Nothing Special   »   [go: up one dir, main page]

Zhao et al., 2003 - Google Patents

Fuzzy PI control design for an industrial weigh belt feeder

Zhao et al., 2003

View PDF
Document ID
3646228468988867333
Author
Zhao Y
Collins E
Publication year
Publication venue
IEEE Transactions on Fuzzy Systems

External Links

Snippet

An industrial weigh belt feeder is used to transport solid materials into a manufacturing process at a constant feedrate. It exhibits nonlinear behavior because of motor friction, saturation, and quantization noise in the sensors, which makes standard autotuning …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0275Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/32Automatic controllers electric with inputs from more than one sensing element; with outputs to more than one correcting element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/27Control of temperature characterised by the use of electric means with sensing element responsive to radiation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements

Similar Documents

Publication Publication Date Title
Zhao et al. Fuzzy PI control design for an industrial weigh belt feeder
Mudi et al. A self-tuning fuzzy PI controller
Daugherity et al. Performance evaluation of a self-tuning fuzzy controller
Zhao et al. Fuzzy gain scheduling of PID controllers
Qin et al. A multiregion fuzzy logic controller for nonlinear process control
Gao et al. A stable self-tuning fuzzy logic control system for industrial temperature regulation
US5159660A (en) Universal process control using artificial neural networks
Lee et al. Analytical design of multiloop PID controllers for desired closed‐loop responses
Vaishnav et al. Design and performance of PID and fuzzy logic controller with smaller rule set for higher order system
Xie et al. Fuzzy adaptive internal model control
Piltan et al. Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator
US6330484B1 (en) Method and apparatus for fuzzy logic control with automatic tuning
Mirshekaran et al. Design sliding mode modified fuzzy linear controller with application to flexible robot manipulator
Daful Comparative study of PID tuning methods for processes with large & small delay times
Tavakoli et al. Multi-objective optimization approach to the PI tuning problem
Kovacic et al. Sensitivity-based self-learning fuzzy logic control for a servo system
Ahmad et al. Control of magnetic levitation system using fuzzy logic control
CN114019786A (en) Control system for switching PI (proportional integral derivative) to PID (proportion integration differentiation) on line and parameter setting method
de Souza et al. Comparison among experimental PID auto tuning methods for a self-balancing robot
Lakshmanaprabu et al. Adaptive multi-loop IMC-based PID controller tuning using bat optimisation algorithm for two interacting conical tank process
Piltan et al. Design Auto Adjust Sliding Surface Slope: Applied to Robot Manipulator
JPS62241002A (en) Auto-tuning controller
Marquez et al. From PID to model predictive control: A flatness based approach
Victor et al. Adaptive scaling factors algorithm for the fuzzy logic controller
Amieur et al. Tilt-fractional order proportional integral derivative control for DC motor using particle swarm optimization