Nothing Special   »   [go: up one dir, main page]

NO861800L - LEADING SHELTERS FOR MAGNET METERS. - Google Patents

LEADING SHELTERS FOR MAGNET METERS.

Info

Publication number
NO861800L
NO861800L NO861800A NO861800A NO861800L NO 861800 L NO861800 L NO 861800L NO 861800 A NO861800 A NO 861800A NO 861800 A NO861800 A NO 861800A NO 861800 L NO861800 L NO 861800L
Authority
NO
Norway
Prior art keywords
cylindrical body
magnetometer
current
stated
cylinder
Prior art date
Application number
NO861800A
Other languages
Norwegian (no)
Inventor
Ronald L Spross
William C Paske
Original Assignee
Nl Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nl Industries Inc filed Critical Nl Industries Inc
Publication of NO861800L publication Critical patent/NO861800L/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/40Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for measuring magnetic field characteristics of the earth

Landscapes

  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hard Magnetic Materials (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

Den foreliggende oppfinnelse vedrører en fremgangsmåte og anordning for å beskytte en magnetometeroppstilling mot virkningene fra nærliggende elektriske strømmer. The present invention relates to a method and device for protecting a magnetometer setup against the effects of nearby electric currents.

Bruken av magnetometre for å måle komponenter av jordens magnetfelt er velkjente. En fremtredende bruk av magnetometre skjer ved regi-strering av stedet og retningen for borehull i jorden. For å gjennomføre dette blir en oppstilling av minst tre magnetometre sammenstilt i en sonde for å måle jordens magnetfelt i tre retninger som er normale på hverandre. Mens normalt slike løsninger kan fullstendig godtagbare, oppstår problemer når der er nødvendig å ha effekt i sonden forbi magnetometrene, hvilket nødvendiggjør å ha en strømledende ledning passerende i den umiddelbare nærhet av magnetometrene. Strøm som passerer gjennom en slik ledning skaper et magnetfelt som påvirker magnetometrenes utmatning. De tidligere forsøk for å hindre intro-duseringen av slik feil har omfattet bruk av skjermete eller koaksial-kabler. Disse kabler har introdusert et antall problemer innbefattende fysisk plassering av den skjermete ledning eller kabel i sonden og jordingsproblemer som medfører delvis ubalansert strøm gjennom seg-menter av kablene. The use of magnetometers to measure components of the Earth's magnetic field is well known. A prominent use of magnetometers is when recording the location and direction of boreholes in the earth. To accomplish this, an array of at least three magnetometers is combined in a probe to measure the Earth's magnetic field in three directions that are normal to each other. While normally such solutions may be completely acceptable, problems arise when it is necessary to have power in the probe past the magnetometers, which necessitates having a current-carrying wire passing in the immediate vicinity of the magnetometers. Current passing through such a wire creates a magnetic field which affects the output of the magnetometers. Previous attempts to prevent the introduction of such errors have included the use of shielded or coaxial cables. These cables have introduced a number of problems including physical placement of the shielded wire or cable in the probe and grounding problems resulting in partially unbalanced current through segments of the cables.

Den foreliggende oppfinnelse overvinner vanskelighetene ved den kjente teknikk ved å tilveiebringe et langstrakt, kontinuerlig sylindrisk organ av jevnt tykt ledende materiale som mottar en magnetometeroppstilling deri og er i sin tur montert innenfor et trykkhus i en sonde på en elektrisk isolert måte. Den ledende sylinderen sender strøm forbi magnetometrene på en jevn måte slik at i alt vesentlig forstyrrende magnetfelt skapes innenfor sylinderen. Det er viktig hva angår oppfinnelsen at der er konsentrisitet mellom de indre og ytre vegger av den induktive sylinderen, dvs. at den er av jevn tykkelse overalt. Den ledende sylinderen er kontinuerlig, dvs. uten porter eller andre åpninger i veggene, og kan vøre med åpen ende eller jevnt avsmalnet ved den ene eller den andre eller begge ender i en kjegleformet eller halvkuleformet konfigurasjon. Den ledende sylinderen er forsynt med elektrisk tilkoplingsmidler som jevnt tilfører og mottar elektrisk strøm hhv. til og fra sylinderen. Magnetometeroppstillingen bør plasseres innenfor sylinderen i en avstand av minst tre ganger sylinderens diameter fra den nærmeste åpne ende hos sylinderen. The present invention overcomes the difficulties of the prior art by providing an elongated, continuous cylindrical member of uniformly thick conductive material which receives a magnetometer array therein and is in turn mounted within a pressure housing of a probe in an electrically isolated manner. The conducting cylinder sends current past the magnetometers in a uniform manner so that essentially disturbing magnetic fields are created within the cylinder. It is important with regard to the invention that there is concentricity between the inner and outer walls of the inductive cylinder, i.e. that it is of uniform thickness everywhere. The conducting cylinder is continuous, i.e. without ports or other openings in the walls, and may be open-ended or uniformly tapered at one or the other or both ends in a conical or hemispherical configuration. The conducting cylinder is provided with electrical connection means which evenly supply and receive electrical current or to and from the cylinder. The magnetometer arrangement should be placed inside the cylinder at a distance of at least three times the cylinder's diameter from the nearest open end of the cylinder.

Den foreliggende oppfinnelse vil bli beskrevet ved hjelp av eksempel med henvisning til de vedlagte tegninger. The present invention will be described by way of example with reference to the attached drawings.

Fig. 1 er et perspektivriss, delviss i snitt, av en sonde ifølge den Fig. 1 is a perspective view, partly in section, of a probe according to it

kjente teknikk.known technique.

Fig. 2 er et perspektivriss, delvis i snitt, av en sonde ifølge den Fig. 2 is a perspective view, partly in section, of a probe according to it

foreliggende oppfinnelse.present invention.

Fig. 3 er et tverrsnitt gjennom sonden i fig. 2.Fig. 3 is a cross section through the probe in fig. 2.

For bedre å forstå den foreliggende oppfinnelse, er det nødvendig å starte med den kjente teknikk for å finne det problem som den foreliggende oppfinnelse løser. De tidligere kjente anordninger har generelt bestått at en oppstilling av magnetometre 10, 12, 14 montert i et trykkhus 16 anbragt normalt på hverandre for derved å foreta magnetfeltavlesninger i tre plan. Mens dette normalt ikke tilveiebringer noen spesielle vanske-ligheter, oppstår problemer når det er nødvendig å la strøm passere fra en kraftkilde, slik som batterier, plassert på en side av magnetometrene til elektronikk på den motsatte, siden av magnetometrene. Dette er blitt gjort i den kjente teknikk ved å plassere en kabel 18 på utsiden av trykkhuset 16 som strekker seg fra en kraftkilde (ikke vist) til elektronikk (heller ikke vist). Naturligvis vil en enkelt ledning bevirke gener-eringen av et magnetfelt når strøm passerer gjennom den. Hvis imidler-tid kabelen er en koaksialkabel eller annen kjent skjermet kabel, kan dette felt reduseres til null hvis returstrømmen passerer fullstendig langs returskjermen. P.g.a. den asymmetriske anbringelse av ledningen og returskjermen med hensyn til magnetometrene og jordingsproblemene som kan føre til et flertall returbaner i den kjente teknikk, var der alltid muligheten for ubalansert ledningssegmenter som bevirket dannelsen av et tilstrekkelig magnetfelt til å innføre feil i magnetometrene. In order to better understand the present invention, it is necessary to start with the known technique to find the problem that the present invention solves. The previously known devices have generally consisted of an arrangement of magnetometers 10, 12, 14 mounted in a pressure housing 16 arranged normally on top of each other in order thereby to take magnetic field readings in three planes. While this normally presents no particular difficulty, problems arise when it is necessary to pass current from a power source, such as batteries, located on one side of the magnetometers to electronics on the opposite side of the magnetometers. This has been done in the known technique by placing a cable 18 on the outside of the pressure housing 16 which extends from a power source (not shown) to electronics (also not shown). Naturally, a single wire will cause the generation of a magnetic field when current passes through it. If, however, the cable is a coaxial cable or other known shielded cable, this field can be reduced to zero if the return current passes completely along the return shield. Because of. the asymmetric placement of the wire and the return screen with respect to the magnetometers and the grounding problems that can lead to a plurality of return paths in the prior art, there was always the possibility of unbalanced wire segments causing the formation of a sufficient magnetic field to introduce errors into the magnetometers.

Den foreliggende oppfinnelse har unngått den ovennevnte vanskelighet ved å tilveiebringe et langstrakt, kontinuerlig sylindrisk organ 20 av jevnt tykt ledende materiale som omslutter en oppstilling av magnetometre 22, 24, 26 og er montert innenfor et trykkhus 28 ved hjelp av isolerende avstandsmidler 30. Tryukkhuset 28 tilveiebringer returledings-banen. Det sylindriske organet 20 er forsynt på begge ender med et flertall elektriske tilkoplingsorganer 32, 34 som er koplet ved hjelp av ledninger 36, 38 til koplingsbokser 40, 42. Ledningene 36, 38 danner et kjegleformet bur som strekker seg koaksialt fra en respektiv ende av organet 20. Tilkoplingsorganene er fortrinnsvis jevnt adskilt ved de respektive ender av de sylindriske organet 20. Det bør understrekes at det sylindriske organet 20 er kontinuerlig, dvs. uten hull eller porter, er jevnt i tykkelse, dvs. de indre og ytre vegger en konsentriske, og uten innvendig tomrom eller overflatefeil, hvor en hvilken som helst av disse eller kombinasjon av disse vil bevirke generering av et innvendig magnetfelt med passering av strøm gjennom det sylindriske organet. The present invention has avoided the above difficulty by providing an elongated, continuous cylindrical member 20 of uniformly thick conductive material which encloses an array of magnetometers 22, 24, 26 and is mounted within a pressure housing 28 by means of insulating spacers 30. Pressure housing 28 provides the return path. The cylindrical member 20 is provided at both ends with a plurality of electrical connection members 32, 34 which are connected by means of wires 36, 38 to junction boxes 40, 42. The wires 36, 38 form a cone-shaped cage which extends coaxially from a respective end of the member 20. The connecting members are preferably evenly spaced at the respective ends of the cylindrical member 20. It should be emphasized that the cylindrical member 20 is continuous, i.e. without holes or ports, is uniform in thickness, i.e. the inner and outer walls are concentric , and without internal voids or surface defects, any one or combination of which will cause the generation of an internal magnetic field with the passage of current through the cylindrical member.

Det vil forstås av fagfolk at strøm som passerer langs det sylindriske organet ifølge den foreliggende oppfinnelse er jevnt fordelt om magnetometrene slik at intet magnetfelt skapes innenfor det hulrom som er definert av det ledende organet. It will be understood by those skilled in the art that current passing along the cylindrical member according to the present invention is evenly distributed around the magnetometers so that no magnetic field is created within the cavity defined by the conducting member.

Det bør bemerkes at det sylindriske organet 20 er vesentlig lenger enn oppstillingen av magnetometrene. Fortrinnsvis vil magnetometrene være innenfor organet 20 adskilt med en avstand av minst tre ganger diameteren av sylinderen fra den ene eller den andre åpne ende derav. Det sylindriske organet 20 er forsynt med et flertall elektriske tilkoplingsorganer for derved å sikre en jevn fordeling av strøm i organet, særlig i den umiddelbare nærhet av magnetometrene. Lederne til tilkoplingsorganene er jevne hva angår det sylindriske organets akse. It should be noted that the cylindrical member 20 is substantially longer than the array of magnetometers. Preferably, the magnetometers will be within the body 20 separated by a distance of at least three times the diameter of the cylinder from one or the other open end thereof. The cylindrical member 20 is provided with a plurality of electrical connection means to thereby ensure an even distribution of current in the member, particularly in the immediate vicinity of the magnetometers. The conductors of the connecting members are even with respect to the axis of the cylindrical member.

Selv om organet 20 er blitt vist i den foretrukne utførelsesform som en sylinder med åpen ende, ligger det innenfor den foreliggende oppfinnelses omfang å avsmalne en eller begge ender av organet med enten en halvkuleformet eller kjegleformet konfigurasjon og å tilføre denne et elektrisk tilkoplingsorgan som er koaksialt med det sylindriske organet. Although the member 20 has been shown in the preferred embodiment as an open-ended cylinder, it is within the scope of the present invention to taper one or both ends of the member to either a hemispherical or conical configuration and to provide it with an electrical connection means that is coaxial with the cylindrical body.

I den representative utførelsesform er magnetometrene blitt vist som korte sylindre som hver er orientert på en respektiv akse. I det snitt som er vist i fig. 3 er magnetometeroppstillingen skjematisk vist som en blokk for å illustrere det faktum at magnetometrene ikke behøver å være koaksialt montert innenfor det sylindriske organet. Organet 20 vil være montert i et trykkhus 28 som eksempelvis kunne være av rustfritt stål med tykkelse 2,54 cm. Isolerende sentreringsmidler 30 understøtter organet 20 innenfor trykkhuset 28. In the representative embodiment, the magnetometers have been shown as short cylinders each oriented on a respective axis. In the section shown in fig. 3, the magnetometer arrangement is schematically shown as a block to illustrate the fact that the magnetometers need not be coaxially mounted within the cylindrical member. The organ 20 will be mounted in a pressure housing 28 which could, for example, be made of stainless steel with a thickness of 2.54 cm. Insulating centering means 30 support the member 20 within the pressure housing 28.

Det sylindriske organet 20 er fortrinnsvis laget av et ikke-magnetisk materiale, slik som aluminium, kopper, messing eller titan og har tilstrekkelig dimensjoner til å inneholde magnetometeroppstillingen deri adskilt minst tre ganger sylinderens diameter fra en åpen ende av sylinderen. Det foretrekkes også å la trykkhuset være laget av ikke-magnetiske materialer. The cylindrical member 20 is preferably made of a non-magnetic material, such as aluminium, copper, brass or titanium and has sufficient dimensions to contain the magnetometer array therein separated at least three times the diameter of the cylinder from an open end of the cylinder. It is also preferred to have the pressure housing made of non-magnetic materials.

Den foreliggende oppfinnelse er blitt vist og beskrevet i en utførelses-form som er nyttig for brønnboringssituasjoner. Det vil være mulig å anvende den foreliggende oppfinnelse i ethvert tilfelle når det er ønskelig å detektere ujevnhet i veggene hos en sylinder, slik som en rørledning eller kondensatorrør i en dampgenerator. I dette tilfellet vil det sylindriske organet 20 som inneholder oppstillingen av magnetometre bli plassert i en passende transportmekanisme, slik som vogn, og bli trukket eller drevet gjennom sylinderen som skal testes mens strøm tilføres sylinderen. Strøm som flyter i sylinderen ville bevirke at et magnetfelt ble skapt hvor som helst hvor der var en ikke-konformitet og således ville lett detekteres av magnetometrene. The present invention has been shown and described in an embodiment which is useful for well drilling situations. It will be possible to use the present invention in any case when it is desired to detect unevenness in the walls of a cylinder, such as a pipeline or condenser tube in a steam generator. In this case, the cylindrical member 20 containing the array of magnetometers will be placed in a suitable transport mechanism, such as a carriage, and will be pulled or driven through the cylinder to be tested while current is applied to the cylinder. Current flowing in the cylinder would cause a magnetic field to be created wherever there was a non-conformity and thus would be easily detected by the magnetometers.

Den foregående angivelse og beskrivelse av oppfinnelsen er illustrerende og forklarende for denne, og forskjellige endringer i fremgangsmåtetrinn-ene samt hva angår detaljene ved den viste anordning kan foretas innenfor omfanget av de vedlagte patentkrav uten å avvike fra oppfinn-elsens idé. The preceding statement and description of the invention is illustrative and explanatory of it, and various changes in the method steps as well as with regard to the details of the device shown can be made within the scope of the appended patent claims without deviating from the idea of the invention.

Claims (10)

1. Anordning for å beskytte en oppstilling av minst et magnetometer mot magnetfelt generelt av elektriske strømmer i den umiddelbare nærhet av nevnte oppstilling, karakterisert ved : et langstrakt, kontinuerlig sylindrisk organ av jevnt tykt ledende materiale, hvor nevnte sylindriske organ har vesentlig større lengde enn nevnte magnetometeroppstilling, midler til å montere nevnte magnetometeroppstilling innenfor nevnte sylindriske organ, og middel til å føre elektrisk strøm gjennom nevnte sylindriske organ, hvorved strøm som passerer gjennom sylindriske organ genererer et magnetfelt som er i alt vesentlig lik null innenfor nevnte sylindriske organ.1. Device for protecting an arrangement of at least one magnetometer against magnetic fields generally of electric currents in the immediate vicinity of said arrangement, characterized by: an elongated, continuous cylindrical body of uniformly thick conductive material, where said cylindrical body has a significantly greater length than said magnetometer arrangement, means for mounting said magnetometer arrangement within said cylindrical body, and means for conducting electric current through said cylindrical member, whereby current passing through cylindrical bodies generates a magnetic field which is substantially equal to zero within said cylindrical body. 2. Anordning som angitt i krav 1, karakterisert ved at nevnte middel for å føre elektrisk strøm gjennom nevnte sylindriske organ omfatter et flertall elektriske tilkoplingsorganer som er jevnt fordelt om de motsatte ender av nevnte sylindriske organ for å tilføre strøm i alt vesentlig jevnt gjennom dette.2. Device as stated in claim 1, characterized in that said means for conducting electrical current through said cylindrical body comprises a plurality of electrical connection means which are evenly distributed around the opposite ends of said cylindrical body in order to supply current substantially evenly through it. 3. Anordning som angitt i krav 1, karakterisert ved at minst en ende av nevnte sylindriske organ er jevnt avsmalnet til en lukket tilstand, idet nevnte middel for å føre elektrisk strøm anbringes koaksielt til nevnte lukkede ende.3. Device as stated in claim 1, characterized in that at least one end of said cylindrical body is uniformly tapered to a closed state, said means for conducting electric current being arranged coaxially to said closed end. 4. Anordning som angitt i krav 3, karakterisert ved at nevnte jevne avsmalning er kjegleformet.4. Device as stated in claim 3, characterized in that said smooth taper is cone-shaped. 5. Anordning som angitt i krav 3, karakterisert ved at nevnte jevne avsmalning er halvkuleformet.5. Device as specified in claim 3, characterized in that said smooth taper is hemispherical. 6. Anordning som angitt i krav 1, karakterisert ved at nevnte sylindriske organ har konsentriske indre og ytre vegger.6. Device as stated in claim 1, characterized in that said cylindrical body has concentric inner and outer walls. 7. Anordning som angitt i krav 1, karakterisert ved at de indre og ytre overflater av nevnte sylindriske organ er uten overflatefeil.7. Device as stated in claim 1, characterized in that the inner and outer surfaces of said cylindrical body are without surface defects. 8. Anordning som angitt i krav 1, karakterisert ved at nevnte sylindriske organ er fritt for innvendige feil.8. Device as specified in claim 1, characterized in that said cylindrical body is free from internal defects. 9. Anordning som angitt i krav 1, karakterisert ved at nevnte sylindriske organ er av tilstrekkelig lengde til at nevnte magnetometeroppstilling ligger fordypet i en avstand av minst tre ganger diameteren av nevnte sylindriske organ fra en åpen ende derav.9. Device as stated in claim 1, characterized in that said cylindrical body is of sufficient length for said magnetometer arrangement to lie recessed at a distance of at least three times the diameter of said cylindrical body from an open end thereof. 10. Fremgangsmåte for å beskytte en magnetometeroppstilling mot påvirkning av magnetfelt skapt av hosliggende elektriske strømmer, karakterisert ved : å plassere magnetometeroppstillingen innenfor en langstrakt sylinder av jevnt tykt ledende material, å montere sylinderen innenfor et trykkhus, og å føre elektrisk strøm i en første retning gjennom nevnte sylinder, idet strømmen returnerer i en andre retning gjennom nevnte trykkhus, hvorved feltet som frembringes av nevnte strøm innenfor nevnte sylinder er i alt vesentlig lik null i nærheten av magnetometeroppstillingen.10. Procedure for protecting a magnetometer setup against the influence of magnetic fields created by adjacent electric currents, characterized by : to place the magnetometer array within an elongated cylinder of uniformly thick conductive material, to mount the cylinder within a pressure housing, and to pass electric current in a first direction through said cylinder, with the current returning in a second direction through said pressure housing, whereby the field produced by said current within said cylinder is substantially equal to zero in the vicinity of the magnetometer arrangement.
NO861800A 1985-08-21 1986-05-06 LEADING SHELTERS FOR MAGNET METERS. NO861800L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76801885A 1985-08-21 1985-08-21

Publications (1)

Publication Number Publication Date
NO861800L true NO861800L (en) 1987-02-23

Family

ID=25081281

Family Applications (1)

Application Number Title Priority Date Filing Date
NO861800A NO861800L (en) 1985-08-21 1986-05-06 LEADING SHELTERS FOR MAGNET METERS.

Country Status (4)

Country Link
DE (1) DE3628087A1 (en)
FR (1) FR2586483A1 (en)
GB (1) GB2179455A (en)
NO (1) NO861800L (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4101348C2 (en) * 1991-01-18 1994-07-14 Bergwerksverband Gmbh Device for determining the direction of a target boring bar with respect to the magnetic north direction
GB9409550D0 (en) * 1994-05-12 1994-06-29 Halliburton Co Location determination using vector measurements
DE29518474U1 (en) * 1995-11-21 1996-01-18 Soyck GmbH, 58579 Schalksmühle Dovetail mount for magnetic field sensors
WO2014007796A1 (en) * 2012-07-02 2014-01-09 Halliburton Energy Services, Inc. Angular position sensor with magnetometer
EP3629911A4 (en) 2017-05-22 2021-01-20 Genetesis LLC Machine differentiation of abnormalities in bioelectromagnetic fields
US11134877B2 (en) * 2017-08-09 2021-10-05 Genetesis, Inc. Biomagnetic detection
US11585869B2 (en) 2019-02-08 2023-02-21 Genetesis, Inc. Biomagnetic field sensor systems and methods for diagnostic evaluation of cardiac conditions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2525751C2 (en) * 1975-06-10 1977-06-16 Foerster Inst Dr Friedrich ADJUSTMENT DEVICE FOR MAGNETIC PROBE

Also Published As

Publication number Publication date
FR2586483A1 (en) 1987-02-27
GB8617368D0 (en) 1986-08-20
DE3628087A1 (en) 1987-02-26
GB2179455A (en) 1987-03-04

Similar Documents

Publication Publication Date Title
US3299351A (en) Apparatus for detecting faults in buried cables including means for applying a composite signal having fundamental and even harmonic frequency components
US4672321A (en) Method and apparatus for electromagnetically surveying a remote elongate conductor employing a detector assembly having plural electromagnetic transducer assemblies
US20100097734A1 (en) Method and Apparatus for Protecting Power Systems from Extraordinary Electromagnetic Pulses
US7298141B2 (en) Fluxgate and fluxgate magnetometers
CN101615497B (en) Integral connecting structure of transformer and current sensor
NO861800L (en) LEADING SHELTERS FOR MAGNET METERS.
FI89416C (en) Multi-channel device for measuring weak, local and time-dependent magnetic fields
US5109196A (en) Method and apparatus for magnetic identification and localization of flaws in conductors by canceling the field about the conductor with the field about a flawless conductor
US6025722A (en) Azimuthally segmented resistivity measuring apparatus and method
CA2735589C (en) High-speed current shunt
US5463319A (en) Induction log sonde feedpipe having a plurality of tubes arranged within it and windows to facilitate the passage of the conductors
CN105388352B (en) B dot probes and electric current spatial distribution measuring system based on PCB formula magnetic induction coils
US4616177A (en) Safety measurement device junction box
CN105486908B (en) Stop the B dot probes and electric current spatial distribution measuring system of magnetic insulation sheaths electronics
CN212459800U (en) Shielding device of steep wave measuring device
US4814713A (en) Coaxial test fixture for determining shielding effectiveness of a device against interfering electromagnetic fields
US4839598A (en) Method for testing underground electric cables
CN218213367U (en) Device for shielding interference of dirt on outer surface of porcelain sleeve on leakage current of lightning arrester
US2839722A (en) Method and apparatus for detecting stray current corrosion
GB2057147A (en) Detecting Faults in Buried Cables
KR101881573B1 (en) Sensor for measuring of electric power
RU2062491C1 (en) Gear for resistivity logging
JPH04161860A (en) Current-signal detecting apparatus
BR102021022256A2 (en) INTERFACE FOR ELECTROMAGNETIC REELS AND ITS ELECTRICAL CONNECTION PROCESS
Davis et al. Magnetic Shielding of Solenoid-Based Focusing Lenses for Superconducting Sections of HINS Linac