MX2021011131A - Compresion de red neuronal profunda basada en rango de bajo desplazamiento. - Google Patents
Compresion de red neuronal profunda basada en rango de bajo desplazamiento.Info
- Publication number
- MX2021011131A MX2021011131A MX2021011131A MX2021011131A MX2021011131A MX 2021011131 A MX2021011131 A MX 2021011131A MX 2021011131 A MX2021011131 A MX 2021011131A MX 2021011131 A MX2021011131 A MX 2021011131A MX 2021011131 A MX2021011131 A MX 2021011131A
- Authority
- MX
- Mexico
- Prior art keywords
- neural network
- deep neural
- low displacement
- rank based
- matrices
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Image Processing (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Un método y un aparato para llevar a cabo compresión de red neuronal profunda utilizan una serie de entrenamiento de aproximación junto con información, tal como en matrices representando ponderaciones, inclinaciones y no linealidades, para comprimir iterativamente una red neuronal profunda pre-entrenada por aproximación basada en rango de bajo desplazamiento de las matrices de ponderación de estrato de red. La aproximación de rango de bajo desplazamiento permite el reemplazo de matrices de ponderación de un estrato original de la red neuronal profunda pre-entrenada como la suma de un número pequeño de matrices estructuradas, permitiendo compresión y complejidad de inferencia baja.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962818914P | 2019-03-15 | 2019-03-15 | |
PCT/US2020/022585 WO2020190696A1 (en) | 2019-03-15 | 2020-03-13 | Low displacement rank based deep neural network compression |
Publications (1)
Publication Number | Publication Date |
---|---|
MX2021011131A true MX2021011131A (es) | 2021-10-14 |
Family
ID=70228824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
MX2021011131A MX2021011131A (es) | 2019-03-15 | 2020-03-13 | Compresion de red neuronal profunda basada en rango de bajo desplazamiento. |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220188633A1 (es) |
EP (1) | EP3939301A1 (es) |
JP (1) | JP7575388B2 (es) |
CN (1) | CN113574887B (es) |
MX (1) | MX2021011131A (es) |
WO (1) | WO2020190696A1 (es) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11037330B2 (en) * | 2017-04-08 | 2021-06-15 | Intel Corporation | Low rank matrix compression |
US11700518B2 (en) * | 2019-05-31 | 2023-07-11 | Huawei Technologies Co., Ltd. | Methods and systems for relaying feature-driven communications |
US20210326710A1 (en) * | 2020-04-16 | 2021-10-21 | Tencent America LLC | Neural network model compression |
WO2022087953A1 (zh) * | 2020-10-29 | 2022-05-05 | 华为技术有限公司 | 一种基于神经网络模型的量化方法及其相关设备 |
US11818399B2 (en) | 2021-01-04 | 2023-11-14 | Tencent America LLC | Techniques for signaling neural network topology and parameters in the coded video stream |
CN112836801A (zh) * | 2021-02-03 | 2021-05-25 | 上海商汤智能科技有限公司 | 深度学习网络确定方法、装置、电子设备及存储介质 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100850729B1 (ko) * | 2000-07-06 | 2008-08-06 | 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 | 데이터 해상도를 향상시키는 방법 및 장치 |
US7133568B2 (en) * | 2000-08-04 | 2006-11-07 | Nikitin Alexei V | Method and apparatus for analysis of variables |
US10515307B2 (en) * | 2015-06-05 | 2019-12-24 | Google Llc | Compressed recurrent neural network models |
US10681380B2 (en) | 2015-06-12 | 2020-06-09 | Panasonic Intellectual Property Management Co., Ltd. | Image encoding method, image decoding method, image encoding apparatus, and image decoding apparatus |
US11321609B2 (en) * | 2016-10-19 | 2022-05-03 | Samsung Electronics Co., Ltd | Method and apparatus for neural network quantization |
US12079700B2 (en) * | 2016-10-26 | 2024-09-03 | Google Llc | Structured orthogonal random features for kernel-based machine learning |
US10599935B2 (en) | 2017-02-22 | 2020-03-24 | Arm Limited | Processing artificial neural network weights |
US11037330B2 (en) * | 2017-04-08 | 2021-06-15 | Intel Corporation | Low rank matrix compression |
CA3066204C (en) | 2017-07-07 | 2022-04-26 | Mitsubishi Electric Corporation | Data processing device, data processing method, and non-transitory computer-readable storage medium |
EP3451293A1 (en) * | 2017-08-28 | 2019-03-06 | Thomson Licensing | Method and apparatus for filtering with multi-branch deep learning |
CN107396124B (zh) * | 2017-08-29 | 2019-09-20 | 南京大学 | 基于深度神经网络的视频压缩方法 |
US11429849B2 (en) * | 2018-05-11 | 2022-08-30 | Intel Corporation | Deep compressed network |
-
2020
- 2020-03-13 US US17/438,079 patent/US20220188633A1/en active Pending
- 2020-03-13 WO PCT/US2020/022585 patent/WO2020190696A1/en active Application Filing
- 2020-03-13 EP EP20718043.1A patent/EP3939301A1/en active Pending
- 2020-03-13 CN CN202080021701.7A patent/CN113574887B/zh active Active
- 2020-03-13 MX MX2021011131A patent/MX2021011131A/es unknown
- 2020-03-13 JP JP2021548231A patent/JP7575388B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
CN113574887A (zh) | 2021-10-29 |
WO2020190696A1 (en) | 2020-09-24 |
JP7575388B2 (ja) | 2024-10-29 |
JP2022525392A (ja) | 2022-05-13 |
EP3939301A1 (en) | 2022-01-19 |
CN113574887B (zh) | 2024-09-27 |
US20220188633A1 (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MX2021011131A (es) | Compresion de red neuronal profunda basada en rango de bajo desplazamiento. | |
GB2600871A (en) | Machine learning hardware having reduced precision parameter components for efficient parameter update | |
JP2021505993A5 (es) | ||
WO2022126797A1 (zh) | 基于多层级知识蒸馏预训练语言模型自动压缩方法及平台 | |
SG11202008322UA (en) | Neural network model training method and apparatus, computer device, and storage medium | |
EP4113354A3 (en) | Method and apparatus for generating pre-trained language model, electronic device and storage medium | |
US11756561B2 (en) | Speech coding using content latent embedding vectors and speaker latent embedding vectors | |
MY195878A (en) | System And Method For Training Neural Networks | |
JP2020038704A5 (es) | ||
MY182749A (en) | Semi-supervised learning for training an ensemble of deep convolutional neural networks | |
CN109583621A (zh) | 一种基于改进变分模态分解的pso-lssvm短期负荷预测方法 | |
WO2020086176A8 (en) | Artificial neural network and method of training an artificial neural network with epigenetic neurogenesis | |
GB2590768A8 (en) | Method for optimizing motion parameter of industrial robot for energy saving in big data environment | |
CN106951473A (zh) | 面向视觉障碍人士的深度视觉问答系统的构建方法 | |
CN105976282A (zh) | 一种试题难度量化方法及系统 | |
EP3859588A3 (en) | Method, apparatus, device and medium for generating recruitment position description text | |
GB2610319A (en) | Automatic compression method and platform for multilevel knowledge distillation-based pre-trained language model | |
WO2021246892A8 (en) | Method for training an artificial neural network comprising quantized parameters | |
CN107291701A (zh) | 一种机器语言生成方法及装置 | |
EP4099333A3 (en) | Method and apparatus for training compound property prediction model, storage medium and computer program product | |
CN102676634A (zh) | 一种气调包装生鲜冷却牛肉腐败菌生长预测方法 | |
WO2022075678A3 (ko) | 의사 정상 데이터를 이용한 자가 감독 학습 기반의 차량 이상징후 탐지 장치 및 방법 | |
GB2615472A (en) | Geological property modeling with neural network representations | |
CN106952025A (zh) | 一种石油化工装置检修的风险评估模型 | |
Thomas et al. | Implementing design sprints in the education of industrial designers |