Kurata et al., 2017 - Google Patents
Silicon photonics for multi-mode transmissionKurata et al., 2017
- Document ID
- 3041283832804262283
- Author
- Kurata K
- Suzuki Y
- Tokushima M
- Takemura K
- Publication year
- Publication venue
- Optical interconnects for data centers
External Links
Snippet
In this chapter, chip scale transceiver based on silicon photonics for multimode transmission is introduced. Chip scale optical transceiver design is mainly described after expectation for optical interconnection and the aim of multimode wiring for silicon photonics technology …
- 229910052710 silicon 0 title abstract description 43
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/1221—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths made from organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections ; Transmitting or receiving optical signals between chips, wafers or boards; Optical backplane assemblies
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4246—Bidirectionally operating package structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10168481B2 (en) | Method and system for grating couplers incorporating perturbed waveguides | |
Mahgerefteh et al. | Techno-economic comparison of silicon photonics and multimode VCSELs | |
US9541775B2 (en) | Method and system for a low-voltage integrated silicon high-speed modulator | |
Denoyer et al. | Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber | |
Forbes et al. | Optically interconnected electronic chips: a tutorial and review of the technology | |
Yashiki et al. | 5 mW/Gbps hybrid-integrated Si-photonics-based optical I/O cores and their 25-Gbps/ch error-free operation with over 300-m MMF | |
Urino et al. | High-density and wide-bandwidth optical interconnects with silicon optical interposers | |
Okamoto et al. | A 25-Gb/s 5× 5 mm 2 chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier | |
US11106061B2 (en) | Method and system for a low-voltage integrated silicon high-speed modulator | |
Yashiki et al. | 25-Gbps/ch error-free operation over 300-m MMF of low-power-consumption silicon-photonics-based chip-scale optical I/O cores | |
Yashiki et al. | 25-Gbps error-free operation of chip-scale Si-photonics optical transmitter over 70 C with integrated quantum dot laser | |
Kurata et al. | Silicon photonics for multi-mode transmission | |
Liu et al. | Low-cost hybrid integrated 4× 25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer | |
Chen et al. | Progress in complementary metal–oxide–semiconductor silicon photonics and optoelectronic integrated circuits | |
Takemura et al. | Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core | |
Kurata et al. | Prospect of chip scale silicon photonics transceiver for high density multi-mode wiring system | |
Urino et al. | Demonstration of 30-Tbps/cm 2 bandwidth density by silicon optical interposers fully integrated with optical components | |
Amano et al. | 25-Gb/s operation of a polymer optical waveguide on an electrical hybrid LSI package substrate with optical card edge connector | |
Urino et al. | Silicon optical interposers for high-density optical interconnects | |
Kurata et al. | Advanced devices and packaging of Si-photonics-based optical transceiver for optical interconnection | |
Urino et al. | High-density optical interconnects by using silicon photonics | |
De Dobbelaere | Silicon photonics technology platform for embedded and integrated optical interconnect systems | |
Schow | Power-efficient transceivers for high-bandwidth, short-reach interconnects | |
Schow et al. | 225 Gb/s bi-directional integrated optical PCB link | |
Amano et al. | Low-Loss Characteristics of a Multimode Polymer Optical Waveguide at 1.3 um Wavelength on an Electrical Hybrid LSI Package Substrate |