Nothing Special   »   [go: up one dir, main page]

NZ728200B2 - Fire extinguisher with internal mixing and gas cartridge - Google Patents

Fire extinguisher with internal mixing and gas cartridge Download PDF

Info

Publication number
NZ728200B2
NZ728200B2 NZ728200A NZ72820015A NZ728200B2 NZ 728200 B2 NZ728200 B2 NZ 728200B2 NZ 728200 A NZ728200 A NZ 728200A NZ 72820015 A NZ72820015 A NZ 72820015A NZ 728200 B2 NZ728200 B2 NZ 728200B2
Authority
NZ
New Zealand
Prior art keywords
fire extinguisher
chamber
gas cartridge
gas
portable fire
Prior art date
Application number
NZ728200A
Other versions
NZ728200A (en
Inventor
Ryan H Barrows
Hector Rousseau
Randy Rousseau
Justun C Seymour
Original Assignee
Rusoh Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/313,761 external-priority patent/US10350443B2/en
Priority claimed from US14/704,820 external-priority patent/US9993673B2/en
Application filed by Rusoh Inc filed Critical Rusoh Inc
Priority to NZ757070A priority Critical patent/NZ757337B2/en
Priority to NZ757069A priority patent/NZ757069A/en
Publication of NZ728200A publication Critical patent/NZ728200A/en
Publication of NZ728200B2 publication Critical patent/NZ728200B2/en

Links

Abstract

portable fire extinguisher comprising a chamber 20 filled with fire suppressant material 90, a stationary replaceable inverted gas cartridge 50, an opening mechanism that allows for puncturing the gas cartridge, where the opening mechanism comprises a puncture pin 62 that is operably connected to a trigger mechanism 60 that moves the pin 62 to rupture an end of the gas cartridge 50 to expel liquefied gas directly into the chamber and when the liquefied gas enters the chamber the liquefied gas converts into gas to pressurize the chamber to push the fire suppressant material from the chamber, a tamper lock that blocks activation of the opening mechanism and identifies when the tamper lock has been articulated and a passage for expelling the fire suppressant material from the chamber. The lock includes a safety knob 72 that has a first position that restricts the trigger 60 from moving, and a second position where the trigger 60 is operable. This allows checking whether the extinguisher has been operated. a trigger mechanism 60 that moves the pin 62 to rupture an end of the gas cartridge 50 to expel liquefied gas directly into the chamber and when the liquefied gas enters the chamber the liquefied gas converts into gas to pressurize the chamber to push the fire suppressant material from the chamber, a tamper lock that blocks activation of the opening mechanism and identifies when the tamper lock has been articulated and a passage for expelling the fire suppressant material from the chamber. The lock includes a safety knob 72 that has a first position that restricts the trigger 60 from moving, and a second position where the trigger 60 is operable. This allows checking whether the extinguisher has been operated.

Description

MARKED- UP COPY INVENTION TITLE FIRE EXTINGUISHER WITH INTERNAL MIXING AND GAS CARTRIDGE CROSS REFERENCE TO RELATED APPLICATIONS [Para 1] This application is a national phase of international patent application that claims priority from US application 14/704,820 filed on May 5, 2015 and US application 14/313,761 filed June 24, 2014 the entire contents of which is hereby expressly incorporated by reference herein.
MARKED- UP COPY TECHNICAL FIELD [Para 2] This invention relates to improvements in portable fire extinguishers. More particularly, the present invention relates to a fire extinguisher that uses a replaceable gas cartridge that provides a propellant to push fire extinguishing media outside of the fire extinguisher.
MARKED- UP COPY BACKGROUND ART [Para 3] Most portable fire extinguishers are of a similar design where the fire extinguishing powder is contained in a continuously pressurized chamber.
Fire extinguishers of this type require scheduled maintenance by trained and certified technicians with certification issued by the fire marshal for each state.
This maintenance involves discharging, cleaning, and refilling the extinguisher. If not done periodically, the powder within the chamber becomes compacted and/or the pressure within the chamber may leak and be insufficient to propel the powder out of the dispensing nozzle. If maintenance is not done correctly, moisture absorption by the extinguishing powder will cause caking and block the dispensing nozzle. The aforementioned conditions would prevent the proper dispensing of extinguishing powder when needed.
[Para 4] Current extinguishers are open to wear and tear because of the constant pressure and tear down process. When serviced they are discharged into a recycling chamber and all the parts must be disassembled and cleaned. All the pressure rings must be replaced and every part must then be re-assembled with new powder being placed within the chamber prior to pressurizing the chamber.
The servicing of current fire extinguishers often creates more wear and tear on the fire extinguisher than when it is used to extinguish a fire.
[Para 5] U.S. Patent Number 6,189,624 issued to James on February 20, 2001 and Japan Patent Number JP 9,225,056 issued to Yamazaki Tomoki on September 2, 1997 discloses fire extinguishing mechanisms where the chamber is not continuously pressurized, and the pressurized cartridge is a separate entity MARKED- UP COPY integrated within the chamber. While these patents disclose a separate pressurized cartridge, the cartridge is not located in a position that is easy to service, replace, or inspect. This minimizes the ability to determine the charge level of the pressurized cartridge.
[Para 6] U.S. Patent Number 2,541,554 ("US ‘551") issued to C H Smith on February 13, 1951 and Russian Patent Number RU 2,209,101 ("RU ‘101") issued to Glavatski G. D. Et Al. November 2, 2002 discloses a fire extinguisher with an external CO gas cartridge. In the case of US ‘554 the CO gas cartridge sits on top of the fire extinguisher chamber and is not integrated within the handle of the fire extinguisher. In the case of RU ’101 the CO gas cartridge is external to the extinguisher and is connected to the extinguisher with a pipe or hose. While both of these patents disclose a CO cartridge that is external to the chamber, neither of them is placed in the handle to allow a configuration of the fire extinguisher that is simple to inspect and replace.
[Para 7] U.S. Patent Number 7,128,163 issued on November 21, 2006, U.S.
Patent Number 7,318,484 issued on January 15, 2008 and U.S. Patent Number 7,793,737 issued September 14, 2010, all to Hector Rousseau disclose a fire extinguisher with a gas cartridge in the handle and a fluffing mechanism. While these patents have similar features, the gas cartridge is oriented to discharge vertically upwards. When gas is discharged from a cartridge containing compressed liquefied gas, such as CO , evaporation must occur from the contained liquid in order to maintain thermodynamic equilibrium with the cartridge. Heat is required to drive the evaporation, and if the available heat from MARKED- UP COPY the surrounding cartridge environment is insufficient, the compressed liquefied gas temperature and pressure will drop. For CO , if the pressure drops below 75 psig, liquid CO will solidify into dry ice. Since cartridge-style fire extinguishers are usually used immediately after puncturing the cartridge, any dry ice formed will not have time to absorb enough heat to phase change into gas and contribute to the effective discharge of the fire extinguisher. This effect is magnified at low environmental temperatures, where existing commercial cartridge-style fire extinguishers have been measured to waste 40% by mass of the CO charge when conditioned at -40 C. However, even though this gas is unused during typical discharge, the extinguisher must be structurally designed based on the full pressurizing gas load, leading to less than optimal designs. In addition, based on the unique properties of CO , torturous paths between the fire extinguisher main chamber and the cartridge must be avoided to minimize the risk of blocking the flow path with dry ice or freezing valves due to resulting low temperatures from CO expansion.
[Para 8] Due to the pressurized condition that exists with pressurized fire extinguishers, the opening where powder is placed into the extinguisher is limited due to the structural requirement to maintain pressure within the chamber at all times. The proposed application eliminates this need by providing an external gas cartridge, thus allowing the chamber to exist in a normally un-pressurized condition. Because the chamber is not under pressure the top opening of the extinguisher can be enlarged to allow easier filling of the fire extinguisher with powder, or checking the amount and or condition of the powder within the chamber.
MARKED- UP COPY [Para 9] What is needed is a fire extinguisher with a replaceable gas cartridge where the gas cartridge is oriented to discharge only liquid propellant into the body of the extinguisher and the fire extinguisher further has a fluffer that is accessible from outside the chamber, and the chamber has an enlarged top opening for filling the extinguisher. The proposed fire extinguisher provides this solution by providing a fire extinguisher with an external gas cartridge oriented to discharge downward, external mechanism to actuate an internal fluffer, and a large opening. By discharging the compressed liquefied gas downward, liquid is discharged into the fire extinguisher, and as such, the cartridge does not need to absorb nearly as much heat to drive the necessary evaporation to maintain temperature and pressure within the cartridge above the triple point, and thus, solidification of the propellant is avoided. For compressed liquefied CO , this concept has been experimentally demonstrated to discharge nearly 100% of the CO from the cartridge, even with the fire extinguisher preconditioned to -40 C.
MARKED- UP COPY DISCLOSURE OF THE INVENTION [Para 9a] A portable fire extinguisher comprising: a chamber filled with fire suppressant material; a stationary replaceable inverted gas cartridge; an opening mechanism that allows for puncturing said inverted gas cartridge, wherein the opening mechanism comprises a puncture pin that is operably connected to a trigger mechanism that moves the puncture pin to rupture an end of said replaceable inverted gas cartridge to expel liquefied gas directly into the chamber and when the liquefied gas enters the chamber the liquefied gas converts into gas to pressurize the chamber to push the fire suppressant material from said chamber; a tamper lock that blocks activation of said opening mechanism and identifies when said tamper lock has been articulated with or without operation of the said opening mechanism; and a passage for expelling said fire suppressant material from said chamber, wherein the tamper lock includes a safety knob that has a first position that restricts said trigger mechanism from moving to lock said opening mechanism; and wherein the safety knob can be articulated to a second position where movement of said trigger mechanism is not restricted by the safety knob to unlock said opening mechanism.
[Para 9b] A portable fire extinguisher comprising: a chamber filled with fire suppressant material; a stationary replaceable gas cartridge; an opening mechanism that allows for opening said stationary replaceable gas cartridge; a tamper mechanism that must be disturbed to allow operation of said opening mechanism; said tamper mechanism indicates that said tamper mechanism has been disturbed with or without operation of said opening mechanism; when said MARKED- UP COPY stationary replaceable gas cartridge is opened by operation of said opening mechanism, liquefied gas from within said stationary replaceable gas cartridge enters from said stationary replaceable gas cartridge directly into said chamber filled with fire suppressant material; when said liquefied gas enters said chamber, said liquefied gas converts into gas and pushes said fire suppressant material into an exit passage connected between said chamber to an exit port, and said exit passage has a valve that is separate from said opening mechanism to control flow of said fire suppressant material out of said exit port.
[Para 10] In some examples, it is desirable for a fire extinguisher to eliminate the need for service personnel to enter secure areas. The extinguisher can have a higher level of service; can be operated by automatic "self-service" and or manually serviced by the owner or end user. This eliminates the need for non- employees to enter the privacy of business and government areas. This extinguisher can be operated, maintained, refilled, and charged with minimal training and without need for custom equipment.
[Para 11] The reduced outside servicing and maintenance of the fire extinguisher is ideal for placement of the fire extinguisher in secure areas. This will reduce or eliminate the possibility that a terrorist could utilize the fire extinguisher as a weapon, or use false identity as an extinguisher service person to gain access to a secure area.
[Para 12] In some examples, it is desirable for a fire extinguisher to provide a fire extinguisher with an external gas cartridge. The inverted external gas cartridge allows the liquid within the gas cartridge to vent directly into the fire MARKED- UP COPY extinguisher. Well accepted gas cartridges, such as CO or nitrogen cartridges, that are used in other applications can be adapted to operate with the fire extinguisher. Since the gas cartridge is external to the chamber it can be easily replaced or swapped without replacing the entire fire extinguisher. This provides a tremendous benefit when a large number of fire extinguishers need to be serviced at one time.
[Para 13] In some examples, it is desirable for a fire extinguisher to have an optional externally accessible fluffing mechanism. The size, structure and necessity of the fluffing mechanism can be based upon the size of the fire extinguisher. The externally accessible fluffing mechanism promotes anti- bridging of the powder within the chamber to keep it fluffed, agitated, stirred or disturbed to prevent caking of the powder and keep the powder in a liquefied state to ensure proper discharge onto a fire. The fluffing is accomplished with paddles, flapper, chains rods or other mixing mechanisms located within the chamber. The mixing mechanism is accessed by a connection on the top, bottom or side of the chamber and can be either manually operated or operated with a tool of some type.
[Para 14] In some examples, it is desirable for a fire extinguisher to provide a fire extinguisher with an enlarged filling opening. The enlarged filling opening makes it easier and faster to fill and or empty the chamber. The top can also be easily removed to visually inspect the condition of the powder within the chamber.
[Para 15] In some examples, it is desirable for a fire extinguisher to provide a quick opening and closing top housing thereby allowing a user to quickly open MARKED- UP COPY and refill the fire extinguisher. This also allows a fire fighter the load the desired fire extinguishing media based upon the type of fire.
[Para 16] Various objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.
MARKED- UP COPY BRIEF DESCRIPTION OF THE DRAWING(S) [Para 17] shows a perspective view of the fire extinguisher.
[Para 18] shows a cross-sectional view of the fire extinguisher.
[Para 19] shows a detailed view of the dispensing valve.
[Para 20] shows a sectional view of the head of the fire extinguisher.
[Para 21] , 5B and 5C show stages of removing the safety device prior to discharging the fire extinguisher.
[Para 22] shows a detailed view of the pressurized gas cartridge puncturing mechanism.
[Para 23] shows a detail cross-sectional view of the puncture pin.
[Para 24] shows a graph of the amount of Dry Ice that is generated based upon the orientation of the pressurized gas.
[Para 25] shows the fluffing and siphon tube.
[Para 26] shows a detail of the multiple siphon intake holes and the fluffing arm.
MARKED- UP COPY BEST MODE FOR CARRYING OUT THE INVENTION [Para 27] shows an exterior perspective view of the fire extinguisher 19. The fire extinguisher 19 is substantially a cylindrical shape with a bottom housing 20 and top housing 30. In the preferred embodiment the bottom housing 20 and top housing 30 is made from a lightweight resilient material such as plastic, but could also be made of other materials, including steel, brass, copper or aluminum. The bottom housing 20 may further be fabricated from a transparent material to allow for visual inspection within the fire extinguisher 19.
The top housing 30 is screwed onto the bottom housing 20, but it could also be attached with a bayonet or latching mechanism. The bottom housing 20 has an enlarged opening to allow easier filling of the bottom housing 20 with fire suppressant materials. A wall hanging mechanism can be incorporated into the top housing 30 of the fire extinguisher 19, or could wrap around the body of the bottom housing 20, or could fork the top housing 30 of the fire extinguisher 19.
[Para 28] With reference to & 2, a handle 40 allows the operator to hold the fire extinguisher 19 by placing a hand through the grip area 41. This allows the fire extinguisher 19 to be held in an upright orientation when it is being transported or used. The fire extinguisher 19 can also be stored and or transported in the upright orientation, but the upright orientation is not critical for the storage or operation of the fire extinguisher 19. Partially within the handle 40 and top housing 30 a replaceable pressurized gas cartridge 50 is located under a transparent portion 42 of handle 40. The transparent portion 42 provides the ability to verify that the pressurized gas cartridge 50 is installed MARKED- UP COPY within the fire extinguisher 19. While in the preferred embodiment the pressurized gas cartridge 50 is shown partially within the handle 40 and top housing 30 other locations are contemplated.
[Para 29] The replaceable pressurized gas cartridge 50 consists essentially of a compressed gas cartridge of CO , but cartridges of different types of gas are possible that do not promote spreading of a fire. Because the gas within the cartridge is under high pressure and possibly in a liquid state, a small cartridge of propellant is required to expel the internal fire suppressant material 99 of the fire extinguisher 19. It is also contemplated that multiple gas cartridges can be used to accommodate a larger fire extinguisher without deviating from the inventive nature of the design. Pressurized gas cartridges are available and can be replaced or serviced without the need to service the entire fire extinguisher 19. The handle 40 and its transparent portion 42 provides protection to the pressurized gas cartridge 50 in the event the fire extinguisher 19 is dropped or roughly handled.
A trigger mechanism 60 activates the pressurized gas cartridge 50 to pressurize the chamber 22 and expel the fire suppressant material 99 into and out of the hose 81 and exit port 90.
[Para 30] While some figures in this document show and describe a flexible hose 81, some contemplated embodiments may include a duct, hollow passage or nozzle 97 where the fire extinguishing media passes from the body of the fire extinguisher out of the nozzle 97 to extinguish a fire. A control valve lever 92 opens and closes the exit port 90 or to prevent fire suppressant material 99 from pouring out of the extinguisher when the chamber is pressurized. When a nozzle MARKED- UP COPY 97 is used, a control valve can be located near the nozzle to control the flow of fire extinguishing media out of the fire extinguisher. The puncturing mechanism of the pressurized gas cartridge and the path from the gas cartridge 50 into the chamber 22 is shown and described in figure 2.
[Para 31] shows a cross-sectional view of fire extinguisher 19. An operator can place their hand or glove through the grip area 41 of the handle 40 to carry, transport or use the fire extinguisher 19 with either hand. Fire suppressant material 99 is placed into chamber 22 within the bottom housing 20 through an enlarged cylindrical opening 70 when the top housing 30 is disengaged from the bottom housing 20. Over time the fire suppressant material 99 will become compressed and compacted in the bottom of the chamber 22.
When the fire suppressant material 99 is compacted, risk of improper discharge increases. Within the fire extinguisher 19 a plurality of fluffing arms 120 are arranged on a central shaft 110. A fluffing wheel 100 can be accessed from the underside of the fire extinguisher 19. Rotating the fluffing wheel 100 will re-fluff the fire suppressant material 99 to minimize risk of improper discharge of suppressant material 99 from the fire extinguisher 19. Turning the fluffing wheel 100 will provide similar loosening of the fire suppressant material 99 as might be found in a food mixer.
[Para 32] Polycarbonate is a cost effective candidate for providing a transparent bottom housing 20, however when polycarbonate is in contact with ammonia gas that is the main constituent of ABC dry chemical, material degradation will occur, especially at elevated temperatures, there is a need to MARKED- UP COPY isolate or protect the polycarbonate from direct exposure. When using polycarbonate material, the interior of the bottom housing 20 is preferably coated with a transparent protection coating 21 with a Siloxane base, or equivalent. This coating 21 improves chemical and abrasion resistance as well as provides UV protection. The coating 21 can be applied in any number of methods to isolate the polycarbonate exposure to Monoammonium phosphate and any emitted ammonia gas. The coating 21 would provide necessary chemical resistance whereas the polycarbonate bottom housing 20 would provide necessary strength and impact resistance.
[Para 33] In another contemplated embodiment, construct the bottom housing 20 as a transparent cylinder from two separate cylinders where the inner cylinder 21 is inserted into the outer cylinder 23 of bottom housing 20. This could be accomplished by insert molding a transparent inner cylinder of tritan, acrylic, san or an equivalently performing other material into the polycarbonate outer cylinder 23. The outer cylinder 23 of would be polycarbonate, and would serve to provide the assembly with necessary strength and impact resistance, whereas, the inner cylinder 21 would provide the necessary chemical resistance to Monoammonium phosphate. For these embodiments the strength of the inner cylinder 21 could be sufficient to ensure safe operation in the event outer cylinder 23 of bottom housing 20 is damaged from a severe environment or impact.
[Para 34] To expel fire suppressant material 99 from within the fire extinguisher 19 an operator must puncture the pressurized gas cartridge 50. The pressurized gas cartridge 50 is secured by threads 52 or otherwise secured into MARKED- UP COPY the top housing of the fire extinguisher 19. Within the top housing 30 a replaceable pressurized gas cartridge 50 is located under a transparent portion 42 of handle 40. The handle 40 and its transparent portion 42 provides protection to the pressurized gas cartridge 50 in the event of the fire extinguisher being dropped, and also allows the operator to verify that the pressurized gas cartridge 50 is installed within the fire extinguisher 19. To puncture the pressurized gas cartridge 50 the operator lowers or rotates the trigger mechanism 60 that pushes the puncture pin 62 into the pressurized gas cartridge 50. Details of the trigger mechanism 60 and the puncture pin 62 is shown and described in more detail in figures 6 and 7. Once the pressurized gas cartridge 50 is punctured the gas and or liquid will be forced into the chamber 22.
[Para 35] When liquefied gas is discharged from pressurized gas cartridge 50, evaporation must occur from the contained liquid in order to maintain thermodynamic equilibrium within the pressurized gas cartridge 50. To maintain thermodynamic equilibrium heat is required to drive the evaporation. If the available heat from the surrounding cartridge environment is insufficient the compressed liquefied gas temperature and pressure will drop. For liquefied CO , if the pressure drops below 75 psig, the liquid CO will solidify into dry ice. If dry ice forms, the dry ice will not have time to absorb enough of the surrounding thermal mass to heat the dry ice to change phase into gas and contribute to the effective discharge of the fire extinguisher 19.
[Para 36] The forming of dry ice is exacerbated in low temperatures. Testing agencies such as UL, CSA, and others require operation of a fire extinguisher at MARKED- UP COPY temperatures down to -40°C (-40°F). If a pressurized gas cartridge with CO is oriented with the discharge port vertical in an upright position (i.e., with threads 52 in the upper position), testing has shown that up to 40% of the CO (by mass) can remain in the form of dry ice after completion of the fire extinguishers’ discharge. When the pressurized gas cartridge 50 contains CO and is oriented in an inverted orientation (i.e., with threads 52 in the lower position), the cartridge does not need to absorb nearly as much heat to evaporate the liquid CO from the pressurized gas cartridge 50 to maintain temperature and pressure above the triple point, and thus, creation of dry ice within the cartridge 50 is avoided. This concept has been experimentally demonstrated to discharge nearly 100% of the CO from the cartridge, even with the fire extinguisher preconditioned to -40°C (- 40°F). Once the CO enters the chamber 22, there is sufficient heat and surface area in the comparatively large volume to rapidly convert liquid CO into gaseous CO .
[Para 37] The mixture of fire suppressant material 99 and gas are pushed through the central shaft 110 and then through the flow path 80 in the top housing 30 where they are pushed through hose 81 to a manually operable valve 95 and are expelled out of the exit port 90. The central shaft 110 has an integral siphon tube 112 where fire suppressant material 99 is pushed into multiple holes in the bottom of the central shaft 110 through integral siphon tube 112. The dispensing nozzle 96 has a valve 95 that is operated with a control rod 94 to open and close the valve 95. The control rod 94 holds the valve 95 closed with a spring 93. An operator depresses the control valve lever 92 to overcome the MARKED- UP COPY spring 93 and opens the valve 95. The dispensing nozzle 96 can be operated by either hand. This is shown and described in more detail in figure 3.
[Para 38] shows a detailed view of the dispensing nozzle 96. This view shows a portion of the handle 40 and the grip area 41. The top housing 30 includes a flow path 80 from within the fire extinguisher 19, through the top housing 30. With the valve 95 in the closed position, the fire extinguisher 19 can remain in a pressurized condition after the pressurized gas cartridge 50 has been punctured. In this "primed" condition all of the pressure and fire suppressant material 99 within the fire extinguisher 19 is controlled by the valve 95. The dispensing nozzle 96 has a valve 95 that is connected to a control rod 94. The control rod 94 is pulled back to permit flow from the hose 81 to the exit port 90.
[Para 39] An operator can hold dispensing nozzle 96 of the fire extinguisher 19 in one hand and operate the lever 92 with the same hand. The operator can then direct the dispensing nozzle 96 at the fire. When the lever 92 is depressed, the lever will press against spring 93 and slide the control rod 94 to open the valve 95. When the valve 95 is opened fire suppressant material 99 will flow out of the exit port 90. When the lever 92 is released the spring 93 will close the valve 95 to prevent further dispensing of fire suppressant material 99. This will retain pressure within the chamber 22 of fire extinguisher 19.
[Para 40] shows a sectional view of the top housing 30 of the fire extinguisher 19. The handle 40 allows the operator to hold the fire extinguisher 19 by placing a hand through the grip area 41. Trigger mechanism 60 is connected to a lift plate 55 that lifts the puncture pin 62 into the sealed end of MARKED- UP COPY the pressurized gas cartridge 50 under the transparent portion 42 of handle 40.
The pressurized gas cartridge 50 is secured by threads 52 or otherwise secured into the top housing 30. Detail of the trigger mechanism 60 and the puncture pin 62 is shown and described in more detail in figures 5 and 6. When cartridge 50 is filled with compressed liquid CO , the flow path between the pressurized gas cartridge 50 and the inside of the fire extinguisher 19 must be as smooth as possible to limit the risk of dry ice forming that can block or restrict the flow path. The bottom housing 20 is shown connected to the top housing 30. When valve 95 is opened, static pressure from CO or compressed gas from the gas cartridge 50 pushes the fire suppressant material 99 down into the openings of central shaft 110 and up through integral siphon tube 112 and then through the flow path 80 to the hose 81. If seals 109 leak with respect to top housing 30, gas from gas cartridge 50 will bypass suppressant material 99 and travel directly into flow path 80 and eventually out valve 95, leading to reduced range and discharge amount of suppressant material 99. To ensure proper assembly of seals 109 to top housing 30, guide features of the top housing 30 capture central shaft 110 during installation of bottom housing 20 to top housing 30.
[Para 41] , 5B and 5C show stages of repositioning the safety knob 72 prior to discharging the fire extinguisher 19. The initial stage at 5A is how the fire extinguisher 19 will exist prior to activation. In this position the safety knob 72 restricts the trigger mechanism 60 from moving. The safety knob 72 is essentially rectangular thereby locking or blocking the trigger mechanism 60 in one orientation and allowing the sides of the trigger mechanism 60 to pass by the safety knob 72 when the safety knob 72 is rotated 90 degrees. The opposing MARKED- UP COPY vertical sides of the trigger mechanism 60 are secured with flange portions 76 of safety knob 72. To allow for activation, safety knob 72 is rotated 68. Safety knob 72 can be operated by either hand.
[Para 42] In figure 5B the safety knob 72 is shown in the vertical orientation to allow the trigger mechanism 60 to pass by the sides of the safety knob 72. When the safety knob 72 is rotated, the rotation causes internal pins 74 to shear and release or eject the tamper indicator 73. The release of the tamper indicator 73 identifies that the fire extinguisher 19 may have been discharged and requires service inspection. Also, when the safety knob 72 is in the vertical orientation, access to the gas cartridge 50 by opening transparent portion 42 of handle 40 has been blocked. The design prevents the insertion of a new pressurized gas cartridge 50 without the trigger mechanism 60 returned to an upright and locked orientation to prevent puncturing the new pressurized gas cartridge 50 upon insertion.
[Para 43] In figure 5C an operator can then pull or push the trigger mechanism 60 downward 69 to where the trigger mechanism 60 is shown in a lower position 67 (as dashed lines). When the trigger mechanism 60 is rotated from the upper to the lower position 67 the puncture pin 62 is pushed into and punctures the pressurized gas cartridge 50. The trigger mechanism 60 can be operated by either hand.
[Para 44] shows a detailed view of the pressurized gas cartridge 50 puncturing mechanism. The pressurized gas cartridge 50 is secured by threads 52 into a retainer 56 within the top housing 30. The pressurized gas cartridge 50 MARKED- UP COPY and the threaded retainer 56 remain stationary as the end of the pressurized gas cartridge 50 is punctured. From this figure, one set of fasteners and duplicate parts has been removed for viewing. The trigger mechanism 60 pivots through an axis 58 to increase the mechanical advantage to puncture the end of the pressurized gas cartridge 50. The free ends of the trigger mechanism 60 are connected to lift rods 53 and return springs 54 that maintain the trigger mechanism 60 in a normal condition where the puncture pin 62 is not in contact with the end of the pressurized gas cartridge 50. Lift rods 53 (only one shown) are connected together and operate in unison to lift the lift plate 55 in a parallel relationship to raise the puncture pin 62 in a linear motion.
[Para 45] shows a detail cross-sectional view of the puncture pin 62.
The puncture pin 62 has a pointed end 61 to puncture the seal on the end of the pressurized gas cartridge 50. A partially hollowed center 65 allows gas or liquid CO to pass from the pressurized gas cartridge 50 into the chamber 22 of the fire extinguisher 19 even when pin 62 is held in the puncturing position within gas cartridge 50. The puncture pin 62 has a taper 66 to increase the size of the hole as the pin is inserted into the pressurized gas cartridge 50 and the taper 66 provides draft for the pin to readily eject from cartridge 50 via force applies by springs 54. One end of the puncture pin 62 has assembly feature 64 where the puncture pin 62 is retained onto the lift plate 55. An enlarged shank 63 supports the puncture pin 62 between the assembly feature 64 and the partially hollowed center 65. Since the puncture pin 62 is rigidly supported, inadvertent puncturing of gas cartridge 50 during drop event or rough usage is avoided.
MARKED- UP COPY [Para 46] Fire extinguishers generally require approval from regulatory agencies such as Underwriters Laboratory (UL). For most fire extinguishers the housing is pressurized. The fire extinguisher disclosed in this document uses a separate pressurized cartridge 50 that is filled with liquefied gas that must exit the cartridge 50 and expand into the bottom housing 20.
[Para 47] For cartridge-operated extinguishers an interval of 5 seconds is able to elapse after the cartridge is punctured in order that pressure builds up before discharge of the agent is initiated. An extinguisher shall have duration of discharge not less than either 8 seconds, or the minimum duration specified in the Standard for Rating and Fire Testing of Fire Extinguishers.
[Para 48] When the charged extinguisher is held in a vertical position, with the discharge nozzle in the horizontal position. The extinguisher then is to be discharged, and the duration to gas point and amount of dry chemical discharged recorded.
[Para 49] Based upon the ambient temperature and the orientation of the gas canister, different amounts of dry ice (solid CO ) is retained within a CO cartridge when discharged vertically upward; conversely, a minimum amount of dry ice was retained when discharged vertically downward.
[Para 50] shows a graph of the amount of Dry Ice that is generated based upon the orientation of the pressurized gas. The graph shows the amount of Dry Ice at the temperatures of 70°F 45 and -40°F 46. At 70°F nearly all orientation positions show that very little Dry Ice is generated. At -40°F the amount of Dry Ice can go from a high of over 40% when the cartridge is in a MARKED- UP COPY vertical orientation 47, or about 15% when the cartridge 48 is in a horizontal 48 to almost 0% when the cartridge 50 is inverted 49. The inverted cartridge 50 pushes liquid CO2 out of the cartridge 50 as the liquid within the CO2 cartridge 50 of the lighter weight vaporized gas pushes the heavier liquid within the CO2 out of the opening of the cartridge 50 as the cartridge is engaged 52 into the fire extinguisher 19.
[Para 51] These results were measured when pressurized liquid CO cartridges were conditioned at either 70°F or -40°F and then discharged in various orientations. Dry ice remaining within the cartridges was measured 30 seconds after puncturing the cartridge.
[Para 52] shows the fluffing arms 120 and integral siphon tube 112. In this preferred embodiment the fluffing arms 120 and integral siphon tube 112 are fabricated as a single unit around a central shaft 110. While this embodiment shows a siphon tube 112 with fluffing arms or blades 120, some embodiments are contemplated that may not incorporated the fluffing arms or blades 120. The inclusion of the fluffing arms or blades 120 is generally dictated by the capacity and rating of the fire extinguisher. The bottom cap 111 of the central shaft 110 fits into the bottom of the fire extinguisher 19. Seals around the bottom cap 111 prevent pressurized gas from passing out of the bottom of the fire extinguisher 19. Seals 109 on the upper end of the central shaft 110 prevent bypass of pressurized gas directly into flow path 80 and eventually out valve 95, leading to reduced range and discharge amount of suppressant material 99. The seals 109 and the seals around the bottom cap 111 allow for the central shaft 110 to be MARKED- UP COPY rotated within the fire extinguisher 19. To aide in manufacturing, bottom cap 111, integral siphon tube 112, and/or fluffing arms 120 may be separate parts or combined in any efficient manner.
[Para 53] The integral siphon tube 112 is constructed with an elongated tube member 119 having the blades 120 molded with the elongated tube. A bottom cap 111 is secured to the elongated tube 119 by ultrasonic welding or the like.
[Para 54] Because the pressurized gas cartridge 50 is inverted, essentially only liquefied gas exits and expands into gas within the fire extinguisher 19 therefore essentially all of the gas within the cartridge is expelled. Because the liquid / gas is expelled at a rapid rate a pressure wave 113 traveling nearly the speed of sound pushes onto the top of the fluffing arms 120. A gusset 116 supports the fluffing arm 120 and prevents the fluffing arm 120 from being sheared off by the pressure wave. In a short period of time, pressure within the fire extinguisher 19 stabilizes. Once valve 95 is opened, the static pressure within chamber 22 pushes the fire suppressant material 99 toward at least one intake hole 114 in the bottom of the central shaft 110 shown in the other figures herein.
[Para 55] shows a detail of the multiple intake holes 114 and the fluffing arm(s) 120. The fluffing arms 120 are narrow, crowned, staggered, and tapered 115 to minimize turning resistance while maximizing mixing of packed fire suppressant material 99 and flow of pressurized suppressant material 99 during discharge. Holes 117 in the fluffing arms 120 allow fire suppressant material 99 to pass around the fluffing arms 120 and the support gusset 116.
The pressure wave 113 of liquefied gas is shown pushing down on the arm 120.
MARKED- UP COPY The bottom of the central shaft 110 shows the multiple intake holes 114 where the fire suppressant material 99 is pushed or siphoned into the intake holes 114 and through the integral siphon tube 112 where they can exit the fire extinguisher 19 through the hose 81 and dispensing nozzle 96. The bottom seals exist in recesses in the bottom cap 111 of the central shaft 110. The lower portion 118 of the bottom cap 111 is configured with a head for external gripping with a wheel that allows the central shaft 110 to be rotated externally. In this embodiment the drive is shaped like a "+", but other shapes are contemplated that will provide essentially equivalent capability.
[Para 56] Thus, specific embodiments of a portable fire extinguisher have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims.
MARKED- UP COPY INDUSTRIAL APPLICABILITY [Para 57] The industrial applicability relates to fire extinguishers.
MARKED- UP COPY

Claims (22)

CLAIM
1.[Claim 1] A portable fire extinguisher comprising: a chamber filled with fire suppressant material; a stationary replaceable inverted gas cartridge; an opening mechanism that allows for puncturing said inverted gas cartridge, wherein the opening mechanism comprises a puncture pin that is operably connected to a trigger mechanism that moves the puncture pin to rupture an end of said replaceable inverted gas cartridge to expel liquefied gas directly into the chamber and when the liquefied gas enters the chamber the liquefied gas converts into gas to pressurize the chamber to push the fire suppressant material from said chamber; a tamper lock that blocks activation of said opening mechanism and identifies when said tamper lock has been articulated with or without operation of the said opening mechanism; and a passage for expelling said fire suppressant material from said chamber, wherein the tamper lock includes a safety knob that has a first position that restricts said trigger mechanism from moving to lock said opening mechanism; wherein the safety knob can be articulated to a second position where movement of said trigger mechanism is not restricted by the safety knob to unlock said opening mechanism. MARKED- UP COPY
2.[Claim 2] The portable fire extinguisher according to claim 1 wherein said replaceable inverted gas cartridge is oriented to expel gas in a liquefied state into said chamber of the fire extinguisher.
3.[Claim 3] The portable fire extinguisher according to claim 2 wherein said liquefied gas vaporizes within said chamber.
4.[Claim 4] The portable fire extinguisher according to either claim 2 or 3 further including fluffing blades that when said fluffing blades are moved, said fluffing blades disturb caking of said fire suppressant material.
5.[Claim 5] The portable fire extinguisher according to claim 4 wherein said fluffing blades further includes a hollow siphon tube for said fire suppressant material to enter into said hollow siphon tube and out of said portable fire extinguisher.
6.[Claim 6] The portable fire extinguisher according to claim 5 wherein said hollow siphon tube connects with a rotary seal.
7.[Claim 7] The portable fire extinguisher according to claim 6 wherein said hollow siphon tube is fabricated from at least two parts having a first part that is an elongated hollow tube, and at least a second part being an end cap.
8.[Claim 8] The portable fire extinguisher according to any one of claims 4 to 7 wherein the gas in the liquefied state vaporizes within said chamber to create a pressure wave and said fluffing blade is shaped to resist said pressure wave. MARKED- UP COPY
9.[Claim 9] The portable fire extinguisher according to any one of the preceding claims wherein said safety knob includes a rotatable knob that can be rotated from the first position to the second position.
10.[Claim 10] The portable fire extinguisher according to any one of the preceding claims wherein said tamper lock includes a tamper indicator that breaks upon disturbing said tamper lock.
11.[Claim 11] The portable fire extinguisher according to any one of the preceding claims wherein in the first position said replaceable inverted gas cartridge can be accessed, and in the second position access to said replaceable inverted gas cartridge is blocked.
12.[Claim 12] The portable fire extinguisher according to any one of the preceding claims wherein said tamper lock and / or said trigger mechanism is symmetric for use with either hand of an operator.
13.[Claim 13] A portable fire extinguisher comprising: a chamber filled with fire suppressant material; a stationary replaceable gas cartridge; an opening mechanism that allows for opening said stationary replaceable gas cartridge; a tamper mechanism that must be disturbed to allow operation of said opening mechanism; MARKED- UP COPY said tamper mechanism indicates that said tamper mechanism has been disturbed with or without operation of said opening mechanism; when said stationary replaceable gas cartridge is opened by operation of said opening mechanism, liquefied gas from within said stationary replaceable gas cartridge enters from said stationary replaceable gas cartridge directly into said chamber filled with fire suppressant material; when said liquefied gas enters said chamber, said liquefied gas converts into gas and pushes said fire suppressant material into an exit passage connected between said chamber to an exit port, and said exit passage has a valve that is separate from said opening mechanism to control flow of said fire suppressant material out of said exit port.
14.[Claim 14] The portable fire extinguisher according to claim 13 wherein said replaceable gas cartridge is provided in an enclosing cover that is accessible from an exterior of the chamber, but does not enclose said chamber.
15.[Claim 15] The portable fire extinguisher according to claim 14 wherein said enclosing cover is transparent thereby allowing for visual inspection regarding the presence of said stationary replaceable gas cartridge within said portable fire extinguisher.
16.[Claim 16] The portable fire extinguisher according to either claim 14 or 15 wherein said enclosing cover further has a cover lock.
17.[Claim 17] The portable fire extinguisher according to any one of claims 13 to 16 wherein said stationary replaceable gas cartridge is retained within a top MARKED- UP COPY housing of said portable fire extinguisher with a downward facing seal that is within said chamber.
18.[Claim 18] The portable fire extinguisher according to any one of claims 13 to 17 wherein said stationary replaceable gas cartridge exists essentially within an interior of said fire extinguisher.
19.[Claim 19] The portable fire extinguisher according to any one of claims 13 to 18 wherein said tamper mechanism includes a separate rotational knob mechanism.
20.[Claim 20] The portable fire extinguisher according to claim 19 wherein rotating said separate rotational knob mechanism is separate from said opening mechanism that opens said stationary replaceable gas cartridge.
21.[Claim 21] The portable fire extinguisher according to any one of claims 13 to 20 wherein said tamper mechanism is destructively altered from said tampering.
22.[Claim 22] The portable fire extinguisher according to any one of claims 13 to 21 further including a siphon tube fabricated from at least two parts having a first part that is an elongated hollow tube, and at least a second part being an end cap.
NZ728200A 2014-06-24 2015-06-22 Fire extinguisher with internal mixing and gas cartridge NZ728200B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NZ757070A NZ757337B2 (en) 2014-06-24 2015-06-22 Fire extinguisher with internal mixing and gas cartridge
NZ757069A NZ757069A (en) 2014-06-24 2015-06-22 Fire extinguisher with internal mixing and gas cartridge

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14/313,761 US10350443B2 (en) 2005-11-04 2014-06-24 Fire extinguisher with internal mixing and external gas cartridge
US14/313,761 2014-06-24
US14/704,820 2015-05-05
US14/704,820 US9993673B2 (en) 2014-06-24 2015-05-05 Fire extinguisher with internal mixing and gas cartridge
PCT/US2015/036895 WO2015200174A1 (en) 2014-06-24 2015-06-22 Fire extinguisher with internal mixing and gas cartridge

Publications (2)

Publication Number Publication Date
NZ728200A NZ728200A (en) 2021-05-28
NZ728200B2 true NZ728200B2 (en) 2021-08-31

Family

ID=

Similar Documents

Publication Publication Date Title
EP3160598B1 (en) Fire extinguisher with internal mixing and gas cartridge
US10350443B2 (en) Fire extinguisher with internal mixing and external gas cartridge
US11896858B2 (en) Fire extinguisher with internal mixing and gas cartridge
AU2020204190B2 (en) Fire extinguisher with internal mixing and gas cartridge
US11305140B1 (en) Fire extinguisher with internal mixing and gas cartridge
NZ728200B2 (en) Fire extinguisher with internal mixing and gas cartridge
NZ758094A (en) Systems and methods for distributed data mapping
NZ758094B2 (en) Optical acoustic sensing system and method
OA18132A (en) Fire extinguisher with internal mixing and gas cartridge