Gao et al., 2014 - Google Patents
Efficient color constancy with local surface reflectance statisticsGao et al., 2014
View PDF- Document ID
- 2845511423535138966
- Author
- Gao S
- Han W
- Yang K
- Li C
- Li Y
- Publication year
- Publication venue
- Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II 13
External Links
Snippet
The aim of computational color constancy is to estimate the actual surface color in an acquired scene disregarding its illuminant. Many solutions try to first estimate the illuminant and then correct the image with the illuminant estimate. Based on the linear image formation …
- 230000015572 biosynthetic process 0 abstract description 6
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4652—Extraction of features or characteristics of the image related to colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4642—Extraction of features or characteristics of the image by performing operations within image blocks or by using histograms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
- G06T5/007—Dynamic range modification
- G06T5/008—Local, e.g. shadow enhancement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
- G06K9/629—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00597—Acquiring or recognising eyes, e.g. iris verification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
- G06T3/0068—Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image for image registration, e.g. elastic snapping
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Efficient color constancy with local surface reflectance statistics | |
Qian et al. | On finding gray pixels | |
Yang et al. | Efficient illuminant estimation for color constancy using grey pixels | |
Joze et al. | The role of bright pixels in illumination estimation | |
Gijsenij et al. | Improving color constancy by photometric edge weighting | |
US8811733B2 (en) | Method of chromatic classification of pixels and method of adaptive enhancement of a color image | |
Sidorov | Conditional gans for multi-illuminant color constancy: Revolution or yet another approach? | |
Alldrin et al. | Resolving the generalized bas-relief ambiguity by entropy minimization | |
JP2016500975A (en) | Generation of depth maps from planar images based on combined depth cues | |
Hussain et al. | Color constancy algorithm for mixed-illuminant scene images | |
Banić et al. | Color rabbit: Guiding the distance of local maximums in illumination estimation | |
Jiang et al. | Correlation-based intrinsic image extraction from a single image | |
Cepeda-Negrete et al. | Gray-world assumption on perceptual color spaces | |
Tian et al. | Outdoor shadow detection by combining tricolor attenuation and intensity | |
Banić et al. | Using the red chromaticity for illumination estimation | |
Hussain et al. | Color constancy for uniform and non-uniform illuminant using image texture | |
Joze et al. | White patch gamut mapping colour constancy | |
Ulucan et al. | Multi-scale color constancy based on salient varying local spatial statistics | |
Xiong et al. | Automatic white balancing via gray surface identification | |
Wesolkowski et al. | Shading-and highlight-invariant color image segmentation using the MPC algorithm | |
Gao et al. | Biologically inspired image invariance guided illuminant estimation using shallow and deep models | |
Brown et al. | Exploiting color strength to improve color correction | |
Hao et al. | Evaluating colour constancy on the new mist dataset of multi-illuminant scenes | |
Barsky et al. | Design issues for a colour photometric stereo system | |
Fernández-Carbajales et al. | Visual attention based on a joint perceptual space of color and brightness for improved video tracking |