Beucher et al., 2020 - Google Patents
Highly efficient green solution processable organic light-emitting diodes based on a phosphorescent κ3-(N^ C^ C) gold (iii)-alkynyl complexBeucher et al., 2020
View PDF- Document ID
- 3340817755179731802
- Author
- Beucher H
- Kumar S
- Merino E
- Hu W
- Stemmler G
- Cuesta-Galisteo S
- González J
- Jagielski J
- Shih C
- Nevado C
- Publication year
- Publication venue
- Chemistry of Materials
External Links
Snippet
Gold (III) complexes are emerging as promising phosphorescent emitters for high-efficiency organic light-emitting diodes (OLEDs). However, despite recent advances in the coordination and organometallic chemistry of gold, only few compounds have been …
- 239000010931 gold 0 title abstract description 89
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0084—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H01L51/0085—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0084—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H01L51/0087—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5012—Electroluminescent [EL] layer
- H01L51/5016—Triplet emission
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0089—Metal complexes comprising Lanthanides or Actinides, e.g. Eu
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0072—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
- C07F15/0033—Iridium compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Molecular design of luminescent gold (III) emitters as thermally evaporable and solution-processable organic light-emitting device (OLED) materials: Focus review | |
Beucher et al. | Highly efficient green solution processable organic light-emitting diodes based on a phosphorescent κ3-(N^ C^ C) gold (iii)-alkynyl complex | |
Fan et al. | Phosphoryl/sulfonyl-substituted iridium complexes as blue phosphorescent emitters for single-layer blue and white organic light-emitting diodes by solution process | |
Cao et al. | Near-infrared polymer light-emitting diodes with high efficiency and low efficiency roll-off by using solution-processed iridium (III) phosphors | |
Zhang et al. | Syntheses, photoluminescence, and electroluminescence of a series of sublimable bipolar cationic cuprous complexes with thermally activated delayed fluorescence | |
Au et al. | High-efficiency green organic light-emitting devices utilizing phosphorescent bis-cyclometalated alkynylgold (III) complexes | |
Sun et al. | Highly efficient deep-red organic light-emitting devices based on asymmetric iridium (iii) complexes with the thianthrene 5, 5, 10, 10-tetraoxide moiety | |
Yu et al. | Structures, electronic states, and electroluminescent properties of a zinc (II) 2-(2-hydroxyphenyl) benzothiazolate complex | |
Leung et al. | Thermally stimulated delayed phosphorescence (TSDP)-based gold (III) complexes of tridentate pyrazine-containing pincer ligand with wide emission color tunability and their application in organic light-emitting devices | |
Wei et al. | Ligand mediated luminescence enhancement in cyclometalated rhodium (III) complexes and their applications in efficient organic light-emitting devices | |
Huang et al. | Highly phosphorescent bis-cyclometalated iridium complexes containing benzoimidazole-based ligands | |
Ho et al. | Phosphorescence Color Tuning by Ligand, and Substituent Effects of Multifunctional Iridium (III) Cyclometalates with 9‐Arylcarbazole Moieties | |
Miao et al. | Highly efficient red and white organic light-emitting diodes with external quantum efficiency beyond 20% by employing pyridylimidazole-based metallophosphors | |
Au | Organic light-emitting diodes based on luminescent self-assembled materials of copper (I) | |
Nazeeruddin et al. | Highly phosphorescence iridium complexes and their application in organic light-emitting devices | |
Li et al. | Rational design and characterization of heteroleptic phosphorescent complexes for highly efficient deep-red organic light-emitting devices | |
Au et al. | Functionalized bis-cyclometalated alkynylgold (III) complexes: synthesis, characterization, electrochemistry, photophysics, photochemistry, and electroluminescence studies | |
Tian et al. | Efficient synthesis of carbazolyl-and thienyl-substituted β-diketonates and properties of their red-and green-light-emitting Ir (III) complexes | |
Zhao et al. | Phosphorescent iridium (III) complexes bearing fluorinated aromatic sulfonyl group with nearly unity phosphorescent quantum yields and outstanding electroluminescent properties | |
Park et al. | Synthesis, characterization of the phenylquinoline-based on iridium (III) complexes for solution processable phosphorescent organic light-emitting diodes | |
Sicilia et al. | Highly photoluminescent blue ionic platinum-based emitters | |
Zeng et al. | Rational design of efficient organometallic Ir (III) complexes for high-performance, flexible, monochromatic, and white light-emitting electrochemical cells | |
Cheng et al. | High-efficiency solution-processed organic light-emitting diodes with tetradentate platinum (II) emitters | |
Mao et al. | Achieving high performances of nondoped OLEDs using carbazole and diphenylphosphoryl-functionalized Ir (III) complexes as active components | |
Ren et al. | A yellow-emitting homoleptic iridium (III) complex constructed from a multifunctional spiro ligand for highly efficient phosphorescent organic light-emitting diodes |