Nothing Special   »   [go: up one dir, main page]

Tu et al., 2010 - Google Patents

Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum

Tu et al., 2010

View PDF
Document ID
2610934753570626795
Author
Tu H
Bai Y
Zhou Z
Liu L
Cai L
Luo J
Publication year
Publication venue
Classical and Quantum Gravity

External Links

Snippet

A novel two-stage electrostatically controlled torsion pendulum has been developed to simultaneously investigate the performance of a translational and a rotational degree of freedom of an electrostatic inertial sensor on ground. The motions of the proof mass (PM) …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3854Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils means for active and/or passive vibration damping or acoustical noise suppression in gradient magnet coil systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0817Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for pivoting movement of the mass, e.g. in-plane pendulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/005Measuring gravitational fields or waves; Gravimetric prospecting or detecting using a resonating body or device, e.g. string
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements

Similar Documents

Publication Publication Date Title
Graham et al. Dark matter direct detection with accelerometers
Tu et al. Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum
Adelberger et al. Tests of the gravitational inverse-square law
Quinn et al. The BIPM measurements of the Newtonian constant of gravitation, G
Chen et al. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale
Gerardi et al. Invited article: Advanced drag-free concepts for future space-based interferometers: acceleration noise performance
Yin et al. Measurements of magnetic properties of kilogram-level test masses for gravitational-wave detection using a torsion pendulum
Carbone et al. Characterization of disturbance sources for LISA: torsion pendulum results
Hueller et al. Torsion pendulum facility for ground testing of gravitational sensors for LISA
Xu et al. A nano-g electromagnetic accelerometer with 152-dB wide dynamic range
Zhou et al. Torsion pendulum for the performance test of the inertial sensor for ASTROD-I
Zhou et al. Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance
Liu et al. Investigation on the Effects of Microvibration on the Atomic Comagnetometer
Wang et al. A diamagnetic levitation based inertial sensor for geophysical application
Milyukov et al. The Newtonian gravitational constant: modern status of measurement and the new CODATA value
Lambrecht et al. Development of a high-sensitivity torsional balance for the study of the Casimir force in the 1–10 micrometre range
Zhang et al. A torque type full tensor gravity gradiometer based on a flexure-strip suspension
Willemenot et al. Electrostatically suspended torsion pendulum
Mei et al. A 50 pico-g resolution integrated test facility for high-precision inertial sensors
Carbone et al. Upper limits on stray force noise for LISA
Tu et al. Electrostatic-control performance measurement of the inertial sensor with a torsion pendulum
Dong et al. Coupling effect of vibrations and residual electrostatic force in short-range gravitational experiments
Gillies Resource Letter MNG‐1: Measurements of Newtonian gravitation
RU2438151C1 (en) Gravitational variometre
Russano A torsion pendulum ground test of the LISA Pathfinder Free-fall mode