Nothing Special   »   [go: up one dir, main page]

Kim et al., 2024 - Google Patents

Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0. 9Mn0. 05Co0. 05O2 cathode material by ultrathin Li-rich oxide layer for lithium-ion …

Kim et al., 2024

Document ID
3369273802878693099
Author
Kim K
Jeong J
Lee Y
Lim H
Chung K
Kim H
Kim S
Publication year
Publication venue
Journal of Power Sources

External Links

Snippet

Ni-rich single-crystalline LiNi x Co y Mn 1-xy O 2 (SNCM; x≥ 0.8) cathodes outperform conventional polycrystalline Ni-rich NCM in terms of mechanical and electrochemical stabilities. However, SNCM cathodes exhibit interfacial instability and rapid capacity decay …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes

Similar Documents

Publication Publication Date Title
Zhou et al. Stable layered Ni-rich LiNi 0.9 Co 0.07 Al 0.03 O 2 microspheres assembled with nanoparticles as high-performance cathode materials for lithium-ion batteries
Li et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2
Yu et al. Lithium-conductive LiNbO3 coated high-voltage LiNi0. 5Co0. 2Mn0. 3O2 cathode with enhanced rate and cyclability
Yao et al. Oxalate co-precipitation synthesis of LiNi0. 6Co0. 2Mn0. 2O2 for low-cost and high-energy lithium-ion batteries
Chong et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries
Ruan et al. Superior long-term cyclability of a nanocrystalline NiO anode enabled by a mechanochemical reaction-induced amorphous protective layer for Li-ion batteries
Yang et al. Preparing LiNi 0.5 Mn 1.5 O 4 nanoplates with superior properties in lithium-ion batteries using bimetal–organic coordination-polymers as precursors
Deng et al. Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries
Sun et al. Enhancing the stabilities and electrochemical performances of LiNi0. 5Co0. 2Mn0. 3O2 cathode material by simultaneous LiAlO2 coating and Al doping
Cheng et al. High-rate Ni-rich single-crystal cathodes with highly exposed {0 1 0} active planes through in-situ Zr doping
Xu et al. Effects of Fe 2+ ion doping on LiMnPO 4 nanomaterial for lithium ion batteries
Wu et al. Surface modification of a cobalt-free layered Li [Li 0.2 Fe 0.1 Ni 0.15 Mn 0.55] O 2 oxide with the FePO 4/Li 3 PO 4 composite as the cathode for lithium-ion batteries
Darjazi et al. Improving high-voltage cycling performance of nickel-rich NMC layered oxide cathodes for rechargeable lithium–ion batteries by Mg and Zr co-doping
Zhu et al. Synthesis and electrochemical performance of Li 4 Ti 5 O 12/TiO 2/C nanocrystallines for high-rate lithium ion batteries
Cho et al. Control of side reactions using LiNbO3 mixed/doped solid electrolyte for enhanced sulfide-based all-solid-state batteries
Cheng et al. Enhanced rate performance and cycle stability of LiNi0. 6Co0. 2Mn0. 2O2 at high cut-off voltage by Li6. 1La3Al0. 3Zr2O12 surface modification
Kim et al. Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0. 9Mn0. 05Co0. 05O2 cathode material by ultrathin Li-rich oxide layer for lithium-ion batteries
He et al. Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries
Zhu et al. Improved electrochemical properties of Li4Ti5O12–Li0. 33La0. 56TiO3 composite anodes prepared by a solid-state synthesis
Nowak et al. Electrochemical performance of different high-entropy cathode materials for Na-ion batteries
Hong et al. Phase engineering of Ni-Mn binary layered oxide cathodes for sodium-ion batteries
Yuwono et al. Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries
Yang et al. Well-ordered spherical LiNi0. 8Co0. 1Mn0. 1O2 cathode material for lithium-ion batteries
Zhai et al. Insight of the evolution of structure and energy storage mechanism of (FeCoNiCrMn) 3O4 spinel high entropy oxide in life-cycle span as lithium-ion battery anode
Vu et al. High capacity spinel@ layered Li1. 5MnTiO4+ δ as thermally stable core-shell-driven cathode materials for lithium-ion batteries