Yuan et al., 2016 - Google Patents
A 70 mW 25 Gb/s quarter-rate SerDes transmitter and receiver chipset with 40 dB of equalization in 65 nm CMOS technologyYuan et al., 2016
- Document ID
- 3895341622324173151
- Author
- Yuan S
- Wu L
- Wang Z
- Zheng X
- Zhang C
- Wang Z
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems I: Regular Papers
External Links
Snippet
A 25 Gb/s transmitter (TX) and receiver (RX) chipset designed in a 65 nm CMOS technology is presented. The proposed quarter-rate TX architecture with divider-less clock generation can not only guarantee the timing constraint for the highest-speed serialization, but also …
- 230000001702 transmitter 0 title abstract description 18
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03433—Arrangements for removing intersymbol interference characterised by equaliser structure
- H04L2025/03439—Fixed structures
- H04L2025/03445—Time domain
- H04L2025/03471—Tapped delay lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0266—Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/028—Arrangements specific to the transmitter end
- H04L25/0282—Provision for current-mode coupling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0292—Arrangements specific to the receiver end
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/08—Modifications for reducing interference; Modifications for reducing effects due to line faults; Receiver end arrangements for detecting or overcoming line faults
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/01—Equalisers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Roshan-Zamir et al. | A 56-Gb/s PAM4 receiver with low-overhead techniques for threshold and edge-based DFE FIR-and IIR-tap adaptation in 65-nm CMOS | |
Yuan et al. | A 70 mW 25 Gb/s quarter-rate SerDes transmitter and receiver chipset with 40 dB of equalization in 65 nm CMOS technology | |
Zhang et al. | A 28 Gb/s multistandard serial link transceiver for backplane applications in 28 nm CMOS | |
Krupnik et al. | 112-Gb/s PAM4 ADC-based SERDES receiver with resonant AFE for long-reach channels | |
Wong et al. | A 27-mW 3.6-gb/s I/O transceiver | |
Kim et al. | A 224-Gb/s DAC-based PAM-4 quarter-rate transmitter with 8-tap FFE in 10-nm FinFET | |
Han et al. | Design techniques for a 60-Gb/s 288-mW NRZ transceiver with adaptive equalization and baud-rate clock and data recovery in 65-nm CMOS technology | |
Chen et al. | A fully-integrated 40-Gb/s transceiver in 65-nm CMOS technology | |
Beukema et al. | A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization | |
Bassi et al. | A high-swing 45 Gb/s hybrid voltage and current-mode PAM-4 transmitter in 28 nm CMOS FDSOI | |
Musah et al. | A 4–32 Gb/s bidirectional link with 3-tap FFE/6-tap DFE and collaborative CDR in 22 nm CMOS | |
Ibrahim et al. | Low-power CMOS equalizer design for 20-Gb/s systems | |
Zheng et al. | A 40-Gb/s quarter-rate SerDes transmitter and receiver chipset in 65-nm CMOS | |
US9178563B2 (en) | Voltage regulator for a serializer/deserializer communication application | |
Kocaman et al. | A 3.8 mW/Gbps quad-channel 8.5–13 Gbps serial link with a 5 tap DFE and a 4 tap transmit FFE in 28 nm CMOS | |
Kim et al. | A 21-Gbit/s 1.63-pJ/bit adaptive CTLE and one-tap DFE with single loop spectrum balancing method | |
Shahramian et al. | Edge-Based Adaptation for a 1 IIR+ 1 Discrete-Time Tap DFE Converging in $5~\mu $ s | |
Liao et al. | A 40 Gb/s CMOS serial-link receiver with adaptive equalization and clock/data recovery | |
Lin et al. | ADC-DSP-based 10-to-112-Gb/s multi-standard receiver in 7-nm FinFET | |
Cui et al. | A dual-channel 23-Gbps CMOS transmitter/receiver chipset for 40-Gbps RZ-DQPSK and CS-RZ-DQPSK optical transmission | |
Jeong et al. | A 20 Gb/s 0.4 pJ/b Energy-Efficient Transmitter Driver Utilizing Constant-${\rm G} _ {\rm m} $ Bias | |
Peng et al. | A 112-Gb/s PAM-4 voltage-mode transmitter with four-tap two-step FFE and automatic phase alignment techniques in 40-nm CMOS | |
Wang et al. | A 56-Gbps PAM-4 wireline receiver with 4-tap direct DFE employing dynamic CML comparators in 65 nm CMOS | |
Erett et al. | A 0.5–16.3 Gbps multi-standard serial transceiver with 219 mW/channel in 16-nm FinFET | |
Huang et al. | A 80 mW 40 Gb/s transmitter with automatic serializing time window search and 2-tap pre-emphasis in 65 nm CMOS technology |