Nothing Special   »   [go: up one dir, main page]

NL2034274B1 - DETECTION METHOD OF MUTATION TYPE OF parC GENE OF MYCOPLASMA GENITALIUM AND KIT - Google Patents

DETECTION METHOD OF MUTATION TYPE OF parC GENE OF MYCOPLASMA GENITALIUM AND KIT Download PDF

Info

Publication number
NL2034274B1
NL2034274B1 NL2034274A NL2034274A NL2034274B1 NL 2034274 B1 NL2034274 B1 NL 2034274B1 NL 2034274 A NL2034274 A NL 2034274A NL 2034274 A NL2034274 A NL 2034274A NL 2034274 B1 NL2034274 B1 NL 2034274B1
Authority
NL
Netherlands
Prior art keywords
parc
sample
gene
kit
primers
Prior art date
Application number
NL2034274A
Other languages
Dutch (nl)
Inventor
Li Yamei
Peng Junping
Original Assignee
Inst Pathogen Biology Cams
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Pathogen Biology Cams filed Critical Inst Pathogen Biology Cams
Application granted granted Critical
Publication of NL2034274B1 publication Critical patent/NL2034274B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present disclosure provides a detection method of mutation types of a parC gene of Mycoplasma genitalium and a kit. The detection method is used for detecting eight 5 mutation types of the parC gene of M. genitall'um, and detection targets of the eight mutation types are (l) ParC $831, (2) ParC S83C‚ (3) ParC S83N‚ (4) ParC S83R‚ (5) ParC D87G, (6) ParC D87N, (7) ParC D87H, and (8) ParC D87Y. The present disclosure further provides reaction primer sequences SEQ ID NO: 1 to SEQ ID NO: 9 for detecting the eight mutation types, respectively. According to the present disclosure, 10 the eight mutation types are detected by using high resolution melting (HRM) in combination with an unlabeled probe.

Description

DETECTION METHOD OF MUTATION TYPE OF parC GENE OF
MYCOPLASMA GENITALIUM AND KIT
TECHNICAL FIELD
[0001] The present disclosure belongs to the technical field of molecular biological detection, and relates to a detection method of eight mutation types of a par’ gene of
Mycoplasma genitalium, in particular to a method of eight mutation types of a part: gene of M. genitalium and a kit.
BACKGROUND
[0002] M. genitalium was first isolated from samples from two male patients with non- gonococcal urethritis in 1980. M. genitalium infection accounts for 10-35% of non- chlamydial non-gonococcal urethritis in men. In female patients, M. genitalium is associated with cervicitis and pelvic inflammatory disease (PID). However, in the 10 years following the pathogen's discovery, little progress has been made in determining the clinical importance of M. genitalium in bacteria due to the lack of reliable detection methods. M. genitalium is an extremely slow-growing and finicky bacterium, and new isolates were cultured and obtained after a series of techniques. Co-culture technique of clinical samples in Vero cells has been established. A. genitalium has a long culture cycle (up to six months), and the sensitivity of culture is poor. Therefore, the development of AM. genitalium-related culture techniques is crucial for epidemiological surveillance of drug resistance in M. genitalium and for understanding the genetic mechanisms behind it. In fact, studies have shown that nucleic acid amplification testings (NAATs) are more sensitive than culture methods.
[0003] M. genitalium infection is the main pathogen of non-chlamydial non- gonococcal urethritis in men and is associated with cervicitis and PID in women. At present, there is no effective vaccine against M. genitalium, and effective antimicrobial therapy is still the main means to treat and control Af. genitalium infection. Macrolide antibiotics (azithromycin) are first-line drugs recommended in the guideline for M. genitalium infection. However, due to the wide application and the high dosage of azithromycin, the\ resistance rate of M. genitalium infection in many areas has reached as high as 50%. Therefore, second-line recommended fluoroquinolone antibiotics (fluoroquinolone) have gradually become the main drug for M. genitalium infection in many areas. Unfortunately, clinical samples of fluoroquinolone-resistant M. genitalium have been reported in recent years, seriously threatening the currently recommended therapeutic regimens.
[0004] Enhanced surveillance of fluoroquinolone resistance in M. genitalium is necessary to control and predict resistance trends, in order to ensure the effectiveness of currently recommended therapeutic regimens. Conventional drug resistance detection methods are mainly based on bacterial isolation and culture methods. The isolates are obtained by pure culture, and the growth of the isolates at the corresponding antibiotic concentration is observed to evaluate the drug resistance of gonococci. However, because A4. genitalium 1s extremely difficult to culture, this method is difficult to implement in clinic and laboratory. Whole-genome sequencing (WGS) can analyze the carrying drug resistance by acquiring the whole genome sequence information of M. genitalium. WGS has been successfully applied in molecular epidemiological screening and drug resistance monitoring of A. genitalium.
The advantages of WGS are obvious, which can provide more comprehensive drug resistance information, track the genetic and evolutionary relationships of different drug-resistant strains, and analyze the distribution and variation of drug-resistant strains in specific populations and regions. However, WGS is expensive, requires specialized personnel for data analysis, and processes a limited number of samples at one time. Fortunately, in the past few decades, great progress has been made in studying the mechanisms of molecular resistance in A4. genitalium, making it possible to establish molecular screening methods for detecting specific resistance genes. A series of NAATSs have been rapidly established due to the advantages of short time, simple operation, and automation. NAATs replace culture methods and gradually become the first choice for detecting the drug resistance in M. genitalim.
Fluoroquinolone resistance is mainly mediated by mutations at loci 83 and 87 of the parC gene. Conventional NAATSs use these two loci as molecular targets for detecting fluoroquinolone resistance. However, due to the complexity of mutations at the above two loci (ParC S83L S83C, S83N, S83R, D87G, DS7N, D87H, and D87Y), conventional NAATs cannot cover all mutants. Existing real-time quantitative PCR (RT-qPCR) methods need to design multi-hole probes and multiple probes to cover all mutants, which substantially increase the costs of these methods in use.
[0005] High resolution melting (HRM) is a novel molecular diagnostic technique that rises in recent years and combines saturated fluorescent dyes, unlabeled probes and
RT-qPCR to detect gene mutations and genotyping. On the basis of RT-qPCR, HRM adds saturated fluorescent dyes to the system, and uses high-precision instruments to monitor the DNA unwinding process in real time through HRM of PCR products, and analyze small differences in DNA sequence according to the characteristic changes of melting curves. HRM is widely used in sequence analysis, genotyping, mutation site scanning, single nucleotide polymorphism analysis and clinical testing due to the advantages of rapidness, accuracy, high throughput, strong specificity, high sensitivity, low cost, and realization of true closed tube operation. In addition, based on HRM, an unlabeled probe is innovatively added, because the probe has a shorter sequence, which will amplify the slight temperature difference caused by the mutation of the same base at different loci, further improving the genotyping ability of the method.
Since the added probe does not need fluorescence labeling, the detection cost is substantially reduced. After the reaction is completed, the experimental results can be quickly and sensitively analyzed through the HRM curve, and a variety of mutation information can be acquired.
SUMMARY
[0006] Special primers for detecting eight mutation types of a parC gene of M. genitalium are provided. Detection targets of the eight mutation types of the par(’ gene are: (1) ParC S831, (2) ParC S83C, (3) ParC S83N, (4) ParC S83R, (5) ParC D87G, (6)
ParC D87N, (7) ParC D87H, and (8) ParC D87Y; and the primers have sequences shown in SEQ ID NO: 1 to SEQ ID NO: 9.
[0007] The primers have four primer sets: a first primer set consists of three primers, one is a forward primer, one is a reverse primer, and a last one is a 3'-phosphorylated primer; each of the remaining three primer sets consists of two primers, one is a forward primer and the other is a reverse primer, respectively for the eight mutation types of the part! gene, and corresponding relationships thereof are shown in Table 1.
[0008] The present disclosure further provides a kit for detecting eight mutation types of a parC’ gene of M. genitalium, including the primers provided by the present disclosure.
[0009] The kit provided by the present disclosure further includes others necessary reagents or items during detection. For example, sampling tubes, a crude extraction reagent Lysis Buffer, a reaction component EvaGreen Master Mix (an amplification enzyme, an amplification buffer, dNTP, and EvaGreen Dye), positive controls, and a negative control are included, the positive controls are wild-type positive samples of each detection target, and the negative control is ddH;0. The detection reagents or items included in the present disclosure may serve one or more people, and the more people may be 2-1,000 people.
[0010] The present disclosure further provides a detection method of eight mutation types of a part gene of M. genitalium, including the step of using the kit provided by the present disclosure. For example:
[0011] step 1, completing the extraction of genomic DNA of a sample using a method of the kit or a lysis method;
[0012] step 2, with the genomic DNA of an unknown sample as a template, preparing a high resolution melting (HRM) amplification reaction system for specific amplification under the guidance of the foregoing special primer sets; and
[0013] step 3, in a polymerase chain reaction (PCR), due to the fact that sequence specificity of a target sequence leads to a difference in base content of different PCR products, heating PCR amplicons under the action of saturated dyes according to properties of DNA, subjecting detection results to data integration and plotting to generate melting curves of the PCR products through real-time monitoring of changes in fluorescence intensity in the heating process, and determining differences of DNA sequences of the PCR products according to different melting curves.
[0014] Preferably, the detection method provided by the present disclosure includes the following steps:
[0015] step 1, collecting reproductive tract secretions or a urine sample of a patient using a sample collection tube provided by the kit;
[0016] step 2, centrifuging the urine sample at 8,000 rpm for 10 min, discarding a supernatant, and adding a volume of the Lysis Buffer to the sample collection tube; for a swab sample of secretions, adding a volume of the crude extraction reagent Lysis
Buffer to the sample collection tube, stirring, and soaking a swab in the Lysis Buffer for 5 min;
[0017] step 3, placing the sample collection tube in a metal bath or water bath, heating the sample collection tube at 95°C for 10 min, and letting the sample collection tube stand at room temperature to complete the extraction of genomic DNA of the sample;
[0018] step 4, with the genomic DNA of the sample obtained in the foregoing step as a template, realizing the detection of the eight mutation types of the parC gene of M. genitalium in primer sets for two assays, where a 20 pL reaction system includes: 10 uL of EvaGreen Master Mix (optimal amplification concentrations of all primers in the assays are shown in Table 1), 2 pL of the genomic DNA of the sample, and ddH:0 being made up to 20 pL, and positive control and negative control reaction tubes of the primers are used in each assay simultaneously;
[0019] step 5, conducting an amplification reaction and an HRM analysis on a
QuantStudio 6 Flex Real-Time PCR System, where the amplification reaction follows the following program: incubation at 95°C for 10 min, followed by a total of 30 cycles of annealing at 95°C for 15 s and extension at 60°C for 1 min for the amplification reaction, incubation at 40°C for 1 min, slowly heating to 95°C at a rate of 0.025°C/s, and continuously collecting fluorescence signals; and
[0020] step 6, after the reaction, making an analysis using QuantStudio 6 and 7 Flex
Real-Time PCR software v1.0, where the software automatically generates a melting curve and a Tm value corresponding to an amplicon; and determining a result by comparison with positive controls of different mutation types, where the melting curve does not show a shape change on condition that a par(’ mutation site of an unknown sample has the same mutation type as a control sample, and the melting curve shows a shape change correspondingly on condition that the unknown sample is different from the control sample and a mutation occurs.
[0021] The special primer set provided by the present disclosure may accurately distinguish an optimal primer pair of wild type and mutant type.
[0022] The special primer set for multiple detection of eight mutation types of a part! gene of M. gentitalium provided by the present disclosure selects the parC’ gene related to second-line drug (fluoroquinolone) resistance as a target gene for detection. First, gene sequences of all representative strains of M. genitalium that have been fully annotated as reference sequences are downloaded from the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/), the reference sequences are aligned with the
NCBI nr database for BLAST of nucleic acid sequences (https://blast.ncbi.nlm.nih.gov/Blast.cgi), and aligned results are downloaded to obtain more sequences of target genes for detection. All downloaded sequences are subjected to multiple alignment analysis, specific amplification primers are designed for mgpa,
HBB and parC’ genes of both sides of loci 83 and 87 using Beacon Designer 8.0 software, and the specificity of the primers is verified using an online primer tool on
NCBI (https://www.ncbi.nlm.nih.gov/tools/primer blast’). Melting temperatures (Tm) of PCR products are predicted using oligocalc (http://biotools.nubic.norwestern.edu/oligocalc.html) and UMELT online software
(https://www.dna.utah.edu/umelt/umelt.html). Specific primers can amplify the loci 83 to 87 of the part gene to form a main product peak with a higher Tm value, and this fragment of the sequence is preliminarily genotyped. In addition, a probe is designed for the loci 83 to 87 of the part’ gene. The probe should perfectly match a sequence of a ParC S831 mutant. The probe is 3'-phosphorylated to prevent probe extension. Six primer pairs are designed for mgpa and HBB, and par(’ genes of both sides of loci 83 and 87, and optimal primer pairs that can accurately distinguish wild types and mutant types are selected. Four probes of different lengths are designed for testing, and a probe with the greatest difference in Tm among different mutants is selected. Finally, an optimal primer pair and a probe that can accurately distinguish the wild types and a plurality of mutant types are selected to form a final multiplex HRM analysis system. The mgpa target is selected as the identification and confirmation of
M. genitalium species and the HBB as the quality control of nucleic acid extraction.
The detection loci are as follows:
[0023] Table 1 Information of primer sequences
[0024]
Assay | SEQ | Target | Primer sequence Concentration
ID | gene (uM)
NO:
SEQ | mgpa | MGpa F: CTTGAGCCTTTCTAACCGCTGCACT 0.25
ID MGpa_R: CAAGTCCAAGGGGTTAAGGTTTCAT 0.25
NO: 1
SEQ
ID
NO: 2
SEQ | HBB HBB _F: AGTGCTCGGTGCCTTTAGTGAT 0.2
HBB R: TGGCAAAGGTGCCCTTGA 0.2
NO: 3
Assay
SEQ
ID
NO: 4
SEQ | parC | ParC D87 F:CCCATGGTGATAGTTCCATTTAT 05
ID ParC_D87_R:AGCTTTGGGACATTCTGATAATTG 0.5
NO:
SEQ
ID
NO: 6
SEQ | parC ParC S83 F: GGGAGATCATGGGGAAATACC 0.0375
ID ParC_S83 R: CAGCTTTGGGACATTCTGATA 0.025
NO: ParC_S83_P: CCCCCATGGTGATATTTCCATTTATDRTGCAA* | 1 7
SEQ
ID
Assay2
NO:
SEQ
ID
NO: 9
[0025] NOTE: *3'-Phosphorylation
[0026] The method provided by the present disclosure can rapidly detect the eight mutation types of the par(’ gene of M. genifalium. Compared with other technologies and similar technologies for detecting the mutant types of the parC gene of M.
genitalium, the technical solutions of the present disclosure have the following advantages:
[0027] Compared with conventional PCR or other molecular detection technologies, the HRM technology is a high-throughput gene screening technology that analyzes
PCR products by monitoring the melting curve changes in real time, without limitations of mutation sites and types of detection targets. There is no need to synthesize expensive sequence-specific probes, substantially reducing detection costs.
After the reaction is completed, experimental results can be quickly and sensitively analyzed through the HRM curve, and mutation information of drug resistance-related loci can be acquired.
[0028] In addition, this method innovatively combines an unlabeled probe-based HRM technology, which can simultaneously detect the eight mutation types of the part gene of M. genitalium with only one probe and a pair of amplification primers, covering all significant fluoroquinolone resistance-related mutations of M. genitalium. And because the probe sequence completely matches the sequence of the ParC S831 mutant, the probe peak of the ParC S831 shows the highest Tm value, and the ParC S831 mutant can be quickly determined by the probe, which is the most common type in fluoroquinolone-resistant A. genitalium. The method has high sensitivity (20 copies/reaction) and high specificity, and can be directly applied to clinical samples.
The method is an important technical supplement for the detection of parC’ gene mutation in M. genitalium that cannot be subjected to pure culture. And because the probe does not need fluorescence labeling, the cost is much lower than that of conventional fluorescent quantitative PCR.
[0029] The present disclosure uses saturated dye EvaGreen for HRM analysis experiment. Since the saturated dye EvaGreen does not inhibit the PCR, EvaGreen can be directly added to the PCR system to participate in the PCR process before the reaction starts. The HRM analysis is performed directly without transferring the dye into other analysis equipment or uncapping to add the dye after the reaction. This method truly realizes closed tube operation, avoids the pollution that may be introduced by uncapping to cause false positive results, and improves the accuracy and reliability of the experimental results; finally, heating and cooling in the analysis process will not cause destructive damage to the DNA structure, subsequent cooling can renature DNA, and renatured DNA can be directly used for subsequent research
(such as sequencing for verification of results), which substantially saves time, manpower and material resources, and avoids unnecessary waste.
BRIEF DESCRIPTION OF THE DRAWINGS
[0030] FIG. 1 is a schematic diagram of the results corresponding to Assay;
[0031] FIG. 2 is a schematic diagram of the results corresponding to Assay2;
[0032] FIG. 3 illustrates a determination process of results corresponding to Assayl; and
[0033] FIG. 4 illustrates a determination process of results corresponding to Assay2.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[0034] The example is implemented on the premise of the present disclosure, and detailed implementations and specific operation processes are provided. The specific implementations and operation processes described herein are only intended to explain the present disclosure, but the protection scope of the present disclosure 1s not limited to the following example. The implementations and specific operation processes of the example of clinical testing of eight mutation types of a parC’ gene of M. genitalium in hospitals will be described below.
[0035] Example 1
[0036] Step 1, secretions or a urine sample of a patient was collected by using a sample collection tube provided by the kit.
[0037] Step 2, the urine sample was centrifuged at 8,000 rpm for 10 min, a supernatant was discarded, and a volume of the Lysis Buffer was added to the sample collection tube; for a swab sample of secretions, a volume of the crude extraction reagent Lysis
Buffer was added to the sample collection tube and stirred, and the swab was soaked in the Lysis Buffer for 5 min.
[0038] Step 3, the sample collection tube was placed in a metal bath or water bath, heated at 95°C for 10 min, and let stand at room temperature to complete the extraction of genomic DNA of the sample. (Based on the above step, the extraction of genomic
DNA could be completed using other nucleic acid extraction kits or methods)
[0039] Step 4, with the genomic DNA of the sample obtained in the foregoing step as a template, the detection of the eight mutation types the par’ gene of M. genitalium was realized in primer sets for two assays. Herein, a 20 uL reaction system included: 10 uL of EvaGreen Master Mix (optimal amplification concentrations of all primers in the assays are shown in Table 1), 2 uL of the genomic DNA of the sample, and ddH;0 being made up to 20 pL. Positive control and negative control reaction tubes of the primers were used in each assay simultaneously.
[0040] Step 5, an amplification reaction and an HRM analysis were conducted on a
QuantStudio 6 Flex Real-Time PCR System. The amplification reaction followed the following program: incubation at 95°C for 10 min, followed by a total of 40 cycles of annealing at 95°C for 15 s and extension at 60°C for 1 min for the amplification reaction, incubation at 40°C for 1 min, slowly heating to 95°C at a rate of 0.025°C/s, and continuously collecting fluorescence signals.
[0041] Step 6, after the reaction, an analysis was made using QuantStudio 6 and 7 Flex
Real-Time PCR software v1.0, where the software automatically generated a melting curve and a Tm value corresponding to an amplicon. The result interpretation was divided into three steps: step a, it was necessary to ensure that all samples were positive for M. genitalium (mgpa positive) and confirm that the nucleic acid extraction was successful (HBB positive). Step b, the main product types were preliminarily determined according to the melting curves of the main products in Assay2. There were three main product types: Typel, Type2, and Type3. Step 3, the parC gene was further genotyped by the probe peak amplified by the unlabeled probe. The primer set of ParC D87 in Assayl was used to assist in interpreting the results in the case of impure samples. Notably, since the probe perfectly matched the S831 sequence, the
S831 mutant showed a unique peak shape and the highest probe Tm, which allowed the inventors to quickly and directly interpret S831. The results were determined by comparing with positive controls of different mutants. (FIG. 4).
[0042] Sequence Listing
[0043] <110> Institute of Medical Biology, Chinese Academy of Medical
Sciences
[0044] <120> DETECTION METHOD OF MUTATION TYPE OF parC
GENE OF MYCOPLASMA GENITALIUM AND KIT
[0045] <160>9
[0046] <210>1
[0047] <211>25
[0048] <212>DNA
[0049] <213> Artificial Sequence
[0050] <220>
[0051] <223>
[0052] <400>1
[0053] cttgagcectt tetaaccgct geact 25
[0054] <210>2
[0055] <211>25
[0056] <212>DNA
[0057] <213> Artificial Sequence
[0058] <220>
[0059] <223>
[0060] <400>2
[0061] caagtccaaggggttaaggtttcat 25
[0062] <210>3
[0063] <211>25
[0064] <212>DNA
[0065] <213> Artificial Sequence
[0066] <220>
[0067] <223>
[0068] <400>3
[0069] agtgctcggtecctttagtgat 22
[0070] <210>4
[0071] <211>25
[0072] <212>DNA
[0073] <213> Artificial Sequence
[0074] <220>
[0075] <223>
[0076] <400>4
[0077] tggcaaaggtgcccttga 18
[0078] <210>5
[0079] <211>25
[0080] <212>DNA
[0081] <213> Artificial Sequence
[0082] <220>
[0083] <223>
[0084] <400>5
[0085] cccatggtgatagttccatttat 23
[0086] <210>6
[0087] <211>25
[0088] <212>DNA
[0089] <213> Artificial Sequence
[0090] <220>
[0091] <223>
[0092] <400>6
[0093] agctttgggacattctgataattg 24
[0094] <210>7
[0095] <211>25
[0096] <212>DNA
[0097] <213> Artificial Sequence
[0098] <220>
[0099] <223>
[0100] <400>7
[0101] gggagatcatggggaaatace 21
[0102] <210>8
[0103] <211>25
[0104] <212>DNA
[0105] <213> Artificial Sequence
[0106] <220>
[0107] <223>
[0108] <400>8
[0109] cagctttgggacattctgata 21
[0110] <210>9
[0111] <211>25
[0112] <212>DNA
[0113] <213> Artificial Sequence
[0114] <220>
[0115] <223>
[0116] <400>9
[0117] cccccatggtgatatttccatttatdrtgeaa 32
Sequence Listing <110> Institute of Medical Biology, Chinese Academy of Medical Sciences <120> DETECTION METHOD OF MUTATION TYPE OF parC GENE OF
MYCOPLASMA GENITALIUM AND KIT
<160>9 <210>1 <211>25 <212>DNA <213> Artificial Sequence <220> <223> <400>1 cttgagcctt tctaaccget geact 25 <210>2 <211>25 <212>DNA <213> Artificial Sequence <220> <223> <400>2 caagtccaaggggttaaggtttcat 25 <210>3 <211>25 <212>DNA <213> Artificial Sequence <220> <223> <400>3 agtgctcggtgcctttagtgat 22 <21024 <211>25 <212>DNA <213> Artificial Sequence <220>
<223> <400>4 tggcaaaggtgcccttga 18 <210>5 <211225
<212>DNA <213> Artificial Sequence <220> <223>
<400>5 cccatggtgatagttccatttat 23 <210>6 <211>25 <212>DNA
<213> Artificial Sequence <220> <223> <400>6 agctttgggacattctgataattg 24
<210>7 <211>25 <212>DNA <213> Artificial Sequence <220>
<223> <400>7 gggagatcatggggaaatacc 21 <210>8 <211>25
<212>DNA <213> Artificial Sequence <220> <223> <400>8 cagctttgggacattctgata 21 <210>9 <211>25 <212>DNA <213> Artificial Sequence <220> <223> <400>9 cccccatggtgatatttccatttatdrtgcaa 32 i xml versicn=Nl, ON encoding=TUTFE-8" 7 2 <!DOCTYPE ST26SequenceListing PUBLIC "-//WIPO//DTD Sequence Listing 1.3//EN" "ST26Sequencelisting V1 3.dtd"> 3 <3T26%squencelisting dudVersion=svi_an T11aName="HRJIPAOIZCRQLLET ~Saguance listing. sal? softwaraNanme= WIPO Seguange” softwareVersion="2, 2.0N productionDate=s
FA023-01-127 > & <ApplicantFileReference>HKJP20220801427/ApplicantFileReference»> <EariiestpriorityAppiicationidgentification»> a <IPOfficsCoderCNd/IPOffic=aCoders 7 <ApplicealticnNumberTezi>202210393576.3/ApplicalionNumberText» © <PilingDare>2022-04-15-/FilingDate»> 9 </BarliestPricorityApplicationidentification>
LD <ApplicantName ilanguagscode=M'enY>Institute of Medical Biology, Chinese Academy of
Medical Sciences /ApplivantName>
LL <IpventionTitle languasslcds='en!>Detection method of mutation type of parC gene of mycoplasma genitalium and kit</InventionTitle>
Le <JequanceTotalQuantity>9</SaquenceTotaluantity> 13 “<SequenceData seguanoelhNumbag="1%> 14 <INSDSeq>
Ls <IN3DSeq length»25</INSDSeq length> ia ZINSDSegq molitypes>DNAC/INSDSeq moltyper> i <IN3DSeq divisior>PAT</INSDIeqg division» 13 <INSDSeq feature-table> iw <INSDFeature> <INSDFeaturs Keyrmisc feature</INSDFzature key> zl <INSDFeature location>l..2B</IN3DFeature location» 22 <INSDhFeature quels» 22 <INSDQualifier id="gir> 24 <IN3DQualifier name>note</INSDQualifier name> <INSDQualifiler valuerForward primer sequence of target gene MGpa</INSDRualifier value» zó «</INSDOQualifier»> wi </INSDFeaturs auals> 78 </INSDFsature> 23 <INSDFeaturer» 20 <IN3DFeature key>source</IiN3DFeature key» 31 <IN3DFeature lovation>l..25</INSDFeature location» 32 <INSDFeature guals> 33 <INSDOualifier> 34 <INSDOQualifier name>mol type</INSDQualifier name> <INSDQualifler valverother DNA</INSDQualifier value» 38 </INSDOualifier> 27 <INSDOQualifier id="q2"> 28 <IN3DQualifier namevorganism“/INSDQualifier name> 38 <INSDQualifier value>synthetic construct </INgDQualifier value» </INSDQualifier> 41 </INSDFeature quals> 4% </IN3DFeature> u 43 “/INSDSeqg fesature-table> 44 <IN3D3eq sequence»ettgagcctttetaaccgctgcact/INSDSeq sequence> </INSDSegqs 7 48 </SeguencaData> 4% <SequenceData zaquencalDNumben=n2n> 45 <iNSDSeq> 4% <INSDSeq length>25</INSD5eq length»
SO <INSDSeq moltype>DNA</INSDSeg moltype>
Si <INSDSeq divislion»PAT</INSDSeqg division»
De <INSDSeg Iearturertabie»
Ha <INSDFsature>
Hd <IN3DFeature keysmisc feature /INSDFeature key» 55 <IN3DFeature location>1..25</INSDFeature locations
Dé <INSDFsature qualsg>
Lj <INSDQueiifier id="g3">
Sg CINSDQualifisr name>note</INSDQvali fier name> 53 <INSDQualifier valus>Reverse primer sequence of target gene MGpa“/INSDGualifier value» </INSDQualifier> u al </INSDFeature guals> a2 </INSDFeatura> 3 <INSDPFeature>
G4 <INSDFeature key>source</INSDFeature key>
Gh <INSDFeature location>l..2B</INSDFeature locations 55 <INSDFealurse guals> a7 <INSDOQualifier» af <IN3DQualifier namedmol type</INSDQualifisr name> a8 <INSDQualifier value>other DNA</IN3DGualifier value>
TO </INSDQuali fier»
Tl <INSDOQualifier id="gâ*> qa <INSDOQualifier namerorganism</INSDQualifier name>
TE <INSDQualifisr value>synthetic construct </INSDQuali fier value» 74 </INSDOualifier> ih </IN3DFeature guala> 78 </INSDFeaturer u i </INSDSegy featurs-table>
UB <INSDSeq sequence>caagtccaaggggttaaggtttecat</INSDSeq sequence»
TG </INSDSeg>
GO </SequenceData>
SL “<SequenceData segusnceliNumec=N3"> 82 <INSDSeqg> 82 <IN3DSeq length»22</INSDSeq length» £4 ZINSDSegq molitypes>DNAC/INSDSeq moltyper> 55 <INSDSeag divisior>PAT</INSDIeqg division»
Be <INSDSeq feature-table> a7 <INSDFeature>
Go <INSDFeaturs Keyrmisc feature</INSDFzature key> 9 <INSDFeature location>l..22</IN3DFeature location» 34 <INSDhFeature quels» 31 <INSDQualifier id="g5"> 32 <IN3DQualifier name>note</INSDQualifier name> 33 <INSDQualifiler valuerForward primer sequence of target gene HBB</INSDQualifier valued
G4 </INSDOualifier> </THSDFeaturs guals> 36 </INSDFeatures 37 <INSDPeature»> a8 <IN3DFeature key>source</IiN3DFeature key» 38 <IN3DFeature lowation>»l..22</INSDFeaturs Locations» 100 <INSDFeature guals>
Lel <INSDOualifier>
Laz <INSDOQualifier name>mol type</INSDQualifier name>
Lox <INSDQualifler valverother DNA</INSDQualifier value» 1d </INSDOualifier> 105 <INSDOQualifier id="q8"> ijs <IN3DQualifier namevorganism“/INSDQualifier name>
La <INSDQualifier value>synthetic construct </INgDQualifier value» 105 </INSDQualifier>
LOS </INSDFeature quals>
Lie </IN3DFeature> u ill “/INSDSeqg fesature-table> iid <IN3D3eq sequence»agtgcteggtgectttagtgat /INSDSeg sequence» iin </INSDSeq> 7 114 </SeguencaData>
Lis <SequenceData sequenceIDNumber="án>
Lie <INSDSeqr
LL? <INSDSeq length>18</INSD5eq length»
LLG <INSDSeq moltype>DNA</INSDSeg moltype> iiD <INSDSeq divislion»PAT</INSDSeqg division» 1a <INSDSeg feature~tablex iël <INSDFeature> 122 <IN3DFeature keysmisc feature /INSDFeature key» 1273 <IN3DFeature location>»l..18</INSDFeaturs locations 124 <INSDFsature qualsg>
EAS <INSDQualifier id="g7*> lat CINSDQualifisr name>note</INSDQvali fier name> 147 <INSDQualifier valus>Reverse primer sequence of target gene HBB</IN3DQualifier value» 128 </INSDQualifier> u 12% </IN3DFeature guals> 130 </INSDFeacture>
Lj <“INSDFesrure»>
LS <INSDFeature key>source</INSDFeature keys
133 <INSDFeature location>l..18</IN3DFeature locations 134 <INSDFealurse guals> 135 <INSDOQualifier» ijn <IN3DQualifier name>mol type“/INSDQualifier name> ia <INSDQualifier value>other DNA</IN3DGualifier value> 138 </INSDQuali fier» 13% <INSDQuaiifler id="g8*> 140 <INSDOQualifier namerorganism</INSDQualifier name> 14% <INSDQualifisr value>synthetic construct </INSDQualifisr valus> 142 </INSDOualifier> 143 </INBDFeature gvals> 144 </THSDFeatura> 145 </INSDSegy featurs-table> 148 <INSDSeq sequencertggcaaaggtgccettga“/INSDSeg sequence» 14 </INSDSeg> ids </SequenceData> 140 <Hedgquencelata segusnceliNumec=NS"> isd <INSDSeqg> 151 <IN3DSeq length»23</INSDSeq length» i582 ZINSDSegq molitypes>DNAC/INSDSeq moltyper> 1573 <IN3DSeq divisior>PAT</INSDIeqg division» 154 <INSDSeq feature-table>
Ton <INS3DFesature>
LIE <INSDFeaturs Keyrmisc feature</INSDFzature key> 137 <INSDFeature location>l..23</IN3DFeature location» 158 <INSDhFeature quels» 159 CINSDOualifisr id="g95>
Lan <IN3DQualifier name>note</INSDQualifier name>
Lel <INSDQualifiler valuerForward primer sequence of target gene Parc D87</1INSDSualifier value»
LEL «</INSDOQualifier»> its </THSDFeaturs guals> 164 </INSDFeature> 18h <INSDFeaturer» 14a <IN3DFeature key>source</IiN3DFeature key» ia <IN3DFeature lowation>l..23</INSDFeaturs location» 185 <INSDFeature guals>
Las <INSDOualifier>
LEG <INSDOQualifier name>mol type</INSDQualifier name>
LF <INSDgualifier valuerother DNA</INSDQualifier value»
LE </INSDQualifiers> iz <INSDOualifier id="qL0%> ijd <IN3DQualifier namevorganism“/INSDQualifier name> ih <INSDQualifier value>synthetic construct </INgDQualifier value»
LTE </INSDQualifier>
LEY </INSDFeature quals>
Lj </IN3DFeature> u ijn “/INSDSeqg fesature-table> iëN <IN3D3eq sequence»cccatggtgatagttccatttat-/INSDSeg seuuence> iel </INSDSegqs i182 </SeguencaData> 1873 <SequenceData sequenceIDNumber="6n>
Led <INSDSeqr
EL <INSDSeq length»>24</INSDSeqg length» 1a6 <INSDSeq moltype>DNA</INSDSeg moltype> 57 <INSDSeq divislion»PAT</INSDSeqg division» is <INSDSeg feature~tablex iu <INSDFeature> 1340 <IN3DFeature keysmisc feature /INSDFeature key»
LS <INSDF Feature location>l..24</INSDFeaturs location
Led <INSDFsature qualsg>
Las <INSDQualifier id="gilx>
Ld CINSDQualifisr name>note</INSDQvali fier name> 195 <INSDQualifier valus>Reverse primer sequence of target gene ParC D87</INSDQualifier valued 136 </INSDOualifier> 7 18 </IN3DFeature guals> 198 </INSDFeature>
Lee <“INSDFesrure»> 200 <INSDFeature key>source</INSDFeature key> aL <INSDFeature location»l..24</INSDFeature locations 207 <INSDFealurse guals>
ZO <INSDOQualifier» 20d <IN3DQualifier namedmol type</INSDQualifisr name> 205 <INSDQualifier value>other DNA</IN3DGualifier value> 206 </INSDQuali fier» 207 <INSDQuaiifier id="gid’x> 208 <INSDOQualifier namerorganism</INSDQualifier name> ain <INSDOualifier value>synthetic construct </INSDQualifisr valus> zin </INSDOualifier> 21d </IN3DFeature guala> 212 </THSDFeatura> u 213 </INSDSegy featurs-table> 244 <INSDSeq seguence>agetttgggacattctgataattg</INSD3eq sequence» 215 </INSDSeg> ais </SequenceData> 217 “<SequenceData segusnceliNumec=MN}N> z2ië <INSDSeqg> 219 <IN3DSeq length»21</INSDSeq length» 220 ZINSDSegq molitypes>DNAC/INSDSeq moltyper> 221 <IN3DSeq divisior>PAT</INSDIeqg division» zal <INSDSeq feature-table>
ZES <INS3DFesature>
PEs <INSDFeaturs Keyrmisc feature</INSDFzature key>
ZED <INSDFeature location>l..21</IN3DFeature location»
Zin <INSDhFeature quels» 227 <INSDQualifier id="gi3"> 228 <IN3DQualifier name>note</INSDQualifier name> 228 <INSDQualifiler valuerForward primer sequence of target gene ParC S83“/1INSDSualifier value» 2G </INSDOualifier> «St </THSDFeaturs guals> 232 </INSDFeatures zis <INSDFeature>» 224 <IN3DFeature key>source</IiN3DFeature key» 235 <IN3DFeature lowation>l..21</INSDFeaturs location» 238 <INSDFeature guals> 237 <INSDOualifier> 238 <INSDOQualifier name>mol type</INSDQualifier name> ws <INSDgualifier valuerother DNA</INSDQualifier value»
ZAG </INSDOualifier> zál <INSDOQualifier id="qlá®> 242 <IN3DQualifier namevorganism“/INSDQualifier name> 243 <INSDQualifier value>synthetic construct </INgDQualifier value» 244 </INSDQualifier>
TAL </INSDFeature quals> 248 </IN&DFeaturer
ZAT? “/INSDSeqg fesature-table> 248 <IN3D3eq sequence>gggagatcatggggaaatace</INSDSegq sequencer 249 </INSDSeq> u 250 </SeguencaData> 251 <SequenceData zaquencalDNumben=ngn> 25% <INSDSeqr 203 <INSDSeq length»>21</INSDSeqg length»
LA <INSDSeq moltype>DNA</INSDSeg moltype> 255 <INSDSeq divislion»PAT</INSDSeqg division»
EEN <INSDSeg feature~tablex 257 <INSDFeature> 258 <IN3DFeature keysmisc feature“/INSDFearure key» 258 <IN3DFeature location>1..21</INSDFeature locations 280 <INSDFsature qualsg>
Ze <INSDQualifier id="gij> gE CINSDQualifisr name>note</INSDQvali fier name> 263 <INSDQualifier valus>Reverse primer sequence of target gene ParC S83</INSDQualifier valued 264 </INSDOualifier> 7 285 </INSDFeature guals> 268 </INSDFealure> 287 <INSDFeature>
Zes <INSDFeature key>source</INSDFeature keys
“Eh <INSDFeature location>l..21</INSDFeature locations zij <INSDFealurse guals>
ZL <INSDOQualifier» 272 <IN3DQualifier name>mol type“/INSDQualifier name> 273 <INSDQualifier value>other DNA</IN3DGualifier value> 274 </INSDQuali fier» 205 <INSDQuaiifier id="gië’x>
FES <INSDOQualifier namerorganism</INSDQualifier name>
PA <INSDQualifisr value>synthetic construct </INSDQuali fier value» 278 </INSDOualifier> 278 </IN3DFeature guals> ann </THSDFeatura> u 281 </INSDSegy featurs-table>
ZEE <INSDSeq seguencercagctttgggacattctgata-/INSDSeq sequence»
SES </INSDSeg> “54 </SequenceData> zö5 “<SequenceData segusnceliNumec=NS8"> 288 <INSDSeq> 287 <IN3DSeq length»32</INSDSeq length» 288 ZINSDSegq molitypes>DNAC/INSDSeq moltyper> 288 <IN3DSeq divisior>PAT</INSDIeqg division» 280 <INSDSeq feature-table> 291 <INSDFeature> ad <INSDFeaturs key>mise feature</INSDF=ature key> <INSDFeature location>l..32</IN3DFeature location» 23d <INSDhFeature quels» 235 <INSDQualifier id="gijn> 236 <IN3DQualifier name>note</INSDQualifier name> 287 <INSDQualifiler valuerProbe sequence for target gene
ParC S83</INSDoualifier valued 243 </INSDOualifier>
Ache] </THSDFeaturs guals> 300 </INSDFeatures
S01 <INSDPeature»> 202 <IN3DFeature keyrsource</INSDFeature key> 303 <IN3DFeature lovation>l..32</INSDFeature Locations» 304 <INSDFeature guals> 30% <INSDOualifier> 306 <INSDQualifier name>mol type</INSDQualifier name>
S07 <INSDQualifler valverother DNA</INSDQualifier value» 308 </INSDOualifier> 303 <INSDOQualifier id="qL8%>
SLD <IN3DQualifier namevorganism“/INSDQualifier name>
GR <INSDQualifier value>synthetic construct </INgDQualifier value»
BEE <{INSDQualifier»
SLS </INSDFeature quals> 314 </IN3DFeature> u 315 </INSDSeg feature-iablex> is <IN3D3eq sequencer»cccccatggtgatatttccatttatdrtgcaa/INSDSeg sequenced 217 </INSDSeq> 7
GRE </SeguencaData> 3LS </ST26SeguencelListing> 3248

Claims (9)

Conclusies l. Primers in het bijzonder voor het detecteren van acht mutatietypes van een parC:- gen van Mycoplasma genitalium, waarbij de detectiedoelen van de acht mutatietypes van het par(’-gen de volgende zijn: (1) ParC S831, (2) ParC S83C, (3) ParC S83N, (4) ParC S83R, (5) ParC D87G, (6) ParC D87N, (7) ParC D87H en (8) ParC D87Y; en de primers sequenties hebben die in SEQ ID NO:1-SEQ ID NO:9 getoond worden.Conclusions l. Primers in particular for detecting eight mutation types of a parC: gene of Mycoplasma genitalium, where the detection targets of the eight mutation types of the par(' gene are the following: (1) ParC S831, (2) ParC S83C, (3) ParC S83N, (4) ParC S83R, (5) ParC D87G, (6) ParC D87N, (7) ParC D87H, and (8) ParC D87Y; and the primers have sequences as in SEQ ID NO:1-SEQ ID NO:9 will be displayed. 2. Primers volgens conclusie 1, waarbij de primers vier primersets hebben: waarbij een eerste primerset drie primers omvat, waarbij één een voorwaartse primer is, één een omgekeerde primer is en één laatste een 3'-gefosforyleerde primer is; waarbij elk van de overige drie primersets twee primers omvat, waarbij één een voorwaartse primer is en de ander een omgekeerde primer is, voor respectievelijk de acht mutatietypes van het parC-gen, en overeenkomstige verhoudingen daarvan in tabel 1 getoond worden.Primers according to claim 1, wherein the primers have four primer sets: wherein a first primer set comprises three primers, one being a forward primer, one being a reverse primer and one last being a 3' phosphorylated primer; wherein each of the remaining three primer sets comprises two primers, one being a forward primer and the other being a reverse primer, for the eight mutation types of the parC gene respectively, and corresponding ratios thereof are shown in Table 1. 3. Kit voor het detecteren van acht mutatietypes van een parC’-gen van Mycoplasma genitalium die de primers volgens conclusie 1 omvat.A kit for detecting eight mutation types of a parC' gene of Mycoplasma genitalium comprising the primers according to claim 1. 4. Kit volgens conclusie 3, die verder vereiste reagentia of onderdelen voor tijdens de detectie omvat.Kit according to claim 3, further comprising required reagents or components during detection. 5. Kit volgens conclusie 4, waarbij de reagentia of onderdelen in de kit het volgende omvatten: een bemonsteringsbuis, een ruwe extractiereagens Lysisbuffer, een reactiecomponent EvaGreen Master Mix (een amplificatie-enzym, een amplificatiebuffer, dNTP en EvaGreen Dye), positieve controles en een negatieve controle, waarbij de positieve controles wild-type positieve monsters van elk detectiedoel zijn en de negatieve controle ddH>O is.The kit of claim 4, wherein the reagents or components in the kit include: a sampling tube, a crude extraction reagent Lysis Buffer, a reaction component EvaGreen Master Mix (an amplification enzyme, an amplification buffer, dNTP and EvaGreen Dye), positive controls and a negative control, where the positive controls are wild-type positive samples from each detection target and the negative control is ddH>O. 6. Kit volgens conclusie 4, waarbij de inbegrepen detectiereagentia of -onderdelen één of meer personen bedienen, en de meer personen 2-1.000 personen zijn.The kit of claim 4, wherein the included detection reagents or components serve one or more persons, and the plurality of persons is 2-1,000 persons. 7. Detectiewerkwijze van acht mutatietypes van een parC-gen van Mycoplasma genitalium die de stap van het gebruiken van de kit volgens conclusies 3-6 omvat.A method of detection of eight mutation types of a parC gene of Mycoplasma genitalium comprising the step of using the kit according to claims 3-6. 8. Detectiewerkwijze volgens conclusie 7, die de volgende stappen omvat: stap 1, complete extractie van genomische DNA van een monster met behulp van een werkwijze of de kit of een lysiswerkwijze; stap 2, met het genomische DNA van een onbekend monster als template, het bereiden van een hogeresolutiesmelts- (“high resolution melting”), HRM, amplificatiesysteem voor specifieke amplificatie onder de leiding van de voorafgaande speciale primersets; en stap 3, in een polymerasekettingreactie (“polymerase chain reaction”), PCR, vanwege het feit dat de sequentiespecificiteit van een doelsequentie tot een verschil in het basegehalte van verschillende PCR-producten leidt, het verwarmen van PCR- amplicons onder de actie van verzadigde kleurstoffen volgens de eigenschappen van DNA, het onderwerpen van de detectieresultaten aan data-integratie en het in kaart brengen om smeltcurves van de PCR-producten te genereren door het real-time volgen van veranderingen in fluorescentie-intensiteit in het verwarmingsproces en het bepalen van verschillen in DNA-sequenties van de PCR-producten volgens verschillende smeltcurves.A detection method according to claim 7, comprising the following steps: step 1, complete extraction of genomic DNA from a sample using a method or the kit or a lysis method; step 2, using the genomic DNA of an unknown sample as a template, preparing a high resolution melting, HRM, amplification system for specific amplification under the guidance of the previous special primer sets; and step 3, in a polymerase chain reaction, PCR, due to the fact that the sequence specificity of a target sequence leads to a difference in the base content of different PCR products, the heating of PCR amplicons under the action of saturated dyes according to the properties of DNA, subjecting the detection results to data integration and mapping to generate melting curves of the PCR products by real-time monitoring of changes in fluorescence intensity in the heating process and determining differences in DNA sequences of the PCR products according to different melting curves. 9. Detectiewerkwijze volgens conclusie 7, die de volgende stappen omvat: stap 1, het verzamelen van secreties van het voortplantingsstelsel of een urinemonster van een patiënt met behulp van een monsterverzamelingsbuis die door de kit verschaft is; stap 2, het centrifugeren van het urinemonster op 8.000 rpm voor 10 min, het weggooien van een supernatant en het toevoegen van een volume van de Lysisbuffer aan de monsterverzamelingsbuis; voor een uitstrijkje van secreties, het toevoegen van een volume van de ruwe extractiereagens Lysisbuffer aan de monsterverzamelingsbuis, het roeren en het weken van een uitstruikje in de Lysisbuffer voor 5 min; stap 3, het plaatsen van de monsterverzamelingsbuis in een metaalbad of waterbad, het verwarmen van de monsterverzamelingsbuis op 95°C voor 10 min, en het laten staan op kamertemperatuur van de monsterverzamelingsbuis om de extractie van genomische DNA van het monster te voltooien; stap 4, met het genomische DNA van het monster dat in de voorgaande stap als template verkregen is, het realiseren van de detectie van de acht mutatietypes van het parC-gen van Mycoplasma genifalium in primersets voor twee testen, waarbij een 20 pL reactiesysteem het volgende omvat: 10 uL EvaGreen Master Mix (optimale amplificatieconcentraties van alle primers in de testen worden in tabel 1 getoond), 2 uL van het genomische DNA van het monster en ddH:O wordt tot 20 uL aangevuld en positieve controle en negatieve controle reactiebuizen van de primers in elke test gelijktijdig gebruikt worden; stap 5, het uitvoeren van een amplificatiereactie en een HRM-analyse op een QuantStudio 6 Flex Real-Time PCR-systeem, waarbij de amplificatiereactie het volgende programma volgt: incubatie op 95°C voor 10 min, gevolgd door een totaal van 30 cyclussen van binding op 95°C voor 15 s en extensie op 60°C voor 1 min voor de amplificatiereactie, incubatie op 40°C voor 1 min, langzame verwarming tot 95°C op een snelheid van 0,025°C/s, en het ononderbroken verzamelen van fluorescentiesignalen; en stap 6, na de reactie, het maken van een analyse met behulp van QuantStudio 6 en 7 Flex Real-Time PCR-software v1.0, waarbij de software automatisch een smeltcurve en een Tm-waarde genereert die overeenkomt met een amplicon; en het bepalen van een resultaat door het vergelijken met positieve controles van verschillende mutatietypes, waarbij de smeltcurve geen vormverandering vertoont op de voorwaarde dat een par(’-mutatieplaats van een onbekend monster met dezelfde mutatietypes als een controlemonster, en de smeltcurve een vormverandering toont die overeenkomt met de voorwaarde dat het onbekende monster verschillend is van het controlemonster en een mutatie voorkomt.The detection method of claim 7, comprising the steps of: step 1, collecting reproductive tract secretions or a urine sample from a patient using a sample collection tube provided by the kit; step 2, centrifuging the urine sample at 8,000 rpm for 10 min, discarding a supernatant and adding a volume of the Lysis Buffer to the sample collection tube; for a smear of secretions, adding a volume of the crude extraction reagent Lysis Buffer to the sample collection tube, stirring, and soaking a smear in the Lysis Buffer for 5 min; step 3, placing the sample collection tube in a metal bath or water bath, heating the sample collection tube at 95°C for 10 min, and allowing the sample collection tube to stand at room temperature to complete the extraction of genomic DNA from the sample; step 4, using the genomic DNA of the sample obtained in the previous step as a template, realizing the detection of the eight mutation types of the parC gene of Mycoplasma genifalium in primer sets for two tests, using a 20 pL reaction system with the following includes: 10 uL EvaGreen Master Mix (optimal amplification concentrations of all primers in the assays are shown in Table 1), 2 uL of the sample's genomic DNA and ddH:O is made up to 20 uL and positive control and negative control reaction tubes of the sample primers are used simultaneously in each test; step 5, performing an amplification reaction and HRM analysis on a QuantStudio 6 Flex Real-Time PCR System, where the amplification reaction follows the following program: incubation at 95°C for 10 min, followed by a total of 30 cycles of binding at 95°C for 15 s and extension at 60°C for 1 min for the amplification reaction, incubation at 40°C for 1 min, slow heating to 95°C at a rate of 0.025°C/s, and continuous collection of fluorescent signals; and step 6, after the reaction, making an analysis using QuantStudio 6 and 7 Flex Real-Time PCR software v1.0, where the software automatically generates a melting curve and a Tm value corresponding to an amplicon; and determining a result by comparing with positive controls of different mutation types, wherein the melting curve shows no change in shape provided that a par(' mutation site from an unknown sample with the same mutation types as a control sample, and the melting curve shows a change in shape that corresponds to the condition that the unknown sample is different from the control sample and a mutation occurs.
NL2034274A 2022-04-15 2023-03-06 DETECTION METHOD OF MUTATION TYPE OF parC GENE OF MYCOPLASMA GENITALIUM AND KIT NL2034274B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210393576.3A CN114703306B (en) 2022-04-15 2022-04-15 Detection method and kit for mycoplasma genitalium parC gene mutation type

Publications (1)

Publication Number Publication Date
NL2034274B1 true NL2034274B1 (en) 2023-11-06

Family

ID=82173766

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2034274A NL2034274B1 (en) 2022-04-15 2023-03-06 DETECTION METHOD OF MUTATION TYPE OF parC GENE OF MYCOPLASMA GENITALIUM AND KIT

Country Status (2)

Country Link
CN (1) CN114703306B (en)
NL (1) NL2034274B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI349704B (en) * 2004-08-10 2011-10-01 Food And Drug Administration Dept Of Health A method for rapidly detecting quinolone-resistant salmonella spp. and the probes and primers utilized therein
GB0610522D0 (en) * 2006-05-26 2006-07-05 Health Prot Agency Mycoplasma detection assay
CN104611422A (en) * 2015-01-09 2015-05-13 四川大学 Method for detecting escherichia coli fluoroquinolone-resisting gyrA/parC gene point mutation
CN110643722A (en) * 2019-09-10 2020-01-03 中国医学科学院病原生物学研究所 Neisseria gonorrhoeae drug-resistant site multiple detection method and kit
RU2725477C1 (en) * 2019-11-15 2020-07-02 Федеральное Бюджетное Учреждение Науки "Центральный Научно-Исследовательский Институт Эпидемиологии" Федеральной Службы По Надзору В Сфере Защиты Прав Потребителей И Благополучия Человека Method for detecting the presence of mutations leading to mycoplasma genitalium resistance to macrolide and fluoroquinolone antibiotics

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BODIYABADU KAVEESHA ET AL: "Detection of parC gene mutations associated with quinolone resistance in Mycoplasma genitalium: evaluation of a multiplex real-time PCR assay", JOURNAL OF MEDICAL MICROBIOLOGY, vol. 70, no. 3, 19 February 2021 (2021-02-19), pages 1257, XP093061138, ISSN: 0022-2615, Retrieved from the Internet <URL:https://www.microbiologyresearch.org/docserver/fulltext/jmm/70/3/jmm001257.pdf?expires=1688551258&id=id&accname=guest&checksum=826F51D3D78A55C409BF1E00F3BE7F84> DOI: 10.1099/jmm.0.001257 *
FERNÁNDEZ-HUERTA MIGUEL ET AL: "Multicenter Clinical Evaluation of a Novel Multiplex Real-Time PCR (qPCR) Assay for Detection of Fluoroquinolone Resistance in Mycoplasma genitalium", JOURNAL OF CLINICAL MICROBIOLOGY, vol. 57, no. 11, 23 October 2019 (2019-10-23), US, XP093061143, ISSN: 0095-1137, DOI: 10.1128/JCM.00886-19 *
LI YAMEI ET AL: "Rapid Detection of Antimicrobial Resistance in Mycoplasma genitalium by High-Resolution Melting Analysis with Unlabeled Probes", MICROBIOLOGY SPECTRUM, vol. 10, no. 4, 26 July 2022 (2022-07-26), XP093061004, Retrieved from the Internet <URL:https://journals.asm.org/doi/pdf/10.1128/spectrum.01014-22> DOI: 10.1128/spectrum.01014-22 *
SHEDKO ELIZAVETA DMITRIEVNA ET AL: "Clinical evaluation of commercial PCR assays for antimicrobal resistance in Mycoplasma genitalium and estimation of resistance-mediated mutation prevalence in Moscow and Moscow region", EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, SPRINGER, WIESBADEN, DE, vol. 40, no. 7, 30 January 2021 (2021-01-30), pages 1413 - 1418, XP037481441, ISSN: 0934-9723, [retrieved on 20210130], DOI: 10.1007/S10096-021-04170-0 *
SHIMADA Y ET AL: "Emergence of clinical strains of Mycoplasma genitalium harbouring alterations in ParC associated with fluoroquinolone resistance", INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, ELSEVIER, AMSTERDAM, NL, vol. 36, no. 3, 1 September 2010 (2010-09-01), pages 255 - 258, XP027147671, ISSN: 0924-8579, [retrieved on 20100630] *

Also Published As

Publication number Publication date
CN114703306B (en) 2023-08-08
CN114703306A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US8906621B2 (en) Cross priming amplification of target nucleic acids
CN104313180B (en) A novel method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system
CN113234856B (en) DENV one-step method nucleic acid detection method based on CRISPR/Cas12a and isothermal amplification
CN113584167B (en) CrRNA, isothermal amplification primer and kit for detecting FLT3-F691L mutation
CN110643722A (en) Neisseria gonorrhoeae drug-resistant site multiple detection method and kit
CN111763752A (en) RPA-based method for rapidly detecting urogenital mycoplasma
CN107760764A (en) A kind of target nucleic acid detection method and kit based on primer fluorescence and quenched label
CN108531627A (en) One kind is for detecting the streptococcic RPA fluorescent quantitations primer pair of B races, probe, kit and detection method
CN117363767A (en) Probe combination, primer set and kit for real-time fluorescence PCR detection of target genes and application of probe combination and primer set and kit
CN115992273A (en) Nucleic acid molecule, kit and detection method for detecting streptococcus pneumoniae
WO2013122319A1 (en) Method for detecting target gene or mutation thereof using ligase reaction and nicking enzyme amplification reaction
NL2034274B1 (en) DETECTION METHOD OF MUTATION TYPE OF parC GENE OF MYCOPLASMA GENITALIUM AND KIT
CN106319079B (en) Method for detecting 22q11.2 copy number loss
CN110172500B (en) Isothermal typing method for single nucleotide polymorphism
CN113215325B (en) Reaction system, method and kit for detecting multiple HPV subtypes by two-dimensional PCR single tube closed tube
CN113215317A (en) Microdroplet digital PCR (polymerase chain reaction) detection primer, probe and kit for wild strain of bovine sarcoidosis virus and application of microdroplet digital PCR detection primer, probe and kit
KR101338292B1 (en) Reverse Transcription - Polymerase Chain Reaction - Enzyme-Linked Immunosorbent assay (RT-PCR-ELISA) for Hepatitis A virus
CN117987578B (en) Microfluidic chip for simultaneously detecting pathogenic escherichia coli, salmonella and drug resistance genes and application thereof
CN118086575B (en) Method for visually detecting phytophthora cowpea based on RPA-CRISPR/Cas12a and application
US9212398B2 (en) Cross priming amplification of target nucleic acids
CN115747218A (en) CrRNA and kit for detecting simian pox virus nucleic acid
CN116356049A (en) Kit for detecting clostridium difficile
CN118652993A (en) One-pot detection kit and method for RPA-CRISPR of katG gene mutant tubercle bacillus
CN116356075A (en) Primer probe for detection, primer probe group and application thereof
CN117512212A (en) Multi-enzyme isothermal amplification kit for detecting HTLV-1 proviral DNA and detection method