NO326571B1 - Fremgangsmate og reaktor for fremstilling av karbon nanoror - Google Patents
Fremgangsmate og reaktor for fremstilling av karbon nanoror Download PDFInfo
- Publication number
- NO326571B1 NO326571B1 NO20056149A NO20056149A NO326571B1 NO 326571 B1 NO326571 B1 NO 326571B1 NO 20056149 A NO20056149 A NO 20056149A NO 20056149 A NO20056149 A NO 20056149A NO 326571 B1 NO326571 B1 NO 326571B1
- Authority
- NO
- Norway
- Prior art keywords
- reactor
- carbon
- process according
- arc
- plasma
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 40
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 40
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 238000010891 electric arc Methods 0.000 claims abstract description 11
- 239000002717 carbon nanostructure Substances 0.000 claims abstract description 8
- 230000008016 vaporization Effects 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 43
- 239000003054 catalyst Substances 0.000 claims description 19
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 238000007664 blowing Methods 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 3
- 239000003245 coal Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 239000003345 natural gas Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000003921 oil Substances 0.000 claims description 3
- 150000002902 organometallic compounds Chemical class 0.000 claims description 3
- 238000007790 scraping Methods 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 238000004064 recycling Methods 0.000 claims description 2
- 210000002381 plasma Anatomy 0.000 description 51
- 229910052799 carbon Inorganic materials 0.000 description 40
- 238000002474 experimental method Methods 0.000 description 27
- 239000002071 nanotube Substances 0.000 description 17
- 239000000523 sample Substances 0.000 description 12
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 230000005494 condensation Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 238000003917 TEM image Methods 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 239000007833 carbon precursor Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 241001071861 Lethrinus genivittatus Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004033 diameter control Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- -1 e.g. tungsten Chemical compound 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/18—Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/48—Generating plasma using an arc
- H05H1/50—Generating plasma using an arc and using applied magnetic fields, e.g. for focusing or rotating the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0803—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J2219/0805—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
- B01J2219/0807—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
- B01J2219/0809—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0803—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J2219/085—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
- B01J2219/0854—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing electromagnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0875—Gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0877—Liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0879—Solid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0892—Materials to be treated involving catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Composite Materials (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
Foreliggende oppfinnelse vedrører en prosess for fremstilling av karbon nanorør eller andre nanostrukturer av karbon, f.eks. kjegler. Prosessen omfatter det å fordampe/dekomponere et karbonholdig materiale i et voluminøst termisk plasma som dannes ved å rotere en elektrisk lysbue i et påtrykt magnetfelt, og kondensere nevnte fordampede/dekomponerte karbonholdige materiale på overflater eller på partikler i en gasstrøm. En reaktor for å utføre prosessen er også beskrevet.
Description
INNLEDNING
Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av karbon nanorør eller andre nanostrukturer av karbon, f.eks. kjegler.
BAKGRUNN
Det finnes en rekke prosesser for fremstilling av karbon nanostrukturer og karbon nanorør. Disse kan deles inn i to hovedkategorier; høytemperaturprosesser og lav-temperaturprosesser. De fleste høytemperaturprosessene er basert på sublima-sjon av karbon under en inert atmosfære, så som for elektrisk lysbueutladning-(electric are discharge)-prosessen, laserablasjonsmetoden og solarmetoden. Lav-temperaturprosesser er f.eks. kjemisk gassfaseavsetning (CVD - Chemical Vapour Deposition) gjennom katalytisk dekomponering av hydrokarboner, katalytisk gassfasevekst fra karbonmonoksid, fremstilling ved elektrolyse, varmebehand-ling av polymer og in situ pyrolyse eller in situ katalyse ved lav temperatur. De vik-tigste metodene er beskrevet nærmere nedenfor.
Kjemisk gassfaseavsetning er en metode hvor karbon nanorør fremstilles fra gass-fase ved å gro karbon nanorør på et substrat ved å anvende store mengder katalysator ved lav temperatur (600-1000 °C). Karbon nanorørene som fremstilles inneholder defekter, noe som fører til krumninger/bøy på strukturene. I tillegg er katalysatoren til stede i de resulterende karbon nanorørene i forskjellige mengder, fra 50% og ned mot 1-10%.
Lysbueprosesser er plasmaprosesser der en likestrøm-basert elektrisk lysbueut-ladning skjer mellom en anode og en katode som kun befinner seg noen få milli-meter fra hverandre. Dette skaper en forholdsvis liten plasmalysbue i området mellom elektrodene. Karbon som fordamper fra den karbon-baserte (f.eks. grafitt-) anoden rekondenserer på katoden i form av en avsetning som inneholder karbon nanorør. I den opprinnelige lysbuemetoden publisert av T.W. Ebbesen i Nature 358 (1992) ble det ikke anvendt et eksternt påtrykt magnetfelt generert av permanentmagneter eller elektromagneter, og ingen resirkulering av fordampet karbon var mulig. Denne lysbuemetoden er kun egnet for småskala produksjon av karbon nanorør i lysbuereaktorer som drives med veldig lave strøm- og effektnivåer - typisk noen få kW. Oppskalering til høyere effektnivåer ved å øke lysbuestrømmen og/eller elektrodediameteren synes ikke mulig fordi de avsatte karbon nanorørene vil fordampe igjen fra katoden.
I den tradisjonelle lysbueutladningsmetoden skjer en punkt-til-punkt utladning mellom elektrodene. For å forbedre denne metoden, ble katoden og anoden utformet som en plate i enden for å skape en plan-til-plan mikroutladning og for å øke plasmavolumet noe. Denne metoden er beskrevet i Lee et al., "Large scale synthesis of carbon nanotubes by plasma rotating are discharge technique", Diamond and Related Materials, 11, 2002, 914-917.1 Lee et al. sies det at konven-sjonell lysbueutladning er en diskontinuerlig og ustabil prosess, og at metoden ikke kan produsere høykvalitets karbon nanorør ved masseproduksjon. Nanorør-ene produseres på katodeoverflaten og elektrodeavstanden er ikke konstant, slik at strømbanene ikke er uniforme og de elektriske feltene ikke er homogene. For å løse dette problemet roteres anoden mekanisk for å skape sentrifugalkrefter for å unngå at karbondamp avsettes på katoden, men transporteres ut av plasmaregi-onene og kondenseres på en kollektor ved temperaturer på mellom 900-1100 °C. Dette kan muliggjøre kontinuerlig produksjon, men fremgangsmåten i Lee et al. drives fremdeles ved svært lave effektnivåer, i området 1,6-3,6 kW, og egner seg derfor best for småskala produksjon. Fremgangsmåten kan vanskelig sees å fungere ved høye effektnivå over 100 kW. Den mekaniske rotasjonen av anoden, som er beskrevet i Lee et al., vil ikke rotere lysbuen. Mekanisk rotasjon av anoden utføres for å unngå at karbondamp avsettes på katoden, men også for å oppnå uniform anodeslitasje. Eksperimentelle resultater med en mekanisk roterende anode er presentert i Bae et al., "Diameter control of single-walled carbon nanotubes by plasma rotating electrode process", Carbon, vol. 40, nr. 15, 2002,
s. 2905-2911.
US 5,227,038 og US 6,451,175 angir ytterligere eksempler på lysebuemetoder. I US 6,451,175 vibreres katoden longitudinalt for å forbedre avsetningen av karbon nanorør på katoden.
Magnetfelt generert av permanentmagneter eller spoler er presentert i andre publi-kasjoner for å overkomme stabilitetsproblemet. EP 1 577 261 gir detaljerte instruk-sjoner angående plasseringen av magneter for å skape et felt som stabiliserer lysbuen. Stabilisering av lysbuen er nødvendig fordi katoden roteres for å muliggjøre kontinuerlig avskraping av karbon nanorør med en skrapeanordning på katode-siden (se for eksempel figurene 29-32). Magnetfeltet søker å stabilisere lysbuen mellom anoden og katoden slik at den brenner til en konstant posisjon og dermed unngår man at katodeflekken følger med katodens rotasjon og beveger seg ned mot avskraper. US-patentsøknadene US20040084297 og US20040241339 samt US-patentet US6902655 (ANAZAWA mfl.) og JP08048510 (MIENO mfl.), "øker effektiviteten" til lysbuemetoden, enten ved å øke kollisjonsfrekvensen mellom lad-ede partikler eller ved å blåse plasmaet ut fra katoden. Heller ikke her synes oppskalering til større produksjonsenheter mulig.
WO 2004/083119 beskriver en plasmametode for kontinuerlig produksjon av kar-bonbaserte nanorør, nanofibre og andre nanostrukturer. Karbonforløper, katalysator og plasma-bæregass tilføres i reaksjonssonen der karbonforløper (fortrinnsvis faste karbonpartikler) fordampes. Det varme plasmaet i reaksjonssonen genereres av lysbuer dannet ved å koble en vekselstrømkilde til to eller tre karbonelektroder. Gass/damp-blandingen blir da ført gjennom en dyse og inn i en bråkjølingssone for nukleering. Denne anordningen ligner tradisjonelle plasmabrennere som f.eks. anvendes for plasmasprøyting av ildfaste belegg, hvor fordamping av de partiku-lære råmaterialene ikke er ønsket. Hovedproblemet med denne metoden er at det ikke resirkuleres råmateriale og produkter fra bråkjølingssonenr
OPPSUMMERING AV OPPFINNELSEN
Foreliggende oppfinnelse er unnfanget for å løse eller i hvert fall redusere pro-blemene angitt over. Spesifikt er ett mål med oppfinnelsen å tilveiebringe en prosess for fremstilling av karbon nanorør og andre nanostrukturer av karbon. Prosessen er egnet for oppskalering til kontinuerlig eller delvis kontinuerlig masseproduksjon.
I et første aspekt tilveiebringer oppfinnelsen en prosess for fremstilling av karbon nanorør eller andre nanostrukturer av karbon, f.eks. kjegler, omfattende det å: fordampe/dekomponere et karbonholdig materiale i et voluminøst termisk plasma, der det voluminøse termiske plasma er dannet ved å rotere en elektrisk lysbue ved å benytte et påtrykt magnetfelt, kondensere nevnte fordampede/dekomponerte karbonholdige materiale på overflater eller på partikler i en gasstrøm, og å resirkulere nevnte karbonholdige materiale gjennom det voluminøse plasmaet. Overflatene kan for eksempel være en elektrode eller et substrat.
I en ytterligere utførelsesform bevirkes posisjonering og rotasjon av lysbuen ved å justere fordelingen, retningen og styrken til det påtrykte magnetfeltet. Magnetfeltet kan være et eksternt påtrykt magnetfelt. Denne utførelsesformen unngår en løs-ning hvor magnetene er anordnet inne i den varme reaktoren, noe som krever av-kjøling av magnetene som følge av den høye temperaturen i reaktoren, og spesielt i plasmaom rådet. Magneter på utsiden er beskyttet mot varme fra plasmaet.
Det karbonholdige materialet kan være i gassform, væskeform eller fast tilstand, og kan velges fra gruppen bestående av "carbon black" (produsert sot), grafittpulver, kull, naturgass, hydrokarboner og oljer. Det karbonholdige materialet kan alternativt tilføres ved tilsetting eller ved fordamping av karbonholdige elektroder. En katalysator kan tilføres sammen med nevnte karbonholdige materiale eller med den anvendte plasmagassen, eller påføres nevnte overflater. Katalysatoren kan velges fra gruppen bestående av Ni, Co, Fe, Y, salter og metallorganiske forbindelser av Ni, Co, Fe, Y, suspensjoner av Ni, Co, Fe, Y og nevnte salter og nevnte forbindelser, samt kombinasjoner av disse.
Hydrogen, helium, nitrogen, argon, karbonmonoksid eller blandinger av disse, eller en kjemisk substans (fortrinnsvis en gass) som danner én eller flere av disse gass-ene ved oppvarming, kan benyttes som plasmagass.
Den elektriske lysbuen dannes mellom en elektrode og en hul motelektrode, der elektrodene er aksialt anordnet slik at de vender mot hverandre. Motelektroden har hull som muliggjør passasje og resirkulering av gasser og partikler.
I et andre aspekt tilveiebringer oppfinnelsen en reaktor for fremstilling av karbon nanorør eller andre nanostrukturer av karbon, f.eks. kjegler, ved hjelp av prosessen ifølge krav 1, som omfatter en elektrode og en hul motelektrode, der elektrodene er aksialt anordnet slik at de vender mot hverandre, og minst én magnet. Motelektroden kan være et rør eller et rør med en konisk utformet del. Motelektroden kan også ha hull.
I en ytterligere utførelsesform er minst én magnet eller en del av én enkelt magnet anordnet i en nedre del av reaktoren, nedenfor et lysbueområde, og minst én magnet eller en del av én enkelt magnet er anordnet i en øvre del av reaktoren over lysbueområdet. Magneter kan være elektromagneter (f.eks. magnetspoler) eller permanentmagneter.
Reaktoren kan også være utstyrt med en blåse- eller avskrapermekanisme for fjerning av karbon nanorør dannet på elektrodene eller substratet. Avskrapermekanismen kan for eksempel være en roterbar motelektrode eller en roterbar avskrapermekanisme. Reaktoren kan videre omfatte minst én injeksjonslanse eller injeksjonsport.
KORT BESKRIVELSE AV FIGURENE
Utførelsesformer av foreliggende oppfinnelse vil nå bli beskrevet med henvisning til de følgende figurer, der: Figur 1 viser et skjematisk diagram av en reaktor ifølge en utførelsesform av oppfinnelsen; Figur 2 viser et skjematisk diagram av en reaktor med innløp for plasmagass, katode, anode og substrat ifølge en utførelsesform av oppfinnelsen; Figur 3 viser simulerte hastighetsvektorfordelinger for ulike gasstrømmer i en reaktor ifølge en utførelsesform av oppfinnelsen; Figur 4 viser simulerte temperaturfordelinger i en reaktor ifølge en utførelsesform av oppfinnelsen for forskjellige strømmer av plasmagass; Figurene 5a)-d) viser FE-SEM-bilder av en prøve fra anoden inne i sylinderdelen fra eksperiment 1; Figurene 6 a)-d) viser mer forstørrede FE-SEM-bilder av overflaten på undersiden (den sorte siden) av en prøve skrapet av fra anoden inne i sylinderdelen fra eksperiment 1; Figurene 7 a)-c) viser FE-TEM-bilder av prøver fra anoden inne i sylinderdelen fra eksperiment 1; Figurene 8a)-c) viser FE-SEM-bilder av kjegler og noen få lange karbon nanorør fra innsiden av anoden fra .eksperiment 2; Figurene 9a)-c) viser FE-TEM-bilder av karbon nanorør fra toppen av anoden fra eksperiment 2; Figurene 10a)-b) viser FE-SEM-bilder av karbon nanorør fra eksempel 3; og Figurene 11a)-c) viser FE-SEM-bilder av en kjegle og karbon nanorør fra eksempel 4.
DETALJERT BESKRIVELSE
Vekstmekanismen for nanorør er på det nåværende tidspunkt enda ikke fullt ut for-stått. Imidlertid er flere teorier presentert i litteraturen. Vekstmekanismen vil av-henge av de eksperimentelle betingelsene og spesielt hvorvidt det er en katalysator til stede eller ikke. Høyere temperaturer under vekst gir færre defekter i nano-rørene. Litteraturen beskriver også at et elektrisk felt påvirker veksten av karbon nanorør.
Veksten av karbon nanorør på en katalysatorpartikkel antas å skje ved kondensasjon av karbon fra en gassformig fase i grenseflaten mellom metallfasen og kar-bonfasen. Løseligheten til karbon i metallfasen er en viktig faktor siden karbonet også kan diffundere inne i metallpartikkelen til grenseflaten og kondensere der. Røret vil vokse gjennom kontinuerlig kondensasjon på grenseflaten, og både flerveggede nanorør (MWNT - Multi Wall Nano Tubes) og enkeltveggede nanorør (SWNT - Single Wall Nano Tubes) kan utvikles. Katalysatorpartikkelens størrelse påvirker den resulterende rørdiameteren.
Uten katalysator til stede er vekstmekanismen mer usikker. Røret kan utvikles ved kondensasjon av gassformig karbon enten på rørtuppen eller på rørbunnen. En annen teori er at røret vokser ved diffusjon av defekter fra karbonpartikler til røret, noe som gir en netto massetransport og dermed rørvekst. Bare flerveggede nano-rør er observert dannet uten katalysator.
Resirkulering av gasstrømmer i reaktoren vil gi karbonpartikler eller gassformige karbonforbindelser en ny sjanse til å passere gjennom plasmaområdet, og vil således gi en mer fullstendig fordamping eller dekomponering av det karbonholdige råmaterialet. Med andre ord: I foreliggende oppfinnelse muliggjør resirkulering av gasstrømmen lang oppholdstid i høytemperaturområdet, der normaltemperaturer er i området 5000-50000 K. Ifølge omfattende CFD-(Computational Fluid Dynamics)-simuleringer er typiske oppholdstider 1000-2000 ms, som svarer til 2-6 sløyfer gjennom lysbueplasmaet og rundt den rørformige anoden. Resirkulerings-graden avhenger av reaktorgeometrien, lysbuestrømmen, det eksternt påtrykte magnetfeltet og tilførselsraten av plasmagass. Eksempler på simulerte hastighets-vektorer i reaktoren for forskjellige tilførselsrater av plasmagass er vist i figur 3.
I foreliggende oppfinnelse anvendes et termisk plasma primært som en varmekilde for fordamping av fastformig karbon eller dissosiering av gassformige karbonforbindelser. Et termisk plasma er en gass (av en hvilken som helst type inkludert karbon- eller metalldamp) som består av nøytrale atomer, positivt ladde ioner og negative elektroner. Konsentrasjonen av elektroner og ioner er høy nok til å gjøre plasmaet elektrisk ledende. I termiske plasma har elektroner og ioner samme temperatur - typisk 5,000 - 50000 K.
Det at et plasma leder strøm gjør det mulig å bevege, styre og begrense plasmaet (f.eks. rotere plasmaet eller skape en plasma- jet) ved hjelp av magnetfelt. Disse kan bli generert av lysbuen selv (Biysbue) eller av eksterne magneter eller spoler (Bext)-
I foreliggende oppfinnelse blir den elektriske lysbuen rotert av elektromagnetiske krefter JxBext som følge av vekselvirkning mellom lysbuestrømmen J og det spesi-altilpassede, eksternt påtrykte feltet Bext> resirkulering er hovedsaklig et resultat av elektromagnetiske krefter JxBiy8bue som følge av vekselvirkning mellom den roterende lysbuen og dens eget magnetfelt Biygbue» og lysbuens vertikale posisjon i reaktoren styres ved å justere retningen og størrelsen til Bext i lysbueområdet.
Det fordampede karbonet vil enten kondensere på reaktoroverflater, for eksempel en elektrode og et substrat, eller karbonet vil kondensere direkte i gasstrømmen (i bevegelse). Hvis en katalysator blir tilsatt tilførselen, vil kondenseringen av karbon i gasstrømmen bli lettere siden nanorørene kan vokse på strømmende katalysator-partikler. Temperaturen i kondensasjonssonen må være lavere enn 4000 °C, som er sublimeringstemperaturen for karbon. Dersom det anvendes en katalysator, må temperaturen være lavere enn katalysatorens kokepunkt. Den optimale temperaturen i kondensasjonssonen avhenger av oppholdstiden. Temperaturen inne i reaktoren i de viste eksemplene er målt på 4 forskjellige steder; under substratover-flaten og ved den innvendige reaktorveggen (øverst, i midten og nederst). Disse temperaturene anvendes i hovedsak for å styre prosessen, og representerer ikke temperaturen i kondensasjonssonen. Det termiske plasmaet er systemets varmekilde og har meget høy temperatur (5000-50000 K), men den faktiske temperaturen på elektrodene og i gasstrømmen blir ikke målt. Simuleringer gir imidlertid visse indikasjoner på temperaturfordelingen i reaktoren. Eksempler på simulerte temperaturprofiler i reaktoren for forskjellige tilførselsrater av plasmagass er vist i figur 4.
I prinsippet kan et hvilket som helst karbonholdig materiale anvendes som karbon-kilde. Mulige råmaterialer er: "carbon black", grafittpulver, kull, naturgass, hydrokarboner og oljer. Katalysatormaterialer kan være rene metaller som Ni, Co, Fe, Y, salter eller metallorganiske forbindelser av disse metallene, suspensjoner av disse forbindelsene/metallene, eller kombinasjoner av disse. Det karbonholdige materialet tilføres gjennom 1-3 injeksjonslanser i toppen av reaktoren. Det er også mulig å tilføre det karbonholdige materialet i gasstrømmen rundt eller gjennom elektroden. Katalysatoren kan bli tilført på samme måte som det karbonholdige materialet, enten sammen med dette ved samme injeksjonspunkt eller ved egne injek-sjonspunkter.
Reaktorutførelse
En foretrukket utførelse av en mulig reaktor som drives med likestrøm er vist i figur 1. En øvre del og en nedre del med inntak for strøm og gassformig/fastformig råmateriale er vist i figur 1.
Et fordampingskammer og et vekstsubstrat med kontrollert kjøling og variabel avstand fra en lysbuesone er anordnet i den sentrale delen av reaktoren. Flere eks-tra inntaksporter for tilførsel av forskjellige reaksjonskomponenter er også tilveie-brakt. Reaktoren er dimensjonert for å tillate drift ved redusert trykk ned til 0,1 bara, men kan også drives med høyere trykk opp til 3 bara.
Magnetspoler er innlemmet for å styre lysbuens rotasjonsbevegelse og lysbuens vertikale posisjon i reaktoren, som forklart over. I utførelsen i figur 1 er fire uav-hengige, likestrømsdrevne magnetspoler anordnet rundt reaktoren i forskjellig høyde fra topp til bunn, som gir fleksibilitet til å kontrollere lysbuen med hensyn til lysbuens rotasjon og vertikale posisjon i forhold til elektrodene. Lysbuestrømmen forsynes i denne utførelsesformen av en likestrømskilde som er tilkoblet mellom elektrodene, og lysbuen som brenner mellom disse elektrodene, roteres av det eksternt påtrykte magnetfeltet ved styring av magnetspolene. Den elektromagnetiske rotasjonskraften er bestemt ved vektorproduktet JxBext av lysbuestrømmen J og det eksternt påtrykte magnetfeltet Bext-
Det eksternt påtrykte magnetfeltet Bext genereres i den foretrukne utførelsesf ormen av to eller flere (likestrømsdrevne) magnetspoler anordnet utenfor reaktor-veggene. Bext blir således superponert på lysbuens eget (selvinduserte) magnetfelt Biysbue, som er direkte proporsjonalt med lysbuestrømmen, mens Bext bestemmes av strømmene som går gjennom magnetspolene og deres relative posisjoner (i forhold til elektrodene eller lysbuesonen). Biysbue og Bext kan derfor velges uav-hengig av hverandre, henholdsvis ved å regulere lysbuestrømmen og spole-strømmene.
Rotasjon av lysbuen skaper et voluminøst termisk plasma med et volum i rommet mellom elektrodene og inne i den hule anoden, som er betydelig større enn volumet til lysbuens strømførende kjerne, dvs. større enn volumet til en fritt brennende, ukontrollert lysbue med samme lengde og strøm.
Lysbuens rotasjonshastighet er målt til å være fra 1000 til over 3000 omdreininger per sekund, og avhenger av det ovennevnte produktet JxBext og typen plasmagass som anvendes.
Det er også mulig å skape den elektriske lysbuen med bruk av vekselstrøm. Rotasjon av lysbuen for å generere det voluminøse plasmaet bevirkes i denne alterna-tive utførelsen ved å forsyne vekselstrøm med samme frekvens og fase til både lysbueelektrodene og magnetspolene.
I nok en ytterligere utførelsesform dannes den elektriske lysbuen med likestrøm, mens permanentmagneter som er innlemmet, har en magnetfeltstyrke og et møns-ter som muliggjør generering av det voluminøse plasmaet.
Anoden er rørformet og har normalt flat topp, og er laget av grafitt. Diameteren øker til en konisk formet del mot bunnen av anoden, og det er laget hull for å mul-iggjøre strømning av gass og resirkulering. Utførelsen av den koniske delen med hullene kan varieres i henhold til ønsket strømningsmønster. Diameteren til anoden kan i utførelsesf ormen i figur 1 varieres mellom 10-35 cm. Minste og største diameter begrenses av reaktorstørrelsen og den ønskede resirkuleringen av gass og partikler. Katoden er stavformet med diameter 5 cm, har enten flat eller avrun-det tupp og er laget av grafitt. Katodematerialet kan i prinsippet være tilvirket av andre termioniske og strømledende materialer enn grafitt, som f.eks. wolfram, men bruk av andre materialer vil gi spor av metall i karbonproduktet, noe som unngås med bruk av grafitt. Katoden og anoden er anordnet slik at de vender aksielt mot hverandre. Den vertikale avstanden mellom elektrodene kan varieres avhengig av reaktorens størrelse. I denne utførelsesf ormen kan denne avstanden varieres mellom 0-25 cm. Ved å endre anodens oppbygning kan den økes til 45 cm i reaktorut-førelsen anvendt i eksperimentene. I eksperimentene, som beskrives nedenfor, var elektrodeavstanden 10 cm. Det er også mulig å plassere katoden inne i anoden (negativ avstand). Det er avstanden mellom elektrodene og anodens diameter som definerer omfanget av det voluminøse termiske plasmaet.
Ved konstruksjon av industrielle reaktorer kan avstandene angitt over økes utover disse grensene. Avstandene vil bestemmes av ønsket produksjonsmengde og den tilhørende tilførsel av elektrisk kraft som kreves for den oppskalerte reaktoren.
Hydrogen, helium, nitrogen, argon, karbonmonoksid eller blandinger av disse, eller en kjemisk substans (fortrinnsvis en gass) som danner én eller flere av disse gass-ene ved oppvarming, kan anvendes som plasmagass.
Den herværende utførelsen er modifisert og blir fortløpende modifisert basert på CFD-beregninger som gir den ønskede resirkuleringen av gass og partikler.
Reaktoren i figur 1 er designet som en allsidig enhet som det er enkelt å modifi-sere og endre vekstparametre for. Lysbuestrømmen, lysbuelengden og lysbuebe-vegelsen er regulerbare, og karbonkilder tillates tilført direkte inn i lysbuesonen. Reaktoren er tilnærmet symmetrisk, noe som letter CFD-beregningene, som er et viktig verktøy for å forstå og optimalisere forholdene for vekst av karbon nanorør.
CFD-arbeidet hadde fokus på utvikling av konsistente og forholdsvis enkle simu-leringsmodeller for reaktoren: den såkalte SD-(Source Domain)-modellen og den
mer avanserte MFD-(Magneto Fluid Dynamic)-modellen. Særlig vekt har vært lagt på å modellere lysbuesonen. I SD-modellen antas lysbuen å rotere raskt nok til at lysbuesonen kan betraktes som en hul kjegle med tykkelse lik lysbuetykkelsen. En momentkilde som representerer de elektromagnetiske Lorentz-kreftene og en varmekilde som svarer til en uniformt fordelt ohmsk oppvarmingseffekt i lysbuen, ble utledet basert på denne forenklingen.
Reaktoren er designet for kontinuerlig produksjon, og produktet kan fjernes kontinuerlig eller satsvis ved blåsing, eller av en avskrapermekanisme eller ved opp-samling i et filter. Avskrapermekanismen kan være roterbar, og kan oppnås ved å rotere selve anoden.
Eksperimenter
Fire eksperimenter med noen variasjoner i eksperimentelle betingelser er beskrevet. Variablene er injeksjonstid, temperatur og type plasmagass. Eksperimentene 1 -3 har lange injeksjonstider (84-93 min) og eksperiment 4 har kort injeksjonstid
(10 min). En H2/Ar- blanding ble brukt som plasmagass i eksperiment 3, og He ble anvendt i eksperimentene 1, 2 og 4. Alle eksperimentene anvendte Ar under oppvarming av reaktoren. Andre eksperimentelle parametere er listet i tabell 1.
En tegning av reaktoren er gitt i figur 1. Tegningen viser posisjonen til injeksjonslansen under metaninjeksjon samt posisjonene til de anvendte elektrodene og magnetspolene. Figur 2 er en skjematisk tegning av reaktoren i figur 1 som viser katoden (elektroden) med plasmagass-innløp 1, plasmagass-innløp 2 (lanser), anode (motelektrode), substrat og gassutløp som anvendt i eksperimentene i tabell 1.
Reaktoren ble varmet opp med bruk av argon ved å øke lysbuestrømmen gradvis opp til maksimalt 900 A ved et reaktortrykk på 1 bara. Når reaktortemperaturen nådde omtrent 1350°C, ble det skiftet til plasmagassen som skulle anvendes under injeksjon (He eller H2/Ar) og trykket ble redusert til 0,6 bara. Eksperimentene ble utført med bare to magnetspoler, den øverste spolen og den nederste spolen. Plasmalysbuen ble stabilisert under oppvarmingen ved å regulere strøm-men gjennom magnetspolene og lysbuestrømmen. For å kontrollere lysbuens stabilitet ble plasmalysbuen overvåket og registrert av et videokamera gjennom observasjonsenheten under hele eksperimentet.
Metan ble tilført kontinuerlig i én injeksjonsperiode på 10-93 min. Strømnings-mengden av metan ble justert til 2,4-2,5 l/min, svarende til 1,2 g C/min. Under metaninjeksjon var fødehastigheten av plasmagass 1 10-11 l/min rundt katoden, og fødehastighet av plasmagass 2 var 51-102 l/min gjennom injeksjonslansen. Noe plasmagass ble også brukt til gasspyling gjennom observeringsenheten, og små mengder ved trykksonder. Strømmen gjennom magnetspolene ble justert for å oppnå en stabil plasmalysbue. Lysbuestrømmen var i området 650-905 A. Etter at reaktoren var kjølt ned ble reaktoren demontert og karbonprøver tatt ut fra forskjellige steder i reaktoren. Karbonprøvene ble veid og karakterisert med FE-SEM (Hitachi S-4300-SE) og FE-TEM (JEOL 2010 FEG TEM). Utbyttet for hvert eksperiment er listet i tabell 1.
Mesteparten av karbonet ble funnet inne i anoden, i filteret og på substratet. Kar-bonavsetningene inne i anoden var myke for kort oppholdstid og harde for lang oppholdstid, og kunne fjernes som store flak. Flakene var sølvfargede på over-siden og sorte på undersiden. Karbonavsetningen i filteret var lett og myk. På den utvendige overflaten av anoden var det kun et meget tynt lag av karbon som kunne skrapes av. Katoden hadde enkelte karbonavsetninger ved tuppen og rundt den øvre delen. Det var ikke avsatt mye karbon i toppen av reaktoren, og toppen av reaktoren ble derfor vanligvis ikke demontert etter eksperimentene. FE-SEM-og FE-TEM-bilder av prøvene fra eksperimentene over er vist og kommentert i figurene 5-11 og nedenfor. Figurene 5a)-d) viser FE-SEM-bilder av en prøve fra anodens innside, sylinderdelen fra eksperiment 1. FE-SEM-prøver ble tatt ved å dispergere pulver i isopropanol og legge det på et karbongitter. Figur 5a): Oversiktsbilde av prøven. Sorte områder er hull i karbongitteret, og mørkegrå områder er karbongitteret. Nanorør sammen med andre typer karbonpartikler kan sees. Nanorørenes lengde er opptil omtrent 5 um. 10 000 x forstørrelse. Figur 5b): Nanorør (d ~ 15-100 nm). 30 000 x forstørrelse. Figur 5c): Nanorør (d ~ 15-100 nm). 80 000 x forstørrelse. Figur 5d): Nanorør (d ~ 15-100 nm). 80 000 x forstørrelse. Figurene 6a)-d) viser FE-SEM-bilder av undersiden (den sorte siden) av en prøve skrapet av fra anodens innside, sylinderdelen fra eksperiment 1. Figur 6a): Nano-rør festet til karbonpartikler på begge sider. Rørets diameter varierer mellom leng-dene (d ~ 50 nm til 350 nm). Rørets lengde er omtrent 2,5 um. 35 000 x forstør-relse. Figur 6b): Nanorør med d ~ 50 nm og lengde omtrent 3 um. 25 000 x for-størrelse. Figur 6c): Nanorør med d ~ 200 nm på det tykkeste og lengde omtrent 2 um. Røret har færre grafittlag ved tuppen. 45 000 x forstørrelse. Figur 6d): To nanorør med veldig forskjellig størrelse. Det tykkeste har d ~ 200 nm og lengde omtrent 0,8 um. Det tynneste har d ~ 40 nm og lengde omtrent 2 um.
35 000 x forstørrelse.
Figurene 7a)-c) viser FE-TEM-bilder av prøver fra anoden (innside, sylinderdel) i eksperiment 1 dispergert i isopropanol og lagt på et karbongitter. Figur 7a): Nano-rør med diameter rundt 15-20 nm, samt sfæriske partikler. Kanalen inne i rørene kan sees. Sorte diffraksjonslinjer i partiklene indikerer at de er krystallinske. Figur 7b): Sterkt forstørret bilde av nanorør (d ~ 16 nm). Grafittlagene kan sees og den åpne kanalen inne i dem (d ~ 2 nm). Avstanden mellom lagene er omtrent 0,34 nm. Figur 7c) er et FE-TEM-bilde som viser et detaljert bilde av nanorøret vist i figurene 7a)-b). Diameter, veggtykkelse og kanaldiameter er angitt på bildet. An-tallet vegger er omtrent 23, noe som gir en avstand mellom lagene på omtrent 0,34 nm (som i grafitt). Figur 8 viser FE-SEM-bilder av kjegler og noen få, lange, karbon nanorør fra inne i anoden fra eksperiment 2. Figurene 9 a)-c) er FE-TEM-bilder av karbon nanorør fra toppen av anoden i eksperiment 2. Prøven ble dispergert og lagt på et karbongitter. Figur 9a): Karbon nanorør med lukkede ender og diametre i området 6-9 nm. Figur 9b): Karbon nanorør med lukkede ender og diametre i området 14-30 nm. Figur 9c): Karbon nanorør med lukket ende og diameter omkring 10 nm.
Figurene 10 a)-b) er FE-SEM-bilder av karbon nanorør fra eksperiment 3.
Figur 10a): Prøve fra innerkanten av toppen av anoden. Karbon nanorør med diametre i området 10-30 nm og lengde rundt 2 um. Figur 10b): Prøve fra innerkanten av toppen av anoden. Karbon nanorør med diametre i området 15-35 nm og lengde rundt 2 um. Figurene 11 a)-c) er FE-SEM-bilder av en kjegle og karbon nanorør fra eksperiment 4. Figur 11a): Bildet viser en kjegle i en prøve fra hullene i anoden. Figur 11 b): Prøve fra inne i anoden ved toppen. Bildet viser en stor konsentrasjon av karbon nanorør. Figur 11c): Prøve fra inne i anoden ved toppen. Karbon nano-rør med diametre i området 10-20 nm og lengde 1-3 um.
Etter at nå foretrukne utførelsesf ormer av oppfinnelsen er beskrevet vil det være klart for fagmannen at andre utførelsesf ormer som innlemmer konseptene kan anvendes. Disse og andre eksempler på oppfinnelsen illustrert over er kun ment som eksempler, og oppfinnelsens faktiske ramme skal bestemmes basert på de følgende kravene.
Claims (22)
1. Prosess for fremstilling av karbon nanorør eller andre nanostrukturer av karbon, f.eks. kjegler, omfattende det å: fordampe/dekomponere et karbonholdig materiale i et voluminøst termisk plasma, der det voluminøse termiske plasma er dannet ved å rotere en elektrisk lysbue ved å benytte et påtrykt magnetfelt, kondensere nevnte fordampede/dekomponerte karbonholdige materiale på overflater eller på partikler i en gasstrøm, og å resirkulere nevnte karbonholdige materiale gjennom det voluminøse plasmaet.
2. Prosess ifølge krav 1, omfattende det å posisjonere og rotere lysbuen ved å tilpasse fordelingen, retningen og styrken til det påtrykte magnetfeltet.
3. Prosess ifølge krav 1, der det karbonholdige materialet er i gassform, væskeform eller fast tilstand.
4. Prosess ifølge ett av kravene 1 -3, omfattende det å anvende et eksternt påtrykt magnetfelt.
5. Prosess ifølge krav 1, der det karbonholdige materialet velges fra gruppen bestående av "carbon black", grafittpulver, kull, naturgass, hydrokarboner og oljer.
6. Prosess ifølge krav 1, omfattende det å tilføre en katalysator sammen med nevnte karbonholdige materiale eller sammen med plasmagassen som anvendes.
7. Prosess ifølge krav 1, omfattende det å påføre en katalysator på nevnte overflater.
8. Prosess ifølge krav 1, der katalysatoren velges fra gruppen bestående av Ni, Co, Fe, Y, salter og metallorganiske forbindelser av Ni, Co, Fe, Y, suspensjoner av Ni, Co, Fe, Y og nevnte salter og nevnte forbindelser, samt kombinasjoner av disse.
9. Prosess ifølge krav 1, omfattende det å forsyne nevnte karbonholdige materiale ved tilførsel eller fordamping av karbonholdige elektroder.
10. Prosess ifølge krav 1, omfattende det å anvende hydrogen, helium, nitrogen, argon, karbonmonoksid eller blandinger av disse som plasmagass.
11. Prosess ifølge krav 1, der overflatene enten er en elektrode eller et substrat.
12. Prosess ifølge krav 1, der den elektriske lysbuen dannes mellom en elektrode og en hul motelektrode, idet elektrodene aksielt anordnes slik at de vender mot hverandre.
13. Prosess ifølge ett av kravene 1,10 og 11, der motelektroden utstyres med hull som muliggjør passasje og resirkulering av. gasser og partikler.
14. Reaktor for fremstilling av karbon nanorør eller andre nanostrukturer av karbon, f.eks. kjegler, gjennom prosessen ifølge krav 1, omfattende: en elektrode og en hul motelektrode, der elektrodene er aksielt anordnet slik at de vender mot hverandre, og minst én magnet.
15. Reaktor ifølge krav 14, der motelektroden er et rør.
16. Reaktor ifølge kravene 14 eller 15, der motelektroden eller en del av den har en konisk form.
17. Reaktor ifølge ett av kravene 14-16, der motelektroden har hull.
18. Reaktor ifølge ett av kravene 14-17, der den minst ene magneten eller en del av én enkelt magnet er anordnet i en nedre del av reaktoren, nedenfor et lysbueområde, og der den minst ene magneten eller en del av én enkelt magnet er anordnet i en øvre del av reaktoren, over lysbueområdet.
19. Reaktor ifølge krav 14 eller 18, der magnetene er elektromagneter eller permanentmagneter.
20. Reaktor ifølge ett av kravene 14-19, omfattende en blåse- eller avskrapermekanisme for å fjerne karbon nanorørene dannet på motelektroden.
21. Reaktor ifølge krav 20, der nevnte avskrapermekanisme er en roterbar motelektrode eller en roterbar avskrapermekanisme.
22. Reaktor ifølge krav 14, omfattende minst én injeksjonslanse eller injeksjonsport.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/922,264 US8277739B2 (en) | 2005-06-16 | 2006-06-16 | Method and reactor for producing carbon nanotubes |
KR1020087001094A KR101257279B1 (ko) | 2005-06-16 | 2006-06-16 | 탄소 나노튜브의 제조방법 및 반응기 |
RU2008101656/05A RU2419585C2 (ru) | 2005-06-16 | 2006-06-16 | Способ и реактор для производства углеродных нанотрубок |
PCT/NO2006/000229 WO2006135253A1 (en) | 2005-06-16 | 2006-06-16 | Method and reactor for producing carbon nanotubes |
JP2008516773A JP5416402B2 (ja) | 2005-06-16 | 2006-06-16 | カーボンナノチューブを製造するための方法及び反応器 |
EP06757873.2A EP1912893B1 (en) | 2005-06-16 | 2006-06-16 | Method and reactor for producing carbon nanotubes |
BRPI0613344-4A BRPI0613344B1 (pt) | 2005-06-16 | 2006-06-16 | Processo para produzir nanotubos de carbono e reator para produzir nanotubos de carbono |
CN2006800299303A CN101248007B (zh) | 2005-06-16 | 2006-06-16 | 生产碳纳米管的方法和反应器 |
CA2612310A CA2612310C (en) | 2005-06-16 | 2006-06-16 | Method and reactor for producing carbon nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69086305P | 2005-06-16 | 2005-06-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20056149L NO20056149L (no) | 2006-12-18 |
NO326571B1 true NO326571B1 (no) | 2009-01-12 |
Family
ID=37781941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20056149A NO326571B1 (no) | 2005-06-16 | 2005-12-22 | Fremgangsmate og reaktor for fremstilling av karbon nanoror |
Country Status (10)
Country | Link |
---|---|
US (1) | US8277739B2 (no) |
EP (1) | EP1912893B1 (no) |
JP (1) | JP5416402B2 (no) |
KR (1) | KR101257279B1 (no) |
CN (1) | CN101248007B (no) |
BR (1) | BRPI0613344B1 (no) |
CA (1) | CA2612310C (no) |
NO (1) | NO326571B1 (no) |
RU (1) | RU2419585C2 (no) |
WO (1) | WO2006135253A1 (no) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8679630B2 (en) | 2006-05-17 | 2014-03-25 | Purdue Research Foundation | Vertical carbon nanotube device in nanoporous templates |
US9487877B2 (en) | 2007-02-01 | 2016-11-08 | Purdue Research Foundation | Contact metallization of carbon nanotubes |
CN100447076C (zh) * | 2007-04-20 | 2008-12-31 | 北京交通大学 | 一种以煤为原料制备多壁碳纳米管的方法 |
US8715981B2 (en) | 2009-01-27 | 2014-05-06 | Purdue Research Foundation | Electrochemical biosensor |
US8986836B2 (en) * | 2009-03-19 | 2015-03-24 | Ohio University | Microspheres and their methods of preparation |
US8872154B2 (en) | 2009-04-06 | 2014-10-28 | Purdue Research Foundation | Field effect transistor fabrication from carbon nanotubes |
JP2011207736A (ja) * | 2010-03-12 | 2011-10-20 | Sekisui Chem Co Ltd | グラフェンの形成方法 |
RU2489350C2 (ru) * | 2011-11-16 | 2013-08-10 | Общество с ограниченной ответственностью "Центр перспективных углеродных материалов" | Способ получения углеродных наноматериалов и устройство для его реализации |
CN103896243B (zh) * | 2012-12-29 | 2016-03-09 | 清华大学 | 反应器及生长碳纳米管的方法 |
RU2573035C2 (ru) * | 2013-01-22 | 2016-01-20 | Мсд Текноложжис С.А.П.Л | Способ получения углеродных наноструктур и аппарат |
SK500062013A3 (sk) * | 2013-03-05 | 2014-10-03 | Ga Drilling, A. S. | Generovanie elektrického oblúka, ktorý priamo plošne tepelne a mechanicky pôsobí na materiál a zariadenie na generovanie elektrického oblúka |
RU2559481C2 (ru) * | 2013-12-13 | 2015-08-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") | Способ синтеза углеродных нанотрубок и устройство его осуществления |
RU2571150C2 (ru) * | 2014-01-24 | 2015-12-20 | Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) | Способ получения углеродных нанотрубок |
US10100200B2 (en) | 2014-01-30 | 2018-10-16 | Monolith Materials, Inc. | Use of feedstock in carbon black plasma process |
US10370539B2 (en) | 2014-01-30 | 2019-08-06 | Monolith Materials, Inc. | System for high temperature chemical processing |
US10138378B2 (en) | 2014-01-30 | 2018-11-27 | Monolith Materials, Inc. | Plasma gas throat assembly and method |
US11939477B2 (en) | 2014-01-30 | 2024-03-26 | Monolith Materials, Inc. | High temperature heat integration method of making carbon black |
US9574086B2 (en) | 2014-01-31 | 2017-02-21 | Monolith Materials, Inc. | Plasma reactor |
WO2015116943A2 (en) | 2014-01-31 | 2015-08-06 | Monolith Materials, Inc. | Plasma torch design |
US11987712B2 (en) | 2015-02-03 | 2024-05-21 | Monolith Materials, Inc. | Carbon black generating system |
US10618026B2 (en) | 2015-02-03 | 2020-04-14 | Monolith Materials, Inc. | Regenerative cooling method and apparatus |
RU2601335C1 (ru) * | 2015-07-06 | 2016-11-10 | Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) | Способ нанесения массивов углеродных нанотрубок на металлические подложки |
WO2017019683A1 (en) | 2015-07-29 | 2017-02-02 | Monolith Materials, Inc. | Dc plasma torch electrical power design method and apparatus |
CA3033947C (en) | 2015-09-09 | 2024-05-28 | Monolith Materials, Inc. | Circular few layer graphene |
EP3350855A4 (en) | 2015-09-14 | 2019-08-07 | Monolith Materials, Inc. | CARBON BLACK FROM NATURAL GAS |
RU2625978C1 (ru) * | 2016-01-12 | 2017-07-20 | Акционерное общество "Уральский научно-исследовательский институт композиционных материалов" | Способ получения углеродных нанотрубок методом газофазного химического осаждения |
WO2017190015A1 (en) | 2016-04-29 | 2017-11-02 | Monolith Materials, Inc. | Torch stinger method and apparatus |
US11149148B2 (en) | 2016-04-29 | 2021-10-19 | Monolith Materials, Inc. | Secondary heat addition to particle production process and apparatus |
CN110603297A (zh) | 2017-03-08 | 2019-12-20 | 巨石材料公司 | 用热传递气体制备碳颗粒的系统和方法 |
CN110799602A (zh) | 2017-04-20 | 2020-02-14 | 巨石材料公司 | 颗粒系统和方法 |
CN107381541B (zh) * | 2017-08-03 | 2019-12-06 | 中创奕龙科技股份有限公司 | 一种以裂解炭黑为碳源的碳纳米管制造方法 |
US11358113B2 (en) * | 2017-08-08 | 2022-06-14 | H Quest Vanguard, Inc. | Non-thermal micro-plasma conversion of hydrocarbons |
CN111278767A (zh) | 2017-08-28 | 2020-06-12 | 巨石材料公司 | 用于颗粒生成的系统和方法 |
CA3116989C (en) | 2017-10-24 | 2024-04-02 | Monolith Materials, Inc. | Particle systems and methods |
US20210025055A1 (en) * | 2018-03-26 | 2021-01-28 | Suzhou Creative Nano Carbon Co., Ltd. | Carbon nanotube preparation system |
DE102018132661B4 (de) * | 2018-12-18 | 2020-10-01 | Thyssenkrupp Ag | Verfahren zur Kohlenwasserstoffpyrolyse mit räumlich getrennter Beheizungs- und Reaktionszone innerhalb des Reaktorraums |
WO2021022384A1 (en) * | 2019-08-08 | 2021-02-11 | Greenbound Industrial Technologies Inc. | Method and apparatus for cracking hydrocarbons |
CN112591739A (zh) * | 2020-12-14 | 2021-04-02 | 衢州晶洲科技发展有限公司 | 一种石墨烯的制备方法 |
CN116253307A (zh) * | 2023-02-07 | 2023-06-13 | 中国航天空气动力技术研究院 | 一种高纯纳米炭黑制备方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227038A (en) | 1991-10-04 | 1993-07-13 | William Marsh Rice University | Electric arc process for making fullerenes |
JPH05116925A (ja) * | 1991-10-29 | 1993-05-14 | Mitsui Eng & Shipbuild Co Ltd | フラーレン類の製造装置 |
US5277038A (en) | 1992-08-28 | 1994-01-11 | Instatherm Company | Thermal storage system for a vehicle |
US5298714A (en) | 1992-12-01 | 1994-03-29 | Hydro-Quebec | Plasma torch for the treatment of gases and/or particles and for the deposition of particles onto a substrate |
JPH0848510A (ja) | 1994-08-04 | 1996-02-20 | Satoru Mieno | アーク放電によるフラーレン自動合成装置 |
SE516336C2 (sv) * | 1999-04-28 | 2001-12-17 | Hana Barankova | Apparat för plasmabehandling av ytor |
SE516722C2 (sv) * | 1999-04-28 | 2002-02-19 | Hana Barankova | Förfarande och apparat för plasmabehandling av gas |
US6451175B1 (en) | 2000-08-15 | 2002-09-17 | Wisconsin Alumni Research Foundation | Method and apparatus for carbon nanotube production |
JP3606232B2 (ja) * | 2001-06-01 | 2005-01-05 | 富士ゼロックス株式会社 | 炭素構造体の製造装置および製造方法 |
AU2002344610A1 (en) * | 2002-10-30 | 2004-05-25 | Fuji Xerox Co., Ltd. | Production system and production method of carbon nanotube |
JP3933035B2 (ja) | 2002-11-06 | 2007-06-20 | 富士ゼロックス株式会社 | カーボンナノチューブの製造装置および製造方法 |
DE10312494A1 (de) | 2003-03-20 | 2004-10-07 | Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) | Kohlenstoff-Nanostrukturen und Verfahren zur Herstellung von Nanoröhren, Nanofasern und Nanostrukturen auf Kohlenstoff-Basis |
CN1541938A (zh) | 2003-11-06 | 2004-11-03 | 大连理工大学 | 一种由煤连续制备碳纳米管材料的方法和装置 |
US20050230240A1 (en) * | 2004-03-09 | 2005-10-20 | Roman Dubrovsky | Method and apparatus for carbon allotropes synthesis |
-
2005
- 2005-12-22 NO NO20056149A patent/NO326571B1/no not_active IP Right Cessation
-
2006
- 2006-06-16 BR BRPI0613344-4A patent/BRPI0613344B1/pt not_active IP Right Cessation
- 2006-06-16 CN CN2006800299303A patent/CN101248007B/zh not_active Expired - Fee Related
- 2006-06-16 CA CA2612310A patent/CA2612310C/en not_active Expired - Fee Related
- 2006-06-16 US US11/922,264 patent/US8277739B2/en not_active Expired - Fee Related
- 2006-06-16 EP EP06757873.2A patent/EP1912893B1/en not_active Not-in-force
- 2006-06-16 WO PCT/NO2006/000229 patent/WO2006135253A1/en active Application Filing
- 2006-06-16 KR KR1020087001094A patent/KR101257279B1/ko not_active IP Right Cessation
- 2006-06-16 JP JP2008516773A patent/JP5416402B2/ja not_active Expired - Fee Related
- 2006-06-16 RU RU2008101656/05A patent/RU2419585C2/ru not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CA2612310C (en) | 2013-12-10 |
EP1912893A1 (en) | 2008-04-23 |
US20090294273A1 (en) | 2009-12-03 |
BRPI0613344B1 (pt) | 2018-02-14 |
RU2419585C2 (ru) | 2011-05-27 |
CN101248007B (zh) | 2011-04-20 |
WO2006135253A1 (en) | 2006-12-21 |
JP5416402B2 (ja) | 2014-02-12 |
EP1912893B1 (en) | 2018-08-08 |
US8277739B2 (en) | 2012-10-02 |
KR20080036037A (ko) | 2008-04-24 |
EP1912893A4 (en) | 2012-10-10 |
NO20056149L (no) | 2006-12-18 |
RU2008101656A (ru) | 2009-07-27 |
BRPI0613344A2 (pt) | 2011-01-04 |
CN101248007A (zh) | 2008-08-20 |
KR101257279B1 (ko) | 2013-04-23 |
JP2009507747A (ja) | 2009-02-26 |
CA2612310A1 (en) | 2006-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO326571B1 (no) | Fremgangsmate og reaktor for fremstilling av karbon nanoror | |
Das et al. | Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? | |
Arora et al. | Arc discharge synthesis of carbon nanotubes: Comprehensive review | |
Farhat et al. | Review of the arc process modeling for fullerene and nanotube production | |
US20060127299A1 (en) | Method for producing carbon nanotubes using a dc non-transferred thermal plasma torch | |
EA011588B1 (ru) | Углеродные наноструктуры и способ получения нанотрубок, нановолокон и наноструктур на основе углерода | |
MXPA01002186A (es) | Medios de carbon para almacenamiento de hidrogeno. | |
US20080102019A1 (en) | Method and apparatus for synthesizing carbon nanotubes using ultrasonic evaporation | |
Liu et al. | Synthesis of structure controlled carbon nanomaterials by AC arc plasma process | |
Corbella et al. | Nanosynthesis by atmospheric arc discharges excited with pulsed-DC power: a review | |
Chen et al. | Rapid formation of diamond-like nano-carbons in a gas bubble discharge in liquid ethanol | |
JP4923237B2 (ja) | カーボンナノ繊維の製造方法 | |
JP2005035841A (ja) | カーボンナノチューブを備えた金属ワイヤー又はキャピラリー及びカーボンナノチューブの形成方法 | |
RU2447019C2 (ru) | Способ получения углеродсодержащих нанотрубок | |
Kia et al. | Using hydrocarbon as a carbon source for synthesis of carbon nanotube by electric field induced needle-pulsed plasma | |
Shanmugam et al. | Carbon Nanotubes: synthesis and characterization | |
CN115403030B (zh) | 一种采用流动催化剂制备单壁碳纳米管的装置及其方法 | |
Xu et al. | In situ formation of carbon nanomaterials on bulk metallic materials | |
SØKNAD | POST TIL, PATENTSTYRET | |
Raniszewski | Magnetic field in arc discharge systems for carbon nanotubes synthesis | |
RU2571150C2 (ru) | Способ получения углеродных нанотрубок | |
Yadav et al. | Carbon nanotubes: synthesis and characterization | |
Karmakar | Unveiling the mystery of nucleation and growth of carbon nanotube and layered graphene inside carbon arc-discharge | |
Sano et al. | Structural control of icicle-like carbon nanotube forest in heterogeneous catalysis growth with high voltage corona discharge | |
Azira et al. | Morphology Study of Prepared Carbon Nanotubes using Palm Oil as Carbon Source in Spray Pyrolysis Chemical Vapor Deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |