Nothing Special   »   [go: up one dir, main page]

NO178870B - Process for Preparation of Modified Eglin B or C and DNA, Expression Vector and Host Microorganism - Google Patents

Process for Preparation of Modified Eglin B or C and DNA, Expression Vector and Host Microorganism Download PDF

Info

Publication number
NO178870B
NO178870B NO890932A NO890932A NO178870B NO 178870 B NO178870 B NO 178870B NO 890932 A NO890932 A NO 890932A NO 890932 A NO890932 A NO 890932A NO 178870 B NO178870 B NO 178870B
Authority
NO
Norway
Prior art keywords
eglin
dna
expression
mutants
formula
Prior art date
Application number
NO890932A
Other languages
Norwegian (no)
Other versions
NO890932L (en
NO178870C (en
NO890932D0 (en
Inventor
Markus Gerhard Grutter
Dirk Heinz
Manfred Liersch
Original Assignee
Ciba Geigy Ag
Ucp Gen Pharma Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy Ag, Ucp Gen Pharma Ag filed Critical Ciba Geigy Ag
Publication of NO890932D0 publication Critical patent/NO890932D0/en
Publication of NO890932L publication Critical patent/NO890932L/en
Publication of NO178870B publication Critical patent/NO178870B/en
Publication of NO178870C publication Critical patent/NO178870C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/815Protease inhibitors from leeches, e.g. hirudin, eglin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/855Proteins from animals other than mammals or birds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)

Abstract

Eglin mutants which differ from natural eglins B and C in that one, two or three amino acids in the region of the active centre (amino acids 45 and 46, Leu-Asp) have been replaced by other amino acids are provided. The mutants, which can be prepared by recombinant gene techniques, have valuable pharmacological properties.

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av modifisert Eglin B eller C, DNA som koder for en modifisert Eglin B eller C samt ekspresjonsvektor og vertsmikroorganisme egnet for ekspresjon derav. The present invention relates to a method for the production of modified Eglin B or C, DNA which codes for a modified Eglin B or C as well as an expression vector and a host microorganism suitable for expression thereof.

I det tyske utleggingsskriftet 2808396 er to proteaseinhibi-torer, betegnet som Eglin B og Eglin C, isolert fra blodigle (Eirudo medicinalis) beskrevet. Disse polypeptidene består av bare 70 aminosyrer med en molekylvekt på ca. 8100 og er sterke inhibitorer for chymotrypsin, subtilisin, for granulo-sytt-proteasene elastase fra dyr og menneske og katepsin G samt mastcelle-proteasechymase. Derimot blir trypsin-lignende proteaser bare hemmet i uvesentlig grad. In German publication 2808396, two protease inhibitors, named Eglin B and Eglin C, isolated from leech (Eirudo medicinalis) are described. These polypeptides consist of only 70 amino acids with a molecular weight of approx. 8100 and are strong inhibitors of chymotrypsin, subtilisin, of the granulocytic proteases elastase from animals and humans and cathepsin G as well as mast cell protease chymase. In contrast, trypsin-like proteases are only slightly inhibited.

Eglin C har følgende primærstruktur: Eglin C has the following primary structure:

Eglin C inneholder i forhold til de fleste kjente protease-inhibitorene ingen disulfid-broer. Den er til tross for den relativt lave molekylstørrelsen uvanlig stabil overfor denaturering med syre, lut eller varme og overfor proteo-lytisk nedbryting. Primærstrukturen til Eglin B er forskjel- Compared to most known protease inhibitors, Eglin C contains no disulfide bridges. Despite its relatively low molecular size, it is unusually stable against denaturation with acid, lye or heat and against proteolytic degradation. The primary structure of Eglin B is differ-

lig fra den til Eglin C ved erstatning av aminosyren 35, tyrosin, med histidin. lig from that of Eglin C by replacing amino acid 35, tyrosine, with histidine.

Eglinet hører til den sterkeste for tiden kjente hemmeren av humant og dyrisk granulocytt-elastase, samt av humant granulocyttkatepsin G. Ukontrollert henholdsvis umåtelig frigjøring av disse cellulære proteasene i organismen kan forsterke et betennelsesforløp og nedbrytning av vev ved uspesifikk proteolyse. Enzymene er kompetente for intracellu- Egline belongs to the currently strongest known inhibitor of human and animal granulocyte elastase, as well as of human granulocyte cathepsin G. Uncontrolled or excessive release of these cellular proteases in the organism can intensify an inflammatory process and breakdown of tissue by non-specific proteolysis. The enzymes are competent for intracellular

lær nedbrytning er optimalt virkningsfulle i fysiologisk miljø (nøytralt til svakt alkalisk) og har muligheten til å leather decomposition is optimally effective in a physiological environment (neutral to slightly alkaline) and has the ability to

raskt ødelegge native vevsubstanser (f.eks. elastin) og humorale faktorer (f.eks. blodkoagulerings- og komplement-faktorene) og å inaktivere disse. På grunn av de til nå kjente egenskapene til egl ine er de av stor interesse for anvendelse i medisinsk terapi (antiinflammasjon, antiflogi-stikk, septisk sjokk, lungeemfysem, mukoviscidose osv.). rapidly destroy native tissue substances (e.g. elastin) and humoral factors (e.g. the blood coagulation and complement factors) and to inactivate these. Due to the so far known properties of eglin ine, they are of great interest for use in medical therapy (anti-inflammation, antiphlogistic sting, septic shock, pulmonary emphysema, cystic fibrosis, etc.).

I det siste er Eglin blitt tilgjengelig ved hjelp av rekombinante genteknikkfremgangsmåter (jfr. Europeisk patentmelding nr. 146785). Recently, Eglin has become available by means of recombinant genetic engineering methods (cf. European Patent Application No. 146785).

Hensikten med oppfinnelsen er å fremstille nye protease-inhibitorer ut i fra Eglin B eller Eglin C. The purpose of the invention is to produce new protease inhibitors from Eglin B or Eglin C.

Hensikten ble ifølge oppfinnelsen oppnådd ved fremstilling av Eglinmutanter, som skiller seg fra naturlige Eglin B og C ved at en, to eller tre aminosyrer innenfor det aktive sentrumet (aminosyre 45 og 46, Leu-Asp) ble erstattet med andre aminosyrer. De ifølge oppfinnelsen tilveiebragte Eglin-mutantene utviser overraskende egenskaper: De fremhever seg i forhold til Eglin B og Eglin C ved at de har en høyere spesifisitet når det gjelder inhibering av bestemte proteaser eller ved inhibering av proteaser, som ikke eller nesten ikke ble inhibert av Eglin B og C, for eksempel trypsin eller trombin. According to the invention, the purpose was achieved by producing Eglin mutants, which differ from natural Eglin B and C in that one, two or three amino acids within the active center (amino acids 45 and 46, Leu-Asp) were replaced with other amino acids. The Eglin mutants provided according to the invention exhibit surprising properties: They stand out compared to Eglin B and Eglin C in that they have a higher specificity when it comes to inhibiting certain proteases or when inhibiting proteases that were not or almost not inhibited by Eglin B and C, for example trypsin or thrombin.

Foreliggende oppfinnelse vedrører følgelig en fremgangsmåte for fremstilling av modifisert Eglin B eller C ifølge formel The present invention therefore relates to a method for the production of modified Eglin B or C according to formula

hvor R betyr hydrogen eller acetyl, W betyr Tyr eller His, X betyr Thr eller Pro, Y betyr Leu eller Arg og Z betyr Asp eller Ser, og salter derav, kjennetegnet ved at man where R means hydrogen or acetyl, W means Tyr or His, X means Thr or Pro, Y means Leu or Arg and Z means Asp or Ser, and salts thereof, characterized by

fremstiller mutert DNA som koder for modifisert Eglin B eller C ifølge ovennevnte formel, kloner dette kodende DNA i en ekspresjonsvektor transformerer en vertscelle dermed, dyrker de transformerte vertscellene og isolerer modifisert Eglin B eller C eller et salt derav. prepares mutated DNA encoding modified Eglin B or C according to the above formula, clones this encoding DNA into an expression vector, transforms a host cell thereby, cultivates the transformed host cells and isolates modified Eglin B or C or a salt thereof.

Oppfinnelsen vedrører spesielt en fremgangsmåte for fremstilling av forbindelser med formel I kjennetegnet ved at R er acetyl, W er Tyr, X er Thr, Y er Arg og Z er Asp eller Ser, og salter derav. The invention relates in particular to a method for the preparation of compounds of formula I characterized in that R is acetyl, W is Tyr, X is Thr, Y is Arg and Z is Asp or Ser, and salts thereof.

De nye forbindelsene med formel I foreligger ikke bare i fri form, men også i form av deres salter, spesielt farmasøytisk akseptable salter. På grunn av at de inneholder flere aminosyrerester med frie aminogrupper henholdsvis guanidin-grupper, kan forbindelsene fremstilt ifølge oppfinnelsen, f.eks. foreligge i form av syreaddisjonssalter. Som syreaddisjonssalter kommer spesielt fysiologiske anvendbare salter med vanlig, terapeutisk anvendbare syrer i betrakt-ning. Som uorganiske syrer kan halogenhydrogensyrene, såsom klorhydrogensyre nevnes, men også svovelsyre og fosfor-henholdsvis pyrofosforsyre; som organiske syrer er sulfon-syrer (såsom benzen- eller p-toluensulfonsyre eller lavere-alkansulfonsyre, såsom metansulfonsyre) samt karboksylsyre, såsom eddiksyre, melkesyre, palmitin- og stearinsyre, eplesyre, vinsyre, askorbinsyre og sitronsyre egnede. På grunn av at Eglin-forbindelsene også inneholder aminosyrerester med frie karboksylgrupper, kan de også foreligge som metallsalter, spesielt som alkalimetall- eller jordalkali-metallsalter, f.eks. natrium-, kalium-, kalsium- eller magnesiumsalter, eller også som ammoniumsalt, avledet fra ammoniakk eller en fysiologisk godtagbar organisk nitrogen-holdig base. På grunn av at de både inneholder frie karboksylgrupper og frie amino (og guanidin)-grupper, kan de også foreligge som indre salter. The new compounds of formula I exist not only in free form, but also in the form of their salts, especially pharmaceutically acceptable salts. Due to the fact that they contain several amino acid residues with free amino groups or guanidine groups, the compounds produced according to the invention, e.g. exist in the form of acid addition salts. As acid addition salts, particularly physiologically usable salts with common, therapeutically usable acids come into consideration. As inorganic acids, the halogen hydrogen acids, such as hydrochloric acid, can be mentioned, but also sulfuric acid and phosphoric acid, respectively pyrophosphoric acid; as organic acids, sulfonic acids (such as benzene or p-toluenesulfonic acid or lower alkanesulfonic acid, such as methanesulfonic acid) as well as carboxylic acids, such as acetic acid, lactic acid, palmitic and stearic acid, malic acid, tartaric acid, ascorbic acid and citric acid are suitable. Because the Eglin compounds also contain amino acid residues with free carboxyl groups, they can also exist as metal salts, especially as alkali metal or alkaline earth metal salts, e.g. sodium, potassium, calcium or magnesium salts, or also as an ammonium salt, derived from ammonia or a physiologically acceptable organic nitrogen-containing base. Because they contain both free carboxyl groups and free amino (and guanidine) groups, they can also exist as internal salts.

Eglin-mutantene og deres salter kan for eksempel bli fremstilt ved hjelp av i seg selv kjente fremgangsmåter, for eksempel genteknologisk fremgangsmåte, f.eks. idet man dyrker en transformert vertsorganisme, som inneholder et DNA, som koder for den nevnte Eglin-mutanten, og isolerer Eglin-mutanten eller et salt derav. Spesielt blir Eglin-mutantene og deres salter fremstilt i det man The Eglin mutants and their salts can, for example, be produced using methods known per se, for example genetic engineering methods, e.g. cultivating a transformed host organism containing a DNA encoding said Eglin mutant and isolating the Eglin mutant or a salt thereof. In particular, the Eglin mutants and their salts are prepared in the mon

a. fremstiller DNA som koder for Eglin-mutanten, a. produces DNA that codes for the Eglin mutant,

b. fører dette DNA i en vektor, b. carries this DNA in a vector,

c. fører den tilveiebragte hybridvektoren ved transformasjon inn i en vertsmikroorganisme, d. dyrker den transformerte vertsorganismen under betingelser c. introduces the provided hybrid vector by transformation into a host microorganism, d. cultivates the transformed host organism under conditions

som muliggjør en ekspresjon av Eglin-mutanten, og which enables an expression of the Eglin mutant, and

e. isolerer Eglin-mutanten eller et salt derav. e. isolates the Eglin mutant or a salt thereof.

DNA som koder for Eglin- mutanter DNA encoding Eglin mutants

Oppfinnelsen vedrører også DNA, kjennetegnet ved at det koder for en modifisert Eglin B eller C med formel som angitt i krav 1. The invention also relates to DNA, characterized in that it codes for a modified Eglin B or C with the formula as stated in claim 1.

DNA inneholder fortrinnsvis flankerende, egnede restrik-sjonssete tilknyttende sekvenser i deres ender, som muliggjør innsetting av DNA i en vektor. The DNA preferably contains flanking, suitable restriction site binding sequences at their ends, which enable insertion of the DNA into a vector.

DNA ifølge oppfinnelsen kan bli fremstilt ifølge i seg selv kjente fremgangsmåter. Man kan dermed fremstille DNA for eksempel kjemisk, eller man kan fremstille fragmenter ved kjemisk syntese og koble disse enzymatisk sammen på en forutbestemt måte, eller man kan mutere et DNA som koder for Eglin B eller Eglin C i et eller flere trinn. DNA according to the invention can be produced according to methods known per se. One can thus produce DNA chemically, for example, or one can produce fragments by chemical synthesis and link these together enzymatically in a predetermined way, or one can mutate a DNA that codes for Eglin B or Eglin C in one or more steps.

Kjemisk syntese av DNA foregår ved hjelp av kjent fremgangsmåte. Egnede fremgangsmåter er beskrevet av S.A. Narang (Tetrahedron 39, 3 (1983)) og i europeisk patentskrift nr. 146785. Chemical synthesis of DNA takes place using a known method. Suitable methods are described by S.A. Narang (Tetrahedron 39, 3 (1983)) and in European Patent Document No. 146785.

Fremstilling av DNA ifølge oppfinnelsen kan også foregå ved mutasjon av DNA som koder for Eglin B eller Eglin C. Fortrinnsvis anvendes "seterettet mutagenese"-fremgangsmåten (jfr. M.J. Zoller et al., Meth. Enzym. 100, 468 (1983)). Dermed blir Eglin-enkelttrådet-DNA klonet inn i bakteriofag M13, hybridisert med et komplementært oligonukleotid, som inneholder det (de) mutasjonsdirigerende nukleotid(ene), hybridiseringsproduktet blir ifylt til dobbelttråder, den oppnådde dobbelttrådete bakteriofagen blir ved transformasjon ført inn i en egnet Escherichia coli-vert, og etter dyrking av de transformert E. coli-cellene blir de cellene som inneholder DNA som koder for Eglin-mutantene, identifisert ved hybridisering med det ovenfor nevnte oligonukleotidet. Production of DNA according to the invention can also take place by mutation of DNA that codes for Eglin B or Eglin C. The "site-directed mutagenesis" method is preferably used (cf. M.J. Zoller et al., Meth. Enzym. 100, 468 (1983)). Thus, the Eglin single-stranded DNA is cloned into bacteriophage M13, hybridized with a complementary oligonucleotide, which contains the mutation-directing nucleotide(s), the hybridization product is filled into double strands, the resulting double-stranded bacteriophage is transformed into a suitable Escherichia coli host, and after culturing the transformed E. coli cells, those cells containing DNA encoding the Eglin mutants are identified by hybridization with the above-mentioned oligonucleotide.

Fremstilling av ekspresjonsvektorer som inneholder et DNA som koder for en Eglin- mutant Preparation of expression vectors containing a DNA encoding an Eglin mutant

Oppfinnelsen vedrører videre ekspresjonsvektorer som inneholder DNA-sekvenser som koder for en Eglin-mutant, som blir regulert av en ekspresjonskontrollsekvens derav, hvori Eglin-mutantene blir uttrykt i en av vertscellene som er transformert med disse ekspresjonsvektorene. The invention further relates to expression vectors containing DNA sequences that code for an Eglin mutant, which is regulated by an expression control sequence thereof, in which the Eglin mutants are expressed in one of the host cells that have been transformed with these expression vectors.

Ekspresjonsvektorene ifølge foreliggende oppfinnelse blir f.eks. fremstilt idet man i et vektor-DNA som inneholder en ekspresjonskontrollsekvens, innfører en DNA-sekvens som koder for Eglin-mutanten, hvori ekspresjonskontrollsekvensen regulerer DNA-sekvensen. The expression vectors according to the present invention are e.g. produced by introducing into a vector DNA containing an expression control sequence a DNA sequence coding for the Eglin mutant, in which the expression control sequence regulates the DNA sequence.

Valg av en egnet vektor avhenger av vertscellen som skal bli transformert. Egnede verter innbefatter f.eks. mikroorganismer, såsom gjær, f.eks. Saccharomyces cerevisiae, og spesielle bakteriestammer, hovedsakelig Escherichia coli-stammer eller Bacillus subtilis, eller celler fra høyere organismer, spesielt etablerte humane eller dyrecellelinjer. Foretrukne vertsceller innbefatter E. coli-stammer. Hovedsakelig er alle vektorer egnede som replikerer og uttrykker i den valgte verten DNA-sekvensen ifølge oppfinnelsen som koder for Eglin-mutantene. Selection of a suitable vector depends on the host cell to be transformed. Suitable hosts include e.g. microorganisms, such as yeast, e.g. Saccharomyces cerevisiae, and special bacterial strains, mainly Escherichia coli strains or Bacillus subtilis, or cells from higher organisms, especially established human or animal cell lines. Preferred host cells include E. coli strains. Essentially all vectors are suitable which replicate and express in the chosen host the DNA sequence of the invention encoding the Eglin mutants.

Eksempler på vektorer som er egnede for ekspresjon i en E. coli-stamme av Eglin-mutanten, er bakteriofager, f.eks. derivater av bakteriofag X, eller plasmider, såsom spesielt plasmid colEl og derivater derav, f.eks. pMB9, pSF2124, pBR317 eller pBR322. De foretrukne vektorer ifølge foreliggende oppfinnelse er avledet fra plasmid pBR322. Egnede vektorer inneholder et fullstendig replikon og et markørgen, som muliggjør seleksjon og identifisering på grunn av en fenotypisk markør av organismen transformert med ekspresjonsplasmidet. Egnede markørgener gjør mikroorganismen for eksempel resistent overfor tungmetaller, antibiotika og lignende. Videre inneholder foretrukne vektorer ifølge foreliggende oppfinnelse også replikon- og markørgen-region-gjenkjenningssekvenser for restriksjonsendonukleaser, slik at de DNA-sekvensene som koder for Eglin-mutantene og de tilsvarende ekspresjonskontrollsekvensene kan bli ført inn i disse setene. Examples of vectors suitable for expression in an E. coli strain of the Eglin mutant are bacteriophages, e.g. derivatives of bacteriophage X, or plasmids, such as in particular plasmid colE1 and derivatives thereof, e.g. pMB9, pSF2124, pBR317 or pBR322. The preferred vectors according to the present invention are derived from plasmid pBR322. Suitable vectors contain a complete replicon and a marker gene, enabling selection and identification by virtue of a phenotypic marker of the organism transformed with the expression plasmid. Suitable marker genes make the microorganism, for example, resistant to heavy metals, antibiotics and the like. Furthermore, preferred vectors according to the present invention also contain replicon and marker gene region recognition sequences for restriction endonucleases, so that the DNA sequences that code for the Eglin mutants and the corresponding expression control sequences can be introduced into these sites.

Flere ekspresjonskontrollsekvenser kan bli satt inn for regulering av ekspresjonen. Spesielt blir ekspresjonskontrollsekvensen til den transformerte vertscellen anvendt for sterkt uttrykte gener. Når det gjelder pBR322 som hybridvektor og E. coli som vertsorganisme er for eksempel egnede ekspresjonskontrollsekvenser (som blant annet inneholder promoteren og de ribosomale bindingssetene) laktose-operoner, tryptofanoperoner, arabinoseoperoner og lignende, 3-laktamasegener, de tilsvarende sekvensene til fag XN-genene eller fag fd-sjikt-proteingenene og andre. På grunn av at promoteren til e-laktamasegenene (g-lac-gen) allerede er i plasmid pBR322 må de andre ekspresjonskontrollsekvensene bli ført inn i plasmidet. Foretrukne ekspresjonskontrollsekvenser i foreliggende oppfinnelse er de til tryptofanoperoner (trp po). For replikasjon og ekspresjon i gjær inneholder egnede vektorer et gjær-replikasjonsorigo og en selektiv genetisk markør for gjær. Hybridvektorer, som inneholder et gjær-replikasjonsorigo, f.eks. det kromosomale autonome repliker-ende segment (ars), blir holdt ekstrakromosomalt innenfor gjærcellen etter transformeringen og blir ved mitosen autonomt replikert. Videre kan hybridvektorer, som inneholder gjaer-2u-plasmid-DNA homologe sekvenser bli anvendt. Slike hybridvektorer får etter rekombinasjon innenfor cellene inkorporert det eksisterende 2>j-plasmidet eller så replikeres de autonomt. Egnede markørgener for gjær er først og fremst slike som gjør at verten blir resistent ovenfor antibiotika, eller når det gjelder auksotrofe gjærmutanter, gener som kompiementerer vertsdefekten. Tilsvarende gener gir f.eks. resistens overfor cykloheksimidantibiotika eller sørger for prototrofi i en auksotrof gjærmutant, f.eks. URA3—, LEU2-, HIS3- eller spesielt TRPl-genet. Gjærhybridvektorene inneholder videre fortrinnsvis et replikasjonsorigo og et markørgen for en bakteriell vert, spesielt E. coli, slik at konstruk-sjonen og kloningen av hybridvektoren og forløperene kan foregå i en bakteriell vert. For ekspresjon i gjær er egnede ekspresjonskontrollsekvenser for eksempel de til TRP-, ADHI-, ADHII- eller PE05-genet, videre promoteren innbefattet i glykolytisk nedbrytning, f.eks. PGK- og GAPDH-promoteren. Several expression control sequences can be inserted to regulate expression. In particular, the expression control sequence of the transformed host cell is used for highly expressed genes. In the case of pBR322 as hybrid vector and E. coli as host organism, suitable expression control sequences (which include the promoter and the ribosomal binding sites) are, for example, lactose operons, tryptophan operons, arabinose operons and the like, 3-lactamase genes, the corresponding sequences of the phage XN genes or phage fd-layer protein genes and others. Because the promoter of the ε-lactamase genes (g-lac gene) is already in plasmid pBR322, the other expression control sequences must be introduced into the plasmid. Preferred expression control sequences in the present invention are those of tryptophan operons (trp po). For replication and expression in yeast, suitable vectors contain a yeast origin of replication and a yeast selectable genetic marker. Hybrid vectors, containing a yeast origin of replication, e.g. the chromosomal autonomously replicating segment (ars), is kept extrachromosomally within the yeast cell after the transformation and is autonomously replicated during mitosis. Furthermore, hybrid vectors containing gjaer-2u plasmid DNA homologous sequences can be used. After recombination within the cells, such hybrid vectors incorporate the existing 2>j plasmid or they are replicated autonomously. Suitable marker genes for yeast are primarily those that make the host resistant to antibiotics, or in the case of auxotrophic yeast mutants, genes that complement the host defect. Corresponding genes give e.g. resistance to cycloheximide antibiotics or provides prototrophy in an auxotrophic yeast mutant, e.g. URA3, LEU2, HIS3 or especially the TRP1 gene. The yeast hybrid vectors also preferably contain an origin of replication and a marker gene for a bacterial host, especially E. coli, so that the construction and cloning of the hybrid vector and the precursors can take place in a bacterial host. For expression in yeast, suitable expression control sequences are for example those of the TRP, ADHI, ADHII or PE05 gene, further the promoter involved in glycolytic degradation, e.g. the PGK and GAPDH promoter.

Oppfinnelsen vedrører spesielt replikasjon og fenotypisk seleksjon av egnede ekspresjonsvektorer, som inneholder en ekspresjonskontrollsekvens og en DKA-sekvens som koder for Eglin-mutanten, slik at nevnte DNA-sekvens med transkrip-sjonsstartsignal og -terminasjonssignal, samt translasjons-startsignal og -stoppsignal i nevnte ekspresjonsplasmid under regulering av nevnte ekpresjonskontrollsekvens er ordnet slik at Eglin-mutanten blir uttrykt i en vertscelle • som er transformert med nevnte ekspresjonsplasmid. The invention relates in particular to replication and phenotypic selection of suitable expression vectors, which contain an expression control sequence and a DKA sequence that codes for the Eglin mutant, so that said DNA sequence with transcription start signal and termination signal, as well as translation start signal and stop signal in said expression plasmid under the regulation of said expression control sequence is arranged so that the Eglin mutant is expressed in a host cell • which has been transformed with said expression plasmid.

For å oppnå en effektiv ekspresjon, må genet som koder for Eglin-mutanten være ordnet riktig (i "fase") med ekspresjonskontrollsekvensen. Det er fordelaktig å knytte ekpresjons-kontrollsekvensen rett mellom hoved-mRNA-start og ATG-sekvensen til sekvensen som koder for genet, som er naturlig knyttet sammen med ekspresjonskontrollsekvensen (f.eks. e-lac-kodende sekvensen ved anvendelse av e-lac-promotere), med Egl in-mutant-genet, som fortrinnsvis har med det egnede translasjonsstartsignalet (ATG) og translasjonsstoppsignalet (f.eks. TAG). Dermed blir en effektiv transkripsjon og translasjon mulig. To achieve efficient expression, the gene encoding the Eglin mutant must be aligned correctly (in "phase") with the expression control sequence. It is advantageous to link the expression control sequence directly between the main mRNA start and the ATG sequence of the sequence encoding the gene, which is naturally linked to the expression control sequence (e.g. the e-lac coding sequence when using e-lac -promoters), with the Egl in-mutant gene, which preferably has the appropriate translation start signal (ATG) and translation stop signal (e.g. TAG). This makes efficient transcription and translation possible.

Transformering av mikroorganismer Transformation of microorganisms

Oppfinnelsen vedrører også en vertsmikroorganisme egnet for ekspresjon av modifisert Eglin B eller C som er kjennetegnet ved at den inneholder en ekspresjonsvektor som nevnt ovenfor. The invention also relates to a host microorganism suitable for expression of modified Eglin B or C which is characterized in that it contains an expression vector as mentioned above.

Egnede vertsceller er for eksempel mikroorganismer, såsom stammer av Saccharomyces cerevisiae, Bacillus subtilis og spesielt Escherichia coli. Transformering med ekspresjons-plasmidene ifølge oppfinnelsen foregår for eksempel som beskrevet i litteraturen, for S. cerevisiae (A. Hinnen et al., Proe. Nati. Acad. Sei. USA 75, 1929 (1989)), B. subtilis (Anagnostopoulos et al., J. Bacteriol. 81, 741 (1961)) og E. Suitable host cells are, for example, microorganisms, such as strains of Saccharomyces cerevisiae, Bacillus subtilis and especially Escherichia coli. Transformation with the expression plasmids according to the invention takes place, for example, as described in the literature, for S. cerevisiae (A. Hinnen et al., Proe. Nati. Acad. Sei. USA 75, 1929 (1989)), B. subtilis (Anagnostopoulos et al., J. Bacteriol. 81, 741 (1961)) and E.

coli (M. Mandel et al., J. Mol. Biol. 53, 159 (1970 )). Isolering av den transformerte vertscellen foregår fortrinns- coli (M. Mandel et al., J. Mol. Biol. 53, 159 (1970)). Isolation of the transformed host cell takes place preferentially

vis ut av et selektivt næringsmedium som biocidet tilsettes til, og som markørgenet i ekspresjonsplasmidet gir resistens overfor. Celler som ikke holder ekspresjonsplasmidet dør i et slikt medium. show from a selective nutrient medium to which the biocide is added, and to which the marker gene in the expression plasmid confers resistance. Cells that do not hold the expression plasmid die in such a medium.

Dyrking av den transformerte vertscellen og utvinning av Eglin- mutanter Cultivation of the transformed host cell and recovery of Eglin mutants

De transformerte vertscellene blir anvendt for fremstilling The transformed host cells are used for production

av Eglin-mutanter. Fremgangsmåten for fremstilling av Eglin-mutantene karakteriseres ved at den ovenfor nevnte transform- of Eglin mutants. The method for producing the Eglin mutants is characterized by the above-mentioned transformation

erte vertscellen blir dyrket og at produktet blir frigjort fra vertscellen og isolert. pea host cell is cultured and the product is released from the host cell and isolated.

Oppfinnelsen vedrører spesielt en fremgangsmåte for fremstilling av Egl in-mutanter med formel I og salter av slike forbindelser karakterisert ved at man dyrker den transformerte vertscellen som inneholder et ekspresjonsplasmid, som regulerer en ekspresjonskontrollsekvens, og som inneholder en DNA-sekvens som koder for en Eglin-mutant med formel I, i et flytende næringsmedium som inneholder assimilerbar karbon- og nitrogenkilde, og hvori produktet frigjøres fra vertscellen og isoleres, og, hvis ønskelig, skilles blandingen av forbindelser med formel I som oppnåes ifølge fremgangsmåten, i enkelte komponenter og, hvis ønskelig, overføres et oppnådd salt til det frie polypeptidet eller et oppnådd polypeptid til et salt. The invention relates in particular to a method for the production of Egl in mutants of formula I and salts of such compounds, characterized by cultivating the transformed host cell which contains an expression plasmid, which regulates an expression control sequence, and which contains a DNA sequence which codes for an Eglin -mutant of formula I, in a liquid nutrient medium containing an assimilable carbon and nitrogen source, and in which the product is released from the host cell and isolated, and, if desired, the mixture of compounds of formula I obtained according to the method is separated into individual components and, if desired, an obtained salt is transferred to the free polypeptide or an obtained polypeptide to a salt.

Dyrkingen av de transformerte vertscellene ifølge oppfinnelsen foregår på i seg selv kjent måte. For dyrkingen av de transformerte vertsorganismene ifølge oppfinnelsen kan forskjellige karbonkilder anvendes. For eksempel er foretrukne karbonkilder assimilerbare karbohydrater, som glukose, mal tose, mannit eller' laktose, eller et acetat, som enten kan anvendes alene eller i egnede blandinger. Egnede nitrogen-kilder er for eksempel aminosyrer, såsom kasaminosyrer, peptider og proteiner og deres nedbrytningsprodukter, såsom trypton, pepton eller fleskeekstrakter; videre gjæreks-trakter, maltekstrakt, såsom ammoniumsalt, f.eks. ammonium-klorid, -sulfat eller -nitrat, som enten kan anvendes alene eller i egnede blandinger. Uorganiske salter, som også kan bli anvendt, er f.eks. sulfat, klorid, fosfat og karbonat av natrium, kalium, magnesium og kalsium. The cultivation of the transformed host cells according to the invention takes place in a manner known per se. Different carbon sources can be used for the cultivation of the transformed host organisms according to the invention. For example, preferred carbon sources are assimilable carbohydrates, such as glucose, maltose, mannitol or lactose, or an acetate, which can either be used alone or in suitable mixtures. Suitable nitrogen sources are, for example, amino acids, such as casamino acids, peptides and proteins and their breakdown products, such as tryptone, peptone or pork extracts; further yeast extracts, malt extract, such as ammonium salt, e.g. ammonium chloride, sulphate or nitrate, which can either be used alone or in suitable mixtures. Inorganic salts, which can also be used, are e.g. sulphate, chloride, phosphate and carbonate of sodium, potassium, magnesium and calcium.

Videre inneholder mediet f.eks. vekstkrevende forbindelser, såsom sporelementer, f.eks. jern, sink, mangan og lignende, og foretrukne forbindelser, som utøver et seleksjonstrykk og som forhindrer veksten av celler som har mistet ekspresjonsplasmidet. Dermed blir for eksempel ampicillin tilsatt til mediumet, når ekspresjonsplasmidet inneholder et amp^-gen. En slik tilsetning av antibiotiske virksomme forbindelser fører også til at kontaminerende, antibiotikaømfindtlige mikroorganismer blir drept. Furthermore, the medium contains e.g. compounds requiring growth, such as trace elements, e.g. iron, zinc, manganese and the like, and preferred compounds, which exert a selection pressure and which prevent the growth of cells which have lost the expression plasmid. Thus, for example, ampicillin is added to the medium when the expression plasmid contains an amp^ gene. Such an addition of antibiotic active compounds also leads to the killing of contaminating, antibiotic-sensitive microorganisms.

Dyrkingen utføres ved en i seg selv kjent fremgangsmåte. Dyrkingsbetingelsene, såsom temperatur, pH-verdi til mediumet og fermenteringstid, blir valgt på en slik måte at maksimale titere av Eglin-mutanter blir oppnådd. I en E.coli- eller en gjær-stamme fortrinnsvis dyrket under aerobe betingelser i submers kultur under rysting eller røring ved en temperatur på omtrent 20 til 40°C, fortrinnsvis omtrent 30"C, og en pH verdi på 4 til 9, fortrinnsvis ved pH 7, i omtrent 4 til 20 t, fortrinnsvis 8 til 12 t. Dermed blir ekspresjonsproduktet samlet intracellulært. Cultivation is carried out by a method known per se. The culture conditions, such as temperature, pH value of the medium and fermentation time, are chosen in such a way that maximum titers of Eglin mutants are obtained. In an E.coli or a yeast strain preferably grown under aerobic conditions in submerged culture under shaking or stirring at a temperature of about 20 to 40°C, preferably about 30°C, and a pH value of 4 to 9, preferably at pH 7, for about 4 to 20 h, preferably 8 to 12 h. Thus, the expression product is collected intracellularly.

Når celletettheten har oppnådd en tilstrekkelig verdi, avbrytes dyrkingen og produktet frigjøres fra cellene til mikroorganismene. Dermed blir cellen ødelagt, f.eks. lysert ved behandling med en detergent, såsom SDS eller triton, eller med lysozym eller et enzym som virker på lignende måte. Man kan alternativt eller i tillegg anvende mekaniske krefter, såsom skjærkrefter (f.eks. X-presse, French-presse, Dyno-Mill) eller rysting med glassperler eller aluminium-oksyd, eller vekselsvis frysing, f.eks. i flytende nitrogen, og opptining, f.eks. i 30° til 40°, samt ultralyd for å åpne cellene. Den resulterende blandingen som inneholder proteiner, nukleinsyrer og andre cellebestanddeler, blir etter sentrifugeringen på kjent fremgangsmåte anriket for proteinene. Slik kan f.eks. den største delen av ikke-protein-bestanddelene bli adskilt ved polyetylenimin-behandling og proteinene til Eglin-forbindelsene kan til slutt bli utfelt f.eks. ved metting av oppløsningen med ammoniumsulfat eller med andre salter. Bakterielle proteiner kan også bli utfelt ved hjelp av surgjøring med eddiksyre (f.eks. 0, 1%, pH 3-5). En videre anrikning av Eglin-mutantene kan oppnås ved ekstraksjon av eddiksyresupernatantene med n-butanol. Ytterligere rensningstrinn omfatter f.eks. kromatografiske fremgangsmåter, såsom ionebyttekromatografi, gelfiltrering, gelpermeasjonskromatografi, fordelingskromatografi, HPLC, reversert fase-HPLC og lignende. Deretter følger adskilling av blandingsbestanddelene ved dialyse, ifølge ladning ved hjelp av gel- eller bærerfri elektroforese, ifølge molekyl-størrelse ved hjelp av en egnet sephadex-søyle, ved affinitetskromatografi, f.eks. med antistoff, spesielt monoklonale antistoffer, eller anhydrochymotrypsin eller trombin koblet til en egnet bærer for affinitetskromatografi, eller ved hjelp av andre fremgangsmåter kjent innenfor litteraturen. When the cell density has reached a sufficient value, the cultivation is interrupted and the product is released from the cells to the microorganisms. Thus the cell is destroyed, e.g. lysed by treatment with a detergent, such as SDS or triton, or with lysozyme or an enzyme that acts in a similar manner. One can alternatively or additionally use mechanical forces, such as shear forces (e.g. X-press, French-press, Dyno-Mill) or shaking with glass beads or aluminum oxide, or alternately freezing, e.g. in liquid nitrogen, and thawing, e.g. at 30° to 40°, as well as ultrasound to open the cells. The resulting mixture, which contains proteins, nucleic acids and other cell components, is enriched for the proteins after centrifugation using a known method. In this way, e.g. the largest part of the non-protein components be separated by polyethyleneimine treatment and the proteins of the Eglin compounds can finally be precipitated e.g. by saturating the solution with ammonium sulphate or with other salts. Bacterial proteins can also be precipitated by acidification with acetic acid (eg 0.1%, pH 3-5). A further enrichment of the Eglin mutants can be achieved by extraction of the acetic acid supernatants with n-butanol. Further purification steps include e.g. chromatographic methods, such as ion exchange chromatography, gel filtration, gel permeation chromatography, partition chromatography, HPLC, reversed phase HPLC and the like. Then follows separation of the mixture components by dialysis, according to charge using gel or carrier-free electrophoresis, according to molecular size using a suitable sephadex column, by affinity chromatography, e.g. with antibody, especially monoclonal antibodies, or anhydrochymotrypsin or thrombin coupled to a suitable carrier for affinity chromatography, or by means of other methods known in the literature.

Isolering av de uttrykte Eglin-mutantene foregår for eksempel ved hjelp av følgende trinn: Separering av cellene fra kulturløsningen ved hjelp av sentrifugering, fremstilling av et råekstrakt ved ødelegging av cellene, f.eks. ved hjelp av Dyno-Mill, sentrifugere ut de uløselige bestanddelene; utfelling av de bakterielle proteinene ved hjelp av 1% eddiksyre, gelfiltrering på Sephadex G50 (eller G75), og eventuelt reversert fase-HPLC. TJtsaltingen foregår for eksempel på Sephadex G25. Isolation of the expressed Eglin mutants takes place, for example, by means of the following steps: separation of the cells from the culture solution by means of centrifugation, production of a crude extract by destruction of the cells, e.g. using the Dyno-Mill, centrifuge out the insolubles; precipitation of the bacterial proteins using 1% acetic acid, gel filtration on Sephadex G50 (or G75), and possibly reversed phase HPLC. TJtsalting takes place, for example, on Sephadex G25.

For påvising av Eglin-mutantene kan testen med anti-Eglin-antistoffene, såsom polyklonale antistoffer fra kanin eller monoklonale antistoffer fra hybridomceller, f.eks. monoklonale antistoffer fra hybridom-cellelinjen 299S18-20 (CNCM I-361), 299S20-1 (CNCM 1-362) eller 299S20-10 (CNCM 1-363) eller hemming av målproteåsene, f.eks. humanleukocytt-elastase (HLE) eller katepsin G (Cat G) (jfr. LT. Seemiiller et al., Hoppe-Seyler<*>s Z- physiol. Chem. 358, 1105 (1977 ); U. Seemiiller et al., Meth. Enzym. 80, 804 (1981)) utføres. For the detection of the Eglin mutants, the test with the anti-Eglin antibodies, such as polyclonal antibodies from rabbit or monoclonal antibodies from hybridoma cells, e.g. monoclonal antibodies from the hybridoma cell line 299S18-20 (CNCM I-361), 299S20-1 (CNCM 1-362) or 299S20-10 (CNCM 1-363) or inhibition of the target proteases, e.g. human leukocyte elastase (HLE) or cathepsin G (Cat G) (cf. LT. Seemiiller et al., Hoppe-Seyler<*>s Z-physiol. Chem. 358, 1105 (1977); U. Seemiiller et al., Meth. Enzym. 80, 804 (1981)) is performed.

Blanding av forbindelser med formel I oppnådd ifølge oppfinnelsen, eventuelt bestående av forbindelser med formel I, hvori R enten står for H eller acetyl, kan bli adskilt på kjent måte i de enkelte komponentene. Egnede fremgangsmåter for adskilling innbefatter f.eks. kromatografiske fremgangsmåter, f.eks. adsorpsjons-kromatografi, ionebyttekromatografi, HPLC eller reverst-fase HPLC, ytterligere multiplika-tive fordeling eller elektroforetiske fremgangsmåter, f.eks. elektroforese på celluloseacetat eller gelelektroforese, spesielt polyakrylamid-gelelektroforese ("PAGE"). Mixtures of compounds of formula I obtained according to the invention, optionally consisting of compounds of formula I, in which R either stands for H or acetyl, can be separated in a known manner into the individual components. Suitable methods for separation include e.g. chromatographic methods, e.g. adsorption chromatography, ion exchange chromatography, HPLC or reverse-phase HPLC, further multiplicative distribution or electrophoretic methods, e.g. electrophoresis on cellulose acetate or gel electrophoresis, especially polyacrylamide gel electrophoresis ("PAGE").

Ifølge hvilken fremgangsmåte som ble anvendt oppnår man forbindelsene fremstilt ifølge oppfinnelsen i fri form eller i form av syreaddisjonssalter, indre salter eller salter med baser. Ut i fra syreaddisjonssaltene kan de frie forbindelsene bli utvunnet ved hjelp av i seg selv kjent måte. De sistnevnte kan oppnåes ved omsetting med syrer eller baser, f.eks. med slike, som danner de ovennevnte saltene, og inndamping eller frysetørring av terapeutisk anvendbare syreaddisjonssalter eller metallsalter. De indre saltene kan bli utvunnet ved innstilling av pHen til egnet nøytralpunkt. According to the method used, the compounds prepared according to the invention are obtained in free form or in the form of acid addition salts, internal salts or salts with bases. Starting from the acid addition salts, the free compounds can be recovered by means of a method known per se. The latter can be obtained by reaction with acids or bases, e.g. with such, which form the above-mentioned salts, and evaporation or freeze-drying of therapeutically useful acid addition salts or metal salts. The internal salts can be extracted by adjusting the pH to a suitable neutral point.

Farmasøytiske preparater Pharmaceutical preparations

De nye Eglin-mutantene med formel I utviser verdifulle farmakologiske egenskaper og kan bli anvendt til profylakse eller terapi av sykdomstilstander som krever tilsetting av protease-inhibitorer. The new Eglin mutants of formula I exhibit valuable pharmacological properties and can be used for the prophylaxis or therapy of disease states that require the addition of protease inhibitors.

De nye Eglin-mutantene viser en virkningsprofil som protease-inhibitorer, som adskiller seg fra de samme naturlige Eglin B og C ved at inhiberingsvirkningen overfor bestemte proteaser blir forsterket, samt at bestemte proteaser som ikke blir inhibert av de naturlige Eglinen blir sterkt inhibert, mens inhiberingsvirknigen overfor noen naturlige målproteaser for egliner, såsom f.eks. granulocytt-elastase bli svekket eller forsvinner. Dermed tilveiebringer eksempelvis forbindelser med formel I, hvori R står for hydrogen eller acetyl, W står for Tyr eller His, X står for Pro, Y står for Met og Z står for Asp en forsterket inhibering av humant og fra dyr granulocytt-elastase i forhold til de naturlige Egliner og kan dermed bli anvendt såsom de naturlige Eglinen f.eks. til behandling av lungeemfysem, ARDS ("acute respiratory distress syndrome"'), septisk sjokk, reumatisk leddgikt og mukoviski-dose. Forbindelser med formel I, hvori R og W har betydningene som i formel I, X står for Thr, Y står for Arg eller Lys og Z står for Asp, har i forhold til de naturlige Eglinen en utpreget inhibisjonsvirkning på trypsin og bare en svak virkning ovenfor granulocytt-elastase og katepsin G. Dette vedrører spesielt forbindelsen med formel I, hvori R står for acetyl, W står for Tyr, X står for Thr, Y står for Arg og Z står for Asp. Slike forbindelser kan, i analogi til apro-tinin, f.eks. bli anvendt for behandling av pankreatitis og de traumatiske, pankreatogene og hemoragiske sjokk. Forbindelser med formel I, hvori R, W og X har de under formel I angitte betydningene, Y står for Arg eller Lys og Z står for Asp, viser en utpreget inhibisjonsvirkning overfor trombin og kan fortrinnsvis bli anvendt i kombinasjon med antitrombin-III, f.eks. for behandling av trombose, tromboemboli, septisk og posttraumatisk sjokk og forbrukskoagulopati. The new Eglin mutants show an action profile as protease inhibitors, which differs from the same natural Eglin B and C in that the inhibitory effect against certain proteases is enhanced, as well as that certain proteases that are not inhibited by the natural Eglin are strongly inhibited, while the inhibition effect against some natural target proteases for eglins, such as e.g. granulocyte elastase is weakened or disappears. Thus, for example, compounds of formula I, in which R stands for hydrogen or acetyl, W stands for Tyr or His, X stands for Pro, Y stands for Met and Z stands for Asp provide an enhanced inhibition of human and animal granulocyte elastase in relation to to the natural Eglines and can thus be used like the natural Eglines e.g. for the treatment of pulmonary emphysema, ARDS ("acute respiratory distress syndrome"), septic shock, rheumatic arthritis and mukoviski dose. Compounds of formula I, in which R and W have the meanings as in formula I, X stands for Thr, Y stands for Arg or Lys and Z stands for Asp, compared to the natural Eglins, have a pronounced inhibitory effect on trypsin and only a weak effect above granulocyte elastase and cathepsin G. This relates in particular to the compound of formula I, in which R stands for acetyl, W stands for Tyr, X stands for Thr, Y stands for Arg and Z stands for Asp. Such compounds can, in analogy to aprotinin, e.g. be used for the treatment of pancreatitis and the traumatic, pancreatogenic and hemorrhagic shocks. Compounds of formula I, in which R, W and X have the meanings given under formula I, Y stands for Arg or Lys and Z stands for Asp, show a pronounced inhibitory effect against thrombin and can preferably be used in combination with antithrombin-III, f .ex. for the treatment of thrombosis, thromboembolism, septic and post-traumatic shock and consumption coagulopathy.

Farmasøytiske sammensetninger, som i det minste inneholder en av forbindelsene ifølge oppfinnelsen eller deres anvendbare farmasøytiske salter, eventuelt sammen med en konvensjonell farmasøytisk anvendbar bærer og/eller hjelpestoffer kan fremstilles. Disse sammensetningene kan spesielt finne anvendelse ved de ovenfor angitte indikasjonene, når de f.eks. blir gitt parenteralt, såsom intravenøst, intrakutant, subkutant eller intramuskulært eller topisk. Pharmaceutical compositions, which contain at least one of the compounds according to the invention or their usable pharmaceutical salts, possibly together with a conventional pharmaceutically usable carrier and/or auxiliaries can be prepared. These compositions can particularly be used for the above indicated indications, when they e.g. is administered parenterally, such as intravenously, intracutaneously, subcutaneously or intramuscularly, or topically.

Doseringen avhenger i første rekke av den spesifikke admini-streringsformen og hensikten med terapien, henholdsvis profylaksen. Størrelsen på enkeltdosen samt administrerings-skjemaet kan best bestemmes med hensyn på en individuell bedømmelse av det aktuelle sykdomstilfellet; de i til dette nødvendige fremgangsmåtene for bestemming av relevante faktorer, såsom blodfaktorer er kjent for fagmannen. The dosage depends primarily on the specific form of administration and the purpose of the therapy, respectively the prophylaxis. The size of the single dose and the administration form can best be determined with regard to an individual assessment of the disease in question; the necessary methods for the determination of relevant factors, such as blood factors, are known to the person skilled in the art.

Kår det gjelder trombin-inhiberende Eglin-mutanter innbefatter en injeksjon av den terapeutiske virksomme mengden i et doseområde på omtrent 0,005 til omtrent 0,1 mg/kg kroppsvekt. Et område på omtrent 0,01 til omtrent 0,05 mg/kg kroppsvekt er foretrukket. Administreringen utføres ved intravenøs, intramuskulaer eller subkutan injeksjon. Tilsvarende oppnådde farmasøytiske preparater for parenteral administrering i enkeltdose-form avhenger av applikasjonsart pr. dose er på 0,4 til omtrent 7,5 mg av forbindelsen ifølge oppfinnelsen. Ved siden av den aktive forbindelsen inneholder disse farmasøytiske sammensetningene også enda en buffer, f.eks. en fosfatbuffer, som skal holde pE-verdien mellom omtrent 3,5 og 7, og videre natriumklorid, mannit eller sorbit for fremstilling av isotoni. De kan foreligge i frysetørret eller oppløst form, hvorved oppløsningen med fordel kan inneholde et antibakterielt virkende konserveringsmiddel, f.eks. 0,2 til 0, 3% 4-hydroksybenzosyre-metylester eller -etylester. Methods for thrombin-inhibiting Eglin mutants include an injection of the therapeutically effective amount in a dose range of about 0.005 to about 0.1 mg/kg body weight. A range of about 0.01 to about 0.05 mg/kg body weight is preferred. The administration is carried out by intravenous, intramuscular or subcutaneous injection. Correspondingly obtained pharmaceutical preparations for parenteral administration in single-dose form depend on the type of application per dose is 0.4 to about 7.5 mg of the compound according to the invention. Alongside the active compound, these pharmaceutical compositions also contain another buffer, e.g. a phosphate buffer, which should keep the pE value between approximately 3.5 and 7, and further sodium chloride, mannitol or sorbitol to produce isotonicity. They can be available in freeze-dried or dissolved form, whereby the solution can advantageously contain an antibacterial preservative, e.g. 0.2 to 0.3% 4-hydroxybenzoic acid methyl ester or ethyl ester.

Et preparat for topisk anvendelse av trombin-inhiberende Eglin-mutanter kan også foreligge som vandig oppløsning, lotion eller gel, oljeaktig oppløsning eller suspensjon, eller fettholdig eller spesielt emulsjonssalve. Et preparat i form av en vandig oppløsning tilveiebringes eksempelvis ved at man løser de aktive forbindelsene ifølge oppfinnelsen eller et terapeutisk anvendbart salt derav i en vandig buffer løsning ved pE 4 til 6,5, og hvis ønskelig tilsetter et ytterligere virkestoff, f.eks. et anti-inflammatorikum, og/eller et polymerholdig heftemiddel, f.eks. polyvinylpyrro-lidon, og/eller et konserveringsmiddel. Konsentrasjonen til de aktive forbindelsene inneholder omtrent 0,1 til omtrent 1,5 mg, fortrinnsvis 0,25 til 1,0 mg, i 10 ml av en oppløs-ning henholdsvis 10 g av en gel. En oljeaktig applikasjons-form for topisk administering oppnår man eksempelvis ved suspendering av de aktive forbindelsene ifølge oppfinnelsen eller et terapeutisk anvendbart salt derav i en olje, eventuelt under tilsetting av svellemidler, såsom aluminium-stearat, og/eller overflateaktive midler (tensider), hvori HLB-verdien ("hydrofilisk-lipofilisk-balanse") ligger under 10, såsom fettsyremonoester flerverdig alkohol, f.eks. glycerinmonostearat, sorbitanmonolaurat, sorbitanmonostearat eller sorbitanmonooleat. En fettholdig salve oppnår man f.eks. ved suspendering av den aktive forbindelsen ifølge oppfinnelsen eller saltet derav i et smørbart fettgrunnlag, eventuelt under tilsetting av et tensid med HLB-verdi under 10. En emulsjonssalve oppnår man ved pulverisering av en vandig oppløsning av den aktive forbindelsen ifølge oppfinnelsen eller saltet derav i et svakt, smørbart fettunderlag under tilsetting av et tensid, hvori HLB-verdien ligger under 10. «Alle disse topiske applikasjonsformene kan også inneholde konserveringsmiddel. Konsentrasjonen til de aktive forbindelsene utgjør omtrent 0,1 til omtrent 1,5 mg, fortrinnsvis 0,25 til 1,0 mg, i omtrent 10 g av grunnmassen. A preparation for topical application of thrombin-inhibiting Eglin mutants may also be present as an aqueous solution, lotion or gel, oily solution or suspension, or fatty or particularly emulsion ointment. A preparation in the form of an aqueous solution is provided, for example, by dissolving the active compounds according to the invention or a therapeutically applicable salt thereof in an aqueous buffer solution at pE 4 to 6.5, and if desired adding a further active ingredient, e.g. an anti-inflammatory, and/or a polymer-containing adhesion agent, e.g. polyvinylpyrrolidone, and/or a preservative. The concentration of the active compounds contains about 0.1 to about 1.5 mg, preferably 0.25 to 1.0 mg, in 10 ml of a solution or 10 g of a gel, respectively. An oily form of application for topical administration is obtained, for example, by suspending the active compounds according to the invention or a therapeutically applicable salt thereof in an oil, optionally with the addition of swelling agents, such as aluminum stearate, and/or surface-active agents (surfactants), in which The HLB value ("hydrophilic-lipophilic balance") is below 10, such as fatty acid monoester polyhydric alcohol, e.g. glycerin monostearate, sorbitan monolaurate, sorbitan monostearate or sorbitan monooleate. A fatty ointment is obtained, for example by suspending the active compound according to the invention or its salt in a spreadable fat base, optionally with the addition of a surfactant with an HLB value below 10. An emulsion ointment is obtained by pulverizing an aqueous solution of the active compound according to the invention or its salt in a weak, spreadable fat base with the addition of a surfactant, in which the HLB value is below 10. "All these topical application forms may also contain a preservative. The concentration of the active compounds is about 0.1 to about 1.5 mg, preferably 0.25 to 1.0 mg, in about 10 g of the base mass.

Administrering av elastase-inhiberende Eglin-mutantene foregår ved intravenøs injeksjon eller intrapulmonalt, ved inhalering, f.eks. med et Bird-apparat. De oppnådde farmasøy-tiske preparatene for parenteral administrering i enkeltdose-form avhenger av applikåsjonsart pr. dose er på omtrent 10 til 50 mg av forbindelsen ifølge oppfinnelsen. Bortsett fra den aktive forbindelsen inneholder disse farmasøytiske sammensetningene eventuelt enda natriumklorid, mannit eller sorbit for å innstille isotonien. De kan foreligge i fryse-tørket eller oppløst form, hvori oppløsningen med fordel kan inneholde et antibakterielt virkende konserveringsmiddel, f.eks. 0,2 til 0, 3% 4-hydroksybenzosyre-metylester eller Administration of the elastase-inhibiting Eglin mutants takes place by intravenous injection or intrapulmonary, by inhalation, e.g. with a Bird device. The obtained pharmaceutical preparations for parenteral administration in single-dose form depend on the type of application per dose is about 10 to 50 mg of the compound according to the invention. Apart from the active compound, these pharmaceutical compositions optionally also contain sodium chloride, mannitol or sorbitol to adjust the isotonicity. They can be available in freeze-dried or dissolved form, in which the solution can advantageously contain an antibacterial preservative, e.g. 0.2 to 0.3% 4-hydroxybenzoic acid methyl ester or

—etylester. —ethyl ester.

Preparatet for topisk anvendelse av elastase-inhiberende Eglin-mutanter tilsvarer i store trekk beskrivelsen ovenfor. The preparation for topical application of elastase-inhibiting Eglin mutants broadly corresponds to the description above.

Inhalasjonspreparater for behandling av luftveiene ved intrapulmonal administrering innbefatter f.eks. aerosol eller spray, hvori den farmakologiske aktive forbindelsen kan bli fordelt i form av dråper av en oppløsning eller suspensjon. Preparater hvori den farmakologiske aktive forbindelsen foreligger i løsning inneholder også et egnet drivmiddel, videre, hvis nødvendig, et ytterligere oppløsningsmiddel og/eller en stabilisator. Istedenfor drivgass kan man også anvende trykkluft, hvorved disse ved hjelp av et egnet fortetnings- og avspenningsapparat etter behov kan bli anvendt. Spesielt egnede for administrering er Bird-inn-åndingsapparater, kjent innenfor medisinen; dermed blir en oppløsning av de aktive forbindelsene ført inn i apparatet og med lett overtrykk damplagt og ført inn i lungen til den åndende pasienten. Inhalation preparations for the treatment of the respiratory tract by intrapulmonary administration include e.g. aerosol or spray, in which the pharmacologically active compound can be distributed in the form of droplets of a solution or suspension. Preparations in which the pharmacologically active compound is present in solution also contain a suitable propellant, further, if necessary, an additional solvent and/or a stabilizer. Instead of propellant gas, compressed air can also be used, whereby these can be used with the help of a suitable densification and relaxation device as needed. Particularly suitable for administration are Bird inhalers, known in medicine; thus, a solution of the active compounds is introduced into the apparatus and, with slight excess pressure, vaporized and introduced into the lung of the breathing patient.

Dosering av elastase-inhiberende Eglin-mutanter avhenger av alder, individuell tilstand og sykdomstype, til et varmblodig (menneske eller dyr) på omtrent 70 kg vekt ved intrapulmonal administering på 10 til omtrent 30 mg pr. inhalering (en- til to ganger daglig) og ved intravenøs administrering, og ved kontinuerlig infusjon, på omtrent 10 til omtrent 1000 mg pr. dag. Terapeutisk virksomme spytt- og plasmakonsentrasjoner som ved hjelp av immunologiske fremgangsmåter, såsom ELISA kan bli bestemt, ligger mellom 10 og 100 jjg/ml (ca. 1 til 10 Dosage of elastase-inhibiting Eglin mutants depends on age, individual condition and type of disease, to a warm-blooded (human or animal) of about 70 kg weight by intrapulmonary administration of 10 to about 30 mg per inhalation (once to twice daily) and by intravenous administration, and by continuous infusion, of about 10 to about 1000 mg per day. Therapeutically effective saliva and plasma concentrations that can be determined by means of immunological methods, such as ELISA, are between 10 and 100 jjg/ml (approx. 1 to 10

>imol/l). >imol/l).

Administrering av trypsin-inhiberende Eglin-mutanter foregår f.eks. ved parenteral, såsom intravenøs, intramuskulær eller subkutan injeksjon. Den terapeutiske virksomme mengden ligger innenfor doseområdet på omtrent 1 til 20 mg aktiv forbindelse/kg kroppsvekt. De farmasøytiske preparatene som inneholder den aktive forbindelsen i en konsetrasjon på ca. 0,1 til ca. 100 mg/ml oppløsning. Bortsett fra den aktive forbindelsen inneholder disse farmasøytiske preparatene enda en buffer, f.eks. en fosfatbuffer (se ovenfor), samt natriumklorid, mannit eller sorbit for innstilling av isotoni. Administration of trypsin-inhibiting Eglin mutants takes place e.g. by parenteral, such as intravenous, intramuscular or subcutaneous injection. The therapeutically effective amount is within the dose range of about 1 to 20 mg of active compound/kg of body weight. The pharmaceutical preparations containing the active compound in a concentration of approx. 0.1 to approx. 100 mg/ml solution. Apart from the active compound, these pharmaceutical preparations also contain a buffer, e.g. a phosphate buffer (see above), as well as sodium chloride, mannitol or sorbitol for setting isotonicity.

Skadedvrbek. i empelsesmiddel Injury claim. in embalming agent

De nye Eglin-mutantene med formel I kan også anvendes som proteinase-inhibitorer ved skadedyrbekjempelse av planter. De naturlig forekommende Serin-protease-inhibitorene i forskjellige plantearter antas å utgjøre et effektivt vern mot fytopatogene insekter, sopp og andre mikroorganismer idet de hemmer serinproteasen i den nevnte organismen. Dermed kan både monokotyledon og dikotyledone planter bli transformert med et DNA som koder for en heterolog protease-inhibitor som f.eks. for Eglin B eller C, eller for en Eglin-mutant med formel I. Ekspresjonen av det nevnte aktive proteinase-inhibitoren gir den transformerte planten vern overfor fytopatogene angrep. The new Eglin mutants of formula I can also be used as proteinase inhibitors in pest control of plants. The naturally occurring serine protease inhibitors in various plant species are believed to constitute effective protection against phytopathogenic insects, fungi and other microorganisms as they inhibit the serine protease in the aforementioned organism. Thus, both monocotyledonous and dicotyledonous plants can be transformed with a DNA which codes for a heterologous protease inhibitor such as e.g. for Eglin B or C, or for an Eglin mutant of formula I. The expression of said active proteinase inhibitor gives the transformed plant protection against phytopathogenic attacks.

For transformering av planter med egnede ekspresjonsvektorer, som inneholder DNA som koder for en forbindelse ifølge oppfinnelsen og ekspresjonskontrollsekvensen, står til rådighet ved hjelp av kjente metoder såsom f.eks. kokultiver-ing av protoplaster eller isolerte vevfragmenter med agro-bakterier, som inneholder de tilsvarende vektorene og den etterfølgende regenerering til fullstendige planter eller overføring av vektorer ved hjelp av egnede, tilsvarende modifiserte virus, såsom f.eks. TMV (Tobakkmosaikkvirus) eller CaMV ("cauliflower mosaic virus"). Ytterligere fremgangsmåter innbefatter f.eks. direkte overføring av isolerte DNA, (spesielt når det gjelder monokotylene planter såsom mais, havre, bygg, ris, sorgum, hvete, sukkerroer og andre) ved hjelp av PEG, gjennom elektroporasjon, ved mikroinjeksjon av DNA i isolerte protoplaster, plantekalli eller embryoer eller gjennom "mikroprosjektilbombardement" og andre. For the transformation of plants with suitable expression vectors, which contain DNA encoding a compound according to the invention and the expression control sequence, are available by means of known methods such as e.g. co-cultivation of protoplasts or isolated tissue fragments with agro-bacteria, containing the corresponding vectors and the subsequent regeneration into complete plants or transfer of vectors by means of suitable, correspondingly modified viruses, such as e.g. TMV (Tobacco mosaic virus) or CaMV ("cauliflower mosaic virus"). Further methods include e.g. direct transfer of isolated DNA, (especially in the case of monocotyledonous plants such as maize, oats, barley, rice, sorghum, wheat, sugar beet and others) by means of PEG, through electroporation, by microinjection of DNA into isolated protoplasts, plant calli or embryos or through "microprojectile bombardment" and others.

For transformering i planter egner DNA-molekyler seg som koder for en forbindelse fremstilt ifølge oppfinnelsen. Foretrukne DNA-molekyler innbefatter de som koder for en Eglin-mutant med formel I, hvori R er acetyl, W er Tyr, X er Thr, Y er Arg og Z er Asp. Den protease-inhiberende virk-ningen til de foretrukne Eglin-mutantene kan bli undersøkt i forsøk med maispatogene Diabrotica virgifera ("western corn root worm"). Tilsetting av de foretrukne Eglin-mutanter til homogenater bestående av tarmvev fra patogener fører til en sterk hemming av den proteolytiske aktiviteten. For transformation in plants, DNA molecules that code for a compound produced according to the invention are suitable. Preferred DNA molecules include those encoding an Eglin mutant of formula I wherein R is acetyl, W is Tyr, X is Thr, Y is Arg and Z is Asp. The protease-inhibiting effect of the preferred Eglin mutants can be investigated in experiments with the maize pathogen Diabrotica virgifera ("western corn root worm"). Addition of the preferred Eglin mutants to homogenates consisting of intestinal tissue from pathogens leads to a strong inhibition of the proteolytic activity.

Eksempel 1: M13- kloning av Eglin C- gener Example 1: M13 cloning of Eglin C genes

10 pg plasmid pML 147 ble spaltet med restriksj ons-endo-nukleasene EcoRI og BamHI og deretter ble det kjørt en elektroforese i 1,556 laveresmeltende agarose og ca. 0,5 ug av det 230 bp store EcoRI-BamHI-fragmentet (inneholder hele Eglin C-genet) isolert. Dette DNA-fragmentet (10 ng) blir blandet med 40 ng M13mp8 DNA (spaltet med EcoRI og BamHI) og inkubert i 50 mM Tris-HCl pH 7,4, 10 mM MgCl2, 10 mM ATP, 10 mM ditiotreitol ved tilstedeværelse av 0,125 enheter T4-DNA-ligase i et volum på 15 ul (Zoller et al., Methods Enzym. 100, 468-500 (1983)). Denne oppløsningen blir anvendt for transformering av E. coli-stammen JM101 (Zoller et al., s.o.). Transformeringsblandingen blir sådd på X-Gal (IPTG-Indikator)-Agarplater (Zoller et al., s.o.). Man oppnår 40 blå (villtype) og 650 farveløse plaque. 10 pg of plasmid pML 147 was cleaved with the restriction endonucleases EcoRI and BamHI and then an electrophoresis was run in 1.556 lower melting agarose and approx. 0.5 µg of the 230 bp EcoRI-BamHI fragment (containing the entire Eglin C gene) isolated. This DNA fragment (10 ng) is mixed with 40 ng of M13mp8 DNA (digested with EcoRI and BamHI) and incubated in 50 mM Tris-HCl pH 7.4, 10 mM MgCl2, 10 mM ATP, 10 mM dithiothreitol in the presence of 0.125 units of T4 DNA ligase in a volume of 15 µl (Zoller et al., Methods Enzym. 100, 468-500 (1983)). This solution is used for transformation of the E. coli strain JM101 (Zoller et al., s.o.). The transformation mixture is seeded on X-Gal (IPTG-Indicator)-Agar plates (Zoller et al., s.o.). 40 blue (wild type) and 650 colorless plaques are obtained.

Eksempel 2: Fremstilling av M13mp8 enkelttrådet- DNA Example 2: Preparation of M13mp8 single-stranded DNA

2 ml av en kultur av E. coli JM101 (dyrket i L-medium: 10 g bacto-tryptone, 5 g bacto-gjærekstrakt, 5 g NaCl, 5 g glukose, 0,1 g ampicillin pr. 1 1, til en 0D^23 = ca- °»5) blir blandet med en farveløs plaque (plukket fra agarskålen, se eksempel 1) og holdt i ca. 4-5 timer ved 37° C, 180 upm. Deretter blir den voksende kulturen sentrifugert i 5 minutter i en Eppendorf-sentrifuge. Supernatanten blir overført til et nytt sentrifugerør, sentrifugert en gang til og omsatt med 200 ul 20% polyetylenglykol, 1,5 M NaCl, holdt i 20 minutter ved romtemperatur og til slutt på ny sentrifugert. Supernatanten blir kastet og pelleten blir løst opp i 100 pl 50 mM Tris-HCl pH 7,8, 1 mM EDTA (TE). Blandingen blir blandet med 50 pl fenol/TE (15 minutter ved romtemperatur) og deretter sentrifugert i 5 minutter i en Eppendorf-sentrifuge. 100 ul av supernatanten blir omsatt med 10 pl natriumacetat pH 6 og 3 volum absolutt etanol (250 pl), og holdt over natt ved 2 ml of a culture of E. coli JM101 (grown in L medium: 10 g bacto-tryptone, 5 g bacto-yeast extract, 5 g NaCl, 5 g glucose, 0.1 g ampicillin per 1 L, to a 0D ^23 = ca- °»5) is mixed with a colorless plaque (picked from the agar dish, see example 1) and kept for approx. 4-5 hours at 37° C, 180 rpm. Then the growing culture is centrifuged for 5 minutes in an Eppendorf centrifuge. The supernatant is transferred to a new centrifuge tube, centrifuged once more and reacted with 200 ul 20% polyethylene glycol, 1.5 M NaCl, kept for 20 minutes at room temperature and finally centrifuged again. The supernatant is discarded and the pellet is dissolved in 100 µl of 50 mM Tris-HCl pH 7.8, 1 mM EDTA (TE). The mixture is mixed with 50 µl of phenol/TE (15 minutes at room temperature) and then centrifuged for 5 minutes in an Eppendorf centrifuge. 100 µl of the supernatant is reacted with 10 µl of sodium acetate pH 6 and 3 volumes of absolute ethanol (250 µl), and kept overnight at

—20°C og deretter sentrifugert som ovenfor i 10 minutter. Pelleten blir vasket med 1 ml 80% etanol og på ny sentrifugert. Pelleten blir tørket i 10 minutter ved romtemperatur -20°C and then centrifuged as above for 10 minutes. The pellet is washed with 1 ml of 80% ethanol and centrifuged again. The pellet is dried for 10 minutes at room temperature

og deretter løst opp i 50 pl TE. Oppløsningen inneholder ca. and then dissolved in 50 pl TE. The solution contains approx.

5 pg M13 mp8 enkelttrådet DNA. 5 pg M13 mp8 single-stranded DNA.

Eksempel 3: Fremstilling av gener som koder for fArg45~ l-Eglin C Example 3: Production of genes encoding fArg45~ l-Eglin C

a. Kinasebehandling av de nmtagene oligonukleotidene a. Kinase treatment of the nmtag oligonucleotides

For mutagenesen blir følgende oligonukleotid fremstilt ved hjelp av kjemisk syntese: 10 pl av oligonukleotidene (1 OD/ml = 500 ng) blir kinase-behandlet i 20 pl 0,07 M Tris-HCl pH 7,6, 0,01 M MgCl2, 50 mM ditiotreitol med ["y-<32>P]ATP og T4 polynukleotid-kinase (Boehringer) [jfr. Molecular Cloning, A Laboratory Manual, ed. T. Maniatis et al., S. 125]. Det kinasebehandlede oligonukleotidet blir løst i 10 pl TE (50 ng/pl). For the mutagenesis, the following oligonucleotide is prepared by chemical synthesis: 10 µl of the oligonucleotides (1 OD/ml = 500 ng) are kinase-treated in 20 µl 0.07 M Tris-HCl pH 7.6, 0.01 M MgCl2, 50 mM dithiothreitol with ["γ-<32>P]ATP and T4 polynucleotide kinase (Boehringer) [cf. Molecular Cloning, A Laboratory Manual, ed. T. Maniatis et al., p. 125]. The kinase-treated oligonucleotide becomes dissolved in 10 µl TE (50 ng/µl).

b. Mutas. ion av Eglin C- gener b. Mutas. ion of Eglin C genes

MLTASJONSSKJEMA MLTATION FORM

1 pg M13mp8 enkelttrådet-DNA blir holdt med 50 ng av den kinasebehandlede oligonukleotid-primeren i 10 pl 50 mM Tris-HCl pH 7,8, 100 mM MgCl2 ved 45°C (30 minutter) og deretter ved romtemperatur (5 minutter) ("sammensmelting"). Deretter blir følgende satt til blandingen: 1 µg of M13mp8 single-stranded DNA is maintained with 50 ng of the kinase-treated oligonucleotide primer in 10 µl of 50 mM Tris-HCl pH 7.8, 100 mM MgCl2 at 45°C (30 min) and then at room temperature (5 min) ( "merger"). Then the following is added to the mixture:

1 ul 10 mM dATP, dGTP, dCTP, dTTP, 1 µl 10 mM dATP, dGTP, dCTP, dTTP,

1 pl T4-DNA-ligase 1 µl T4 DNA ligase

2 pl 50 mM ditiotreitol 2 µl 50 mM dithiothreitol

1 pl 10 mM ATP 1 µl of 10 mM ATP

1 pl 5 mg/ml gelatin 1 pl 5 mg/ml gelatin

1 pl 10 x kons. Klenow-buffer (0,66 M Tris-HCl pH 7,6, 1 pl 10 x conc. Klenow buffer (0.66 M Tris-HCl pH 7.6,

50 mM MgCl2, 50 mM ditiotreitol) 50 mM MgCl2, 50 mM dithiothreitol)

1 pl DNA-polymerase (Klenow-fragment) = 2,5 enheter 1 µl DNA polymerase (Klenow fragment) = 2.5 units

Blandingen blir holdt i 5 minutter ved 22°C og deretter i 16 timer ved 15°C og deretter til slutt separert elektroforetisk i en 1% agarose. Det oppnådde sirkulære, dobbelttrådete DNA blir gjort synlig med etidiumbromid og isolert ut av gelen ved elektroeluering (ca. 10 ng i 15 pl TE). 5 pl (= ca. 3,5 ng) av på denne måten utvunnede DNAet blir transformert i E. coli-stammen JM101 og sådd ut på X-Gal/IPTG indikatorskåler (se eksempel 1). Ca. 100 farveløse plaque blir tilveiebragt. 40 av disse plaquene blir anvendt for koding av en 2 ml E. coli JMlOl-kultur (se eksempel 2). E. coli-cellene blir etter dyrkingen (eksempel 2) sentrifugert for å fjerne supernatanten (inneholder fag og enkelttrådet-DNA, cellepelleten inneholder det nevnte, muterte dobbelttrådete DNAet). The mixture is kept for 5 minutes at 22°C and then for 16 hours at 15°C and then finally separated electrophoretically in a 1% agarose. The obtained circular, double-stranded DNA is made visible with ethidium bromide and isolated from the gel by electroelution (approx. 10 ng in 15 µl TE). 5 µl (= approx. 3.5 ng) of the DNA extracted in this way is transformed into the E. coli strain JM101 and plated on X-Gal/IPTG indicator dishes (see example 1). About. 100 colorless plaques are provided. 40 of these plaques are used for coding a 2 ml E. coli JM101 culture (see example 2). After cultivation (Example 2), the E. coli cells are centrifuged to remove the supernatant (containing phage and single-stranded DNA, the cell pellet contains the aforementioned mutated double-stranded DNA).

Porsjoner på 50 pl av 40 fag-supernatantene blir filtrert over nitrocellulose, vasket (2 x TE), holdt i 2 timer ved 80°C i vakuum og ifølge Southern [J. Mol. Biol. 98, 503-517 Aliquots of 50 µl of the 40 phage supernatants are filtered over nitrocellulose, washed (2 x TE), kept for 2 hours at 80°C in vacuo and according to Southern [J. Mol. Biol. 98, 503-517

(1975)] hybridisert med oligonukleotidprimeren som radioaktiv markør for undersøkelse for tilstedeværelse av den muterte DNA-sekvensen (III, se skjema). L"t av dette resulterte 12 potensielle fagsupernatanter inneholdende [Arg45]-Eglin-C-genet. Fire av disse positive fagsupernatantene ble fortynnet (ca. 1:10<5>), blandet med E. coli-stamme JM101 og sådd ut på indikator-agar. Fag ut av hver av tre av de oppståtte plaquene ble isolert. Som beskrevet ovenfor ble enkelttrådet DNA isolert. Disse 12 enkelttrådete-DNAene ble sekvensert i Sanger [Science 214, 1205 (1981); Proe. Nati. Acad. Sei. USA 74, 5463 (1977)]. Alle 12 enkelttrådete-DNAene viser de ønskede muterte Eglin C-sekvensene. (1975)] hybridized with the oligonucleotide primer as radioactive marker for examination for the presence of the mutated DNA sequence (III, see scheme). This resulted in 12 potential phage supernatants containing the [Arg45]-Eglin-C gene. Four of these positive phage supernatants were diluted (about 1:10<5>), mixed with E. coli strain JM101 and plated on indicator agar. Phage from each of three of the resulting plaques were isolated. As described above, single-stranded DNA was isolated. These 12 single-stranded DNAs were sequenced in Sanger [Science 214, 1205 (1981); Proe. Nati. Acad. Sei .USA 74, 5463 (1977)].All 12 single-stranded DNAs display the desired mutated Eglin C sequences.

Fra de tilsvarende E. coli-cellepelletene (se ovenfor) blir det tilsvarende, muterte dobbelttrådete-DNA ([Arg45]-Eglin C-genet i plasmid M13mp8) fremstilt i et miniprep. From the corresponding E. coli cell pellets (see above), the corresponding mutated double-stranded DNA ([Arg45]-Eglin C gene in plasmid M13mp8) is prepared in a miniprep.

Ved restriksjons-spalting med restriksjonsendonukleasene EcoRI og BamHI blir EcoRI-BamHI-innskuddet inneholdende det muterte genet spaltet ut av vektoren, isolert og klonet inn i vektor pHRil48/EcoRI/BamHI (europeisk patentskrift nr. 146785). Det oppnådde plasmid pJB618 blir isolert og transformert inn i E. coli-stamme HB101. Stammen som er blitt transformert med plasmid pJB618 blir betegnet som E. coli HB101/pJB618. By restriction digestion with the restriction endonucleases EcoRI and BamHI, the EcoRI-BamHI insert containing the mutated gene is cleaved from the vector, isolated and cloned into the vector pHRil48/EcoRI/BamHI (European patent document no. 146785). The obtained plasmid pJB618 is isolated and transformed into E. coli strain HB101. The strain transformed with plasmid pJB618 is designated E. coli HB101/pJB618.

Eksempel 4: Fremstilling av gener som koder for fPro44]- Egl in Example 4: Production of genes encoding fPro44]- Egl in

C . C.

På en analog måte som i eksempel 3 blir [Thr44]-*[Pro44]-mutasjonen utført. Det anvendte mutagene oligonukleotidet har følgende struktur In an analogous manner to Example 3, the [Thr44]-*[Pro44] mutation is carried out. The mutagenic oligonucleotide used has the following structure

Mutasjon av Eglin C-genet blir oppnådd ifølge følgende skj ema. Mutation of the Eglin C gene is achieved according to the following scheme.

Ved opparbeiding av mutasjonsblandingen blir 18 potensielle [Pro44]-Eglin C-mutanter oppnådd. When working up the mutation mixture, 18 potential [Pro44]-Eglin C mutants are obtained.

Med kloning av [Pro44]-Eglin C-DNA i vektoren pHEil48/EcoRI/- With cloning of [Pro44]-Eglin C-DNA in the vector pHEil48/EcoRI/-

BamEI oppnår man på analog måte, som beskrevet i eksempel 3, plasmidet pJB591. E. coli EBlOl-stammen som er blitt transformert med dette plasmidet blir E. coli HB101/pJB591. BamEI is obtained in an analogous way, as described in example 3, the plasmid pJB591. The E. coli EB101 strain transformed with this plasmid becomes E. coli HB101/pJB591.

Eksempel 5; Fremstilling av genene som koder for TArg45. Ser46l- Eglin C Example 5; Preparation of the genes encoding TArg45. Ser46l- Eglin C

På analog måte som beskrevet i eksempel 3 blir [Leu45 ,Asp46]-»[Arg45 ,Ser46]-mutasjonen utført. Det anvendte mutagene oligonukleotidet har følgende struktur In an analogous manner as described in example 3, the [Leu45,Asp46]-»[Arg45,Ser46] mutation is carried out. The mutagenic oligonucleotide used has the following structure

Mutasjon av Eglin C-genet blir utført ifølge følgende skjema. Mutation of the Eglin C gene is carried out according to the following scheme.

Ved opparbeiding av mutasjonsblandingen blir 12 potensielle [Arg45,Ser46]-Eglin C-mutanter oppnådd. When processing the mutation mixture, 12 potential [Arg45,Ser46]-Eglin C mutants are obtained.

Ved kloning av [Arg45,Ser46]-Eglin C-DNA i vektoren pHRi148/EcoRI/BamHI oppnår man på analog måte som beskrevet i eksempel 3 plasmid pML147/b. E. coli HBlOl-stammen som er transformert med dette plasmidet blir betegnet som E. coli HB101/pML147/b. By cloning [Arg45,Ser46]-Eglin C-DNA in the vector pHRi148/EcoRI/BamHI, plasmid pML147/b is obtained in an analogous manner as described in example 3. The E. coli HB101 strain transformed with this plasmid is designated E. coli HB101/pML147/b.

Eksempel 6: Dyrking av de transformerte E. coli- stammene Example 6: Cultivation of the transformed E. coli strains

De transformerte E. coli HBlOl-stammene blir dyrket over natt ved 37°C og 250 upm i 5 ml L-medium (se eksempel 2). 1 ml av denne overnatt-kulturen blir deretter overført i 25 ml M9-medium. M9-medium er sammensatt som følger (pr. 11): The transformed E. coli HB101 strains are grown overnight at 37°C and 250 rpm in 5 ml of L medium (see Example 2). 1 ml of this overnight culture is then transferred into 25 ml of M9 medium. M9 medium is composed as follows (per 11):

Kulturen blir dyrket ved 37° C og 250 upm. Etter 8-10 timer har kulturen det høyeste titer av Eglin C-mutanter [bestemt ifølge målingen av proteasehumanleukocytt-elastase ifølge L". Seemuller et al., Hoppe-Seyleræs Z. Physiol. Chem. 358, The culture is grown at 37° C and 250 rpm. After 8-10 hours, the culture has the highest titer of Eglin C mutants [determined according to the measurement of protease human leukocyte elastase according to L". Seemuller et al., Hoppe-Seyleræs Z. Physiol. Chem. 358,

(1977)] oppnådd. (1977)] obtained.

Eksempel 7: Isolering og rensing av Egl in- mutanter Example 7: Isolation and purification of Egl in mutants

De overproduserende E. coli-cellene blir åpnet mekanisk ved hjelp av en Dyno-Mill. Cellerestene blir sentrifugert ut i en Sorval-sentrifuge ved 9000 upm i 30 minutter. The overproducing E. coli cells are opened mechanically using a Dyno-Mill. The cell remains are centrifuged out in a Sorval centrifuge at 9000 rpm for 30 minutes.

På grunn av den høye stabiliteten til Eglin-mutantene i forhold til syrene kan det meste av fremmedproteinene i supernatanten bli fjernet ved felling med ca. 2056 eddiksyre: 10 ml 4056 vandig eddiksyre blir dråpevis pipettert i løpet av 10 minutter til 100 ml av supernatanten. Den sure oppløs-ningen (pH 3,4) blir rørt i 1 time under isavkjøling. De presipiterte fremmedproteinene og andre cellebestanddeler blir sentrifugert i en Sorval-sentrifuge ved 9000 upm i 30 minutter. Supernatanten blir frysetørret over natt i en Virtis-frysmobil. Due to the high stability of the Eglin mutants in relation to the acids, most of the foreign proteins in the supernatant can be removed by precipitation with approx. 2056 acetic acid: 10 ml of 4056 aqueous acetic acid is pipetted dropwise over 10 minutes into 100 ml of the supernatant. The acidic solution (pH 3.4) is stirred for 1 hour under ice cooling. The precipitated foreign proteins and other cell constituents are centrifuged in a Sorval centrifuge at 9000 rpm for 30 minutes. The supernatant is freeze-dried overnight in a Virtis freezer mobile.

Det inntørkede gulaktige frysetørrede materialet blir løst i 10 ml 10 mM Tris-HCl pH 7,8 og for oppklaring kort sentrifugert (Sorval SS34: 15000 upm, 10 minutter). Den klare gule supernatanten blir applisert på en ekvilibrert Sephadex G-50 superfin-søyle (Pharmacia) med en lengde på 100 cm og en diameter på 2,5 cm. Det blir eluert med 10 mM Tris-HCl pH 7,8 og en strømningshastighet på maks. 20 ml/t. Absorpsjonen av eluatet ved 280 nm blir registrert. Fraksjoner å 10 ml blir oppsamlet. Elueringsdiagrammet viser en høy topp (fraksjonene 31-40), som inneholder de nevnte Eglin-mutantene. Renheten av Eglin-mutantene i denne fraksjonen blir bestemt ved SDS-gelelektroforese og HPLC. Etter gelfiltreringen viser Eglin-mutantene en renhet på ca. 9956. The dried yellowish lyophilized material is dissolved in 10 ml of 10 mM Tris-HCl pH 7.8 and for clarification briefly centrifuged (Sorval SS34: 15000 rpm, 10 minutes). The clear yellow supernatant is applied to an equilibrated Sephadex G-50 superfine column (Pharmacia) with a length of 100 cm and a diameter of 2.5 cm. It is eluted with 10 mM Tris-HCl pH 7.8 and a flow rate of max. 20 ml/h. The absorbance of the eluate at 280 nm is recorded. Fractions of 10 ml are collected. The elution diagram shows a high peak (fractions 31-40), which contains the aforementioned Eglin mutants. The purity of the Eglin mutants in this fraction is determined by SDS gel electrophoresis and HPLC. After the gel filtration, the Eglin mutants show a purity of approx. 9956.

Fjerning av bufferen fra Eglin-mutant-fraksjonene foregår med en AMICON-konsentrasjonscelle med YM-2-membran (MWCO 2000). Etter ultrafiltreringen blir probene påny frysetørret. Man oppnår et farveløst pulver (ca. 250 mg/100 ml Dyno-Mill-oppslemming), som blir lagret ved —20°C. Removal of the buffer from the Eglin mutant fractions takes place with an AMICON concentration cell with a YM-2 membrane (MWCO 2000). After the ultrafiltration, the probes are freeze-dried again. A colorless powder (approx. 250 mg/100 ml Dyno-Mill slurry) is obtained, which is stored at -20°C.

Eksempel 8: Fysiokiemisk karakterisering av Eglin- mutantene Example 8: Physicochemical characterization of the Eglin mutants

a. rPro44l- Eglin C a. rPro44l- Eglin C

Det ifølge eksempel 7 rensede [Pro44]-Eglin C blir under-kastet en molekylvektsmestemmelse ved hjelp av FAB-MS. Molekyliontoppen [M-H<+>] blir vist ved 8130,6. Deretter dreier det seg om produktet tilveiebragt ifølge oppfinnelsen, dvs. N-acetyl-[Pro44]-Eglin C (teoretisk verdi for M-H+: 8130,07). The [Pro44]-Eglin C purified according to example 7 is subjected to a molecular weight determination using FAB-MS. The molecular ion peak [M-H<+>] is shown at 8130.6. Next, it concerns the product provided according to the invention, i.e. N-acetyl-[Pro44]-Eglin C (theoretical value for M-H+: 8130.07).

Ved tryptisk nedbryting av Eglin-mutantene ble 7 fragmenter oppnådd, disse skiller seg bare fra det tilsvarende fragmentet til Na<->Acetyl-Eglin C (jfr. europeisk patentskrift nr. 146785) med fragment 4 som inneholder mutasjonen Thr44->Pro44. Eglin-mutantene blir betegnet som Na<->acetyl-[Pro44]-Eglin C. By tryptic digestion of the Eglin mutants, 7 fragments were obtained, these only differ from the corresponding fragment of Na<->Acetyl-Eglin C (cf. European patent document no. 146785) with fragment 4 containing the mutation Thr44->Pro44. The Eglin mutants are designated Na<->acetyl-[Pro44]-Eglin C.

I PAGE-SDS-gelelektroforese (jfr. U.K. Laemmli, Nature 227, 680-685 (1970)) forholder Na<->acetyl-[Pro44]-Eglin C seg som Na<->acetyl-eglin C. In PAGE-SDS gel electrophoresis (cf. U.K. Laemmli, Nature 227, 680-685 (1970)) Na<->acetyl-[Pro44]-Eglin C behaves as Na<->acetyl-eglin C.

b. rArg45l- Eglin C b. rArg45l- Eglin C

Molekylvektsbestemmelsen av det rensede [Arg45]-Egl in C tilveiebringer en verdi på 8175,4 [M-H<+>]. Dermed er en N-acetyl-forbindelse også tilstedeværende her (teoretisk verdi for M—H<+>: 8175). Den enzymatiske nedbrytningen med trypsin bekrefter at det dreier seg om Na<->acetyl-[Arg45]-Eglin C. The molecular weight determination of the purified [Arg45]-Egl in C provides a value of 8175.4 [M-H<+>]. Thus, an N-acetyl compound is also present here (theoretical value for M—H<+>: 8175). The enzymatic breakdown with trypsin confirms that it is Na<->acetyl-[Arg45]-Eglin C.

I PAGE-SDS-gelelektroforesen forholder Na<->acetyl-[Arg45]-Eglin C seg også som Na<->acetyl-eglin C. In the PAGE-SDS gel electrophoresis, Na<->acetyl-[Arg45]-Eglin C also behaves as Na<->acetyl-eglin C.

c. fArg45, Ser46l- Eglin C c. fArg45, Ser46l- Eglin C

Molekylvektsbestemmelsen av renset [Arg45,Ser46]-Eglin C tilveiebringer en verdi på 8148,7 [M-H+] . Dermed foreligger også her en N-acetyl-forbindelse (teoretisk verdi for M-H+: 8149,1). Tryptisk nedbrytning av Eglin-mutantene viser at det dreier seg om Na<->acetyl-[Arg45,Ser46]-eglin C. The molecular weight determination of purified [Arg45,Ser46]-Eglin C provides a value of 8148.7 [M-H+]. Thus, an N-acetyl compound is also present here (theoretical value for M-H+: 8149.1). Tryptic digestion of the Eglin mutants shows that it is Na<->acetyl-[Arg45,Ser46]-eglin C.

I PAGE-SDS-gelelektroforesen forholder Na<->acetyl-[Arg45,Ser46]-eglin C seg også som Na<->acetyl-eglin C. In the PAGE-SDS gel electrophoresis, Na<->acetyl-[Arg45,Ser46]-eglin C also behaves as Na<->acetyl-eglin C.

Eksempel 9: Kinetisk karakterisering av eglin- mutantene Bestemmelse av inhibisjonskonstanten K-^ foregår ifølge N. Braun et al. [Biol. Chem. Hoppe-Seyler 368, 299-308 (1987)] ved måling av steady-state reaksjonshastigheten ved fri-gjøringen av p-nitroanilin fra proteinase-inhibitor-substrat-blandinger. Bare inhibitor-konsentrasjonen blir variert. Frigjøring av p-nitroanilin blir, etter at OD405~kurven som funksjon av tiden var lineær, tegnet opp i 10 til 20 minutter. Ut i fra de forskjellige stigningene kan Kj bli bestemt. Som proteaser anvendes humanleukocytt-elastase (ELE), chymotrypsin og trypsin. Eksemplariske inhibisjonskonstanter er satt opp i følgende tabell: Example 9: Kinetic characterization of the eglin mutants Determination of the inhibition constant K-^ takes place according to N. Braun et al. [Biol. Chem. Hoppe-Seyler 368, 299-308 (1987)] by measuring the steady-state reaction rate in the release of p-nitroaniline from proteinase-inhibitor-substrate mixtures. Only the inhibitor concentration is varied. Release of p-nitroaniline is, after the OD 40 5 curve as a function of time was linear, plotted for 10 to 20 minutes. Kj can be determined from the different slopes. Human leukocyte elastase (ELE), chymotrypsin and trypsin are used as proteases. Exemplary inhibition constants are set forth in the following table:

Resultatene viser at ved utbytting av Leu45 mot Arg45 blir en Eglin C-mutant oppnådd, som i motsetning til naturlig Eglin C er en sterk trypsin-inhibitor, men bare en svak ELE-inhibitor. The results show that by replacing Leu45 with Arg45, an Eglin C mutant is obtained, which, in contrast to natural Eglin C, is a strong trypsin inhibitor, but only a weak ELE inhibitor.

Eksempel 10: Ekspresjon av [ Arg45]- Egl in C og N^- acetvl-fArg45]- eglin C i gjær Example 10: Expression of [Arg45]-Egl in C and N^-acetvl-fArg45]-eglin C in yeast

En vektor for ekspresjon av fremmede gener i gjær inneholder en sterk, fortrinnsvis induserbar gjærpromoter og et til-knyttet transkripsjonstermineringssignal, som er forbundet med promoteren gjennom enkelte restriksjonssteder, som tillater innføring av fremmede gener. Videre inneholder en gjærekspresjonsvektr DNA-sekvenser som muliggjør autonom replikasjon av vektorene og som medfører et høyt kopiantall. En slik sekvens er fortrinnsvis gjær 2 jj DNA. Videre inneholder vektoren en selekterbar markør for gjær, fortrinnsvis gjær LEU2-genet, samt pBR322 DNA-sekvensen med replikasjons-start og ampicillin-resistensgenet for amplifikasjon i E. coli. Slike vektorer blir betegnet som skyttelvektorer, på grunn av at de kan bli anvendt både i gjær og E. coli. A vector for the expression of foreign genes in yeast contains a strong, preferably inducible yeast promoter and an associated transcription termination signal, which is linked to the promoter through certain restriction sites, allowing the introduction of foreign genes. Furthermore, a yeast expression vector contains DNA sequences which enable autonomous replication of the vectors and which result in a high copy number. Such a sequence is preferably yeast 2 jj DNA. Furthermore, the vector contains a selectable marker for yeast, preferably the yeast LEU2 gene, as well as the pBR322 DNA sequence with replication start and the ampicillin resistance gene for amplification in E. coli. Such vectors are termed shuttle vectors, because they can be used in both yeast and E. coli.

En ekspresjonsvektor som med høy effektivitet kan bli satt inn i gjær, ble beskrevet i europeisk patentskrift nr. 100561. Ekspresjon av de fremmede genene foregår under kontroll av den regulerbare PH05-promoteren til det sure fosfatase-genet i gjær. PH05-promoteren, det fremmede genet og PH05 transkripsjons-termineringssignal-sekvensen ble satt inn etter hverandre i plasmid pJDB207, som inneholder gjær 2 u DNA, gjær LEL<T>2-genet, et E. coli replikasjonsorigo samt ampicillin-resistensgenet. An expression vector which can be inserted into yeast with high efficiency was described in European Patent Document No. 100561. Expression of the foreign genes takes place under the control of the regulatable PH05 promoter of the acid phosphatase gene in yeast. The PH05 promoter, the foreign gene and the PH05 transcription termination signal sequence were successively inserted into plasmid pJDB207, which contains yeast 2 u DNA, the yeast LEL<T>2 gene, an E. coli origin of replication and the ampicillin resistance gene.

Ekspresjonsplasmid pJDB207R/[Arg45]EGL blir konstruert som følger: Expression plasmid pJDB207R/[Arg45]EGL is constructed as follows:

a) Isolering av pJDB207 vektor- fragmentene a) Isolation of the pJDB207 vector fragments

Seks pg av plasmidene pJDB207R/IF(a-3) (EP 100561) blir Six pg of the plasmids pJDB207R/IF(a-3) (EP 100561) are

fullstendig nedbrutt med restriksjonsenzymet BamHI. De oppnådde DNA-fragmentene på 6,85 kb og 1,15 kb blir presipitert med etanol og resuspendert i 400 ul 50 mM Tris-HCl, pH 8,0. 4,5 enheter alkalisk fosfatase (fra Kålberdårmen, Boehringer Mannheim) blir tilsatt, og blandingen blir inkubert i 1 time ved 37°C. Til slutt blir fosfatasen inaktivert ved inkubering ved 65°C i 1,5 timer. Oppløsningen blir innstilt til en konsentrasjon på 150 mM NaCl og til slutt ført gjennom en 100 ul DE 52 (Whatman) anionbyttesøyle, som var blitt ekvilibrert med en oppløsning på 10 mM Tris-HCl, pH 7,5, 150 mM NaCl, 1 mM EDTA. Etter vasking med den completely digested with the restriction enzyme BamHI. The obtained DNA fragments of 6.85 kb and 1.15 kb are precipitated with ethanol and resuspended in 400 µl of 50 mM Tris-HCl, pH 8.0. 4.5 units of alkaline phosphatase (from Kålberdårmen, Boehringer Mannheim) are added, and the mixture is incubated for 1 hour at 37°C. Finally, the phosphatase is inactivated by incubation at 65°C for 1.5 hours. The solution is adjusted to a concentration of 150 mM NaCl and finally passed through a 100 µl DE 52 (Whatman) anion exchange column, which had been equilibrated with a solution of 10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA. After washing with it

samme bufferen blir DNAet eluert med 400 pl 10 mM Tris-HCl, same buffer, the DNA is eluted with 400 µl 10 mM Tris-HCl,

pH 7,5, 1,5 M NaCl, 1 mM EDTA og presipitert med etanol. Det 6,85 bp store BamHI-fragmentet blir isolert fra det lille fragmentet i en 0, 6% gel på en laveresmeltende agarose i Tris-Borat-EDTA-buffer, pH 8,3. b) Isolering av det 534 bp store PH05 promoter- fragmentet Ti pg av plasmid p31/R (EP 100561 )- blir spaltet med restrik-sjonsenzymene EcoRI og BamHI. De oppnådde 3 fragmentene blir adskilt på en 0, b% gel i laveresmeltende agarose i Tris-borat-EDTA-buffer, pH 8,3. Det 534 bp store BamHI-EcoRI-fragmentet, som inneholder PH05-promoteren, samt transkrip-sjonsstart, blir isolert. c) Isolering av 230 bp store DNA- fragmenter. som inneholder den kodende sekvensen for fArg45l- Eglin C pH 7.5, 1.5 M NaCl, 1 mM EDTA and precipitated with ethanol. The 6.85 bp BamHI fragment is isolated from the small fragment in a 0.6% gel on a lower melting agarose in Tris-Borate-EDTA buffer, pH 8.3. b) Isolation of the 534 bp PH05 promoter fragment Ti pg of plasmid p31/R (EP 100561 ) is cleaved with the restriction enzymes EcoRI and BamHI. The 3 fragments obtained are separated on a 0.b% gel in lower melting agarose in Tris-borate-EDTA buffer, pH 8.3. The 534 bp BamHI-EcoRI fragment, which contains the PH05 promoter, as well as the start of transcription, is isolated. c) Isolation of 230 bp DNA fragments. which contains the coding sequence for fArg45l-Eglin C

Åtte pg av plasmid pJB618 blir spaltet med restriksjons-enzymene BamHI og EcoRI. De oppnådde 2 fragmentene blir adskilt på en 0,656 gel av laveresmeltende agarose i Tris-Borat-EDTA buffer, pH 8,3. Det 230 bp store fragmentet blir isolert. Eight µg of plasmid pJB618 are digested with the restriction enzymes BamHI and EcoRI. The 2 fragments obtained are separated on a 0.656 gel of lower melting agarose in Tris-Borate-EDTA buffer, pH 8.3. The 230 bp fragment is isolated.

d) Ligering av DNA- fragmenter d) Ligation of DNA fragments

De tre under a) - c) beskrevne DNA-fragmentene, som innehol- The three DNA fragments described under a) - c), which contain

der tilsvarende overhengende ender, blir knyttet sammen i en ligeringsreaksjon. 0,1 pmol (0,45 pg) av det 6,85 kb store BamHI vektor-f ragmentet, 0,2 pmol (70 ng) av 543 bp store BamHI-EcoRI PH05 promoter-f ragmentet og 0,2 pmol (29 ng) av where corresponding overhanging ends are linked together in a ligation reaction. 0.1 pmol (0.45 pg) of the 6.85 kb BamHI vector fragment, 0.2 pmol (70 ng) of the 543 bp BamHI-EcoRI PH05 promoter fragment and 0.2 pmol (29 ng) of

230 bp store EcoRI-BamHI-framgentet til pJB618 ble ligert. The 230 bp EcoRI-BamHI fragment of pJB618 was ligated.

Alle tre DNA-fragmentene ble tilveiebragt i små biter av laveresmeltende agarose. De tre agarosebitene ble blandet sammen, smeltet ved 65°C og fortynnet to ganger. Ligeringen ble gjennomført i et sluttvolum på 270 pl i 60 mM Tris-HCl, All three DNA fragments were provided in small pieces of lower melting agarose. The three pieces of agarose were mixed together, melted at 65°C and diluted twice. The ligation was carried out in a final volume of 270 µl in 60 mM Tris-HCl,

pH 7,5, 10 mM MgCl2, 10 mM DTT, 1 mM ATP med 16 enheter T4 DNA-ligase (Boehringer Mannheim) ved 15 °C i løpet av 16 timer. 10 pl av liger ingsblandingen blir satt til 100 pl kalsiumbehandlede, kompetente E. coli HBlOl-celler. 24 transformerte, ampicillinresistente enkeltkolonier ble dyrket i LB-medium som inneholdt 100 pg/ml ampicillin. Plasmid-DNAet blir isolert ifølge Holmes et al. [Anal. Biochem. 114, 193 (1981)] og analysert ved Hindlll/EcoRI dobbeltrestriksjon. Tilveiebringelse av et 600 bp stort EcoRI/HindIII-fragment viser den klonen, som inneholder integrert i ekspresjonsvektoren PH05 promoter-[Arg45]-Egl in C-DNA-Fragmentet i riktig orientering. Som ventet inneholder 50% av klonene innskuddet i riktig orientering. En av klonene blir isolert og betegnet som pJDB207R/PH05-[Arg45]EGL. e) Transformering av Saccharomvces cerevisiae- stamme GRF18 Etter transformeringsprotokollen til Hinnen et al. [Proe. pH 7.5, 10 mM MgCl 2 , 10 mM DTT, 1 mM ATP with 16 units of T4 DNA ligase (Boehringer Mannheim) at 15 °C for 16 h. 10 µl of the ligation mixture is added to 100 µl of calcium-treated, competent E. coli HB101 cells. 24 transformed, ampicillin-resistant single colonies were grown in LB medium containing 100 pg/ml ampicillin. The plasmid DNA is isolated according to Holmes et al. [Anal. Biochem. 114, 193 (1981)] and analyzed by HindIII/EcoRI double restriction. Provision of a 600 bp EcoRI/HindIII fragment shows that clone, which contains integrated into the expression vector PH05 promoter-[Arg45]-Egl in the C-DNA fragment in the correct orientation. As expected, 50% of the clones contain the insert in the correct orientation. One of the clones is isolated and designated pJDB207R/PH05-[Arg45]EGL. e) Transformation of Saccharomyces cerevisiae strain GRF18 Following the transformation protocol of Hinnen et al. [Pro.

Nati. Acad. Sei. TJSA 75, 1929 (1978)] blir plasmid pJDB207R/PH05-[Arg45]EGL transformert i Saccharomyces cerevisiae-stamme GRF18 (a, his3-ll, his3-15, leu2-3, leu2-112, can**). Transformerte celler blir selektert på gjær-minimalmedium-skåler, som ikke inneholder leucin. Enkeltvise transformerte gjærkolonier blir isolert og betegnet som Saccharomyces cerevisiae GRF18/pJDB207R/PH05-[Arg45]EGL. Nati. Acad. Pollock. TJSA 75, 1929 (1978)], plasmid pJDB207R/PH05-[Arg45]EGL is transformed into Saccharomyces cerevisiae strain GRF18 (a, his3-11, his3-15, leu2-3, leu2-112, can**). Transformed cells are selected on yeast minimal medium dishes, which do not contain leucine. Single transformed yeast colonies are isolated and designated as Saccharomyces cerevisiae GRF18/pJDB207R/PH05-[Arg45]EGL.

f ) Fermenter ing av Saccharomvces cerevisiae GRF18/ pJDB207R/ PH05- rArg45lEGL og isolering av TArg45<l>- Eglin C og N0t- acetvl- rArg45l- eglin C f ) Fermentation of Saccharomyces cerevisiae GRF18/ pJDB207R/ PH05- rArg45lEGL and isolation of TArg45<l>- Eglin C and N0t-acetvl- rArg45l- eglin C

Saccharomyces cerevisiae GRF18/pJDB207R/PH05-[Arg45]EGL-celler ble dyrket 13 1 minimalmedium med 0,03 g/l KH2PO4 i en mini-bioreaktor ved 30°C og ved oppnåelse av en celle-tetthet, som tilsvarer en OD^q på 1,9, høstet. Saccharomyces cerevisiae GRF18/pJDB207R/PH05-[Arg45]EGL cells were grown in 13 l of minimal medium with 0.03 g/l KH2PO4 in a mini-bioreactor at 30°C and upon obtaining a cell density, which corresponds to an OD^ q of 1.9, harvested.

[Arg45]-Eglin C og Na<->acetyl-[Arg45]-eglin C blir dannet ut i fra de transformerte gjærcellene i vektforhold på omtrent 2:1. Begge produkter kan bli isolert fra gjærcellehomogenater tilsvarende fremgangsmåten angitt i eksempel 7 for E. coli. [Arg45]-Eglin C and Na<->acetyl-[Arg45]-eglin C are formed from the transformed yeast cells in a weight ratio of approximately 2:1. Both products can be isolated from yeast cell homogenates corresponding to the method indicated in example 7 for E. coli.

Eksempel 11: Farmasøytisk preparat Example 11: Pharmaceutical preparation

En Na<->acetyl-[Arg45]-eglin C inneholdende oppløsning fremstilt ifølge eksempel 7, blir dialysert mot en 0, 9% NaCl-oppløsning. Konsentrasjonen til oppløsningen blir deretter etter fortynning med den samme NaCl-oppløsningen innstilt på 1 mg/ml eller 10 mg/ml. Disse løsningene blir sterilisert ved ultrafiltrering (membraner med 0,22 um porer). A Na<->acetyl-[Arg45]-eglin C containing solution prepared according to Example 7 is dialyzed against a 0.9% NaCl solution. The concentration of the solution is then, after dilution with the same NaCl solution, set to 1 mg/ml or 10 mg/ml. These solutions are sterilized by ultrafiltration (membranes with 0.22 µm pores).

De steriliserte oppløsningene er direkte anvendbare for intravenøs bearbeiding og for kontinuerlig dråpeinfusjon. The sterilized solutions are directly usable for intravenous processing and for continuous drip infusion.

Deponering av mikroorganismer Deposition of microorganisms

Stammen E. coli HB101/pML147 ble 28. januar 1988 deponert til "der Deutschen Sammlung von Mikroorganismen (DSM), Masche-roder Weg lb, D-3300 Braunschweig, med nummer DSM 4380. The strain E. coli HB101/pML147 was deposited on 28 January 1988 to "der Deutschen Sammlung von Mikroorganismen (DSM), Masche-roder Weg lb, D-3300 Braunschweig, with number DSM 4380.

Claims (6)

1. Fremgangsmåte for fremstilling av modifisert Eglin B eller C ifølge formel R-ThrGluPheGlySerGluLeuLysSerPheProGluValValGlyLysThrVal AspGlnAlaArgGluTyrPheThrLeuHisTyrProGlnTyrAspVal-W-PheLeu ProGluGlySerProVal-X-Y-Z-LeuArgTyrAsnArgValArgValPheTyrAsn ProGlyThrAsnValValAsnHisValProHisValGly-OH (I), hvor R betyr hydrogen eller acetyl, W betyr Tyr eller His, X betyr Thr eller Pro, Y betyr Leu eller Arg og Z betyr Asp eller Ser, og salter derav, karakterisert ved at man fremstiller mutert DNA som koder for modifisert Eglin B eller C ifølge ovennevnte formel, kloner dette kodende DNA i en ekspresjonsvektor transformerer en vertscelle dermed, dyrker de transformerte vertscellene og isolerer modifisert Eglin B eller C eller et salt derav.1. Method for producing modified Eglin B or C according to formula R-ThrGluPheGlySerGluLeuLysSerPheProGluValValGlyLysThrVal AspGlnAlaArgGluTyrPheThrLeuHisTyrProGlnTyrAspVal-W-PheLeu ProGluGlySerProVal-X-Y-Z-LeuArgTyrAsnArgValArgValPheTyrAsn ProGlyThrAsnValValAsnHisValProHisValGly-OH (I), where R means hydrogen or acetyl, W means Tyr or His, X means Thr or Pro, Y means Leu or Arg and Z means Asp or Ser, and salts thereof, characterized by producing mutated DNA that codes for modified Eglin B or C according to the above formula, clone this coding DNA into an expression vector, transform a host cell thereby, culture the transformed host cells, and isolate modified Eglin B or C or a salt thereof. 2 . Fremgangsmåte for fremstilling av forbindelser med formel I ifølge krav 1,karakterisert ved at R er acetyl, W er Tyr, X er Thr, Y er Arg og Z er Asp eller Ser, og salter derav.2. Process for the preparation of compounds of formula I according to claim 1, characterized in that R is acetyl, W is Tyr, X is Thr, Y is Arg and Z is Asp or Ser, and salts thereof. 3. Fremgangsmåte for fremstilling av J^-acetyl-[Arg45]-egl in C ifølge krav 1.3. Process for the preparation of J^-acetyl-[Arg45]-egl in C according to claim 1. 4 . DNA, karakterisert ved at det koder for en modifisert Eglin B eller C med formel som angitt i krav 1.4. DNA, characterized in that it codes for a modified Eglin B or C with formula as stated in claim 1. 5. Ekspresjonsvektor som er egnet for ekspresjon av modifisert Eglin B eller C med formelen ifølge krav 1, k a r a k-terisert ved at den inneholder det i krav 4 angitte kodende DNA og en operabel koblbar ekspresjons-sekvens.5. Expression vector which is suitable for expression of modified Eglin B or C with the formula according to claim 1, characterized in that it contains the coding DNA specified in claim 4 and an operable linkable expression sequence. 6. Vertsmikroorganisme egnet for ekspresjon av modifisert Eglin B eller C, karakterisert ved at den inneholder en ekspresjonsvektor ifølge krav 5.6. Host microorganism suitable for expression of modified Eglin B or C, characterized in that it contains an expression vector according to claim 5.
NO890932A 1988-03-07 1989-03-06 Process for Preparation of Modified Eglin B or C and DNA, Expression Vector and Host Microorganism NO178870C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH84088 1988-03-07

Publications (4)

Publication Number Publication Date
NO890932D0 NO890932D0 (en) 1989-03-06
NO890932L NO890932L (en) 1989-09-08
NO178870B true NO178870B (en) 1996-03-11
NO178870C NO178870C (en) 1996-06-19

Family

ID=4196431

Family Applications (1)

Application Number Title Priority Date Filing Date
NO890932A NO178870C (en) 1988-03-07 1989-03-06 Process for Preparation of Modified Eglin B or C and DNA, Expression Vector and Host Microorganism

Country Status (20)

Country Link
US (1) US5079229A (en)
EP (1) EP0332576B1 (en)
JP (1) JP2716191B2 (en)
KR (1) KR0134377B1 (en)
AT (1) ATE103930T1 (en)
AU (1) AU623881B2 (en)
CA (1) CA1339105C (en)
DD (1) DD283645A5 (en)
DE (1) DE58907373D1 (en)
DK (1) DK107389A (en)
ES (1) ES2063161T3 (en)
FI (1) FI96116C (en)
HU (1) HU209401B (en)
IE (1) IE62993B1 (en)
IL (1) IL89496A0 (en)
NO (1) NO178870C (en)
NZ (1) NZ228208A (en)
PT (1) PT89916B (en)
TW (1) TW211522B (en)
ZA (1) ZA891679B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342373B1 (en) * 1983-11-21 2002-01-29 Ucp Gen-Pharma Ag Process for preparing recombinant eglin, protease inhibitor
US5674833A (en) * 1990-09-18 1997-10-07 Novo Nordisk A/S Detergent compositions containing protease and novel inhibitors for use therein
US5604201A (en) * 1993-01-08 1997-02-18 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University, A Non-Profit Organization Methods and reagents for inhibiting furin endoprotease
TW492975B (en) * 1993-07-26 2002-07-01 Novartis Ag Tryptase inhibitor
ATE242270T1 (en) 1996-09-24 2003-06-15 Procter & Gamble STABILIZED PROTEINS WITH PROTEASE INHIBITOR FUNCTION AND VARIANTS THEREOF
US7001884B2 (en) * 2001-06-18 2006-02-21 Regents Of The University Of Michigan Eglin c based drugs for treatment of disease

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2125047B (en) * 1982-08-09 1986-02-19 Ciba Geigy Ag Yeast hybrid vectors and their use for the production of polypeptides
DE3324534A1 (en) * 1983-07-07 1985-01-17 Ciba-Geigy Ag, Basel MODIFIED PROTEASE INHIBITORS, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL PRODUCTS PREPARED THEREOF
PT79519B (en) * 1983-11-21 1986-12-11 Ciba Geigy Ag Process for preparing protease inhibitors based on egline compounds
US4711848A (en) * 1984-03-14 1987-12-08 Zymogenetics, Inc. Site specific mutagenesis in alpha-1-antitrypsin
EP0164719B1 (en) * 1984-06-14 1992-05-06 Chiron Corporation Active site modified protease alpha-1-antitrypsin inhibitors and their production
IL95223A (en) * 1984-12-06 1992-08-18 Synergen Biolog Inc Dna sequence for production of serine protease inhibitors
GB2188322A (en) * 1986-03-26 1987-09-30 Bayer Ag Aprotinin and analogues thereof produced by a recombinant host
GB2199582A (en) * 1987-01-07 1988-07-13 Bayer Ag Analogues of pancreatic secretory trypsin inhibitor

Also Published As

Publication number Publication date
NZ228208A (en) 1990-08-28
US5079229A (en) 1992-01-07
TW211522B (en) 1993-08-21
PT89916B (en) 1994-05-31
IE62993B1 (en) 1995-03-08
FI96116B (en) 1996-01-31
IE890719L (en) 1989-09-07
DD283645A5 (en) 1990-10-17
HUT50503A (en) 1990-02-28
FI891020A0 (en) 1989-03-03
EP0332576A2 (en) 1989-09-13
KR890014735A (en) 1989-10-25
DE58907373D1 (en) 1994-05-11
EP0332576B1 (en) 1994-04-06
CA1339105C (en) 1997-07-29
ES2063161T3 (en) 1995-01-01
JP2716191B2 (en) 1998-02-18
NO890932L (en) 1989-09-08
AU623881B2 (en) 1992-05-28
EP0332576A3 (en) 1990-09-12
NO178870C (en) 1996-06-19
IL89496A0 (en) 1989-09-10
KR0134377B1 (en) 1998-04-20
ZA891679B (en) 1989-10-25
AU3095989A (en) 1989-09-07
FI891020A (en) 1989-09-08
PT89916A (en) 1989-11-10
ATE103930T1 (en) 1994-04-15
FI96116C (en) 1996-05-10
DK107389D0 (en) 1989-03-06
JPH029392A (en) 1990-01-12
HU209401B (en) 1994-05-30
DK107389A (en) 1989-09-08
NO890932D0 (en) 1989-03-06

Similar Documents

Publication Publication Date Title
US5631144A (en) Application of novel DNA fragments as a coding sequence for a signal peptide for the secretion of mature proteins by recombinant yeast, expression cassettes, transformed yeast and corresponding process for the preparation of proteins
EP0339942B1 (en) Aprotinin analogues and process for the production thereof
CA1339106C (en) Hirullin polypeptides having anticoagulant activity
FI108943B (en) Methods for producing serine protease inhibitors and synthetic or isolated DNA sequence, recombinant vector, and bacterial or yeast host cell used in the method
HUT70292A (en) Human kunitz-type protease inhibitor variants
CA2025070C (en) Recombinant aprotinin variants genetically engineered process for the microbial preparation of homgeneously processed aprotinin variants and the therapeutic use thereof
NO178870B (en) Process for Preparation of Modified Eglin B or C and DNA, Expression Vector and Host Microorganism
AU8172787A (en) Human pancreatic secretory trypsin inhibitors produced by recombinant dna methods and processes for the production of same
FI104428B (en) Process for production of aprotinin and aprotinin homologues in yeast
US5180667A (en) Genes encoding eglin C mutants
US6291662B1 (en) Recombinant methods for production of serine protease inhibitors and DNA sequences
US5268296A (en) DNA vector and recombinant host cell for production of hirullin P6 and P18
US5231010A (en) Recombinant aprotinin variants genetically engineered process for the microbial preparation of homogeneously processed aprotinin variants and the therapeutic use thereof
US6132990A (en) Recombinant methods for production of serine protease inhibitors and DNA sequences useful for same
JPH09500532A (en) Tryptase inhibitor
JPH05308988A (en) New polypeptide, new dna, new vector, new transformant, new medicinal composition and production of the new polypeptide
DK171239B1 (en) Process for preparing aprotinin or homologues thereof, a vector which is able to replicate in yeast, and a yeast strain
JPH07196688A (en) New physiologically active polypeptide, its production and use

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN SEPTEMBER 2003