Yan et al., 2021 - Google Patents
Named entity recognition by using XLNet-BiLSTM-CRFYan et al., 2021
- Document ID
- 281394444564145512
- Author
- Yan R
- Jiang X
- Dang D
- Publication year
- Publication venue
- Neural Processing Letters
External Links
Snippet
Named entity recognition (NER) is the basis for many natural language processing (NLP) tasks such as information extraction and question answering. The accuracy of the NER directly affects the results of downstream tasks. Most of the relevant methods are …
- 230000001537 neural 0 abstract description 22
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/30675—Query execution
- G06F17/30684—Query execution using natural language analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/3066—Query translation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30613—Indexing
- G06F17/30619—Indexing indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/21—Text processing
- G06F17/22—Manipulating or registering by use of codes, e.g. in sequence of text characters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2765—Recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2705—Parsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30731—Creation of semantic tools
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30017—Multimedia data retrieval; Retrieval of more than one type of audiovisual media
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | Named entity recognition by using XLNet-BiLSTM-CRF | |
Nasar et al. | Named entity recognition and relation extraction: State-of-the-art | |
Li et al. | A survey on deep learning for named entity recognition | |
Alswaidan et al. | A survey of state-of-the-art approaches for emotion recognition in text | |
Singh | Natural language processing for information extraction | |
Zhang et al. | A comprehensive survey of abstractive text summarization based on deep learning | |
Poria et al. | Aspect extraction for opinion mining with a deep convolutional neural network | |
Kumar et al. | An abstractive text summarization technique using transformer model with self-attention mechanism | |
He et al. | A survey on recent advances in sequence labeling from deep learning models | |
Zhao et al. | Disease named entity recognition from biomedical literature using a novel convolutional neural network | |
Khan et al. | Deep recurrent neural networks with word embeddings for Urdu named entity recognition | |
Wang et al. | Data set and evaluation of automated construction of financial knowledge graph | |
Xiang et al. | A survey of implicit discourse relation recognition | |
Van Thin et al. | Vietnamese sentiment analysis: An overview and comparative study of fine-tuning pretrained language models | |
Ansar et al. | A novel selective learning based transformer encoder architecture with enhanced word representation | |
Shvets et al. | Concept extraction using pointer–generator networks and distant supervision for data augmentation | |
Chou et al. | Boosted web named entity recognition via tri-training | |
Asgari-Bidhendi et al. | Parsner-social: A corpus for named entity recognition in persian social media texts | |
Khan et al. | Empowering Urdu sentiment analysis: an attention-based stacked CNN-Bi-LSTM DNN with multilingual BERT | |
Fei et al. | GFMRC: A machine reading comprehension model for named entity recognition | |
Ltaifa et al. | Hybrid deep neural network-based text representation model to improve microblog retrieval | |
Gambhir et al. | Improved hybrid text summarization system using deep contextualized embeddings and statistical features | |
Vo | Se4exsum: An integrated semantic-aware neural approach with graph convolutional network for extractive text summarization | |
Priyadarshi et al. | A study on the performance of recurrent neural network based models in Maithili part of speech tagging | |
Le-Hong et al. | A semantics-aware approach for multilingual natural language inference |