-05-18 2024-08-15 Basf Se New substituted quinolines as fungicides
CN117355518A (en) 2021-05-18 2024-01-05 巴斯夫欧洲公司 Novel substituted pyridines as fungicides
EP4341245A1 (en) 2021-05-21 2024-03-27 Basf Se Use of ethynylpyridine compounds as nitrification inhibitors
BR112023024208A2 (en) 2021-05-21 2024-01-30 Basf Se USE OF A COMPOUND, COMPOSITION, AGROCHEMICAL MIXTURE AND METHODS TO REDUCE NITRIFICATION AND TO TREAT A FERTILIZER
US20240309022A1 (en) 2021-06-21 2024-09-19 Basf Se Metal-Organic Frameworks with Pyrazole-Based Building Blocks
EP4119547A1 (en) 2021-07-12 2023-01-18 Basf Se Triazole compounds for the control of invertebrate pests
MX2024001592A (en) 2021-08-02 2024-02-15 Basf Se (3-quinolyl)-quinazoline.
EP4380927A1 (en) 2021-08-02 2024-06-12 Basf Se (3-pirydyl)-quinazoline
EP4140986A1 (en) 2021-08-23 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4140995A1 (en) 2021-08-27 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4151631A1 (en) 2021-09-20 2023-03-22 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2023072670A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x
WO2023072671A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix
EP4194453A1 (en) 2021-12-08 2023-06-14 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4198033A1 (en) 2021-12-14 2023-06-21 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP4198023A1 (en) 2021-12-16 2023-06-21 Basf Se Pesticidally active thiosemicarbazone compounds
EP4238971A1 (en) 2022-03-02 2023-09-06 Basf Se Substituted isoxazoline derivatives
WO2023203066A1 (en) 2022-04-21 2023-10-26 Basf Se Synergistic action as nitrification inhibitors of dcd oligomers with alkoxypyrazole and its oligomers
WO2024028243A1 (en) 2022-08-02 2024-02-08 Basf Se Pyrazolo pesticidal compounds
EP4342885A1 (en) 2022-09-20 2024-03-27 Basf Se N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides
EP4361126A1 (en) 2022-10-24 2024-05-01 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv
WO2024104818A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104823A1 (en) 2022-11-16 2024-05-23 Basf Se New substituted tetrahydrobenzoxazepine
WO2024104815A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104822A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted tetrahydrobenzodiazepine as fungicides
EP4389210A1 (en) 2022-12-21 2024-06-26 Basf Se Heteroaryl compounds for the control of invertebrate pests
WO2024165343A1 (en) 2023-02-08 2024-08-15 Basf Se New substituted quinoline compounds for combatitng phytopathogenic fungi
WO2024194038A1 (en) 2023-03-17 2024-09-26 Basf Se Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi
EP4455137A1 (en) 2023-04-24 2024-10-30 Basf Se Pyrimidine compounds for the control of invertebrate pests
WO2024223034A1 (en) 2023-04-26 2024-10-31 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xvi

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854011A (en) * 1996-12-19 1998-12-29 Idexx Laboratories Incorporated Method and components for the detection of yeasts and/or molds in a sample
US6287779B1 (en) * 2000-01-20 2001-09-11 E. & J. Gallo Winery Detection of fermentation-related microorganisms

Similar Documents

Publication Publication Date Title
AU2002255715B2 (en) A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same
AU2002255715A1 (en) A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same
JP2004528030A5 (en)
Droby et al. Pilot testing of Pichia guilliermondii: a biocontrol agent of postharvest diseases of citrus fruit
Usall et al. Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit
Chand-Goyal et al. Postharvest biological control of blue mold of apple and brown rot of sweet cherry by natural saprophytic yeasts alone or in combination with low doses of fungicides
RU2126210C1 (en) Strain of bacterium for prophylaxis of fruits and vegetables fungal sickness after harvest and preparing antibiotics for inhibition of pathogens of the above indicated sicknesses (variants), strain of bacterium for prophylaxis of fungal sickness in fruits and vegetables after harvest (variants), an aqueous suspension of microorganism for inhibition of pathogens of fungal sicknesses in fruits and vegetables, a method of prophylaxis of fungal sicknesses in vegetables and/or fruits after harvest, an antibiotic used for inhibition of pathogen of fungal sickness in fruits and vegetables after harvest
AU649050B2 (en) Novel isolate of trichoderma, fungicidal compositions containing said isolate and use against B. cinerea and S. sclerotiorum
Dal Bello et al. Biocontrol of postharvest grey mould on tomato by yeasts
US5041384A (en) Pichia guilliermondii (Anamorph Candida guilliermondii) useful for the biological control of postharvest rots in fruits
EP0809434B1 (en) Control of post-harvest fungal disease using saprophytic yeast
US5244680A (en) Biocontrol of postharvest rots in fruit
McGuire Population dynamics of postharvest decay antagonists growing epiphytically and within wounds on grapefruit
EP0485440A4 (en) Inhibiting plant pathogens with an antagonistic microorganism(s)
US5843434A (en) Strain of the yeast Candida sake (saito and ota) van uden and buckley and its use as a biological control agent for post-harvest funga l diseases in fruits
EP1174030B1 (en) Novel pantoea agglomerans (erwinia herbicola) bacteria strain and its utilization as biological control agent of fungal diseases in fruits
Nunes et al. Biocontrol of postharvest decay using a new strain of Pseudomonas syringae CPA-5 in different cultivars of pome fruits
Korsten et al. Biological control of postharvest diseases of avocado
JP3585931B2 (en) New strain of the yeast Candida salmon (Cyto and Ota) van Youden and Buckley and its use as a biological regulator of postharvest fungal disease of fruits
Indratmi Biological Control of Chili Anthracnose Disease with Rhodotorula Spp.
Ferreira-Pinto et al. The antagonistic activity of Aureobasidium pullulans to reduce blue mold in'Rocha'pear
Droby et al. Are biological antagonists an alternative to synthetic fungicides for preventing postharvest diseases of fruits and vegetables?
WO2024121412A1 (en) Post-harvest treatment of anthracnose and/or crown rot
El-Neshawy Efficacy of Candida oleophila strain 128 in preventing Penicillium expansum infection on apricot fruit
Droby Wilson et al.