NZ763104B2 - Catheter structures for reducing fluoroscopy usage during endovascular procedures - Google Patents
Catheter structures for reducing fluoroscopy usage during endovascular proceduresInfo
- Publication number
- NZ763104B2 NZ763104B2 NZ763104A NZ76310415A NZ763104B2 NZ 763104 B2 NZ763104 B2 NZ 763104B2 NZ 763104 A NZ763104 A NZ 763104A NZ 76310415 A NZ76310415 A NZ 76310415A NZ 763104 B2 NZ763104 B2 NZ 763104B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- catheter
- treatment area
- markings
- vasculature
- ruler
- Prior art date
Links
- 238000002594 fluoroscopy Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title description 24
- 210000005166 vasculature Anatomy 0.000 claims abstract description 60
- 238000005516 engineering process Methods 0.000 claims description 25
- 239000003814 drug Substances 0.000 claims description 6
- 229940079593 drug Drugs 0.000 claims description 6
- 239000003550 marker Substances 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 238000002399 angioplasty Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 3
- 238000013151 thrombectomy Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000013152 interventional procedure Methods 0.000 description 1
- 238000002608 intravascular ultrasound Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/062—Measuring instruments not otherwise provided for penetration depth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0097—Visible markings, e.g. indicia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M2025/0008—Catheters; Hollow probes having visible markings on its surface, i.e. visible to the naked eye, for any purpose, e.g. insertion depth markers, rotational markers or identification of type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M2025/0183—Rapid exchange or monorail catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1079—Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/104—Balloon catheters used for angioplasty
Abstract
There is provided herein apparatus for treating a treatment area in a vasculature of a patient. The apparatus comprises a guidewire including a first distal portion adapted for positioning at the treatment area and a first proximal portion including a first ruler thereon. The first ruler is perceptible by the clinician external to the vasculature without the use of fluoroscopy. The first ruler is adapted for measuring a distance from a first predetermined starting point on the guidewire. The apparatus also includes a catheter having a shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a second ruler thereon. The second ruler is perceptible by the clinician external to the vasculature without the use of fluoroscopy. The second ruler is adapted for measuring a distance from a second predetermined starting point on the catheter with an end of a balloon of the catheter being the second predetermined point. Optionally or alternatively, the apparatus may comprise first and second crossing catheters. There is also provided a device for treating a treatment area in the vasculature of a patient. The device comprises a crossing catheter having a shaft including a distal portion adapted for positioning at or near the treatment area and a proximal portion including a plurality of markings. The markings are visible external to the patient's body without the use of fluoroscopy. tible by the clinician external to the vasculature without the use of fluoroscopy. The first ruler is adapted for measuring a distance from a first predetermined starting point on the guidewire. The apparatus also includes a catheter having a shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a second ruler thereon. The second ruler is perceptible by the clinician external to the vasculature without the use of fluoroscopy. The second ruler is adapted for measuring a distance from a second predetermined starting point on the catheter with an end of a balloon of the catheter being the second predetermined point. Optionally or alternatively, the apparatus may comprise first and second crossing catheters. There is also provided a device for treating a treatment area in the vasculature of a patient. The device comprises a crossing catheter having a shaft including a distal portion adapted for positioning at or near the treatment area and a proximal portion including a plurality of markings. The markings are visible external to the patient's body without the use of fluoroscopy.
Description
CATHETER STRUCTURES FOR REDUCING FLUOROSCOPY USAGE DURING ENDOVASCULAR PROCEDURES Cross nce to Related Applications The present application is a divisional of New Zealand Patent Application No. 724237, U82015/ 023574 which is a national phase ation of PCT Application No. PCT/ filed on 31 March 2015, which claims priority to US. Provisional Patent Application Ser. Nos. 61/972,580 filed on 31 March 2014, and 62/083,745 filed on 2 November 2014, the disclosures of each of which are incorporated herein by reference.
Technical Field This disclosure relates generally to interventional medical procedures, such as lasty, and, more particularly, to a catheter structure with markings to reduce the usage of fluoroscopy during the procedure.
Background A clinician performing an endovascular procedure, such as angioplasty, will typically use fluoroscopy in the course of performing a diagnostic angiogram to assess the location of a treatment area (such as where a lesion or blockage is t in the vasculature). Upon gaining guidewire access to the vasculaturc using additional fluoroscopy, and then ing the catheter along the guidewire, the clinician will then typically use even more fluoroscopy, either continuously or ittently (e.g., "spot checking), in order to confirm the catheter has reached the location of the treatment area. As can be appreciated, this conventional approach increases the exposure of the t and others, ing the clinician and assistants, to fluoroscopy and, hence, radiation, which is generally desired to be avoided to the greatest extent le.
Accordingly, a need exists for a manner in which to on a catheter structure into the vasculature at a treatment area while reducing the amount or frequency of fluoroscopy used.
Summary It would be desirable to e a catheter structure, such as a balloon er, guidewire, or the like, with markings perceptible outside of the vasculature for use in determining at a location external to the body the position of the catheter structure relative to a treatment area.
One embodiment relates to an apparatus for use by a clinician in treating the ature.
The apparatus may include a er structure having a shaft including a first distal portion d for positioning at the treatment area and a proximal portion including a marking perceptible by the clinician external to the vasculature without the use of scopy, the marking being representative of a length from a pre—determined starting point on the catheter structure. Consequently, the markings may be used to position the er structure a distance in the vasculature corresponding to the length with minimal use of fluoroscopy.
The marking may comprise a plurality of regularly spaced marks or irregularly spaced marks. In one aspect, the marking may be printed on the catheter structure. The markings may comprise a plurality of first marks and at least one second mark different from the plurality of first marks. For example, the first marks may comprise spaced bands and the second mark may comprise an alphanumerical indicia. The marking may be provided adjacent a hub associated with the catheter ure. In a further aspect, the g may be luminescent, such as chemiluminescent or photoluminescent.
In a further aspect, the er structure may comprise a balloon adjacent to a tip including the pre-dctermined starting point. One or more radiopaque markings may be adjacent to the balloon.
The catheter structure may include a treatment element selected from the group consisting of a drug, a stent, a graft, a , a focused force wire, or any ation thereof.
Additionally, the catheter structure may comprise a guidewire, and may be d for slidably receiving the guidewire.
In another embodiment, an apparatus for treating a treatment area at an intravascular location in a body is disclosed. The apparatus may include a catheter including a shaft having a distal portion including a n and a proximal n including at least one marking arranged for being viewed at a reference point external to the body for identifying a distance from the treatment area to the reference point. The balloon may further include a treatment element selected from the group consisting of a stent, a graft, a cutter, a focused force wire, or any combination thereof.
Another embodiment relates to a method of ng a treatment area in a body. The method may se inserting a distal portion of a guidewire to the treatment area, determining a position of a first g on a proximal portion of the ire relative to a reference point, and inserting a catheter a distance corresponding to the first marking.
A further embodiment s to an apparatus for use by a clinician in ng the vasculature. The apparatus may include a catheter structure having a shaft including a first distal portion adapted for positioning at the treatment area and a al portion, and means external to the vasculature for determining a length from a pre-determined starting point on the catheter structure, whereby the determining means may be used to position the catheter structure a distance in the vasculature corresponding to the length with minimal use of fluoroscopy.
Another embodiment comprises a catheter including a ruler. A further ment comprises a guidewire including a ruler. A catheter comprising a ruler may be provided and/or used in combination with a guidewire comprising a ruler.
In another embodiment, a crossing er is provided including a plurality of markings for determining a ce of insertion into a patient’s ature. The plurality of markings may comprise a ruler.
An additional embodiment relates to a method of g a catheter structure. The method may comprise comprising providing a marking perceptible to a clinician on a first portion of the catheter structure external to the vasculature to provide a entation of an amount a second portion of the catheter structure has been inserted into the vasculature. The providing step may comprise printing the marking on the catheter structure. The providing step may further se providing a plurality of first marks and at least one second mark different from the plurality of first marks. The. first marks may comprise spaced bands and the second mark may comprise an alphanumerical indicia. in one aspect, the amount represents a total distance the second portion of the catheter structure has been inserted into the vasculature from a reference point external to the vasculature.
Any of the catheters and/or guidewires disclosed herein may be provided er in a kit for the treatment of a treatment area in a patient’s vasculature. For example, one embodiment relates to a kit for treating a treatment area in the vasculature. The kit may include a first crossing catheter having a first shaft including a first distal portion adapted for positioning at or near the ent area and a first proximal portion including a first marking at a first location, and a second catheter having a second shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a second marking at a second location substantially ng a first location of the first marking. The crossing catheter may be adapted for penetrating into or through an ion at the treatment area.
A further ment includes a kit for treating a treatment area in the vasculature. The kit may comprise a first crossing catheter having a first shaft including a first distal portion adapted for positioning at or near the treatment area and a first al portion including a first marking at a first location ponding to a first margin of the treatment area and a second marking at a second location corresponding to a second margin of the treatment area, as well as a second catheter having a second shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a third marking at a third location substantially matching the first location or the second location on the first, ng catheter. The second catheter may further include a fourth marking on the second al portion at a fourth on correSponding to the other of the first on or the second. location on the first, crossing catheter. The second catheter may also include a technology selected from the group consisting of an artherectomy logy, a thrombectomy technology, a PTA technology, a stent technology, and any combination of the foregoing.
In addition, a method of treating a treatment area in a body is disclosed. The method include inserting a crossing catheter to at least a proximal portion of the treatment area, determining a position of a first marking on the crossing er, and inserting a second catheter at least a distance corresponding to the first marking. The method may further include the steps of, after the determining step, inserting the crossing er to a distal portion of the treatment area, and determining a position of a second marking on the crossing catheter. The step of inserting the crossing catheter to the distal portion of the treatment area may comprise passing the crossing catheter through an occlusion. In one aspect, the crossing catheter may be adapted to penetrate into an occlusion or the occlusion at the treatment area. The crossing catheter may be adapted to apply energy for penetrating into the occlusion or the occlusion. For example, the crossing er may comprise a cutter, a vibrator, a source of light, a source of fluid, a nozzle, a rigid or tapered distal tip, or any combination ofthe foregoing.
A further embodiment s to a kit for treating a ent area in the vasculature of a patient. The kit of this embodiment may comprise a first crossing catheter having a first shaft including a first distal portion adapted for positioning at or near the treatment area and a first proximal portion including a first marking at a first location, and a second catheter having a second shaft including a second distal n adapted for positioning at the treatment area and a second proximal portion including a second marking at a second on substantially matching a first location of the first marking. Each of the first marking and the second marking may be visible external to the t’s body without the use of fiuoroscopy. In one aspect, the second distal portion of the second catheter comprises a balloon. The second catheter may comprise a treatment element selected from the group consisting of a drug, a stent, a graft, a cutter, a focused force wire, or any combination thereof. Furthermore, the crossing catheter may be adapted for penetrating into or through an occlusion at the treatment area.
Another embodiment relates to a kit for treating a treatment area in the vasculature, sing a first crossing catheter having a first shaft including a first distal portion d for positioning at or near the treatment area and a first proximal portion including a first marking at a first location corresponding to a first margin of the treatment area and a second marking at a second location corresponding to a second margin of the treatment area, and a second catheter having a second shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a third marking at a third location substantially matching the first on or the second location on the first, crossing catheter. The second catheter may further include a fourth marking on the second proximal portion at a fourth location corresponding to the other of the first location or the second location on the first, crossing catheter. In one aspect, the second catheter may include a technology selected from the group consisting of an artherectomy technology, a ectomy technology, a PTA technology, a stent technology, and any combination of the foregoing. In any of the above embodiments, the ng catheter may be d to penetrate into an occlusion or the ion at the treatment area. The crossing catheter may be d to apply energy for ating into an occlusion or the occlusion. In a further aspect, the ng catheter comprises a , a vibrator, a source of light, a source of fluid, a nozzle, a rigid or d distal tip, or any combination of the foregoing.
In still a further embodiment, a kit is disclosed for treating a treatment area in a vasculature of a t. The kit of this further embodiment may comprise a first crossing catheter having a first shaft including a first distal portion adapted for positioning at the treatment area and a first proximal portion including a plurality of first markings perceptible by the clinician external to the vasculature without the use of fluoroscopy, each of the plurality of first markings being representative of a length from a first predetermined starting point on the first crossing catheter, and a second catheter having a second shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a plurality of second markings perceptible by the clinician external to the vasculature without the use of fluoroscopy, each of the plurality of second markings being representative of a length from a second predetermined starting point of the second catheter, wherein a distance between the first predetermined starting point and each of the first markings corresponds to a distance between the second predetermined starting point and each of the second markings.
In this embodiment, the plurality of first gs may be Spaced at regular intervals from one another. Each of the first shaft and the second shaft may further e alphanumeric markings corresponding to each of the first markings and the second gs. At least one of the first markings or the second markings may be uminescent or photoluminescent. In one aspect, at least one of the first markings or the second markings comprises spaced bands.
The second catheter may comprise a balloon adjacent a tip including the second ' ermined starting point. In addition, a radiopaque marker may be adjacent the balloon.
In another embodiment, a kit for treating a treatment area in a vasculature of a patient is disclosed. The kit comprises a first crossing catheter having a first shaft including a first distal portion d for positioning at the treatment area and a first proximal portion including a first ruler thereon. The first ruler may be perceptible by the clinician external to the ature t the use of fluoroscopy for measuring a distance from a first predetermined starting point on the first crossing catheter. A second er-having a second shaft including a second distal portion adapted is for positioning at the treatment area and a second proximal portion including a second ruler thereon. The second ruler is also perceptible by the clinician external to the vasculature without the use of fluoroscopy for measuring a distance from a second predetermined starting point of the second catheter.
A further ment s to a kit for treating a ent area in a vasculature of a patient comprising a first crossing catheter having a first shaft including first means for measuring a plurality of first distances from a first predetermined point on the first shaft, and a second catheter having a second shaft including second means for ing a plurality of second distances from a second predetermined point on the second shaft, wherein the first means for measuring and the second means for measuring are are perceptible by the ian external to the vascuiature without the use of fluoroscopy (and may, for example, be non—radiopaque in nature), and wherein each of the plurality of first distances corresponds to at least one of the ity of second distances. The second catheter may comprise a balloon adjacent a distal end of the second shaft, and wherein the second predetermined point may be an end of the balloon.
The second catheter may further comprise a radiopaque marker adjacent the balloon.
An additional ment is a kit for treating a treatment area in a vasculature of a patient. The kit comprises a guidewire having a first distal portion d for positioning at or near the treatment area and a first proximal n including a ity of first markings perceptible by the clinician al to the vasculature t the use of fluoroscopy, each of the plurality of first markings being representative of a length from a first predetermined starting point on the catheter, and a catheter having a shaft including second distal portion adapted for positioning at the treatment area and a second proximal portion including a plurality of second markings perceptible by the clinician external to the vasculature without the use of fluoroscopy, each of the plurality of second markings being representative of a length from a second predetermined starting point of the second catheter, wherein a ce between the first predetermined starting point and each of the first markings corresponds to a distance between the second predetermined starting point and each of the second markings.
The catheter may comprise a balioon. In one aspect, the balloon may be located at a distal end of the catheter, and the second predetermined starting point may be located at a proximal end or a distal end of the balloon. in addition, a radiopaque marker may be nt the The kit may also be provided such that the catheter comprises a treatment element selected from the group consisting of a drug, a stent, a graft, a cutter, a d force wire, or combination thereof. The catheter may include a technology selected from the group consisting of an artherectomy technology, a thrombectomy technology, a PTA technology, a stent technoiogy, and any combination of the foregoing.
In one , the plurality of first markings are spaced at regular intervals from one another.
The guidewire and the catheter may r include alphanumeric markings corresponding to each of the first markings and the second markings. At least one of the first markings or the second markings may be chemiluminescent or photoluminescent. In another aspect, at least one of the first markings or the second markings may comprise spaced bands.
In one aspect of the invention there is provided, a kit for treating a treatment area in a vasculature of a patient comprises a guidewire including a first distal n adapted for positioning at the treatment area and a first proximal portion ing a first ruler thereon. The first ruler is perceptible by the clinician al to the vasculature without the use of fluoroscopy, and may be non-radiopaque. The first ruler is adapted for measuring a distance from a first predetermined starting point on the guidewire, and a er having a shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a second ruler n. The second ruler is perceptible by the clinician external to the vasculature without the use of fluoroscopy, such as for example, being non-radiopaque. The second ruler s adapted for measuring a distance from a second predetermined starting point of the catheter, wherein the er comprises a balloon adjacent a distal end of the er, and wherein the second predetermined point is an end of the balloon.
In another aspect of the invention there is provided, a kit for treating a treatment area in a vasculature of a patient, comprising: a first crossing catheter having a first shaft including a first distal portion d for positioning at the treatment area and a first proximal portion ing a plurality of first markings perceptible by the clinician external to the vasculature without the use of fluoroscopy, each of the ity of first markings being entative of a length from a first predetermined starting point on the first crossing catheter; and a second catheter having a second shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a plurality of second markings perceptible by the clinician external to the ature t the use of scopy, each of the plurality of second markings being representative of a length from a second predetermined starting point of the second catheter; wherein a distance between the first predetermined starting point and each of the first markings corresponds to a distance between the second predetermined starting point and each of the second markings, n the second catheter comprises a balloon adjacent a tip including the second predetermined starting point.
In another aspect of the invention, there is provided a kit for treating a ent area in a vasculature of a patient, comprising: a first crossing catheter having a first shaft including a first distal portion adapted for positioning at the treatment area and a first proximal portion including a first ruler thereon, 18348856_1 (GHMatters) P42146NZ01 said first ruler being perceptible by the clinician external to the vasculature without the use of fluoroscopy for measuring a distance from a first predetermined starting point on the first crossing catheter; and a second catheter having a second shaft including a second distal portion adapted for oning at the treatment area and a second proximal portion including a second ruler thereon, said second ruler perceptible by the clinician external to the vasculature t the use of fluoroscopy for measuring a ce from a second predetermined starting point of the second catheter, wherein the second catheter comprises a balloon adjacent a tip including the second predetermined starting point.
A still further embodiment s to a kit for treating a ent area in a vasculature of a patient. The kit comprises a guidewire including first means for measuring a plurality of first distances from a first predetermined point on the guidewire, and a catheter including second means for measuring a plurality of second distances from a second predetermined point on the catheter.
The first means for measuring and the second means for measuring may be non radiopaque in nature and are perceptible by the clinician external to the vasculature without the use of fluoroscopy. Each of the plurality of first distances may correspond (e.g., be equal to) at least one of the plurality of second distances. The catheter may comprise a balloon adjacent a distal end of the er, and the second predetermined point may be an end of the balloon. The catheter may further comprise a radiopaque marker adjacent the balloon.
In another embodiment, a device for treating a treatment area in the vasculature of a patient is disclosed, said device sing a crossing catheter having a shaft ing a distal portion adapted for positioning at or near the treatment area and a proximal portion including a plurality of gs, said markings being e external to the patient's body without the use of fluoroscopy.
In one aspect, the plurality of markings may comprise a first marking at a first location corresponding to a first margin of the ent area and a second marking at a second on corresponding to a second margin of the treatment area.
In another aspect, each of the plurality of markings may be representative of at least one known length from a predetermined starting point on the crossing catheter. These plurality of markings may be spaced at regular als from one another. The shaft may additionally include alphanumeric markings corresponding to each of the plurality of gs.
In any of the above embodiments, at least one of the markings may be uminescent or photo luminescent. Furthermore, at least one of the markings may comprise a spaced band.
In a further embodiment, a device for treating a treatment area in a vasculature of a patient is disclosed, said device comprising a crossing er having a shaft including a distal portion 18348856_1 (GHMatters) P42146NZ01 adapted for positioning at the treatment area and a proximal n including a ruler thereon, said ruler being perceptible by the clinician external to the vasculature without the use of fluoroscopy for measuring a distance from a predetermined starting point on the crossing catheter.
In any of the above embodiments, the crossing catheter may be adapted for penetrating into or through an occlusion at the treatment area.
In any of the above embodiments, a marking perceptible by the clinician external to the vasculature t the use of fluoroscopy may be a diopaque marking.
Brief Description of the Drawings Figure 1 is a perspective view of a catheter and balloon ing to an embodiment disclosed herein.
Figure 2 is a cross-section of the balloon of Figure 1 along line 2-2.
Figure 3 is a further perspective of a catheter and balloon according to an embodiment sed herein.
Figure 4 is an elevational view of a catheter and guidewire according to a r embodiment disclosed herein.
Figure 5 and Figure 6 show details of a catheter ure ing to an embodiment of the t disclosure.
Figure 7 shows details of a catheter structure according to a further embodiment of the present disclosure.
Figure 8 shows one way of using a catheter structure according to an embodiment of the present disclosure.
Figure 9 shows details of a catheter structure in the form of a guidewire according to another aspect of the disclosure. 18348856_1 (GHMatters) P42146NZ01 Figure 10 and Figure .11 show a way of using the guidewire of Figure 9 ing to an embodiment of the present disclosure.
Figure 12, Figure 13, and Figure 14 show one way of using a marked crossing catheter in combination with another er according to a further embodiment.
Detailed ption The ption provided below and in regard to the figures applies to all embodiments unless noted otherwise, and features common to each embodiment are similarly shown and numbered.
Provided is a catheter structure in the form of a tubular catheter 10 capable of being ed in some manner in order to provide a treatment. In this one example for purposes of illustration, the catheter 10 includes a distal portion ll with an actuatable element in the form of a balioon 12 mounted on a catheter tube 14. ing to Figures 1, 2, and 3, the balloon 12 has an intermediate section 16, or "barrel" having the working surface W, and end sections 18, 20.
In one embodiment, the end sections l8, 20 reduce in diameter to join the intermediate n 16 to the catheter tube 14 (and thus sections 18, 20 are generally termed cones or cone sections).
The balloon 12 is sealed to catheter tube 14 at balloon ends (proximal 15a and distal 15b) on the end sections 18, 20 to allow the inflation of the balloon 12 via one or more inflation iumens l7 extending within catheter tube 14 and communicating with the or of the balloon 12.
The catheter tube 14 also includes an elongated, tubular shaft 24 g a lumen 23 that directs another er structure, such as guidewire 26, through the catheter 10. As illustrated in Figure 3, this guidewire 26 may be inserted through a first port 25 of a connector 27, such as a hub, into the lumen 23 to achieve an "over the wire" (OTW) arrangement, but could also be provided in a "rapid ge" configuration in which the guidewire 26 enters the lumen through a lateral opening 14a closer to the distal end (see Figure 4). A second port 29 may also be associated with catheter 10, such as by way of connector 27, for introducing a fluid (cg, saline, a contrast agent, or both) into the interior of the balloon 12 via the inflation lumen 17.
Balloon 12 may include a single or multi-layered balloon wall 28. The balloon 12 may be a non-compliant balloon having a n wall 28 that maintains its size and shape in one or more directions when the balloon is inflated. The balloon 12 in such case also has a pre- determined surface area that remains constant during and after inflation, also has a pre- determined length and pre-determined circumference that each, or er, remain constant during and after on. However, the balloon 12 could be semi-compliant or compliant instead, depending on the particular use. The catheter to may also be adapted for use in connection with resolving chronic total occlusions or artherectomy, and thus may be provided with. a cutter or cutting element. The catheter 10 may also be used in connection with a drug, a cutting element, a stent, a graft, or like treatment.
In order to e an enhanced locatability during an interventional procedure while minimizing the use of fluoroscopy, the catheter 10 may be provided with a marking 30 perceptible along a portion external to the vasculature during the ure, such as on or along tube i4. As shown in Figure 5, the marking 30 may comprise a plurality of spaced marks 32, such as circular or partially circular (e.g., 1-359 degrees) bands surrounding the shaft 14 and positioned at predetermined intervals. These marks 32 may extend from nt the connector 27 to the proximal end 15a of the balloon 12, or any portion thereof (which is considered the "proximal portion" of the catheter 10, as contrasted with the distal n including the balloon The marks 32 may be evenly or unevenly spaced (e.g., the marks may get progressively closer along the length of the shaft 24). The marks 32 may be of a single color, such as for example black as shown in Figure 5, but as shown in Figure 6 may also be provided in different shades or colors. The marks 32 may also comprise hash lines with gradations identified by numbers, letters, or symbols and, thus, may effectively form a ruier. In any case, the marks 32 may be non-radiopaque or otherwise may not be adapted to fluoresce.
The marking 30 may also comprise a biocompatible chemiluminescent or photoluminescent material that may be easily viewed in the low light conditions often present during a procedure involving fluoroscopy. Alternatively or onally, the g 30 may be provided in a manner that allows for e perception, such as in the forms of notches, bumps, ridges, recesses, or like structures that can be counted even when not directly visible. In any case, the marking 30 may be orated ly into the material of the tube 14 or placed thereon (including possibly by using ng techniques).
A r embodiment is shown in Figure 7. In this embodiment, it can be understood that the g 30 is provided on the catheter 10 in the form of spaced marks 32, each of which represents a known distance from a pre-determined, fixed location on the catheter 10. In this one illustrated example, the fixed location is the distal tip P, which thus may be considered the starting point S in terms of the measured distance (but the starting point S could be located elsewhere on a structure connected to the catheter 10, such as at the balloon distal end 15b, along the body of the balloon 12, or at the balloon proximal end 15a, as non—limiting examples). Each mark 32 may then represent a fixed distance in from the starting point S, such as mark 32 at point D indicating a distance of 20 centimeters (which is simply an exemplary value). Point D+1 represents a further distance, such as 21 centimeters, in a known increment (which could be centimeters, but could also be millimeters, meters, inches, feet, etc. or portions thereof — the ular units are not considered to be important). The marks 32 may be provided up to a pre- determined end point B, such as D+75 from the starting point S, which in this case represents 95 centimeters (but again, may be any value depending on the desired scale, catheter length, procedure, etc.).
Optionally, the catheter 10 may also be provided with one or more ary markings 34 in the form of printed indicia representative of distance, such as in the form of alphanumeric characters. For example, between marking D+10 and marking DH 1 in the illustrated embodiment, the number "30" may be printed on the shaft as an indication of the distance from the zero point Z, which here is thirty centimeters (but again is simply an example). This allows the clinician to assess the value for nt marks 32 quickly, even when provided in a form that does not admit to being perceptable as a particular distance (e.g., a band). The use of characters (e.g., X = 10 cm, L z 50, C:100) is also possible to ine the distance, as is the use of a key in connection therewith (e.g., A210 cm, B350 cm, C=100 cm).
In use, and with reference to Figure 8, a catheter 100 ing the g 30 may be inserted in to a vessel V to a particular treatment area A, which is shown as comprising a lesion L but may take Other forms (e.g, a chronic total occlusion, or a location at which the application of a stent, graft, or the like, is desired). This may be done following an assessment of the location of the ent area, such as by performing a diagnostic angiogram. Inserting the catheter 100 may involve viewing the passing marks 32 during insertion through the introducer i, and either counting them or ng the insertion process when a known distance is reached. At the point where the marking 30 (such as mark 32’) corresponds to the intended distance of insertion, the ian is assured that the ent area A has been d by the distal portion of the catheter (especialiy when the tip P reflects the ng point S, in which case the known length of the lesion L and the known length of the balloon 12 or other treatment may be used to achieve proper positioning using simple math). Radiopaque markers, such as bands 102, may optionally be provided to aid in confirming the location using fluoroscopy, the use of which has otherwise been minimized as the result of using the marking 30 to position the er 100.
An alternative aspect of the disclosure is to provide a catheter structure in the form of a guidewire 200 with a marking 230, which may be along a portion external to the body during the procedure. As shown in Figure 9, the marking 230 may comprise a ity of spaced marks 232, such as bands. These marks 232 may extend from adjacent a distal end 200a of the ire 200 to a proximal end 200b, or any portion thereof.
The marks 232 may be evenly or unevenly spaced (e.g., the marks may get ssively closer along the length of the guidewire 200). The marks 232 may be of a single color, such as for example black, or may be provided in different shades or colors. The marks 232 may also comprise hash lines with gradations identified by numbers, letters, or symbols, and thus may effectively form a ruler. The marks 232 may be non-radiopaque or may otherwise not be visible under tluoroscopy.
The marking 230 may also comprise a biocompatible chemiluminescent or photoluminescent material that may be easily viewed in the low light conditions often present during a procedure involving fluoroscopy. atively or additionally, the marking 230 may be provided in a manner that allows for tactile engagement, such as in the forms of notches, bumps, ridges, recesses, or like structures that can be counted even when not ly visible. in any case, the marking 230 may be incorporated into the material of the guidewire 200 or placed thereon (including possibly by using printing techniques).
Each mark 232 may then represent a fixed distance in from the starting point 8, such as mark 232 at point B indicating a ce of 20 centimeters (which is simply an exemplary value). Point D+l represents a further distance, such as 21 centimeters, in a known increment (which could be centimeters, but could also be millimeters, meters, , feet, etc. or any divisions thereof — the particular units are not ered to be important). The marks 232 may be provided up to a pre-determined point D+75 from the ng point S, which in this case ents a distance of 95 centimeters (but again, may be any value depending on the desired scale, catheter , procedure, etc.).
In use, with reference to Figure 10, a guidewire 200 including the marking 230 may be inserted in to a vessel V to a particular location, such as adjacent to a treatment area A. This may include a lesion L, as shown, but as noted above may take other forms (e.g, a chronic total occlusion). Prior to the insertion, an assessment of the location of the treatment area, such as by performing a diagnostic angiogram, may be completed.
Inserting the guidewire 200 may involve viewing the passing marks 232 during insertion h the introducer I, and either counting them or ng the insertion process when a known distance is d (note references S as starting point, .D as a first mark, and E as the end point mark). At the point where the marking 230 (such as mark 232’) corresponds to the intended distance of insertion, the clinician is assured that the treatment area A has been reached.
In the case where the guidewire 200 includes at least partially radiopaque markers, the location may be confirmed using fluoroscopy, the use of which has otherwise been minimized as the result of using the marking 230 to position the guidewire 200 in the vasculature.
With knowledge of the ce to the treatment area A thus provided by the marking 230 on the ire 200, the clinician may choose an appropriate ent device, such as a catheter (including these examples mentioned here; see catheter 100 in Figure 1]) having a suitable length. The marking 230 may also then be used in positioning the catheter 100 at the treatment area A by using the marks 232 to determine the ion distance, such as with respect to a reference point F on the guidewire 200 and thereby potentially further reduce the amount of fluoroscopy required.
The technology disclosed herein may be applied to various types of catheters, without iimitation. For example, it may be applied to guide catheters, diagnostic catheters, IVUS catheters, OCT catheters, as well as all crossing or thrombeetomy catheters (including those using mechanical (e.g., rigid tips, cutters, etc.), laser, fluid, or vibration (energy to penetrate through blockages or occlusions). In one ular e, and with reference to Figure i2, such a crossing catheter 300 may be used to gain access to a desired treatment area A, such as by ating through an ion 0.
Using the marking 330 comprised of marks 332 (which may be the same form as marks 32 or 232) in connection with such a crossing er 300, the clinician may note a first mark (such as mark M) on the catheter 300 (such as external to the vasculature) ponding to the distance of ion of the catheter at the proximal end or margin X of the treatment area A (which may be relative to an external structure, such as a point on a sheath, introducer 1, or the like). Once the crossing catheter 300 is advanced to the end of the treatment area A, such as at the distal end or margin Y of the occlusion 0 (see Figure 13), a second mark 332 (such as mark N) on the crossing catheter 300 may be noted. The first and second marks M, N together thus define the length of the treatment area A, and can be measured external to the vasculature in for developing the treatment plan or otherwise.
Subsequently, a second catheter 400 with a marking 430 comprising corresponding or matching marks 432 (such as, for example, a cathether including artherectomy logy (e.g., any of orbital, rotational, laser, and directional devices), thrombectomy technology, PTA technology, stent technology, or any other technology) may be inserted the precise ce necessary to place the corresponding portion of the catheter 400 for providing the particular treatment at a on corresponding to the treatment area A. This may be achieved by noting the ve location of the corresponding marks (such as M, N, which as noted above may be color coded, specially ed or shaped, identified by an alphanumeric indicator (such as to form a ruler)) or ise indicated to correspond to the marks 332 on the crossing catheter 300). In the illustrated. embodiment, the technology is a PTA technology including treatment T in the form of an ble balloon and an ated guidewire 200 passing through the opening in the occlusion 0 formed using the crossing catheter 300, but as noted could take other forms.
As should be appreciated, this process can be done repeatedly using different types of catheters for different uses, but having matching marking technology, all without the prolonged use of fluoroscopy in order to ine whether the treatment area A has been reached and the associated time involvement. The overall length of the procedure may this be reduced, which is especially beneficial since patients requiring the most serious interventions (e.g., CTOs) are usually the least able to te lengthy procedures.
As can be further appreciated, the crossing catheter 300 and second catheter 400 may be ed as a kit. This arrangement would aid the clinician in assuring that the marks are precisely matched, which may of course be done during the manufacturing process.
While the disclosure presents certain embodiments to rate the inventive concepts, numerous ations, alterations, and changes to the described embodiments are possible without departing from the sphere and scope as defined in the appended claims.
, For example, any ranges and numerical values provided in the various embodiments are subject to ion due to tolerances, due to variations in environmental factors and material quality, and due to modifications of the ure and shape of the balloon, and thus can be considered to be approximate and the term "approximately" means that the relevant value can, at minimum, vary because of such factors. Also, the drawings, while illustrating the inventive concepts, are not to scale, and should not be limited to any particular sizes or dimensions. Accordingly, it is intended that the present disclosure not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and lents thereof.
Claims (13)
1. A kit for treating a treatment area in a vasculature of a pati ent, said kit comprising: a guidewire including a first distal portion adapted for positioning at the treatment area and a first proximal portion ing a first ruler thereon, said first ruler being perceptible by the clinician external to the vasculature without the use of fluoroscopy, said first ruler adapted for ing a distance from a first predetermined starting point on the ire; and a catheter having a shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a second ruler thereon, said second ruler being perceptible by the clinician external to the vasculature without the use of fluo roscopy, said second ruler adapted for measuring a distance from a second predetermined starting point on the catheter, wherein the catheter comprises a balloon adjacent a distal end of the catheter, wherein the second predetermined point is an end of the balloon.
2. The kit ing to claim 1, wherein the catheter further comprises a radiopaque marker adjacent the balloon .
3. The kit according to claim 1 or claim 2, n the catheter comprises a treatment element selected from the group ting of a drug, a stent, a graft, a cutter, a focused force wire, or any ation thereof.
4. The kit according to any one of the foregoing claims, wherein the er includes a technology selected from the group consisting of an artherectomy technolog y, athrombec tomy technology, a PTA technology, a stent techn ology , and any combination of the foregoing.
5. A kit for ng a treatment area in a vasculature of a t, comprising: a first ng catheter having a first shaft including a first distal portion adapted for positioning at the treatment area and a first proximal portion including a plurality of first markings perceptible by the clinician external to the vasculature without the use of fluoroscopy , each of the plurality of first markings being 18348856_1 (GHMatters) P42146NZ01 representative of a length from a first ermined starting point on the first crossing catheter; and a second catheter having a second shaft including a second distal portion adapted for positioning at the treatment area and a second proximal portion including a plurality of second markings perceptible by the ian external to the vasculature without the use of fluoroscopy , each of the plurality of second markings being representative of a length from a second ermined starting point of the second catheter; wherein a distance between the first predetermined starting point and each of the first markings ponds to a distance between the second predetermined starting point and each of the second g s wherein the second catheter comprises a balloon adjacent a tip including the second ermined starting point.
6. The kit according to claim 5, wherein the plurality of first markings are spaced at regular intervals from one ano ther.
7. The kit according to claim 5 or claim 6, wherein each of the first shaft and the sec ond shaft further include alphanumeric markings corresponding to each of the first markings and the second markings.
8. The kit according to any one of claims 5-7, wherein at least one of the first marking s or the second markings are chemiluminescent or photoluminescent.
9. The kit according to any one of claims 5-8, wherein at least one of the first marking s or the second markings comprises a spaced band.
10. The kit according to claim 5, further including a radiopaque marker adjacent the balloo n.
11. A kit for treating a ent area in a vasculature of a pati ent sing: a first crossing catheter having a first shaft including a first distal n adapted for positioning at the treatment area and a first proximal portion including a first ruler thereon, said first ruler being perceptible by the ian external to the vasculature without the use of fluoroscopy for measuring a distance from a first predetermined starting point on the first crossing catheter; and 18348856_1 (GHMatters) P42146NZ01 a second er having a second shaft including a second distal portion dapted for positioning at the treatment area and a second proximal portion including a second ruler thereon, said second ruler perceptible by the clinician external to the vasculature without the use of fluoroscopy for measuring a ce from a second predetermined starting point of the second catheter, wherein the second catheter comprises a balloon adjacent a tip ing the second predetermined starting point.
12. The kit according to any one of claims 5-11, wherein the second catheter comprises a ent t selected from the group consisting of a drug, a stent, a graft, a cutter, a focused force wire, or any combination thereof.
13. . The kit according to any one of claims 5-11, wherein the crossing catheter is adapted for penetrating into or through an occlusion at the treatment area. 18348856_1 (GHMatters) P42146NZ01 5&ch\.c... §§w§§§ \txuoxno‘wvawnfievx NKm,m u§kwv Nu» .
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461972580P | 2014-03-31 | 2014-03-31 | |
US61/972,580 | 2014-03-31 | ||
US201462083745P | 2014-11-24 | 2014-11-24 | |
US62/083,745 | 2014-11-24 | ||
NZ724237A NZ724237A (en) | 2014-03-31 | 2015-03-31 | Catheter structures for reducing fluoroscopy usage during endovascular procedures |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ763104A NZ763104A (en) | 2022-03-25 |
NZ763104B2 true NZ763104B2 (en) | 2022-06-28 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2021200515B2 (en) | Catheter structures for reducing fluoroscopy usage during endovascular procedures | |
AU2019271900B2 (en) | Catheter with markings to facilitate alignment | |
KR102143444B1 (en) | Balloon catheter with enhanced locatability | |
JP7462009B2 (en) | Catheter with movable indicator | |
NZ763104B2 (en) | Catheter structures for reducing fluoroscopy usage during endovascular procedures | |
US11922823B2 (en) | Demonstration apparatus for a medical device and related method |