Wang et al., 2024 - Google Patents
Introduction of artificial IntelligenceWang et al., 2024
- Document ID
- 2892562627296263186
- Author
- Wang Y
- Fu E
- Zhai X
- Yang C
- Pei F
- Publication year
- Publication venue
- Intelligent Building Fire Safety and Smart Firefighting
External Links
Snippet
Artificial intelligence (AI) is referred to as the intelligence developed by machines with mathematical modeling. In particular, AI is manifested by machine's ability to effectively perceive, process, and reason diverse kinds of signals, and make satisfactory responses. It …
- 238000013473 artificial intelligence 0 title abstract description 32
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30595—Relational databases
- G06F17/30598—Clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mahadevkar et al. | A review on machine learning styles in computer vision—techniques and future directions | |
Sarker | Machine learning: Algorithms, real-world applications and research directions | |
Bhatti et al. | Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence | |
Sarker | Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions | |
Wason | Deep learning: Evolution and expansion | |
Kowsari et al. | Rmdl: Random multimodel deep learning for classification | |
Wang et al. | Introduction of artificial Intelligence | |
Zheng et al. | The fusion of deep learning and fuzzy systems: A state-of-the-art survey | |
Shu et al. | Small sample learning in big data era | |
França et al. | An overview of deep learning in big data, image, and signal processing in the modern digital age | |
Kaklauskas | Biometric and intelligent decision making support | |
Leke et al. | Deep learning and missing data in engineering systems | |
Papakyriakou et al. | Data mining methods: A review | |
Banchhor et al. | FCNB: Fuzzy Correlative naive bayes classifier with mapreduce framework for big data classification | |
Chakraborty et al. | Data classification and incremental clustering in data mining and machine learning | |
Crawford et al. | Big data modeling approaches for engineering applications | |
Pinto da Costa et al. | Statistical methods with applications in data mining: A review of the most recent works | |
Leke et al. | Introduction to missing data estimation | |
Soppin et al. | Essentials of deep learning and ai: experience unsupervised learning, autoencoders, feature engineering, and time series analysis with tensorflow, keras, and scikit-learn (English Edition) | |
Alghalibi et al. | Deep attention learning mechanisms for social media sentiment image revelation | |
Kareem et al. | Fine-grained food image classification and recipe extraction using a customized deep neural network and NLP | |
Kumar et al. | A Recommendation System & Their Performance Metrics using several ML Algorithms | |
Prasad et al. | Hybrid heuristic mechanism for occlusion aware facial expression recognition scheme using patch based adaptive CNN with attention mechanism | |
Baireddy et al. | A hybrid particle swarm optimization with multi-objective clustering for dermatologic diseases diagnosis | |
Thanki et al. | Artificial Intelligence and Its Applications |