Nothing Special   »   [go: up one dir, main page]

AU2001245729A1 - Leafy cotyledon2 genes and their uses - Google Patents

Leafy cotyledon2 genes and their uses

Info

Publication number
AU2001245729A1
AU2001245729A1 AU2001245729A AU2001245729A AU2001245729A1 AU 2001245729 A1 AU2001245729 A1 AU 2001245729A1 AU 2001245729 A AU2001245729 A AU 2001245729A AU 2001245729 A AU2001245729 A AU 2001245729A AU 2001245729 A1 AU2001245729 A1 AU 2001245729A1
Authority
AU
Australia
Prior art keywords
promoter
seq
nucleic acid
lec2
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001245729A
Other versions
AU2001245729B2 (en
Inventor
John Harada
Linda Kwong
Kelly Matsudaira Yee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California San Diego UCSD
Original Assignee
University of California San Diego UCSD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/527,058 external-priority patent/US6492577B1/en
Application filed by University of California San Diego UCSD filed Critical University of California San Diego UCSD
Publication of AU2001245729A1 publication Critical patent/AU2001245729A1/en
Application granted granted Critical
Publication of AU2001245729B2 publication Critical patent/AU2001245729B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

LEAFY COTYLEDON2 GENES AND THEIR USES
CROSS-REFERENCES TO RELATED APPLICATIONS Not applicable.
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The present invention is directed to plant genetic engineering. In particular, it relates to new embryo-specific genes useful in improving agronomically important plants.
BACKGROUND OF THE INVENTION
Embryogenesis in higher plants is a critical stage of the plant life cycle in which the primary organs are established. Embryo development can be separated into two main phases: the early phase in which the primary body organization of the embryo is laid down and the late phase which involves maturation, desiccation and dormancy. In the early phase, the symmetry of the embryo changes from radial to bilateral, giving rise to a hypocotyl with a shoot meristem surrounded by the two cotyledonary primordia at the apical pole and a root meristem at the basal pole. In the late phase, during maturation the embryo achieves its maximum size and the seed accumulates storage proteins and lipids. Maturation is ended by the desiccation stage in which the seed water content decreases rapidly and the embryo passes into metabolic quiescent state. Dormancy ends with seed germination, and development continues from the shoot and the root meristem regions.
The precise regulatory mechanisms that control cell and organ differentiation during the initial phase of embryogenesis are largely unknown. The plant hormone abscisic acid (ABA) is thought to play a role during late embryogenesis, mainly in the maturation stage by inhibiting germination during embryogenesis (Black, M. (1991). In ABSCISIC ACID: PHYSIOLOGY AND BIOCHEMISTRY, W. J. Davies and H. G. Jones, eds. (Oxford: Bios Scientific Publishers Ltd.), pp. 99-124); and Koomneef, M., and Karssen, C. M. (1994). In ARABIDOPSIS, E. M. Meyerowitz and C. R. Sommerville, eds. (Cold Spring Harbor: Cold Spring Harbor Laboratory Press), pp. 313-334). Mutations that effect seed development and are ABA insensitive have been identified in Arabidopsis and maize. he ABA insensitive (abi3) mutant of Arabidopsis and the viviparous! (ypl) mutant of maize are detected mainly during late embryogenesis (McCarty, et al. (1989) Plant Cell 1 :523-532 and Parcy et al. (1994) Plant Cell 6:1567-1582). Both the VPl gene and the ABI3 genes have been isolated and were found to share conserved regions (Giraudat, J. (1995) Current Opinion in Cell Biology 7:232-238 and McCarty, D. R. (1995). Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:71-93). The VPl gene product has been shown to function as a transcription activator (McCarty, et al. (1991) Cell 66:895-906). It has been suggested that ABB has a similar function. hi spite of the recent progress in defining the genetic control of embryo development, further progress is required in the identification and analysis of genes expressed specifically in the embryo and seed. Characterization of such genes would allow for the genetic engineering plants with a variety of desirable traits. For instance, modulation of the expression of genes that control embryo development may be used to alter traits such as accumulation of storage proteins in leaves and cotyledons. Alternatively, promoters from embryo or seed-specific genes can be used to direct expression of desirable heterologous genes to the embryo or seed. The present invention addresses these and other needs. BRIEF DESCRIPTION OF THE FIGURES
Figure 1 is a schematic representation showing the details of the mapping strategy of LEC2.
SUMMARY OF THE INVENTION This invention provides an isolated nucleic acid comprising a polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide exhibiting at least 65% sequence identity to SEQ ID NO:2. In some embodiments, the nucleic acid does not include bacterial artificial chromosome F3H9 (Genbank accession number AC021044). For instance, the sequence can be SEQ ID NO: 1. In some embodiments, the polypeptide is SEQ ID NO:2. The nucleic acid can further comprise a promoter operably linked to the polynucleotide. In some embodiments, the promoter is a constitutive. The promoter can be a LEC2 promoter, i.e. from a LEC2 gene. For example, in some embodiments, the LEC2 promoter can be at least 70% identical to SEQ ID NO:3. Thus, the promoter can comprise SEQ ID NO:3. The promoter can further comprise a sequence at least 70% identical to SEQ ID NO:4. For instance, the promoter can further comprise SEQ ID NO:4. In some embodiments, the polynucleotide sequence is linked to the promoter in an antisense orientation.
The invention also provides for an isolated nucleic acid comprising a polynucleotide sequence exhibiting at least 65% sequence identity to SEQ ID NO: 1. In some embodiments, the nucleic acid does not include bacterial artificial chromosome F3H9 (Genbank accession number AC021044).
The invention also provides for an expression cassette comprising a promoter operably linked to a heterologous polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide with at least 65% sequence identity to SEQ ID NO:2. In some embodiments, the encoded LEC2 polypeptide is SEQ ID NO:2. In some embodiments, the polynucleotide sequence is SEQ ID NO: 1. The promoter of the expression cassette can be constitutive and/or can be from the LEC2 gene. For example, in one embodiment, the promoter comprises a polynucleotide at least 70% identical to SEQ ID NO:3. The promoter can be SEQ ID NO:3. In some embodiments, the promoter can further comprise a polynucleotide at least 70% identical to SEQ ID NO:4. The promoter can further comprise SEQ ID NO:4. In some embodiments, the polynucleotide is linked to the promoter in an antisense orientation.
The present invention also provides for an expression cassette for the expression of a heterologous polynucleotide in a plant cell. This expression cassette comprises a promoter at least 70% identical to SEQ ID NO:3 operably linked to a heterologous polynucleotide. In some embodiments, the promoter comprises SEQ ID NO:3. In some embodiments, the promoter further comprises a polynucleotide at least 70% identical to SEQ ID NO:4. The promoter can further comprise SEQ ID NO:4. The invention also provides for a host cell comprising an exogenous polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide exhibiting at least 65 % sequence identity to SEQ J-D NO:2. In some embodiments, the nucleic acid does not include bacterial artificial chromosome F3H9 (Genbank accession number AC021044). In some embodiments, the host cell is not an Arabidopsis cell. The nucleic acid can further comprise a promoter operably linked to the polynucleotide. In some embodiments, the promoter is a constitutive. The promoter can be a LEC2 promoter, i.e. from a LEC2 gene. For example, in some embodiments, the LEC2 promoter can be at least 70% identical to SEQ ID NO:3. Thus, the promoter can comprise SEQ ID NO:3. The promoter can further comprise a sequence at least 70% identical to SEQ ID NO:4. For instance, the promoter can further comprise SEQ ID NO:4. In some embodiments, the host cell is selected from the group comprising a plant, bacterial, yeast, fungal and animal cell.
The invention also provides for an isolated polypeptide comprising an amino acid sequence at least 65% identical to SEQ ID NO:2 and which is capable of exliibiting at least one of the biological activities of the polypeptide displayed in SEQ ID NO:2 or a fragment thereof. The invention also provides for an antibody that binds to such a polypeptide.
The invention provides for a method of introducing an isolated nucleic acid into a host cell comprising providing an isolated nucleic acid comprising a polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide exhibiting at least 65% sequence identity to SEQ ID NO:2, and contacting the nucleic acid with the host cell under conditions that permit insertion of the nucleic acid into the host. The invention also provides for a method of modulating transcription comprising introducing into a host cell an expression cassette comprising a promoter operably linked to a heterologous LEC2 polynucleotide which encodes a LEC2 polypeptide at least 65% identical to SEQ ID NO:2 and detecting a host cell with modulated transcription. In some embodiments, the polynucleotide encodes SEQ ID NO:2. For instance, the polynucleotide can be SEQ ID NO: 1.
In some embodiments, the host cell is a plant cell. In some embodiments, the host cell is not an Arabidopsis cell. In some embodiments, the expression cassette is introduced by Agrobacterium. In another embodiment, the expression cassette is introduced by a sexual cross. In some embodiments, the modulation of transcription results in the induction of embryonic characteristics in a plant. In some embodiments, modulation of transcription results in the induction of seed development. In some embodiments, a plant is regenerated from the plant cell.
The invention also provides a method of detecting a nucleic acid in a sample comprising (1) providing an isolated nucleic acid molecule comprising a polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide exhibiting at least 65% sequence identity to SEQ ID NO:2, (2) contacting the isolated nucleic acid molecule with a sample under conditions which permit a comparison of the sequence of the isolated nucleic acid molecule with the sequence of DNA in the sample, and (3) analyzing the result of the comparison. In some embodiments, the isolated nucleic acid molecule and the sample are contacted under conditions which permit the formation of a duplex between complementary nucleic acid sequences.
The invention also provides a transgenic plant or transgenic plant cell comprising an exogenous polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide exhibiting at least 65% sequence identity to SEQ ID NO:2. In some embodiments, a plant is regenerated from a plant cell. The sequence can be SEQ ID NO: 1. In some embodiments, the polypeptide is SEQ ID NO:2.
The nucleic acid can further comprise a promoter operably linked to the polynucleotide. In some embodiments, the promoter is a constitutive. The promoter can be a LEC2 promoter, i.e. from a LEC2 gene. For example, in some embodiments, the LEC2 promoter can be at least 70%> identical to SEQ ID NO:3. Thus, the promoter can comprise SEQ ID NO:3. The promoter can further comprise a sequence at least 70% identical to SEQ ED NO:4. For instance, the promoter can further comprise SEQ ID NO:4. In some embodiments, the polynucleotide sequence is linked to the promoter in an antisense orientation.
DEFINITIONS The phrase "nucleic acid" refers to a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Nucleic acids may also include modified nucleotides that permit correct read through by a polymerase and do not alter expression of a polypeptide encoded by that nucleic acid.
The phrase "polynucleotide sequence" or "nucleic acid sequence" includes both the sense and antisense strands of a nucleic acid as either individual single strands or in the duplex. It includes, but is not limited to, self-replicating plasmids, chromosomal sequences, and infectious polymers of DNA or RNA.
The phrase "nucleic acid sequence encoding" refers to a nucleic acid which directs the expression of a specific protein or peptide. The nucleic acid sequences include both the DNA strand sequence that is transcribed into RNA and the RNA sequence that is translated into protein. The nucleic acid sequences include both the full length nucleic acid sequences as well as non-full length sequences derived from the full length sequences. It should be further understood that the sequence includes the degenerate codons of the native sequence or sequences which may be introduced to provide codon preference in a specific host cell. The term "promoter" refers to a region or sequence determinants located upstream or downstream from the start of transcription and which are involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. Such promoters need not be of plant origin, for example, promoters derived from plant viruses, such as the CaMV35S promoter, can be used in the present invention.
The term "plant" includes whole plants, shoot vegetative organs/structures (e.g. leaves, stems and tubers), roots, flowers and floral organs/structures (e.g. bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat) and fruit (the mature ovary), plant tissue (e.g. vascular tissue, ground tissue, and the like) and cells (e.g. guard cells, egg cells, trichomes and the like), and progeny of same. The class of plants that can be used in the method of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae. It includes plants of a variety of ploidy levels, including aneuploid, polyploid, diploid, haploid and hemizygous.
The phrase "host cell" refers to a cell from any organism. Preferred host cells are derived from plants, bacteria, yeast, fungi, insects or other animals. Methods for introducing polynucleotide sequences into various types of host cells are well known in the art.
The "biological activity of a polypeptide" refers to any molecular activity or phenotype that is caused by the polypeptide. For example, the ability to transfer a phosphate to a substrate or the ability to bind a specific DNA sequence is a biological activity. One biological activity of LEC2 is the ability to induce embryonic characteristics on plant organs.
A polynucleotide sequence is "heterologous to" a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified by human action from its original form. For example, a promoter operably linked to a heterologous coding sequence refers to a coding sequence from a species different from that from which the promoter was derived, or, if from the same species, a coding sequence which is different from any naturally occurring allelic variants.
A polynucleotide "exogenous to" an individual plant is a polynucleotide which is introduced into the plant, or a predecessor generation of the plant, by any means other than by a sexual cross. Examples of means by which this can be accomplished are described below, and include Agrobacterium-mediated transformation, biolistic methods, electroporation, in planta techniques, and the like.
As used herein an "embryo-specific gene" or "seed specific gene" is a gene that is preferentially expressed during embryo development in a plant. For purposes of this disclosure, embryo development begins with the first cell divisions in the zygote and continues through the late phase of embryo development (characterized by maturation, desiccation, dormancy), and ends with the production of a mature and desiccated seed. Embryo-specific genes can be further classified as "early phase- specific" and "late phase-specific". Early phase-specific genes are those expressed in embryos up to the end of embryo morphogenesis. Late phase-specific genes are those expressed from maturation through to production of a mature and desiccated seed. A "LEC2 polynucleotide" is a nucleic acid sequence comprising (or consisting of) a coding region of about 50 to about 6800 nucleotides, sometimes from about 100 to about 3000nucleotides and sometimes from about 300 to about 1300 nucleotides, which hybridizes to SEQ JD NO:l under stringent conditions (as defined below), or which encodes a LEC2 polypeptide or fragment of at least 15 amino acids thereof. LEC2 polynucleotides can also be identified by their ability to hybridize under low stringency conditions (e.g., Tm ~40°C) to nucleic acid probes having a the sequence of SEQ ID NO:l. SEQ ID NO:l, SEQ ID NO:5 (theLEC2 cDNA) and SEQ ID NO:6 are examples of LEC2 polynucleotides.
A "promoter from &LEC2 gene" or "LEC2 promoter" will typically be about 500 to about 4000 nucleotides in length, usually from about 720 to 3200. Exemplary promoter sequences are shown as SEQ ID NO:3 and SEQ ID NO:4. SEQ ID NO:3 represents the 5' untranslated region of the LEC2 and SEQ ID NO:4 represents the 3' untranslated region of LEC2. A LEC2 promoter can also be identified by its ability to direct expression in early stage seeds as well as during early and mid-stage embryogenesis. The promoter does not provide significant expression in leaf tissue.
A "LEC2 polypeptide" is a sequence of about 50 to about 400, sometimes 100 to 150, and preferably 363 amino acid residues encoded by a LEC2 polynucleotide. LEC2 polyp eptides are characterized by the presence of a B3 domain. For instance amino acid residues 165 to 277 represent the B3 domain of the polypeptide shown in SEQ ED NO:2. The B3 domain is known in the art and is shared by other transcription factors including VINIPAROUSl (VPl) ((McCarty, et al. (1989) Plant Cell 1:523-532) , AUXIN RESPONSE FACTOR 1 (ARF1) (Ulmasov, T. et al. (1997) Science 276:1865-1868), FUSCA3 (Luerben, H., et al. (1998) Plant J. 15:755-764) and ABI3 (Giraudat, J., et al. (1992) Plant Cell 4, 1251-1261). The B3 domains of VPl (Suzuki, M. et al. (1997) Plant Cell 9:799-807) and ARFl (Uhnasov, T., et al, supra) have been shown to be DNA binding domains. The B3 domain of LEC2 is therefore also a DNA binding domain. As used herein, a homolog of a particular embryo-specific gene (e.g., SEQ
ID NO:l) is a second gene in the same plant type or in a different plant type, which has a polynucleotide sequence of at least 50 contiguous nucleotides which are substantially identical (determined as described below) to a sequence in the first gene. It is believed that, in general, homologs share a common evolutionary past. "Increased or enhanced LEC2 activity or expression of the LEC2 gene" refers to an augmented change in LEC2 activity. Examples of such increased activity or expression include the following. LEC2 activity or expression of the LEC2 gene is increased above the level of that in wild-type, non-transgenic control plants (i.e. the quantity of LEC2 activity or expression of the LEC2 gene is increased). LEC2 activity or expression of the LEC2 gene is in an organ, tissue or cell where it is not normally detected in wild-type, non-transgenic control plants (i.e. spatial distribution of LEC2 activity or expression of the LEC2 gene is increased). LEC2 activity or expression is increased when LEC2 activity or expression of the LEC2 gene is present in an organ, tissue or cell for a longer period than in a wild-type, non-transgenic controls (i.e. duration of LEC2 activity or expression of the LEC2 gene is increased).
A "polynucleotide sequence from" a particular gene is a subsequence or full length polynucleotide sequence of an embryo-specific gene which, when present in a transgenic plant, has the desired effect. For example, one effect is inhibition of expression of the endogenous gene driving expression of an heterologous polynucleotide. A full length sequence of a particular gene disclosed here may contain about 95%, usually at least about 98% of an entire sequence shown in the Sequence Listing, below.
The term "reproductive tissues" as used herein includes fruit, ovules, seeds, pollen, pistols, flowers, or any embryonic tissue.
An "expression cassette" refers to a nucleic acid construct, which when introduced into a host cell, results in transcription and/or translation of a RNA or polypeptide, respectively. Antisense or sense constructs that are not or cannot be translated are expressly included by this definition.
In the case of both expression of transgenes and inhibition of endogenous genes (e.g., by antisense, or sense suppression) one of skill will recognize that the inserted polynucleotide sequence need not be identical and may be "substantially identical" to a sequence of the gene from which it was derived. As explained below, these variants are specifically covered by this term.
In the case where the inserted polynucleotide sequence is transcribed and translated to produce a functional polypeptide, one of skill will recognize that because of codon degeneracy a number of polynucleotide sequences will encode the same polypeptide. These variants are specifically covered by the term "polynucleotide sequence from" a particular embryo-specific gene, such as LEC2. In addition, the term specifically includes sequences (e.g., full length sequences) substantially identical (determined as described below) with a LEC2 gene sequence and that encode proteins that retain the function of a LEC2 polypeptide.
In the case of polynucleotides used to inhibit expression of an endogenous gene, the introduced sequence need not be perfectly identical to a sequence of the target endogenous gene. The introduced polynucleotide sequence will typically be at least substantially identical (as determined below) to the target endogenous sequence.
Two nucleic acid sequences or polypeptides are said to be "identical" if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The term "complementary to" is used herein to mean that the sequence is complementary to all or a portion of a reference polynucleotide sequence.
Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Add. APL. Math. 2:482 (1981), by the homology alignment algorithm of Needle man and WunschJ Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl Acad. Sci. (U.S.A.) 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by inspection.
"Percentage of sequence identity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.
The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 25% sequence identity. Alternatively, percent identity can be any integer from 25% to 100%. More preferred embodiments include at least: 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%), 90%), 95%>, or 99%. compared to a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below. Accordingly, LEC2 sequences of the invention include nucleic acid sequences that have substantial identity to SEQ ID NO:l, SEQ ID NO:3 and SEQ ID NO:4. LEC2 sequences of the invention also include polypeptide sequences having substantial identify to SEQ ID NO:2. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 40%. Preferred percent identity of polypeptides can be any integer from 40% to 100%. More preferred embodiments include at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%. Most preferred embodiments include 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73 %, 74% and 75%. Polypeptides which are "substantially similar" share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteme and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine- valine, aspartic acid-glutamic acid, and asparagine-glutamine.
Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other, or a third nucleic acid, under stringent conditions. Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 60°C.
In the present invention, mRNA encoded by embryo-specific genes of the invention can be identified in Northern blots under stringent conditions using cDNAs of the invention or fragments of at least about 100 nucleotides. For the purposes of this disclosure, stringent conditions for such RNA-DNA hybridizations are those which include at least one wash in 0.2X SSC at 63°C for 20 minutes, or equivalent conditions. Genomic DNA or cDNA comprising genes of the invention can be identified using the same cDNAs (or fragments of at least about 100 nucleotides) under stringent conditions, which for purposes of this disclosure, include at least one wash (usually 2) in 0.2X SSC at a temperature of at least about 50°C, usually about 55°C, for 20 minutes, or equivalent conditions.
DETAILED DESCRIPTION The present invention provides new polypeptides useful for genetically engineering plants. In particular, the invention provides a new gene from Arabidopsis referred to here as LEC2. Modulation of the expression of this gene can be used to manipulate a number of useful traits, such as inducing seed development. Polynucleotide sequences from the genes of the invention can also be used, for instance, to direct expression of desired heterologous genes in embryos (in the case of promoter sequences) or to modulate development of embryos or embyonic characteristics on other organs (e.g., by enhancing or decreasing expression of the gene in a transgenic plant).
In yet another use, nucleic acids of the invention can be used in the development of apomictic plant lines (i.e., plants in which asexual reproductive processes occur in the ovule, see, Koltunow, A. Plant Cell 5:1425-1437 (1993) for a discussion of apomixis). Apomixis provides a novel means to select and fix complex heterozygous genotypes that cannot be easily maintained by traditional breeding. Thus, for instance, new hybrid lines with desired traits (e.g., hybrid vigor) can be obtained and readily maintained. The LEC2 nucleic acids of the invention can also be used in combination with other genes in the production of apomictic plant lines.
Generally, the nomenclature and the laboratory procedures in recombinant DNA technology described below are those well known and commonly employed in the art. Standard techniques are used for cloning, DNA and RNA isolation, amplification and purification. Generally enzymatic reactions involving DNA ligase, DNA polymerase, restriction endonucleases and the like are performed according to the manufacturer's specifications. These techniques and various other techniques are generally performed according to Sambrook et al, Molecular Cloning - A Laboratory Manual, 2nd. ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, (1989).
Isolation of nucleic acids of the invention
The isolation of sequences from the genes of the invention maybe accomplished by a number of techniques. For instance, oligonucleotide probes based on the sequences disclosed here can be used to identify the desired gene in a cDNA or genomic DNA library from a desired plant species. To construct genomic libraries, large segments of genomic DNA are generated by random fragmentation, e.g. using restriction endonucleases, and are ligated with vector DNA to form concatemers that can be packaged into the appropriate vector. To prepare a library of embryo-specific cDNAs, mRNA is isolated from embryos and a cDNA library that contains the gene transcripts is prepared from the mRNA.
The cDNA or genomic library can then be screened using a probe based upon the sequence of a cloned embryo-specific gene such as the polynucleotides disclosed here. Probes may be used to hybridize with genomic DNA or cDNA sequences to isolate homologous genes in the same or different plant species.
Alternatively, the nucleic acids of interest can be amplified from nucleic acid samples using amplification techniques. For instance, polymerase chain reaction (PCR) technology to amplify the sequences of the genes directly from mRNA, from cDNA, from genomic libraries or cDNA libraries. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of the desired mRNA in samples, for nucleic acid sequencing, or for other purposes. Appropriate primers and probes for identifying embryo-specific genes from plant tissues are generated from comparisons of the sequences provided herein. For a general overview of PCR see PCR Protocols: A Guide to Methods and Applications. (Innis, M, Gelfand, D., Sninsky, J. and White, T., eds.), Academic Press, San Diego (1990). Appropriate primers for amplification of the genomic region of LEC2 include the following three primer pairs: D2F - 5'TTTCAGAATACGCAAAAACGAC3' and D2R - 5ΑACTATCCTCCCGAGTGACC3'; Ef - 5ΑGATGGCAAGGATCAACAGG3' and BlastR - 5'CTTGCπTCGTCCTCGTATATTG3'; andF2F - 5'TTTGTGAAGCAAAATGGAGC3' and Stop - 5'CGGATGAACCCACGTACG3'. Appropriate primers for amplification of the LEC2 cDNA include the following pair: 5AAATGGATAACTCCTTACCCTTTCC3' and 5'CGGATGAACCCACGTACG3'. The amplification conditions are typically as follows. Reaction components: 10 mM Tris-HCl, pH 8.3, 50 mM potassium chloride, 1.5 mM magnesium chloride, 0.001% gelatin, 200 μM dATP, 200 μM dCTP, 200 μM dGTP, 200 μM dTTP, 0.4 μM primers, and 100 units per ml Taq polymerase. Program: 96 C for 3 min., 30 cycles of 96 C for 45 sec, 50 C for 60 sec, 72 for 60 sec, followed by 72 C for 5 min. Polynucleotides may also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers et al. , Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982), and Adams et al., J. Am. Chem. Soc. 105:661 (1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.
The genus of LEC2 nucleic acid sequences of the invention includes genes and gene products identified and characterized by analysis using the sequences nucleic acid sequences, including SEQ ID NO:l and protein sequences, including SEQ ID NO:2. LEC2 sequences of the invention include nucleic acid sequences having substantial identity to SEQ ED NO: 1. LEC2 sequences of the invention include polypeptide sequences having substantial identify to SEQ ED NO:2.
Use of nucleic acids of the invention Genetic and molecular analysis of genes involved in embryo development revals a number of of plant qualities that can be modulated using LEC2 nucleic acids of the invention. The Arabidopsis LEAFY COTYLEDON (LEG) genes, LEC1, LEC2, and FUSCA3 (FUS3), control several aspects of embryo and seed development (Baumlein, H., et al. (1994) Plant J. 6:379-387; Keith, K., et al. (1994) Plant Cell 6:589-600; Lotan, T., et al. (1998) Cell 93:1195-1205; Luerben, H., et al. (1998) Plant J. 15:755-764; Meinke, D. W. (1992) Science 258:1647-1650; Meinke, D. W., et al. (1994) Plant Cell 6:1049-1064; Parcy, F., et al. (1997) Plant Cell 9:1265-1277; West, M. A. L., et al. (1994) Plant Cell 6:1731-1745). Analyses of plants with mutations in these genes suggest that they are required for the maintenance of suspensor cell fate early in embryogenesis, the specification of cotyledon identity, the induction and/or maintenance of the late maturation phase, and the suppression of postgerminative development during seed development (Harada, J. J. (1997) In ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS, Volume 4, Cellular and Molecular Biology of Seed Development, B. A. Larkins and I. K. Vasi, eds. (Dordrecht: Kluwer Academic Publishers), pp. 545- 592). For example, abnormal cell divisions occur in the suspensors of lec2 mutants indicating defects early in embryogenesis (Lotan et al, supra). Unlike wild type embryos, lec2 mutants have trichomes on their cotyledons (Meinke et al. (1994), supra). Because trichomes are a leaf-trait in Arabidopsis, the mutants have incompletely specified cotyledons that have reverted partially to leaves. Although lec2 mutant embryos can survive silique drying (Meinke et al. (1994), supra), parts of the cotyledons are intolerant of desiccation. These same regions of the cotyledons are also abnormal in that they do not accumulate RNAs normally expressed during late embryogenesis. Furthermore, lec2 mutant embryos have activated shoot apical meristems that are normally characteristic of seedlings, indicating that postgenninative development has occurred prematurely. These latter observations suggest that the lec2 mutation causes defects in the late seed maturation phase of embryo development. Because the LEC genes play regulatory roles in many aspects of seed development, they are central regulators of embryogenesis. The requirement for the LEC genes for many different aspects of embryogenesis suggest that they operate to control and coordinate seed development (Lotan et al, supra). Studies with the LEC1 gene suggest that these genes may play a fundamental role in initiating seed development by establishing an environment that permits embryogenesis to occur. LEC1 RNA is detected in the zygote but not in prefertilization ovules, suggesting that the gene functions at the earliest stages of embryo development. The LEC1 gene is normally expressed only during seed development.
Experiments in which the LEC1 gene was engineered to be expressed postembryonically resulted in the induction of ectopic embryo formation from vegetative cells (Lotan et al, supra). Together, these results suggest that LEC1 is sufficient to establish a cellular environment that permits embryo formation to occur. Several lines of reasoning suggest that LEC2 and FUS3 may function similarly with LECl. First, LECl is sufficient but not necessary to induce embryo formation. That is, led mutants still make embryos suggesting that other genes may have overlapping functions with LECl (Lotan et al, supra). Second, genetic studies show that LEC2 interacts synergistically with LECl suggesting that these genes interact physically or have partially redundant functions (Lotan et al, supra; Meinke et al. (1994), supra). LEC2 and FUS3 also interact synergistically. The most simple interpretation of these results is that LECl, LEC2, and FUS3 play fundamental roles in the initiation of embryo formation. The identities of the LEC genes are consistent with their roles as regulatory genes. LECl encodes a homolog of the HAP3 subunit of the CCAAT box binding transcription factor (Lotan et al, supra). The FUS3 protein contains the B3 domain of the ABA INSENSTIVE3/Viviparousl transcription factor (Giraudat, J., et al. (1992) Plant Cell 4, 1251-1261; Luessen et al., supra; McCarty, D. R., et al (1991) Cell 66, 895-906). This B3 domain contains a DNA binding domain (Suzuki, M., et al. (1997) Plant Cell 9, 799-807).
Use of nucleic acids of the invention to inhibit gene expression The isolated sequences prepared as described herein, can be used to prepare expression cassettes useful in a number of techniques. For example, expression cassettes of the invention can be used to suppress endogenous LEC2 gene expression. Inhibiting expression can be useful, for instance, in weed control (by transferring an inhibitory sequence to a weedy species and allowing it to be transmitted through sexual crosses) or to produce fruit with small and non- viable seed. A number of methods can be used to inhibit gene expression in plants. For instance, antisense technology can be conveniently used. To accomplish this, a nucleic acid segment from the desired gene is cloned and operably linked to a promoter such that the antisense strand of RNA will be transcribed. The expression cassette is then transformed into plants and the antisense strand of RNA is produced. In plant cells, it has been suggested that antisense RNA inhibits gene expression by preventing the accumulation of mRNA which encodes the enzyme of interest, see, e.g., Sheehy et al., Proc. Nat. Acad. Sci. USA, 85:8805-8809 (1988), and Hiatt et al, U.S. Patent No. 4,801,340. The antisense nucleic acid sequence transformed into plants will be substantially identical to at least a portion of the endogenous embryo-specific gene or genes to be repressed. The sequence, however, does not have to be perfectly identical to inhibit expression. The vectors of the present invention can be designed such that the inhibitory effect applies to other proteins within a family of genes exhibiting homology or substantial homology to the target gene.
For antisense suppression, the introduced sequence also need not be full length relative to either the primary transcription product or fully processed mRNA. Generally, higher homology can be used to compensate for the use of a shorter sequence. Furtheπnore, the introduced sequence need not have the same intron or exon pattern, and homology of non-coding segments may be equally effective. Normally, a sequence of between about 30 or 40 nucleotides and about full length nucleotides should be used, though a sequence of at least about 100 nucleotides is preferred, a sequence of at least about 200 nucleotides is more preferred, and a sequence of at least about 500 nucleotides is especially preferred.
Catalytic RNA molecules or ribozymes can also be used to inhibit expression of embryo-specific genes. It is possible to design ribozymes that specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. In carrying out this cleavage, the ribozyme is not itself altered, and is thus capable of recycling and cleaving other molecules, making it a true enzyme. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs.
A number of classes of ribozymes have been identified. One class of ribozymes is derived from a number of small circular RNAs that are capable of self- cleavage and replication in plants. The RNAs replicate either alone (viroid RNAs) or with a helper virus (satellite RNAs). Examples include RNAs from avocado sunblotch viroid and the satellite RNAs from tobacco ringspot virus, lucerne transient streak virus, velvet tobacco mottle virus, solanum nodiflorum mottle virus and subterranean clover mottle virus. The design and use of target RNA-specific ribozymes is described in Haseloff et al. Nature, 334:585-591 (1988).
Another method of suppression is sense suppression. Introduction of expression cassettes in which a nucleic acid is configured in the sense orientation with respect to the promoter has been shown to be an effective means by which to block the transcription of target genes. For an example of the use of this method to modulate expression of endogenous genes see, Napoli et al, The Plant Cell 2:279-289 (1990), and U.S. Patents Nos. 5,034,323, 5,231,020, and 5,283,184.
Generally, where inhibition of expression is desired, some transcription of the introduced sequence occurs. The effect may occur where the introduced sequence contains no coding sequence per se, but only intron or untranslated sequences homologous to sequences present in the primary transcript of the endogenous sequence. The introduced sequence generally will be substantially identical to the endogenous sequence intended to be repressed. This minimal identity will typically be greater than about 65%, but a higher identity might exert a more effective repression of expression of the endogenous sequences. Substantially greater identity of more than about 80% is prefeπed, though about 95% to absolute identity would be most prefeπed. As with antisense regulation, the effect should apply to any other proteins within a similar family of genes exhibiting homology or substantial homology. For sense suppression, the introduced sequence in the expression cassette, needing less than absolute identity, also need not be full length, relative to either the primary transcription product or fully processed mRNA. This may be prefeπed to avoid concurrent production of some plants that are overexpressers. A higher identity in a shorter than full length sequence compensates for a longer, less identical sequence. Furtheπnore, the introduced sequence need not have the same intron or exon pattern, and identity of non-coding segments will be equally effective. Normally, a sequence of the size ranges noted above for antisense regulation is used.
One of skill in the art will recognize that using technology based on specific nucleotide sequences (e.g., antisense or sense suppression technology), families of homologous genes can be suppressed with a single sense or antisense transcript. For instance, if a sense or antisense transcript is designed to have a sequence that is conserved among a family of genes, then multiple members of a gene family can be suppressed. Conversely, if the goal is to only suppress one member of a homologous gene family, then the sense or antisense transcript should be targeted to sequences with the most vairance between family members.
Another means of inhibiting LEC2 function in a plant is by creation of dominant negative mutations. In this approach, non-functional, mutant LEC2 polypeptides, which retain the ability to interact with wild-type subunits are introduced into a plant. Use of nucleic acids of the invention to enhance gene expression Isolated sequences prepared as described herein can also be used to prepare expression cassettes that enhance or increase endogenous LEC2 gene expression. Where overexpression of a gene is desired, the desired gene from a different species may be used to decrease potential sense suppression effects. Enhanced expression of LEC2 polynucleotides is useful, for example, to increase storage protein content in plant tissues. Such techniques may be particularly useful for improving the nutritional value of plant tissues. Any of a number of means well known in the art can be used to increase
LEC2 activity in plants. Enhanced expression is useful, for example, to induce embyonic characteristics in plants or plant organs. Any organ can be targeted, such as shoot vegetative organs/structures (e.g. leaves, stems and tubers), roots, flowers and floral organs/structures (e.g. bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat) and fruit. Alternatively, one or several LEC2 genes can be expressed constitutively (e.g., using the CaMV 35S promoter).
One of skill will recognize that the polypeptides encoded by the genes of the invention, like other proteins, have different domains which perform different functions. Thus, the gene sequences need not be full length, so long as the desired functional domain of the protein is expressed. As explained above, LEC2 polypeptides are related to the FUSCA3 gene product, which is a transcription factor. Thus, without being bound to any particular theory or mechanism, LEC2 is likely to act as a transcriptional modulator.
The DNA binding activity, and, therefore, transcription activation function, of LEC2 polypeptides is thought to be modulated by an amino acid motif Icnown as the B3 domain, as described above. For instance, amino acid positions 165 to 277 represent the B3 domain of SEQ TD NO:2. Thus, the polypeptides of the invention will often retain these sequences.
Modification of endogenous LEC2 genes Methods for introducing genetic mutations into plant genes and selecting plants with desired traits are well known. For instance, seeds or other plant material can be treated with a mutagenic chemical substance, according to standard techniques. Such chemical substances include, but are not limited to, the following: diethyl sulfate, ethylene imine, ethyl methanesulfonate and N-nitroso-N-ethylurea. Alternatively, ionizing radiation from sources such as, X-rays or gamma rays can be used.
Modified protein chains can also be readily designed utilizing various recombinant DNA techniques well known to those skilled in the art and described for instance, in Sambrook et al., supra. Hydroxylamine can also be used to introduce single base mutations into the coding region of the gene (Sikorski, et al., (1991). Meth. Enzymol. 194: 302-318). For example, the chains can vary from the naturally occurring sequence at the primary structure level by amino acid substitutions, additions, deletions, and the like. These modifications can be used in a number of combinations to produce the final modified protein chain.
Alternatively, homologous recombination can be used to induce targeted gene modifications by specifically targeting the LEC2 gene in vivo (see, generally, Grewal and Klar, Genetics 146: 1221-1238 (1997) and Xu et al, Genes Dev. 10: 2411- 2422 (1996)). Homologous recombination has been demonstrated in plants (Puchta et al, Experientia 50: 277-284 (1994), Swoboda et al, EMBO J. 13: 484-489 (1994); Offringa et al, Proc. Natl. Acad. Set USA 90: 7346-7350 (1993); and Kempin et al. Nature 389:802-803 (1997)).
In applying homologous recombination technology to the genes of the invention, mutations in selected portions of an LEC2 gene sequences (including 5' upstream, 3' downstream, and intragenic regions) such as those disclosed here are made in vitro and then introduced into the desired plant using standard techniques. Since the efficiency of homologous recombination is Icnown to be dependent on the vectors used, use of dicistronic gene targeting vectors as described by Mountford et α , Proc. Nαtl. Acαd. Set USA 91: 4303-4307 (1994); and Vaulont et αl, Transgenic Res. 4: 247-255 (1995) are conveniently used to increase the efficiency of selecting for altered LEC2 gene expression in transgenic plants. The mutated gene will interact with the target wild-type gene in such a way that homologous recombination and targeted replacement of the wild- type gene will occur in transgenic plant cells, resulting in suppression of LEC2 activity. Alternatively, oligonucleotides composed of a contiguous stretch of RNA and DNA residues in a duplex conformation with double hairpin caps on the ends can be used. The RNA/DNA sequence is designed to align with the sequence of the target LEC2 gene and to contain the desired nucleotide change. Introduction of the chimeric oligonucleotide on an extrachromosomal T-DNA plasmid results in efficient and specific LEC2 gene conversion directed by chimeric molecules in a small number of transformed plant cells. This method is described in Cole-Strauss et al, Science 273:1386-1389 (1996) and Yoon et al, Proc. Natl. Acad. Sci. USA 93: 2071-2076 (1996).
In other embodiments, the promoters derived from the LEC2 genes of the invention can be used to drive expression of heterologous genes in an embryo-specific or seed-specific manner, such that desired gene products are present in the embryo, seed, or fruit. Suitable structural genes that could be used for this purpose include genes encoding proteins useful in increasing the nutritional value of seed or fruit. Examples include genes encoding enzymes involved in the biosynthesis of antioxidants such as vitamin A, vitamin C, vitamin E and melatonin. Other suitable genes encoding proteins involved in modification of fatty acids, or in the biosynthesis of lipids, proteins, and carbohydrates. Still other genes can be those encoding proteins involved in auxin and auxin analog biosynthesis for increasing fruit size, genes encoding pharmaceutically useful compounds, and genes encoding plant resistance products to combat fungal or other infections of the seed. Typically, desired promoters are identified by analyzing the 5' sequences of a genomic clone corresponding to the embryo-specific genes described here. Sequences characteristic of promoter sequences canbe used to identify the promoter. Sequences controlling eukaryotic gene expression have been extensively studied. For instance, promoter sequence elements include the TATA box consensus sequence (TATAAT), which is usually 20 to 30 base pairs upstream of the transcription start site. In most instances the TATA box is required for accurate transcription initiation. In plants, further upstream from the TATA box, at positions -80 to -100, there is typically a promoter element with a series of adenines surrounding the trinucleotide G (or T) N G. J.Messing et al, in GENETIC ENGINEERING IN PLANTS, pp.221-227 (Kosage, Meredith and Hollaender, eds. (1983)).
A number of methods are known to those of skill in the art for identifying and characterizing promoter regions in plant genomic DNA (see, e.g., Jordano, et al, Plant Cell, 1: 855-866 (1989); Bustos, et al, Plant Cell, 1:839-854 (1989); Green, et al, EMBO J. 1, 4035-4044 (1988); Meier, et al, Plant Cell, 3, 309-316 (1991); and Zhang, et al, Plant Physiology 110: 1069-1079 (1996)).
Preparation of recombinant vectors
To use isolated sequences in the above techniques, recombinant DNA vectors suitable for transformation of plant cells are prepared. Techniques for transforming a wide variety of higher plant species are well known and described in the technical and scientific literature. See, for example, Weising et al. Ann. Rev. Genet. 22:421-477 (1988). A DNA sequence coding for the desired polypeptide, for example a cDNA sequence encoding a full length protein, will preferably be combined with transcriptional and translational initiation regulatory sequences which will direct the transcription of the sequence from the gene in the intended tissues of the transformed plant.
For example, for overexpression, a plant promoter fragment may be employed which will direct expression of the gene in all tissues of a regenerated plant. Such promoters are referred to herein as "constitutive" promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1'- or 2'- promoter derived from T-DNA of Agrobacterium tumafaciens, and other transcription initiation regions from various plant genes known to those of skill.
Alternatively, the plant promoter may direct expression of the polynucleotide of the invention in a specific tissue (tissue-specific promoters) or may be otherwise under more precise environmental control (inducible promoters). Examples of tissue-specific promoters under developmental control include promoters that initiate transcription only in certain tissues, such as fruit, seeds, or flowers. As noted above, the promoters from the LEC2 genes described here are particularly useful for directing gene expression so that a desired gene product is located in embryos or seeds. Other suitable promoters include those from genes encoding storage proteins or the lipid body membrane protein, oleosin. Examples of environmental conditions that may affect transcription by inducible promoters include anaerobic conditions, elevated temperature, or the presence of light.
If proper polypeptide expression is desired, a polyadenylation region at the 3'-end of the coding region should be included. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The vector comprising the sequences (e.g., promoters or coding regions) from genes of the invention will typically comprise a marker gene that confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosluforon or Basta.
LEC2 nucleic acid sequences of the invention are expressed recombinantly in plant cells to enhance and increase levels of endogenous LEC2 polypeptides. Alternatively, antisense or other LEC2 constructs (described above) are used to suppress LEC2 levels of expression. A variety of different expression constructs, such as expression cassettes and vectors suitable for transformation of plant cells can be prepared. Techniques for transforming a wide variety of higher plant species are well known and described in the technical and scientific literature. See, e.g., Weising et al. Ann. Rev. Genet. 22:421-477 (1988). A DNA sequence coding for a LEC2 polypeptide, e.g., a cDNA sequence encoding a full length protein, can be combined with cis-acting (promoter) and trans-acting (enhancer) transcriptional regulatory sequences to direct the timing, tissue type and levels of transcription in the intended tissues of the transformed plant. Translational control elements can also be used. The invention provides a LEC2 nucleic acid operably linked to a promoter which, in a prefeπed embodiment, is capable of driving the transcription of the LEC2 coding sequence in plants. The promoter can be, e.g., derived from plant or viral sources. The promoter can be, e.g., constitutively active, inducible, or tissue specific. In construction of recombinant expression cassettes, vectors, transgenics, of the invention, a different promoters can be chosen and employed to differentially direct gene expression, e.g., in some or all tissues of a plant or animal. Typically, as discussed above,desired promoters are identified by analyzing the 5' sequences of a genomic clone coπesponding to the embryo-specific genes described here. Constitutive Promoters A promoter fragment can be employed which will direct expression of
LEC2 nucleic acid in all transformed cells or tissues, e.g. as those of a regenerated plant. Such promoters are refeπed to herein as "constitutive" promoters and are active under most environmental conditions and states of development or cell differentiation. Promoters that drive expression continuously under physiological conditions are referred to as "constitutive" promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include those from viruses which infect plants, such as the cauliflower mosaic virus (CaMV) 35S transcription initiation region (see, e.g., Dagless (1997) Arch. Virol. 142:183-191); the 1'- or 2'- promoter derived from T-DNA of Agrobacterium tumafaciens (see, e.g., Mengiste (1997) supra; O'Grady (1995) Plant Mol. Biol 29:99-108); the promoter of the tobacco mosaic virus; the promoter of Figwort mosaic virus (see, e.g., Maiti (1997) Transgenic Res. 6:143-156); actin promoters, such as the Arabidopsis actin gene promoter (see, e.g., Huang (1997) Plant Mol. Biol. 1997 33:125-139); alcohol dehydrogenase (Adh) gene promoters (see, e.g., Millar (1996) Plant Mol. Biol. 31 :897-904); ACT11 from
Arabidopsis (Huang et al Plant Mol. Biol. 33:125-139 (1996)), Cat3 from. Arabidopsis (GenBank No. U43147, Zhong et al, Mol. Gen. Genet. 251:196-203 (1996)), the gene encoding stearoyl-acyl carrier protein desaturase from Brassica napus (Genbank No. X74782, Solocombe et al Plant Physiol. 104:1167-1176 (1994)), GPcl from maize (GenBank No. X15596, Martinez et al. J. Mol. Biol 208:551-565 (1989)), Gpc2 from maize (GenBank No. U45855, Manjunath et al, Plant Mol. Biol. 33:97-112 (1997)), other transcription initiation regions from various plant genes known to those of skill. See also Holtorf (1995) "Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana," Plant Mol. Biol. 29:637-646. Inducible Promoters
Alternatively, a plant promoter may direct expression of the LEC2 nucleic acid of the invention under the influence of changing environmental conditions or developmental conditions. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions, elevated temperature, drought, or the presence of light. Such promoters are referred to herein as "inducible" promoters. For example, the invention incorporates the drought-inducible promoter of maize (Busk (1997) supra); the cold, drought, and high salt inducible promoter from potato (Kirch (1997) Plant Mol. Biol. 33:897-909).
Alternatively, plant promoters which are inducible upon exposure to plant hormones, such as auxins, are used to express the nucleic acids of the invention. For example, the invention can use the auxin-response elements El promoter fragment (AuxREs) in the soybean (Glycine max L.) (Liu (1997) Plant Physiol. 115:397-407); the auxin-responsive Arabidopsis GST6 promoter (also responsive to salicylic acid and hydrogen peroxide) (Chen (1996) Plant J. 10: 955-966); the auxin-inducible parC promoter from tobacco (Sakai (1996) 37:906-913); a plant biotin response element (Streit (1997) Mol. Plant Microbe Interact. 10:933-937); and, the promoter responsive to the stress hormone abscisic acid (Sheen (1996) Science 274:1900-1902).
Plant promoters which are inducible upon exposure to chemicals reagents which can be applied to the plant, such as herbicides or antibiotics, are also used to express the nucleic acids of the invention. For example, the maize In2-2 promoter, activated by benzenesulfonamide herbicide safeners, can be used (De Veylder (1997) Plant Cell Physiol. 38:568-577); application of different herbicide safeners induces distinct gene expression patterns, including expression in the root, hydathodes, and the shoot apical meristem. LEC2 coding sequence can also be under the control of, e.g., a tetracycline-inducible promoter, e.g., as described with transgenic tobacco plants containing the Avena sativa L. (oat) arginine decarboxylase gene (Masgrau (1997) Plant J. 11:465-473); or, a salicylic acid-responsive element (Stange (1997) Plant J. 11:1315-1324. Tissue-Specific Promoters
Alternatively, the plant promoter may direct expression of the polynucleotide of the invention in a specific tissue (tissue-specific promoters). Tissue specific promoters are transcriptional control elements that are only active in particular cells or tissues at specific times during plant development, such as in vegetative tissues or reproductive tissues. Promoters from the LEC2 genes of the invention are particularly useful for tissue-specific direction of gene expression so that a desired gene product is generated only or preferentially in embryos or seeds, as described below.
Examples of tissue-specific promoters under developmental control include promoters that initiate transcription only (or primarily only) in certain tissues, such as vegetative tissues, e.g., roots or leaves, or reproductive tissues, such as fruit, ovules, seeds, pollen, pistols, flowers, or any embryonic tissue. Reproductive tissue- specific promoters may be, e.g., ovule-specific, embryo-specific, endosperm-specific, integument-specific, seed and seed coat-specific, pollen-specific, petal-specific, sepal- specific, or some combination thereof. Suitable seed-specific promoters are derived from the following genes:
MAC1 from maize (Sheridan (1996) Genetics 142:1009-1020); Cat3 from maize (GenBank No. L05934, Abler (1993) Plant Mol. Biol. 22:10131-1038); vivparous-1 from Arabidopsis (Genbank No. U93215); atmycl from Arabidopsis (Urao (1996) Plant Mol. Biol. 32:571-57; Conceicao (1994) Plant 5:493-505); napA from Brassica napus (GenBanlc No. J02798, Josefsson (1987) JBL 26:12196-1301); and the napin gene family from Brassica napus (Sjodahl (1995) Planta 197:264-271).
The ovule-specific BEL1 gene described in Reiser (1995) Cell 83:735-742, GenBank No. U39944, can also be used. See also Ray (1994) Proc. Natl Acad. Sci. USA 91 :5761-5765. The egg and central cell specific FIE1 promoter is also a useful reproductive tissue-specific promoter.
Sepal and petal specific promoters are also used to express LEC2 nucleic acids in a reproductive tissue-specific manner. For example, the Arabidopsis floral homeotic gene APETALAl (API) encodes a putative transcription factor that is expressed in young flower primordia, and later becomes localized to sepals and petals (see, e.g., Gustafson- Brown (1994) Cell 76:131-143; Mandel (1992) Nature 360:273-277). A related promoter, for AP2, a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls, is also useful (see, e.g., Drews (1991) Cell 65:991-1002; Bowman (1991) Plant Cell 3:749-758). Another useful promoter is that controlling the expression of the unusual floral organs (ufo) gene of Arabidopsis, whose expression is restricted to the junction between sepal and petal primordia (Bossinger (1996) Development 122:1093-1102).
A maize pollen-specific promoter has been identified in maize (Gueπero (1990) Mol. Gen. Genet. 224:161-168). Other genes specifically expressed in pollen are described, e.g., by Wakeley (1998) Plant Mol. Biol. 37:187-192; Ficlcer (1998) Mol Gen. Genet. 257:132-142; Kulikauskas (1991) Plant Mol. Biol. 34:809-814; Treacy (1997) Plant Mol. Biol. 34:603-611.
Other suitable promoters include those from genes encoding embryonic storage proteins. For example, the gene encoding the 2S storage protein from Brassica napus, Dasgupta (1993) Gene 133:301-302; the 2s seed storage protein gene family from Arabidopsis; the gene encoding oleosin 20kD from Brassica napus, GenBanlc No. M63985; the genes encoding oleosin A, Genbank No. U09118, and, oleosinB, Genbank No. U09119, from soybean; the gene encoding oleosin from Arabidopsis, Genbank No. Z17657; the gene encoding oleosin 181cD from maize, GenBanlc No. J05212, Lee (1994) Plant Mol. Biol. 26: 1981 -1987; and, the gene encoding low molecular weight sulphur rich protein from soybean, Choi (1995) Mol Gen, Genet. 246:266-268, can be used. The tissue specific E8 promoter from tomato is particularly useful for directing gene expression so that a desired gene product is located in fruits. A tomato promoter active during fruit ripening, senescence and abscission of leaves and, to a lesser extent, of flowers canbe used (Blume (1997) Plant J. 12:731 -746). Other exemplary promoters include the pistol specific promoter in the potato (Solanum tuberosum L.) SK2 gene, encoding a pistil-specific basic endocliitinase (Ficker (1997) Plant Mol. Biol. 35 :425-431); the Blec4 gene from pea (Pisum sativum cv. Alaska), active in epidermal tissue of vegetative and floral shoot apices of transgenic alfalfa. This makes it a useful tool to target the expression of foreign genes to the epidermal layer of actively growing shoots.
A variety of promoters specifically active in vegetative tissues, such as leaves, stems, roots and tubers, can also be used to express the LEC2 nucleic acids of the invention. For example, promoters controlling patatin, the major storage protein of the potato tuber, canbe used, see, e.g., Kim (1994) Plant Mol. Biol. 26:603-615; Martin (1997) Plant J. 11 :53-62. The ORF13 promoter from Agrobacterium rhizogenes which exhibits high activity in roots can also be used (Hansen (1997) Mol. Gen. Genet. 254:337-343. Other useful vegetative tissue-specific promoters include: the tarin promoter of the gene encoding a globulin from a major taro (Colocasia esculenta L. Schott) corm protein family, tarin (Bezerra (1995) Plant Mol. Biol. 28:137-144); the curculin promoter active during taro corm development (de Castro (1992) Plant Cell 4:1549-1559) and the promoter for the tobacco root-specific gene TobRB7, whose expression is localized to root meristem and immature central cylinder regions (Yamamoto (1991) Plant Cfeff 3:371-382).
Leaf-specific promoters, such as the ribulose biphosphate carboxylase (RBCS) promoters canbe used. For example, the tomato RBCS1, RBCS2 and RBCS3A genes are expressed in leaves and light-grown seedlings, only RBCS1 and RBCS2 are expressed in developing tomato fruits (Meier (1997) FEBSLett. 415:91-95). A ribulose bisphosphate carboxylase promoters expressed almost exclusively in mesophyll cells in leaf blades and leaf sheaths at high levels, described by Matsuoka (1994) Plant J. 6:311-319, can be used. Another leaf-specific promoter is the light harvesting chlorophyll a/b binding protein gene promoter, see, e.g., Shiina (1997) Plant Physiol. 115:477-483; Casal (1998) Plant Physiol. 116:1533-1538. The Arabidopsis thaliana myb-related gene promoter (Atmyb5) described by Li (1996) FEBSLett. 379:117-121, is leaf-specific The Atmyb5 promoter is expressed in developing leaf trichomes, stipules, and epidermal cells on the margins of young rosette and cauline leaves, and in immature seeds. Atmyb5 mRNA appears between fertilization and the 16 cell stage of embryo development and persists beyond the heart stage. A leaf promoter identified in maize by Busk (1997) Plant J. 11:1285-1295, can also be used.
Another class of useful vegetative tissue-specific promoters are meristematic (root tip and shoot apex) promoters. For example, the "SHOOTMERISTEMLESS" and "SCARECROW promoters, which are active in the developing shoot or root apical meristems, described by Di Laurenzio (1996) Cell 86:423-433; and, Long (1996) Nature 379:66-69; can be used. Another useful promoter is that which controls the expression of 3-hydroxy-3- methylglutaryl coenzyme A reductase HMG2 gene, whose expression is restricted to meristematic and floral (secretory zone of the stigma, mature pollen grains, gynoecium vascular tissue, and fertilized ovules) tissues (see, e.g., Enjuto (1995) Plant Cell. 7:517-527). Also useful are knl -related genes from maize and other species which show meristem-specific expression, see, e.g., Granger (1996) Plant Mol. Biol. 31:373-378; Kerstetter (1994) Plant Cell 6:1877-1887; Hake (1995) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 350:45-51. For example, the Arabidopsis thaliana KNAT1 promoter, hi the shoot apex, KNAT1 transcript is localized primarily to the shoot apical meristem; the expression of KNAT1 in the shoot meristem decreases during the floral transition and is restricted to the cortex of the inflorescence stem (see, e.g., Lincoln (1994) Plant Cell 6:1859-1876).
One of skill will recognize that a tissue-specific promoter may drive expression of operably linked sequences in tissues other than the target tissue. Thus, as used herein a tissue-specific promoter is one that drives expression preferentially in the target tissue, but may also lead to some expression in other tissues as well.
In another embodiment, a LEC2 nucleic acid is expressed through a transposable element. This allows for constitutive, yet periodic and infrequent expression of the constitutively active polypeptide. The invention also provides for use of tissue- specific promoters derived from viruses which can include, e.g., the tobarnovirus subgenomic promoter (Kumagai (1995) Proc. Natl. Acad. Sci. USA 92:1679-1683; the rice tungro bacilliform virus (RTBV), which replicates only in phloem cells in infected rice plants, with its promoter which drives strong phloem-specific reporter gene expression; the cassava vein mosaic virus (CVMV) promoter, with highest activity in vascular elements, in leaf mesophyll cells, and in root tips (Verdaguer (1996) Plant Mol. Biol. 31:1129-1139).
Production of transgenic plants DNA constructs of the invention may be introduced into the genome of the desired plant host by a variety of conventional techniques. For example, the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA constructs can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. Alternatively, the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector. The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria.
Microinjection techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. Embo J. 3:2717-2722 (1984). Electroporation techniques are described in Fromm et al. Proc. Natl Acad. Sci. USA 82:5824 (1985). Ballistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987).
Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example Horsch et al. Science 233:496-498 (1984), and Fraley et al. Proc. Natl. Acad. Sci. USA 80:4803 (1983).
Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired phenotype such as seedlessness. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the desired nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. Ann. Rev. of Plant Phys. 38:467-486 (1987).
The nucleic acids of the invention can be used to confer desired traits on essentially any plant. Thus, the invention has use over a broad range of plants, including species from the genera Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Cucumis, Cucurbita, Daucus, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Oryza, Panieum, Pannesetum, Persea, Pisum, Pyrus, Primus, Raphanus, Secale, Senecio, Sinapis, Solanum, Sorghum, Trigonella, Triticum, Vitis, Vigna, and, Zea. The LEC2 genes of the invention are particularly useful in the production of transgenic plants in the genus Brassica. Examples include broccoli, cauliflower, brussel sprouts, canola, and the like.
Use and Recombinant Expression of LEC2 in Combination with other Genes
The LEC2 nucleic acids of the invention can be expressed together with other structural or regulatory genes to achieve a desired effect. A cell or plant, such as a transformed cell or a transgenic plant, can be transformed, engineered or bred to co- express both LEC2 nucleotide and/or LEC2 polypeptide, and another gene or gene product. Alternatively, two or more LEC2 nucleic acids can be co-expressed together in the same plant or cell.
The LEC2 nucleic acids of the invention, when expressed in plant reproductive or vegetative tissue, can induce ectopic embryo morphogenesis. Thus, in one embodiment, &LEC2 nucleic acid of the invention is expressed in a sense conformation in a transgenic plant to induce the expression of ectopic embryo-like structures. For example, unlike wild type leaves, organs from plants with ectopic embryo-like structures do not expand and do not possess trichomes. Morphologically, these leaf-like structures more closely resemble embryonic cotyledons than leaves.
In another embodiment, LEC2 is co-expressed with a gene or nucleic acid that increases reproductive tissue mass, e.g., increases fruit size, seed mass, seed protein or seed oils. For example, co-expression of antisense nucleic acid to ADC genes, such as AP2 and RAP2 genes of Arabidopsis, will dramatically increase seed mass, seed protein and seed oils; see, e.g., Jofulcu, et al, WO 98/07842; Okamuro (1997) Proc. Natl. Acad. Sci. USA 94:7076-7081; Okamuro (1997) Plant Cell 9:37-47; Jofulcu (1994) Plant Cell 6:1211-1225. Thus, co-expression of &LEC2 nucleic acid of the invention, to induce ectopic expression of embronic cells and tissues, together with another plant nucleic acid and/or protein, such as the seed-mass enhancing antisense AP2 nucleic acid, generates a cell, tissue, or plant (e.g., a transgenic plant) with increased fruit and seed mass, greater yields of embryonic storage proteins, and the like. Alternatively, coexpression of antisense nucleic acids to LEC2 and LECl is useful to inhibit seed production in fruit. In another embodiment, the LEC2 nucleic acids of the invention are expressed in plant reproductive or vegetative cells and tissues which lack the ability to produce functional ADC genes, such as AP2 and RAP2 genes. The LEC2 nucleic acid can be expressed in an ADC "knockout" transgenic plant. Alternatively, the LEC2 nucleic acid can be expressed in a cell, tissue or plant expressing a mutant ADC nucleic acid or gene product. Expression of LEC2 nucleic acid in any of these non-functioning ADC models will also produce a cell, tissue or plant with increased fruit and seed mass, greater yields of embryonic storage proteins, and the like. Also, as discussed above, the LEC2 nucleic acids of the invention are useful for the production of apomictic plants. For instance, LEC2 nucleic acids can be expressed in combination with LECl nucleic acids as described for instance by Lotan, et al. Cell 93:1195-1205 (1998) and inUSSN 09/026,221. Alternatively, FIE (e.g., PCT WO99/09676 and Ohad, N. et al. (l999) Plant Cell 11(3):407-16) and/or FUSCA3 (Luerben, H., et al. (1998) Plant J. 15:755-764) nucleic acids can also be combined with LECl and/or LEC2 nucleic acids. In these embodiments, constructs providing expression of a LEC2 nucleic acid are used in combination with constructs that lead to expression of LECl or FUS3 and/or inhibition of FIE expression. Means for targeting expression to desired tissues, such as the female gametophyte or ovules are discussed below.
LEC2 Gene Fusions
LEC2 nucleic acid sequences also include fusions between two or more LEC2 genes. Different domains of different genes can be fused. LEC2 gene fusions can be linked directly or can be attached by additional amino acids that link the two of more fusion partners.
Gene fusions can be generated by basic recombinant DNA techniques as described below. Selection of gene fusions will depend on the desired phenotype caused by the gene fusion. For instance, if phenotypes associated with the domain of one LEC2 protein are desired with phenotypes associated with a different domain of a second LEC2 protein, the a fusion of the first LEC2 protein's domain to the second LEC2's domain would be created. The fusion can subsequently be tested in vitro or in vivo for the desired phenotypes.
One of skill will recognize that after the expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. EXAMPLES The following examples are offered to illustrate, but no to limit the claimed invention.
Example 1
This example shows the identification and isolation of the LEC2 gene. The lec2-l allele was derived from a population of Ws-0 ecotype plants mutagenized with T-DNA (Feldmann, K. A.,e al.. (1987). Mol. Gen. Genet. 208:1-9). The LEC2 gene, however, is not tagged in this plant line. Other untagged mutant alleles of the LEC2 gene in the Ws-4 ecotype, DLMl, CUC3, and CPT9, were obtained from the histitut National de la Recherche Agronomique.
LEC2 was mapped genetically on the basis of its position in chromosome 1. Recombinants were identified with DISTORTED1 (DIS1) and DIS2 in the Ler ecotype, which map approximately 17 cm north and 5 cM south of LEC2, respectively. Figure 1 shows the details of the mapping strategy, including the number of recombinants between LEC2 and each of the markers.
LEC2 was mapped to bacterial artificial chromosome (BAC) clone Fl A10. Mapping of the ends of cosmid clones prepared from this BAC narrowed the region containing LEC2 to a 23 kb region. A cosmid library was prepared from BAC F1A10 DNA. A 9 kb BamHl fragment from cosmid 80 of this library in this 23 kb region was hybridized to a gel blot containing genomic DNAs from wild type Ws-0 and Ws-4 and the lec2 mutants, i.e. Iec2-1, DLMl, CUC3, and CPT9. The blot identified a 3 kb EcoRl restriction fragment in wild type plants that was polymorphic in the lec2-l and CPT9 genome, indicating that LEC2 was likely to comprise at least a part of this fragment.. To confirm this hypothesis, nucleotide sequencing of the 3 kb EcoRI fragment and partial sequencing of the 9 kb BamHl fragment revealed that the 3 kb EcoRI fragment contains the 5' region of a gene as predicted by Genscan analysis program (http://CCR-081.mit.edu/GENSCAN.html). Analyses of this sequence using Blast searches of public databases (http://www.ncbi.nlm.nih.gov BLAST ) revealed an unordered and unannotated partial sequence of BAC F3H9 (see Figure 1). A contiguous region of nucleotide sequence from this BAC corresponded to part of the 3 kb EcoRI fragment and provided the 3' end of the gene.
Blast analysis of the LEC2 gene sequence (SEQ ED NO: 1) revealed homology to the B3 domain of FUS3 and ABI3. Thus, LEC2 is a transcriptional regulator of embryo development. The amino acid sequence of the polypeptide encoded by LEC2 is approximately 56% identical to FUS3 over 103 amino acids. The identities are across the B3 domain of FUS3 (Genbank Accession number AF016265.1). The highest identity found in the BLAST search was a 60% identity over 95 amino acids with the B3 domain of carrot C-ABI-3 protein (Genbank Accession number AB005558.1).
Amino acid residues 165 to 277 of SEQ ID NO:2 represent the B3 domain of LEC2. The B3 domain of LEC2 is encoded by positions 3682-3690, 3848-3922, 4817- 4917, 5101-5147, 5257-5330 and 5679-5681 of SEQ TD NO:l.
A molecular analysis of the genomic sequence (SEQ ID NO.T) reveals many features. For example, the ATG start codon is at position 3196 and the stop codon is at position 5973. The end of the cDNA is at position 6166. There are six exons in the gene. The position sof the exons in SEQ ID NO:l are: 3196-3690, 3848-3922, 4817- 4917, 5101-5147, 5257-5330, and 5679-5975.
Example 2
This example shows nucleotide sequencing of two mutant alleles of LEC2. Both mutants have deletions in the region of the coding sequence that encodes the B3 domain.
Nucleotide sequencing of the LEC2 allele of the mutant CUC3 revealed an 11 base pair deletion compared to the wild type LEC2 sequence. This deletion results in an alteration of the reading frame and thus the resultant mutant phenotype.
Nucleotide sequencing of the LEC2 allele of the mutant DLMl revealed a 33 base pair deletion compared to the wild type LEC2 sequence. This deletion is the cause of the mutant phenotype.
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes. INFORMAL SEQUENCE LISTING SEQ TD NO:l LEC2 genomic sequence
1 ATATATATAT ATATATATAT ATATATATAT CTTTGAGTTC ATGATTTTTT
51 TACAAGAAGA CTATATAGTT GGTGATATGT ACTCTCACAA CATTTTGTTA
101 AGAATTCTCC AAAAACTTAT ATGTCATCTT ACGAAAATTG TTAAACATCA
151 AACAGTCACA TTTGTAAAAA GCTAATTACA ACAACATTTA TTAACAGTTA
201 AAATATAAAT CTCTTAGGTA GCCCGGATTA AAACTCTTAA TTCAATTGTT 251 ACATATATAT TCGGGAGTAG TCCAAATTTT CTTCTAATCT AATATAATAA
301 AGTAATGCTA TTCTTAAGAA CAAGTTTTGA GAAACTGACA TGTAGATATA 351 GAACTCTAAA TATATTATCC TAAGAAGCTA TGGATTTACT AATTTCATCC 401 TATCCCTATG TGAATCCCTA AACTCAACGA GAGCATTACT AAGACATGAT 451 CATAGAAGCA TATATCATAT TTGAATAAAA TTACATAAAT AATTCAAAAG 501 ATTATAGAGT TTAGAAAGTA TTATTTTCTT TATAAGGTTT TGAAATCTCT 551 AAAGAATTCT TGAAAAATAG AAAACAAAAA GTAAAAGCTT GATAATTCTA 601 ACTATTGACC CAAAATATAT TAATAGGTTC TCAAAAACAT TTAGGAACAA 651 ATAATGCAAA TACAAAAATC TTATGGGACA ATTATGTAAT CTTCTAATTT 701 TTAAACTGGG AAGACTTTTG TTGGGATGCG AACGGTGTCT ATCGACATGT 751 CGATCGACAT TGATTACTTG ATCTGACACC AAATTCGTTT TTTCAGCCTT 801 TATTTTTCCG TTTGGTTCCA AAATACTTAA CGAACTCCAA ATATATTCGC 851 ATAAATAACC GAAAAGATTT TTAAAATAAC ATAGTAACTC TAAAAACAAT 901 ATCTATATCA TAAATAATAA CGGAAAATAA TCCATGATAT ATCAATTATA 951 ACTCAACCAA AGCCAACGAA CAAAAAACAT GAAGCAAAGC TACATATACT
1001 ACTAATGATA AGTCTAAATC GTCTTCGACA TATCTAACAA AACCAAAATA
1051 TATATACTTG GAAACAACTT CTTCACCCGG ACACAAATTT CTCAAAGCAA
1101 GTGTCAAAAA CTCTACGATA ATAACAAACA GAGTATATGT AGCTATGCAA
1151 TCCAAGGAGC TTTCCTCTTG TCTAAAAGTG TCATAATGGC GGACCGGTCG
1201 CAATCTTATG TAGCTCTACG CTACCCCTTT TGGCTACGGA AGGTGCTTGA
1251 AATTGATAAA TACATTACAT TGTTGTAATG ATTTTCTGTA GTTTGATTGC
1301 TTTTGTTTCC TCTTTGTAAT TGTGAACAAG TTGTTGTTAA TATCATGAAT 1351 CATTCAGACA GAAAAAAAAA AATAACAAAC AGAGAAAAAT CCCAAAAAAT 1401 AAGAAAATAT AGATGACGCT ACATCACTAT ATTTCCCCTA CCTCCTTAGT 1451 CTCGCTAGGA GTTACGAGTC GTGCGCCTCT TCCAGTATTT GCCATAATTA 1501 ACTGAGTGGG ATCTTTTTGT CCATCAACCC ATGCCTCTTC AATATTTTTT 1551 ACTAATCCAC CATTTCCTTC CATTGTTATT GATATATATG TTTCACCAAA 1601 TATACCTATA CAAAACTATA TTTCAAACTT ATAACGAACA AGAAAACGAG 1651 TTTTTCAAAA TTTCAGAGTT TATGGCCGAG AATAAACATG AGCTCGGCGG 1701 CCGCGGTTTA GAACAAAATT TGTGTCCATC TCCTCGCCAA ATGTAAGTTT 1751 CTGATAGAGC ATAACATTGG GTTGGGACGA AAAAGGAAAC CAATAAGATG 1801 ATAGAAATTG CTGGGTAATT GGAGGTGTTC TTAGGGCACG AGTTGAACAT 1851 GTTACCAAAC CTAATTCATG GTTAGAAATT TGGTGACAGT CAAGCTTATA 1901 TTATCTTTGA TAACTATGTT TCTAGTTGTT TCATTATTAG TATAGAAAAA 1951 ACTTTGTTTT GTAGAGTGTT CTATGGGTTA TGATTTCGAA AAGAAAAAAA 2001 TTGTGAGACA CCTAATAAAA TTATTTCGAC AAAAAAAATA GCTTGTATAA 2051 AAAAATCAGA TTTTAATTTA TGTTTGAACA AATTCCAATA GTTAAAAATA 101 ATTATTTGTT CCGATTAATC GAGTTTTGCA AAATATGCAC AAAATCTATC 2151 ATCGTACCAT TTCTAAGACT ATATATTTGG TTATATATTT TATGCCGTGT 2201 TCTGATTCCA AAAATTTTTA GCGCATAGTA AATTTTCTAA AAAGCAAAAT 2251 TTTCTCAAAA GTGTACTAAT GACAATTAAT TGAGTTTCTA CAAAATAAGA 2301 ATAACTATTG ACTCGATTTT CACAAAATTA GTATGCTAAA TATCACATTA 2351 CTTTTAAAAT TAAATGGAAT TGTCTTTTTC AATATTGGAT ACGAATAATT 2401 TTTACACTAA AGTTATTTTA ATAAAATAAC CGTTTATTCA AAATATGTAA 2451 AGACGACAAA AATATATATT AAATGGAAAA ACGACTAACT TAGTTTTTGC 2501 AAAATAAAAT GGATTTGTCC TTTTCAATGT TTGAATACAA AAAAAAATCT 2551 ATAATAAGTT TATTATATTA AAATAACCCG TTTTTTCAGA ATACGCAAAA 2601 ACGACAAAAA AATATTAATT ACAAAGAAAT TTAGTTTATA CAAAAATATG 2651 AATGGCTATT AATGGTGTTT ACTCTAAATT TAATTATTAT GCATTTATGC 2701 TAAATCTTTC TAAAGGTACA AAGATTCGTT TTTTCAATGT TTGAACTGCA 2751 TATTAAGGTA TAGATTTGGA CCTTAACAGA GTTAATATAT AAGGAAGAGA 2801 GCCAAGGAAC TCCAAAATAA AATAAAGAGC CTTCTCTCTC TCTCTCTGAG
2851 AAAAAACACA TATAGCCAAT GACCTTCTCG TGGTCTTCTG TGCCATAAAA
2901 GCCATTATAT ACATTCAAAC ACAATCTGGC GCCACATATA CACATGTACT
2951 AGTGTATGTA TATGTCCTAA CCTCTGTATT CATATCTCTC TCCTTGTCTG
3001 AGTGGTGCGA TGGGTATCCC CATAAGCTGC AAACATTGAA CCATCTGCAA 3051 CATTTTGACT CGTTTTCTTT TGTGTTTTTC CAACATCTGT CTCTTCTTCA 3101 CTCGCTCTCT CCTAATCAAT CTCCCCAACG ACCTCTCTTT TTTTTTGTTT 3151 CTTCACTCAG ATCTCTCTCC CTCTCTCTCT CTCTCTCCGG GAAAAATGGA 3201 TAACTTCTTA CCCTTTCCCT CTTCTAACGC AAACTCTGTC CAAGAACTCT 3251 CTATGGATCC TAACAACAAT CGCTCGCACT TCACAACAGT CCCTACTTAT 3301 GATCATCATC AGGCTCAGCC TCATCACTTC TTGCCTCCGT TTTCATACCC 3351 GGTGGAGCAG ATGGCGGCGG TGATGAATCC TCAGCCGGTT TACTTATCGG 3401 AGTGTTATCC TCAGATCCCG GTTACGCAAA CCGGAAGTGA ATTCGGTTCT 3451 CTGGTTGGTA ATCCTTGTTT GTGGCAAGAG AGAGGTGGTT TTCTTGATCC 3501 GCGTATGACG AAGATGGCAA GGATCAACAG GAAAAACGCC ATGATGAGAT 3551 CAAGAAACAA CTCTAGCCCT AATTCTAGTC CAAGTGAGTT GGTTGATTCA 3601 AAGAGACAGC TGATGATGCT TAACTTGAAA AATAACGTGC AGATCTCCGA 3651 CAAGAAAGAT AGCTACCAAC AGTCCACATT TGATAACAAG GTTTGGTTTT 3701 TTTTCGTCCC AATTTTTGAA TATGTACGAT TTTCTTATTT ATTTTTTGGT 3751 TTTCATGTTA TTATATGAAT ATATACAATT TTGGGTGTAT AAAACTTTAT 3801 GATACAATTT TTAATTATTT TTATTTTGTT TTGGTTGTTG CTTGTAGAAG 3851 CTTAGGGTTT TGTGTGAGAA GGAATTGAAG AACAGCGATG TTGGGTCACT 3901 CGGGAGGATA GTTCTACCAA AGGTATGTGA ATTCTTAAAA TTCTTTTTAA
3951 TTTCTCGAAC CAATACTTGG TAAAAAATTC TGTTTGTTTT CATGATTTTT
4001 CTTCTTTTTC TGTTATTGTA TAATGATAAA TGAAATGCAT TGATGAAAAT 4051 GATAATCATC AATCACGTAC GTCATTGAAA ATTTAAAACA CAATCCCATA 4101 AAAAAATTCT TAGAAGAATA AAGTTATTTT ATGAGGATTA GACTTCCGTC 4151 ATTTTATACA AGAGATTTAT GGAACACAAG CACAAAAATC GTTGCGGCCA 4201 CATATTATCT CATTATTCAA TTTCACTGAG TTTTTCTTGC ACATTTCATT 4251 TTACTTTCAA ATTTTACATA ATATGTTTAT CTAACTGTTT TCTGTTTAAC 4301 CAATAAAAAG TTTTAAGTCT TTAAAATAAG TATCCACACG AAAACAAGAT 4351 GAATAAGAAA CATGAGAAGA AAATGTGGAC TGAAGTAAAG TTAGTTTAAT 4401 CAAATTTTGT TTGGTTTCTG TACGAACTTT TATGTTTTTG ATTTTTTATT 4451 TATTTAGCAA GTAGTATATG AATTAATTTA ATTTTTTATA GTTTTAAACT 4501 TGATTTTTTT AAAGATAGCT TATAATTATT GAATATATGG AATGCTACTT 4551 CTTCCTTCAA TGTTGTTATT TGTATTTGTT AAATTTGAAA TTGGGTTGAA 4601 GAAAATGAAA GGTCGTTTAT ATGCCTTTCC TAATTAATTG TCCATTGAAT 4651 GGTTTACCAC TTTACCTCGA AAAAGTGAAT AAATAAAAAT CATTAGGGAA 4701 AAAGATTCTA CATATCTTGG GGTTTTATCA AACTTTTAAT CAATTTTATT 4751 TTAATGATAT CGTTCTTATT TTTCTTAGCA AGACACTAAT ACGTGAATC 4801 TGGCTTTGGA ATGCAGAGAG ATGCAGAAGC AAATCTTCCG AAGCTATCTG 4851 ATAAAGAAGG AATCGTTGTA CAGATGAGAG ATGTTTTCTC TATGCAGTCT 4901 TGGTCTTTCA AATACAAGTA AATAATTCGC TTTCTAATCC ATTTTTCATT
4951 TCCCAATTAA CACAACCTTA ATTTTATGCT CAACTGTTAG TCCCTTTTTG
5001 TGTTACCGGT TCTCATACTT AGTTTTAAAT TTTGATTTTT TTTTATCAAT 5051 TGGGAACAGT ATTATAATTA GAAGACTAAA TGCTCGTATT AATGACATAG 5101 GTTTTGGTCC AATAACAAGA GCAGAATGTA TGTCCTCGAG AACACAGGTA 5151 AATTAAGGAG CTCCAATATT ATTTCAAAAG TACAAAATCT TATGTAAAAC 5201 TACTTTTAAA TAAATATGAT TTACCTTTTC CTTTTTTTTT GTGGTGATAA 5251 CTAAAGGAGA ATTTGTGAAG CAAAATGGAG CTGAGATAGG AGACTTTTTA 5301 AC ATATACG AGGACGAAAG CAAGAATCTC GTGAGCTCTC TATTTACTTC 5351 ATTTCCCTAT TTAATTTTGT AAAAAGACAT GAAAAAGTTA AAAAAAAATG 5401 ATTAATTAGT AGTCCAAAAT TGGAAATTTA AAAAGTGGTC TTTGAATTGA 5451 GTTTGTTAAG CATCCAGACA AAAGTTTTAA AACCTTTTTC TGTCAATGAT 5501 AACTGTTCTT ATATGGTAGG TATTAATAAC TTGTGGGCCT AGGGGGAAGT 5551 AAATACTATG GAGAAAATTT TATAATAATT GAAATTTGGT TAATTTAGAG 5601 TTTATAATAT GGTTTGATTT GGTTTGGTTA GGACTTATGA CTTATGTGTG 5651 TGTGTGTGAT CGCTTGTTCT TATTACAGTA CTTCGCCATG AATGGAAATT 5701 CGGGAAAACA AAATGAAGGA AGAGAAAATG AGTCGAGGGA AAGGAACCAC 5751 TACGAAGAGG CAATGCTTGA TTACATACCA AGAGACGAAG AGGAAGCTTC 5801 CATTGCAATG CTCATCGGAA ATCTAAACGA TCACTATCCC ATCCCTAACG 5851 ATCTCATGGA CCTCACCACT GACCTTCAGC ACCATCAAGC CACGTCCTCA
5901 ATGACACCTG AGGATCACGC GTACGTGGGT TCATCCGATG ATCAGGTGAG
5951 CTTTAACGAC TTTGAGTGGT GGTGATATGG TGGTGGAAGT TCTCAAGTTC
6001 ATAACCCCCT TATGAAAATA GACCTTAAGA TATACAAAAG AGATTAAAAG
6051 AAAAAAAAGT TAGTATATTT CATCATATCT CTCATTGAAG ATGAGATTTA
6101 TATCTATAAT TGTTTTATAT AGTGTTTTTA TTACTTTTCT ATCAATATAT
6151 TAAAGTTTTA ATTAATAAAA ACGATCATTT ATCTTCAGTA TAATTAGTTT
6201 TTAATTACAA ACAAAATTAT TCTGAGTTTT ATCACCCAGA AGAGATTATC
6251 GACATCTTGT TAGCAAAAAA CCATTAAAAA ACACATTAGC ACAATTAGAG 6301 ATATGGACTT TCGTCTTTCG GGATTTCCCA AATAGTTGAT ATTCCGTTAC
6351 AAATAATGGA ACGACATAGG TGCTGGATTG GTTATAACGT TCATAGCTAA 6401 CTTGTAAGAA TTGTCGAAAA CTTTTGAATT TGTTAAAAAA GAAAATGAC 6451 ATTAAAGTGT TTATAATATG TTACTAGTGT GAAATTATGT ATCAATTTTT 6501 TTTTGTTAAA AAAATCATTT TGTTTCTATT TAGAAATTTA ACGATAACTT 6551 GGGAACACTG CCTTGCCTTA CACGCGATGA AGGGTACTAT CGCCTACAAG 6601 TTTTCTTTTT TCATTTGTTT TTTGGTCGGC ACCTACAAGT TTTTCTAAAA 6651 AGGATGATGC ATAGTAGTCG CCGGTGGGTA ATACTAATAG CTTTTCTATC 6701 AGACAAAAAA ACATATGATT TTTGTTTTCT TATTTGCTAA TTAGAAAATC 6751 AAGATAAGTT AAGAGG
SEQ ID NO:2 LEC2 polypeptide DNF PFPSSNANSVQΞLSMDP mTRSHFTTVPTYDHHQAQPHHFLPPFS yPVEQMAAVMNPQPVYLSECYPQIPVTQTGSEFGSLVGMPCL QERGGFL DPRMTKIlARINR NAMMRSRIMSSPNSSPSEIiVDSKRQ MMLNLKlffirVQI SDKKDSYQQSTFDN KLRVLCEKE KNSDVGSLGRIVLPKRDAEA LPKL SDKEGIVVQ RDVFSMQSWSFKYKFWSN KSRMYVLEH'TGEFVKQN'GAEI GDFLTIYEDESKNLYFA NGNSGKQNΞGRENΞSRERNHYEEAMLDYIPRD EΞEASIAMLIGJMLNDHYPIPKTDLMDLTTDLQHHQATSS TPEDHAYVGSS DDQVSFNDFE
SEQ ID NO:3 LEC2 5 ' promoter
1 ATATATATAT ATATATATAT ATATATATAT CTTTGAGTTC ATGATTTTTT
51 TACAAGAAGA CTATATAGTT GGTGATATGT ACTCTCACAA CATTTTGTTA
101 AGAATTCTCC AAAAACTTAT ATGTCATCTT ACGAAAATTG TTAAACATCA
151 AACAGTCACA TTTGTAAAAA GCTAATTACA ACAACATTTA TTAACAGTTA
201 AAATATAAAT CTCTTAGGTA GCCCGGATTA AAACTCTTAA TTCAATTGTT
251 ACATATATAT TCGGGAGTAG TCCAAATTTT CTTCTAATCT AATATAATAA
301 AGTAATGCTA TTCTTAAGAA CAAGTTTTGA GAAACTGACA TGTAGATATA
351 GAACTCTAAA TATATTATCC TAAGAAGCTA TGGATTTACT AATTTCATCC
401 TATCCCTATG TGAATCCCTA AACTCAACGA GAGCATTACT AAGACATGAT
451 CATAGAAGCA TATATCATAT TTGAATAAAA TTACATAAAT AATTCAAAAG
501 ATTATAGAGT TTAGAAAGTA TTATTTTCTT TATAAGGTTT TGAAATCTCT
551 AAAGAATTCT TGAAAAATAG AAAACAAAAA GTAAAAGCTT GATAATTCTA
601 ACTATTGACC CAAAATATAT TAATAGGTTC TCAAAAACAT TTAGGAACAA
651 ATAATGCAAA TACAAAAATC TTATGGGACA ATTATGTAAT CTTCTAATTT 701 TTAAACTGGG AAGACTTTTG TTGGGATGCG AACGGTGTCT ATCGACATGT
751 CGATCGACAT TGATTACTTG ATCTGACACC AAATTCGTTT TTTCAGCCTT
801 TATTTTTCCG TTTGGTTCCA AAATACTTAA CGAACTCCAA ATATATTCGC
851 ATAAATAACC GAAAAGATTT TTAAAATAAC ATAGTAACTC TAAAAACAAT
901 ATCTATATCA TAAATAATAA CGGAAAATAA TCCATGATAT ATCAATTATA
951 ACTCAACCAA AGCCAACGAA CAAAAAACAT GAAGCAAAGC TACATATACT
1001 ACTAATGATA AGTCTAAATC GTCTTCGACA TATCTAACAA AACCAAAATA
1051 TATATACTTG GAAACAACTT CTTCACCCGG ACACAAATTT CTCAAAGCAA
1101 GTGTCAAAAA CTCTACGATA ATAACAAACA GAGTATATGT AGCTATGCAA
1151 TCCAAGGAGC TTTCCTCTTG TCTAAAAGTG TCATAATGGC GGACCGGTCG
1201 CAATCTTATG TAGCTCTACG CTACCCCTTT TGGCTACGGA AGGTGCTTGA
1251 AATTGATAAA TACATTACAT TGTTGTAATG ATTTTCTGTA GTTTGATTGC
1301 TTTTGTTTCC TCTTTGTAAT TGTGAACAAG TTGTTGTTAA TATCATGAAT
1351 CATTCAGACA GAAAAAAAAA AATAACAAAC AGAGAAAAAT CCCAAAAAAT
1401 AAGAAAATAT AGATGACGCT ACATCACTAT ATTTCCCCTA CCTCCTTAGT
1451 CTCGCTAGGA GTTACGAGTC GTGCGCCTCT TCCAGTATTT GCCATAATTA
1501 ACTGAGTGGG ATCTTTTTGT CCATCAACCC ATGCCTCTTC AATATTTTTT
1551 ACTAATCCAC CATTTCCTTC CATTGTTATT GATATATATG TTTCACCAAA
1601 TATACCTATA CAAAACTATA TTTCAAACTT ATAACGAACA AGAAAACGAG
1651 TTTTTCAAAA TTTCAGAGTT TATGGCCGAG AATAAACATG AGCTCGGCGG
1701 CCGCGGTTTA GAACAAAATT TGTGTCCATC TCCTCGCCAA ATGTAAGTTT
1751 CTGATAGAGC ATAACATTGG GTTGGGACGA AAAAGGAAAC CAATAAGATG
1801 ATAGAAATTG CTGGGTAATT GGAGGTGTTC TTAGGGCACG AGTTGAACAT
1851 GTTACCAAAC CTAATTCATG GTTAGAAATT TGGTGACAGT CAAGCTTATA
1901 TTATCTTTGA TAACTATGTT TCTAGTTGTT TCATTATTAG TATAGAAAAA
1951 ACTTTGTTTT GTAGAGTGTT CTATGGGTTA TGATTTCGAA AAGAAAAAAA
2001 TTGTGAGACA CCTAATAAAA TTATTTCGAC AAAAAAAATA GCTTGTATAA
2051 AAAAATCAGA TTTTAATTTA TGTTTGAACA AATTCCAATA GTTAAAAATA
2101 ATTATTTGTT CCGATTAATC GAGTTTTGCA AAATATGCAC AAAATCTATC
2151 ATCGTACCAT TTCTAAGACT ATATATTTGG TTATATATTT TATGCCGTGT
2201 TCTGATTCCA AAAATTTTTA GCGCATAGTA AATTTTCTAA AAAGCAAAAT
2251 TTTCTCAAAA GTGTACTAAT GACAATTAAT TGAGTTTCTA CAAAATAAGA
2301 ATAACTATTG ACTCGATTTT CACAAAATTA GTATGCTAAA TATCACATTA
2351 CTTTTAAAAT TAAATGGAAT TGTCTTTTTC AATATTGGAT ACGAATAATT
2 01 TTTACACTAA AGTTATTTTA ATAAAATAAC CGTTTATTCA AAATATGTAA
2451 AGACGACAAA AATATATATT AAATGGAAAA ACGACTAACT TAGTTTTTGC
2501 AAAATAAAAT GGATTTGTCC TTTTCAATGT TTGAATACAA AAAAAAATCT
2551 ATAATAAGTT TATTATATTA AAATAACCCG TTTTTTCAGA ATACGCAAAA
2601 ACGACAAAAA AATATTAATT ACAAAGAAAT TTAGTTTATA CAAAAATATG
2651 AATGGCTATT AATGGTGTTT ACTCTAAATT TAATTATTAT GCATTTATGC
2701 TAAATCTTTC TAAAGGTACA AAGATTCGTT TTTTCAATGT TTGAACTGCA 2751 TATTAAGGTA TAGATTTGGA CCTTAACAGA GTTAATATAT AAGGAAGAGA
2801 GCCAAGGAAC TCCAAAATAA AATAAAGAGC CTTCTCTCTC TCTCTCTGAG
2851 AAAAAACACA TATAGCCAAT GACCTTCTCG TGGTCTTCTG TGCCATAAAA
2901 GCCATTATAT ACATTCAAAC ACAATCTGGC GCCACATATA CACATGTACT
2951 AGTGTATGTA TATGTCCTAA CCTCTGTATT CATATCTCTC TCCTTGTCTG
3001 AGTGGTGCGA TGGGTATCCC CATAAGCTGC AAACATTGAA CCATCTGCAA 3051 CATTTTGACT CGTTTTCTTT TGTGTTTTTC CAACATCTGT CTCTTCTTCA 3101 CTCGCTCTCT CCTAATCAAT CTCCCCAACG ACCTCTCTTT TTTTTTGTTT 3151 CTTCACTCAG ATCTCTCTCC CTCTCTCTCT CTCTCTCCGG GAAAA
SEQ ID NO:4 LEC2 3 ' promoter
AATAAAA ACGATCATTT ATCTTCAGTA TAATTAGTTT TTAATTACAA ACAAAATTAT TCTGAGTTTT ATCACCCAGA AGAGATTATC GACATCTTGT TAGCAAAAAA CCATTAAAAA ACACATTAGC ACAATTAGAG ATATGGACTT TCGTCTTTCG GGATTTCCCA AATAGTTGAT ATTCCGTTAC AAATAATGGA ACGACATAGG TGCTGGATTG GTTATAACGT TCATAGCTAA CTTGTAAGAA TTGTCGAAAA CTTTTGAATT TGTTAAAAAA GAAAATGACA ATTAAAGTGT TTATAATATG TTACTAGTGT GAAATTATGT ATCAATTTTT TTTTGTTAAA AAAATCATTT TGTTTCTATT TAGAAATTTA ACGATAACTT GGGAACACTG CCTTGCCTTA CACGCGATGA AGGGTACTAT CGCCTACAAG TTTTCTTTTT TCATTTGTTT TTTGGTCGGC ACCTACAAGT TTTTCTAAAA AGGATGATGC ATAGTAGTCG CCGGTGGGTA ATACTAATAG CTTTTCTATC AGACAAAAAA ACATATGATT TTTGTTTTCT TATTTGCTAA TTAGAAAATC AAGATAAGTT AAGAGGCCTT GATTCCCTAA ACCCTAGCCC TCTAACGCTA GCCTAGATTC TAATCCAAGC CCAAAACTAT TACTAGTATA ACTCTGAGTA TATCCGAGCT CTTATAACTA TTGCCCATAC TCTATTTATA GCTAGCCCAA CAGAATTACT CAATACTCCA AACCCAATAG TCTAACCCTA CCTGGGATAC TACACTGATC AGTTAGCCCT GACAGAAACC AGTTGACAAA AATACCGAAC CTTCATAGAA CTGAAAATAA TAGAGATAAA AGGTTCATGC AATACGTAGG TTTGATTTAC AATCCGCTAT TGTAATTAGT TTTCAATCGT TTTTGTGAAA ATGAAACATG TAAGTTTATC AAATTCAACC TCTTATCAAA ACCTATTTAA TTTGAATAGA TAC
SEQ ID NO:5 LEC2 cDNA
ATGGATAACTTCTTACCCT
TTCCCTCTTC TAACGCAAAC TCTGTCCAAG AACTCTCTAT GGATCCTAAC AACAATCGCT CGCACTTCAC AACAGTCCCT ACTTATGATC ATCATCAGGC TCAGCCTCAT CACTTCTTGC CTCCGTTTTC ATACCCGGTG GAGCAGATGG CGGCGGTGAT GAATCCTCAG CCGGTTTACT TATCGGAGTG TTATCCTCAG ATCCCGGTTA CGCAAACCGG AAGTGAATTC GGTTCTCTGG TTGGTAATCC TTGTTTGTGG CAAGAGAGAG GTGGTTTTCT TGATCCGCGT ATGACGAAGA TGGCAAGGAT CAACAGGAAA AACGCCATGA TGAGATCAAG AAACAACTCT AGCCCTAATT CTAGTCCAAG TGAGTTGGTT GATTCAAAGA GACAGCTGAT GATGCTTAAC TTGAAAAATA ACGTGCAGAT CTCCGACAAG AAAGATAGCT ACCAACAGTC CACATTTGAT AACAAGAAGC TTAGGGTTTT GTGTGAGAAG GAATTGAAGA ACAGCGATGT TGGGTCACTC GGGAGGATAG TTCTACCAAA GAGAGATGCA GAAGCAAATC TTCCGAAGCT ATCTGATAAA GAAGGAATCG TTGTACAGAT GAGAGATGTT TTCTCTATGC AGTCTTGGTC TTTCAAATAC AAGTTTTGGT CCAATAACAA GAGCAGAATG TATGTCCTCG AGAACACAGG AGAATTTGTG AAGCAAAATG GAGCTGAGAT AGGAGACTTT TTAACAATAT ACGAGGACGA AAGCAAGAAT CTCTACTTCG CCATGAATGG AAATTCGGGA AAACAAAATG AAGGAAGAGA AAATGAGTCG AGGGAAAGGA ACCACTACGA AGAGGCAATG CTTGATTACA TACCAAGAGA CGAAGAGGAA GCTTCCATTG CAATGCTCAT CGGAAATCTA AACGATCACT ATCCCATCCC TAACGATCTC ATGGACCTCA CCACTGACCT TCAGCACCAT CAAGCCACGT CCTCAATGAC ACCTGAGGAT CACGCGTACG TGGGTTCATC CGATGATCAG GTGAGCTTTA ACGACTTTGA GTGGTGGTGA TATGGTGGTG GAAGTTCTCA AGTTCATAAC CCCCTTATGA AAATAGACCT TAAGATATAC AAAAGAGATT AAAAGAAAAA AAAGTTAGTA TATTTCATCA TATCTCTCAT TGAAGATGAG ATTTATATCT ATAATTGTTT TATATAGTGT TTTTATTACT TTTCTATCAA TATATTAAAG TTTTAATTAA AAAAAAAAAA AAAAAAA
SEQ ED NO: 6 LEC2 gene from translation start site to polyadenylation site
ATGGATAACTTCTTACCCTTTCCCTCTTCTAACGCAAACTCTGTC
CAAGAACTCTCTATGGATCCTAACAACAATCGCTCGCACTTCACAACAGTCCCTACTTAT
GATCATCATCAGGCTCAGCCTCATCACTTCTTGCCTCCGTTTTCATACCCGGTGGAGCAG
ATGGCGGCGGTGATGAATCCTCAGCCGGTTTACTTATCGGAGTGTTATCCTCAGATCCCG
GTTACGCAAACCGGAAGTGAATTCGGTTCTCTGGTTGGTAATCCTTGTTTGTGGCAAGAG
AGAGGTGGTTTTCTTGATCCGCGTATGACGAAGATGGCAAGGATCAACAGGAAAAACGCC
ATGATGAGATCAAGAAACAACTCTAGCCCTAATTCTAGTCCAAGTGAGTTGGTTGATTCA
AAGAGACAGCTGATGATGCTTAACTTGAAAAATAACGTGCAGATCTCCGACAAGAAAGAT
AGCTACCAACAGTCCACATTTGATAACAAGGTTTGGTTTTTTTTCGTCCCAATTTTTGAA
TATGTACGATTTTCTTATTTATTTTTTGGTTTTCATGTTATTATATGAATATATACAATT
TTGGGTGTATAAAACTTTATGATACAATTTTTAATTATTTTTATTTTGTTTTGGTTGTTG
CTTGTAGAAGCTTAGGGTTTTGTGTGAGAAGGAATTGAAGAACAGCGATGTTGGGTCACT
CGGGAGGATAGTTCTACCAAAGGTATGTGAATTCTTAAAATTCTTTTTAATTTCTCGAAC
CAATACTTGGTAAAAAATTCTGTTTGTTTTCATGATTTTTCTTCTTTTTCTGTTATTGTA
TAATGATAAATGAAATGCATTGATGAAAATGATAATCATCAATCACGTACGTCATTGAAA
ATTTAAAACACAATCCCATAAAAAAATTCTTAGAAGAATAAAGTTATTTTATGAGGATTA
GACTTCCGTCATTTTATACAAGAGATTTATGGAACACAAGCACAAAAATCGTTGCGGCCA
CATATTATCTCATTATTCAATTTCACTGAGTTTTTCTTGCACATTTCATTTTACTTTCAA ATTTTACATAATATGTTTATCTAACTGTTTTCTGTTTAACCAATAAAAAGTTTTAAGTCT TTAAAATAAGTATCCACACGAAAACAAGATGAATAAGAAACATGAGAAGAAAATGTGGAC TGAAGTAAAGTTAGTTTAATCAAATTTTGTTTGGTTTCTGTACGAACTTTTATGTTTTTG ATTTTTTATTTATTTAGCAAGTAGTATATGAATTAATTTAATTTTTTATAGTTTTAAACT TGATTTTTTTAAAGATAGCTTATAATTATTGAATATATGGAATGCTACTTCTTCCTTCAA TGTTGTTATTTGTATTTGTTAAATTTGAAATTGGGTTGAAGAAAATGAAAGGTCGTTTAT ATGCCTTTCCTAATTAATTGTCCATTGAATGGTTTACCACTTTACCTCGAAAAAGTGAAT AAATAAAAATCATTAGGGAAAAAGATTCTACATATCTTGGGGTTTTATCAAACTTTTAAT CAATTTTATTTTAATGATATCGTTCTTATTTTTCTTAGCAAGACACTAATACGTGAATCA TGGCTTTGGAATGCAGAGAGATGCAGAAGCAAATCTTCCGAAGCTATCTGATAAAGAAGG AATCGTTGTACAGATGAGAGATGTTTTCTCTATGCAGTCTTGGTCTTTCAAATACAAGTA AATAATTCGCTTTCTAATCCATTTTTCATTTCCCAATTAACACAACCTTAATTTTATGCT CAACTGTTAGTCCCTTTTTGTGTTACCGGTTCTCATACTTAGTTTTAAATTTTGATTTTT TTTTATCAATTGGGAACAGTATTATAATTAGAAGACTAAATGCTCGTATTAATGACATAG GTTTTGGTCCAATAACAAGAGCAGAATGTATGTCCTCGAGAACACAGGTAAATTAAGGAG CTCCAATATTATTTCAAAAGTACAAAATCTTATGTAAAACTACTTTTAAATAAATATGAT TTACCTTTTCCTTTTTTTTTGTGGTGATAACTAAAGGAGAATTTGTGAAGCAAAATGGAG CTGAGATAGGAGACTTTTTAACAATATACGAGGACGAAAGCAAGAATCTCGTGAGCTCTC TATTTACTTCATTTCCCTATTTAATTTTGTAAAAAGACATGAAAAAGTTAAAAAAAAATG ATTAATTAGTAGTCCAAAATTGGAAATTTAAAAAGTGGTCTTTGAATTGAGTTTGTTAAG CATCCAGACAAAAGTTTTAAAACCTTTTTCTGTCAATGATAACTGTTCTTATATGGTAGG TATTAATAACTTGTGGGCCTAGGGGGAAGTAAATACTATGGAGAAAATTTTATAATAATT GAAATTTGGTTAATTTAGAGTTTATAATATGGTTTGATTTGGTTTGGTTAGGACTTATGA CTTATGTGTGTGTGTGTGATCGCTTGTTCTTATTACAGTACTTCGCCATGAATGGAAATT CGGGAAAACAAAATGAAGGAAGAGAAAATGAGTCGAGGGAAAGGAACCACTACGAAGAGG CAATGCTTGATTACATACCAAGAGACGAAGAGGAAGCTTCCATTGCAATGCTCATCGGAA ATCTAAACGATCACTATCCCATCCCTAACGATCTCATGGACCTCACCACTGACCTTCAGC ACCATCAAGCCACGTCCTCAATGACACCTGAGGATCACGCGTACGTGGGTTCATCCGATG ATCAGGTGAGCTTTAACGACTTTGAGTGGTGGTGATATGGTGGTGGAAGTTCTCAAGTTC ATAACCCCCTTATGAAAATAGACCTTAAGATATACAAAAGAGATTAAAAGAAAAAAAAGT TAGTATATTTCATCATATCTCTCATTGAAGATGAGATTTATATCTATAATTGTTTTATAT AGTGTTTTTATTACTTTTCTATCAATATATTAAAGTTTTAATT

Claims (63)

  1. WHAT IS CLAIMED IS: 1. An isolated nucleic acid comprising a polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide exhibiting at least 65% sequence identity to SEQ ED NO:2, with the proviso that the nucleic acid is not bacterial artificial chromosome clone F3H9.
  2. 2. The isolated nucleic acid of claim 1 , wherein the polypeptide is SEQ ID NO:2.
  3. 3. The isolated nucleic acid of claim 1, wherein the polynucleotide sequence is SEQ ID NO: 1.
  4. 4. The isolated nucleic acid of claim 1, wherein the nucleic acid further comprises a promoter operably linked to the polynucleotide.
  5. 5. The isolated nucleic acid of claim 4, wherein the promoter is a constitutive promoter.
  6. 6. The isolated nucleic acid of claim 4, wherein the promoter is from a LEC2 gene.
  7. 7. The isolated nucleic acid of claim 6, wherein the promoter comprises a polynucleotide at least 70% identical to SEQ ID NO:3.
  8. 8. The isolated nucleic acid of claim 7, wherein the promoter comprises SEQ ID NO:3.
  9. 9. The isolated nucleic acid of claim 7, wherein the promoter further comprises a polynucleotide at least 70% identical to SEQ ID NO:4.
  10. 10. The isolated nucleic acid of claim 9, wherein the promoter comprises SEQ ID NO:4.
  11. 11. The isolated nucleic acid of claim 4, wherein the polynucleotide sequence is linked to the promoter in an antisense orientation.
  12. 12. An isolated nucleic acid molecule comprising a polynucleotide sequence exhibiting at least 65% sequence identity to SEQ TD NO: 1, with the proviso that the nucleic acid is not bacterial artificial chromosome clone F3H9.
  13. 13. An expression cassette comprising a promoter operably linked to a heterologous polynucleotide sequence, or a complement thereof, encoding a LEC2 polypeptide exhibiting at least 65% sequence identity to SEQ ID NO:2.
  14. 14. The expression cassette of claim 13, wherein the LEC2 polypeptide is SEQ ID NO: 2.
  15. 15. The expression cassette of claim 14, wherein the polynucleotide sequence is SEQ ID NO : 1.
  16. 16. The expression cassette of claim 13, wherein the promoter is a constitutive promoter.
  17. 17. The expression cassette of claim 13, wherein the promoter is from a LEC2 gene.
  18. 18. The expression cassette of claim 13, wherein the promoter comprises a polynucleotide at least 70% identical to SEQ ED NO:3.
  19. 19. The expression cassette of claim 18, wherein the promoter comprises SEQ ED NO:3.
  20. 20. The expression cassette of claim 18, wherein the promoter further comprises a polynucleotide at least 70% identical to SEQ ID NO:4.
  21. 21. The expression cassette of claim 20, wherein the promoter comprises a polynucleotide SEQ ID NO:4.
  22. 22. The expression cassette of claim 13, wherein the polynucleotide sequence is linked to the promoter in an antisense orientation.
  23. 23. An expression cassette for the expression of a heterologous polynucleotide in a plant cell, wherein the expression cassette comprises a promoter at least 70% identical to SEQ JJD NO: 3 and wherein the promoter is operably linked to a heterologous polynucleotide.
  24. 24. The expression cassette of claim 23, wherein the promoter comprises SEQ ID NO:3.
  25. 25. The expression cassette of claim 24, wherein the promoter further comprises a polynucleotide at least 70%> identical to SEQ ID NO:4.
  26. 26. The expression cassette of claim 23, wherein the promoter comprises SEQ ID NO:4.
  27. 27. A host cell comprising an exogenous polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide exhibiting at least 65% sequence identity to SEQ TD NO:2, with the proviso that the nucleic acid is not bacterial artificial chromosome clone F3H9.
  28. 28. The host cell of claim 27, wherein the polynucleotide further comprises a promoter operably linked to the polynucleotide sequence.
  29. 29. The host cell of claim 28, wherein the promoter is constitutive.
  30. 30. The host cell of claim 28, wherein the promoter comprises a polynucleotide at least 70% identical to SEQ ED NO : 3.
  31. 31. The host cell of claim 29, wherein the promoter comprises SEQ TD NO:3.
  32. 32. The host cell of claim 30, wherein the promoter further comprises a polynucleotide at least 70% identical to SEQ TD NO:4.
  33. 33. The host cell of claim 32, wherein the promoter comprises SEQ ID NO:4.
  34. 34. The host cell of claim 27, wherein the cell is a plant cell.
  35. 35. The host cell of claim 27, wherein the cell is a bacterial cell.
  36. 36. The host cell of claim 27, wherein the cell is a yeast cell.
  37. 37. The host cell of claim 27, wherein the cell is a fungal cell.
  38. 38. The host cell of claim 27, wherein the cell is a animal cell.
  39. 39. An isolated polypeptide comprising an amino acid sequence (a) at least 65% identical to SEQ ID NO:2; and (b) capable of exhibiting at least one of the biological activities of the polypeptide displayed in SEQ TD NO:2 or a fragment thereof.
  40. 40. An antibody capable of binding the isolated polypeptide of claim 39.
  41. 41. A method of introducing an isolated nucleic acid into a host cell comprising: (a) providing an isolated nucleic acid according to claim 1; and (b) contacting the nucleic acid with the host cell under conditions that permit insertion of the nucleic acid into the host cell.
  42. 42. A method of modulating transcription, the method comprising, introducing into a host cell an expression cassette comprising a promoter operably linked to a heterologous LEC2 polynucleotide, the heterologous LEC2 polynucleotide encoding a LEC2 polypeptide at least 65% identical to SEQ ID NO:2; and detecting a host cell with modulated transcription.
  43. 43. The method of claim 42, wherein the LEC2 polynucleotide encodes SEQ ID NO:2.
  44. 44. The method of claim 43, wherein the LEC2 polynucleotide is SEQ ID NO:l.
  45. 45. The method of claim 42, wherein the expression cassette is introduced by Agrobacterium.
  46. 46. The method of claim 42, wherein the expression cassette is introduced by a sexual cross.
  47. 47. The method of claim 42, wherein modulating transcription results in the induction of embyonic characteristics in a plant.
  48. 48. The method of claim 42, wherein modulating transcription results in the induction of seed development.
  49. 49. The method of claim 42, wherein the host cell is a plant cell.
  50. 50. The method of claim 42, wherein a plant is regenerated from the plant cell.
  51. 51. A method of detecting a nucleic acid in a sample, comprising (a) providing an isolated nucleic acid molecule according to claim 1 ; (b) contacting the isolated nucleic acid molecule with a sample under conditions which permit a comparison of the sequence of the isolated nucleic acid molecule with the sequence of DNA in the sample; and (c) analyzing the result of the comparison.
  52. 52. The method of claim 51 , wherein the isolated nucleic acid molecule and the sample are contacted under conditions which permit the formation of a duplex between complementary nucleic acid sequences.
  53. 53. A transgenic plant cell or transgenic plant comprising an exogenous polynucleotide sequence, or complement thereof, encoding a LEC2 polypeptide exhibiting at least 65%) sequence identity to SEQ TD NO:2.
  54. 54. The transgenic plant cell or transgenic plant of claim 53, wherein the LEC2 polypeptide is SEQ TD NO:2.
  55. 55. The transgenic plant cell or transgenic plant of claim 54, wherein the polynucleotide sequence is SEQ ID NO: 1.
  56. 56. The transgenic plant cell or transgenic plant of claim 53, wherein the nucleic acid further comprises a promoter operably linked to the polynucleotide sequence.
  57. 57. The transgenic plant cell or transgenic plant of claim 56, wherein the promoter is a constitutive promoter.
  58. 58. The transgenic plant cell or transgenic plant of claim 56, wherein the promoter comprises a nucleic acid at least 70% identical to SEQ ID NO:3.
  59. 59. The transgenic plant cell or transgenic plant of claim 58, wherein the promoter comprises SEQ ID NO:3.
  60. 60. The transgenic plant cell or transgenic plant of claim 58, wherein the promoter further comprises a polynucleotide at least 70% identical to SEQ TD NO:4.
  61. 61. The transgenic plant cell or transgenic plant of claim 60, wherein the promoter comprises SEQ ID NO:4.
  62. 62. The transgenic plant cell or transgenic plant of claim 53, wherein the polynucleotide sequence is linked to the promoter in an antisense orientation.
  63. 63. A plant which has been regenerated from a plant cell according to 53.
AU2001245729A 2000-03-16 2001-03-14 Leafy cotyledon2 genes and their uses Ceased AU2001245729B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/527,058 US6492577B1 (en) 2000-03-16 2000-03-16 Leafy cotyledon2 genes and their uses
US09/527,058 2000-03-16
PCT/US2001/008219 WO2001070777A2 (en) 2000-03-16 2001-03-14 Leafy cotyledon2 genes and their uses

Publications (2)

Publication Number Publication Date
AU2001245729A1 true AU2001245729A1 (en) 2001-12-13
AU2001245729B2 AU2001245729B2 (en) 2005-11-17

Family

ID=24099929

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2001245729A Ceased AU2001245729B2 (en) 2000-03-16 2001-03-14 Leafy cotyledon2 genes and their uses
AU4572901A Pending AU4572901A (en) 2000-03-16 2001-03-14 Leafy cotyledon2 genes and their uses

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU4572901A Pending AU4572901A (en) 2000-03-16 2001-03-14 Leafy cotyledon2 genes and their uses

Country Status (8)

Country Link
US (1) US6492577B1 (en)
EP (1) EP1263782B1 (en)
JP (1) JP2003528601A (en)
AU (2) AU2001245729B2 (en)
CA (1) CA2402380C (en)
DE (1) DE60125917T2 (en)
ES (1) ES2280352T3 (en)
WO (1) WO2001070777A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6983051B1 (en) * 1993-11-18 2006-01-03 Digimarc Corporation Methods for audio watermarking and decoding
US7138566B2 (en) 2002-06-21 2006-11-21 Regents Of The University Of California Methods of modulating cytokinin related processes in a plant using B3 domain proteins
MXPA05003003A (en) * 2002-09-17 2005-11-23 Ceres Inc Biological containment system.
US7476777B2 (en) * 2002-09-17 2009-01-13 Ceres, Inc. Biological containment system
ES2679282T3 (en) 2004-10-22 2018-08-23 Revivicor Inc. Transgenic pigs that lack endogenous immunoglobulin light chain
US8878002B2 (en) * 2005-12-09 2014-11-04 Council Of Scientific And Industrial Research Nucleic acids and methods for producing seeds with a full diploid complement of the maternal genome in the embryo
KR20080093100A (en) * 2005-12-15 2008-10-20 타게티드 그로스 인코퍼레이티드 Increased seed size and seed number through transgenic over expression of a growth and/or development related gene during early embryo development
BRPI0712398A2 (en) 2006-05-17 2012-10-16 Pioneer Hi-Bred International artificial plant minichromosome, maize plant, isolated polynucleotide, recombinant construct, transgenic maize plant and method for producing a transgenic maize plant comprising an artificial plant minicromosome having functional centromere
DK2348827T3 (en) 2008-10-27 2015-07-20 Revivicor Inc IMMUNICIPLY COMPROMATED PETS
BR122021003835B1 (en) 2008-11-18 2022-02-08 Grains Research And Development Corporation ISOLATED AND/OR EXOGENOUS POLYNUCLEOTIDE THAT DOES NOT OCCUR IN A NATURAL WAY, VECTOR COMPRISING SUCH POLYNUCLEOTIDE AND PRODUCTION METHOD OF OIL CONTAINING UNSATURATED FATTY ACIDS
US20100319086A1 (en) * 2008-12-31 2010-12-16 Pioneer Hi-Bred International, Inc. Leafy cotyledon 1 transcriptional activator (lec1) variant polynucleotides and polypeptides, compositions and methods of increasing oil content in plants
US20110099665A1 (en) * 2008-12-31 2011-04-28 Pioneer Hi-Bred International, Inc. Leafy cotyledon 1 transcriptional activator (lec1) variant polynucleotides and polypeptides compositions and methods of increasing transformation efficiency
US20100257639A1 (en) * 2009-02-26 2010-10-07 Robert Edward Bruccoleri Methods and compositions for altering sugar beet or root crop storage tissue
WO2013128883A1 (en) 2012-02-27 2013-09-06 三菱電機株式会社 Screen, optical element, and display device
NZ631702A (en) 2012-06-15 2017-01-27 Grains Res & Dev Corp Production of long chain polyunsaturated fatty acids in plant cells
WO2015196250A1 (en) 2014-06-27 2015-12-30 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
UA122768C2 (en) 2013-12-18 2021-01-06 Коммонвелз Сайнтіфік Енд Індастріал Рисерч Организейшн Lipid comprising long chain polyunsaturated fatty acids
CA3216668A1 (en) 2014-07-07 2016-01-14 Nuseed Global Innovation Ltd Processes for producing industrial products from plant lipids
EP3507370A4 (en) 2016-09-02 2020-06-24 Commonwealth Scientific and Industrial Research Organisation Plants with modified traits

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647697A1 (en) * 1996-11-08 1998-05-14 Inst Pflanzengenetik & Kultur Process for the genetic control of seed ripening in plants
AU732026B2 (en) 1997-02-21 2001-04-12 Regents Of The University Of California, The Leafy cotyledon1 genes and their uses

Similar Documents

Publication Publication Date Title
US6235975B1 (en) Leafy cotyledon1 genes and methods of modulating embryo development in transgenic plants
US6320102B1 (en) Leafy cotyledon1 genes and their uses
AU2007200683B2 (en) Control of fruit dehiscence in arabidopsis by indehiscent1 genes
AU2001245729B2 (en) Leafy cotyledon2 genes and their uses
US6781035B1 (en) Leafy cotyledon1 genes and their uses
US8704044B2 (en) Nucleic acids that encode ERS1 from maize and their uses
AU2001245729A1 (en) Leafy cotyledon2 genes and their uses
US7612253B2 (en) Methods of modulating cytokinin related processes in a plant using B3 domain proteins
AU2005264911A1 (en) Brassica INDEHISCENT1 sequences
AU2001241600B2 (en) Leafy cotyledon1 genes and their uses
AU2001241600A1 (en) Leafy cotyledon1 genes and their uses
US20050120417A1 (en) Control of fruit dehiscence in plants by indehiscent1 genes
US20090044291A1 (en) Drought-resistant plants and method for producing the plants
US6998517B1 (en) Control of fruit dehiscence in Arabidopsis by indehiscent1 genes
NZ582011A (en) Isolated polynucelotide encoding a non-ethylene binding ethylene receptor polypeptide
AU2001257024A1 (en) Control of fruit dehiscence in arabidopsis by indehiscent1 genes