Brundin et al., 2010 - Google Patents
Neural grafting in Parkinson's disease: problems and possibilitiesBrundin et al., 2010
View PDF- Document ID
- 2631963851899187966
- Author
- Brundin P
- Barker R
- Parmar M
- Publication year
- Publication venue
- Progress in brain research
External Links
Snippet
Neural transplantation has emerged as a possible therapy for Parkinson's disease (PD). Clinical studies performed during the 1990s, where dopaminergic neurons derived from the human embryonic brain were transplanted into striatum of patients with PD, provided proof …
- 206010061536 Parkinson's disease 0 title abstract description 168
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues ; Not used, see subgroups
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0623—Stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues ; Not used, see subgroups
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0619—Neurons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues ; Not used, see subgroups
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0621—Eye cells, e.g. cornea, iris pigmented cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues ; Not used, see subgroups
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues ; Not used, see subgroups
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/30—Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/13—Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/13—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
- C12N2506/1346—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/606—Transcription factors c-Myc
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brundin et al. | Neural grafting in Parkinson’s disease: problems and possibilities | |
Parmar et al. | The future of stem cell therapies for Parkinson disease | |
Sundberg et al. | Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons | |
Barker et al. | Cell-based therapies for Parkinson disease—past insights and future potential | |
Hatami et al. | Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord | |
Jensen et al. | Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model | |
Arenas | Towards stem cell replacement therapies for Parkinson’s disease | |
Przyborski | Differentiation of human embryonic stem cells after transplantation in immune‐deficient mice | |
Faravelli et al. | Motor neuron derivation from human embryonic and induced pluripotent stem cells: experimental approaches and clinical perspectives | |
Wang et al. | Development and differentiation of midbrain dopaminergic neuron: From bench to bedside | |
Wijeyekoon et al. | Cell replacement therapy for Parkinson's disease | |
Wakeman et al. | Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target | |
CN109844102A (en) | Break up the method for pluripotent cell | |
Dyson et al. | Cell-based therapies for Parkinson’s disease | |
Zhu et al. | Development of stem cell-based therapies for Parkinson's disease | |
Kulkarni et al. | Stem cell transplantation in neurodegenerative disorders of the gastrointestinal tract: future or fiction? | |
Jung et al. | Characterization of neurogenic potential of dental pulp stem cells cultured in xeno/serum‐free condition: in vitro and in vivo assessment | |
Hesari et al. | A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells | |
Abdullah et al. | Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells | |
Reddington et al. | Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient | |
Mostafavi et al. | Trabecular meshwork mesenchymal stem cell transplantation improve motor symptoms of parkinsonian rat model | |
Peng et al. | Survival and engraftment of dopaminergic neurons manufactured by a Good Manufacturing Practice-compatible process | |
Pawitan | Prospect of cell therapy for Parkinson's disease | |
Chen | Cell Therapy for Parkinson’s disease: new hope from reprogramming technologies | |
Daadi | Differentiation of neural stem cells derived from induced pluripotent stem cells into dopaminergic neurons |