Sata et al., 2010 - Google Patents
Compressive strength and heat evolution of concretes containing palm oil fuel ashSata et al., 2010
View PDF- Document ID
- 352242989541944902
- Author
- Sata V
- Jaturapitakkul C
- Rattanashotinunt C
- Publication year
- Publication venue
- Journal of materials in civil engineering
External Links
Snippet
The study of using palm oil fuel ash (POFA) in concrete work is just the beginning, and obtained data are very little as compared to fly ash and silica fume. In order to collect experimental data, the effects of ground POFA (GPOFA) replacement rate up to 30 wt% and …
- 239000004567 concrete 0 title abstract description 138
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/026—Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/12—Natural pozzuolanes; Natural pozzuolana cements; Artificial pozzuolanes or artificial pozzuolana cements other than those obtained from waste or combustion residues, e.g. burned clay; Treating inorganic materials to improve their pozzuolanic characteristics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/48—Clinker treatment
- C04B7/52—Grinding; After-treatment of ground cement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/006—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sata et al. | Compressive strength and heat evolution of concretes containing palm oil fuel ash | |
Makaratat et al. | Effects of calcium carbide residue–fly ash binder on mechanical properties of concrete | |
Mehdizadeh et al. | Effect of particle size and CO2 treatment of waste cement powder on properties of cement paste | |
Zabihi et al. | Engineering and microstructural properties of fiber-reinforced rice husk–ash based geopolymer concrete | |
Yang et al. | Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide | |
Amin | Use of bagasse ash in concrete and its impact on the strength and chloride resistivity | |
Bahurudeen et al. | Assesment of pozzolanic performance of sugarcane bagasse ash | |
Chindaprasirt et al. | High-strength geopolymer using fine high-calcium fly ash | |
Sata et al. | Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete | |
Tangchirapat et al. | Use of high fineness of fly ash to improve properties of recycled aggregate concrete | |
Bhutta et al. | Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash | |
Fediuk et al. | Mechanical Properties of Fiber‐Reinforced Concrete Using Composite Binders | |
Somna et al. | Effect of the water to binder ratio and ground fly ash on properties of recycled aggregate concrete | |
Almesfer et al. | Effect of waste glass on the properties of concrete | |
Bărbuţă et al. | Comparison of mechanical properties for polymer concrete with different types of filler | |
Chotetanorm et al. | High-calcium bottom ash geopolymer: sorptivity, pore size, and resistance to sodium sulfate attack | |
Rukzon et al. | Strength and carbonation model of rice husk ash cement mortar with different fineness | |
Rattanachu et al. | Water permeability and sulfate resistance of eco-friendly high-strength concrete composed of ground bagasse ash and recycled concrete aggregate | |
Chindaprasirt et al. | Use of palm oil fuel ash to improve chloride and corrosion resistance of high-strength and high-workability concrete | |
Aly et al. | Effect of high-volume ceramic waste powder as partial cement replacement on fresh and compressive strength of self-compacting concrete | |
AlArab et al. | Use of ceramic-waste powder as value-added pozzolanic material with improved thermal properties | |
Thongsanitgarn et al. | Hydration and compressive strength of blended cement containing fly ash and limestone as cement replacement | |
Matalkah et al. | Characterization of alkali-activated nonwood biomass ash–based geopolymer concrete | |
Tangchirapat et al. | Compressive strength and expansion of blended cement mortar containing palm oil fuel ash | |
Sanawung et al. | Influence of palm oil fuel ash and W/B ratios on compressive strength, water permeability, and chloride resistance of concrete |