Nothing Special   »   [go: up one dir, main page]

Wuth et al., 2001 - Google Patents

Impact of self-phase modulation on bandwidth efficient modulation formats

Wuth et al., 2001

Document ID
2495392425653765022
Author
Wuth T
Kaiser W
Rosenkranz W
Publication year
Publication venue
Optical Fiber Communication Conference

External Links

Snippet

Impact of Self-Phase Modulation on Bandwidth Efficient Modulation Formats Page 1 Impact of Self-Phase Modulation on Bandwidth Efficient Modulation Formats T. Wuth, W. Kaiser and W. Rosenkranz Chair for Communications, Christian-Albrechts-University of Kiel,Kaiserstraße 2 …
Continue reading at opg.optica.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/2557Cross-phase modulation [XPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2537Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics

Similar Documents

Publication Publication Date Title
Kim et al. Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise
Nuyts et al. Performance improvement of 10 Gb/s standard fiber transmission systems by using the SPM effect in the dispersion compensating fiber
Tomkos et al. 10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber
Saavedra et al. Experimental analysis of nonlinear impairments in fibre optic transmission systems up to 7.3 THz
US8620155B2 (en) Optical signal to noise monitor
Nykolak et al. 40-Gb/s DWDM free-space optical transmission link over 4.4 km
Baier et al. 112 Gb/s PDM-PAM4 generation and 80 km transmission using a novel monolithically integrated dual-polarization electro-absorption modulator InP PIC
Wuth et al. Impact of self-phase modulation on bandwidth efficient modulation formats
Gaur et al. Demonstration of improved performance provided by FOPA for extended PON in burst-mode operation
Gu et al. Duobinary technique for dispersion reduction in high capacity optical systems—modelling, experiment and field trial
Clausen et al. 10-GHz return-to-zero pulse source tunable in wavelength with a single-or multiwavelength output based on four-wave mixing in a newly developed highly nonlinear fiber
Tomkos et al. Transmission of 1550nm 10Gb/s directly modulated signal over 100km of negative dispersion fiber without any dispersion compensation
Wei et al. Nonlinearity tolerance of RZ-AMI format in 42.7 Gbit/s long-haul transmission over standard SMF spans
Thiele et al. Investigation of XPM distortion in transmission installed fiber
Gautheron et al. 407-km, 2.5-Gbit/s repeaterless transmission using an electroabsorption modulator and remotely pumped erbium-doped fiber post-and pre-amplifiers
Haque Effect of DPSK modulation on four wave mixing in a WDM system
Elbers et al. Efficient design of high-capacity dense wavelength-division multiplex systems
Dennis et al. Long span repeaterless transmission using adiabatic solitons
Dahan et al. Optical noise reduction in inter-band Raman mediated wavelength conversion
Foo et al. Optoelectronic method for distributed compensation of XPM in long haul WDM systems
Chi et al. Stimulated Brillouin scattering suppressed EDFA in a long-haul optical fiber link system
Li et al. Research on mixed data rate and format transmission in wdm networks
Pedersen et al. 10 Gbit/s repeaterless transmission over 250 km standard fibre
Zhu et al. Experimental Investigation of Dispersion Maps for 40 x 10 Gb/s Transmission over 1600 km of Fiber with 100-km Spans Employing Distributed Raman Amplification
Saunders et al. System penalty at 10 Gb/s due to modulation instability and its reduction using dispersion compensation