Diao et al., 2017 - Google Patents
Preparation of diacylglycerol from lard by enzymatic glycerolysis and its compositional characteristicsDiao et al., 2017
View HTML- Document ID
- 2301856446971342481
- Author
- Diao X
- Guan H
- Kong B
- Zhao X
- Publication year
- Publication venue
- Korean journal for food science of animal resources
External Links
Snippet
The aim of this study was to prepare diacylglycerol (DAG) by enzymatic glycerolysis of lard. The effects of reaction parameters such as lipase type, reaction temperature, enzyme amount, substrate molar ratio (lard/glycerol), reaction time, and magnetic stirring speed were …
- 150000001982 diacylglycerols 0 title abstract description 95
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6436—Fatty acid esters
- C12P7/6445—Glycerides
- C12P7/6463—Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6436—Fatty acid esters
- C12P7/6445—Glycerides
- C12P7/6472—Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having 2 or more double bonds in their backbone
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6409—Fatty acids
- C12P7/6418—Fatty acids by hydrolysis of Fatty acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/04—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
- C11C3/10—Ester interchange
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C1/00—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
- C11C1/08—Refining
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C1/00—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
- C11C1/02—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
- C11C1/04—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis
- C11C1/045—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis using enzymes or microorganisms, living or dead
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/003—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels
- Y02E50/13—Bio-diesel
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Diao et al. | Preparation of diacylglycerol from lard by enzymatic glycerolysis and its compositional characteristics | |
Utama et al. | Lipase-catalyzed interesterification for the synthesis of medium-long-medium (MLM) structured lipids–A review | |
Wang et al. | From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids | |
Soumanou et al. | Lipase‐catalyzed interesterification reactions for human milk fat substitutes production: A review | |
Wei et al. | Lipase-catalyzed synthesis of sn-2 palmitate: A review | |
Wang et al. | Preparation of diacylglycerol-enriched oil from free fatty acids using lecitase ultra-catalyzed esterification | |
Wang et al. | Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis | |
Wang et al. | Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids | |
Caballero et al. | Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases | |
Zhong et al. | An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis | |
Tecelao et al. | Carica papaya latex: A low‐cost biocatalyst for human milk fat substitutes production | |
He et al. | The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols | |
Wang et al. | An effective method for reducing free fatty acid content of high-acid rice bran oil by enzymatic amidation | |
CA2856510A1 (en) | Palm oil enriched in unsaturated fatty acids | |
He et al. | Synthesis of novel medium-long-medium type structured lipids from microalgae oil via two-step enzymatic reactions | |
Chen et al. | Enzymatic production of ABA-type structured lipids containing omega-3 and medium-chain fatty acids: effects of different acyl donors on the acyl migration rate | |
Chakraborty et al. | Selective enrichment of n− 3 polyunsaturated fatty acids with C18–C20 acyl chain length from sardine oil using Pseudomonas fluorescens MTCC 2421 lipase | |
Li et al. | Simultaneous preparation of edible quality medium and high purity diacylglycerol by a novel combined approach | |
CN113684230A (en) | Method for preparing structured fat by enzyme method | |
Liu et al. | Production of palm oil-based diacylglycerol using Lecitase Ultra-catalyzed glycerolysis and molecular distillation | |
Pawongrat et al. | Physico‐enzymatic production of monoacylglycerols enriched with very‐long‐chain polyunsaturated fatty acids | |
Li et al. | Preparation of highly pure n-3 PUFA-enriched triacylglycerols by two-step enzymatic reactions combined with molecular Distillation | |
JP6175198B2 (en) | Method for producing DHA-containing glyceride-containing composition | |
Pando et al. | Acylglycerol synthesis including EPA and DHA from rainbow trout (Oncorhynchus mykiss) belly flap oil and caprylic acid catalyzed by Thermomyces lanuginosus lipase under supercritical carbon dioxide | |
Byun et al. | Lipase catalyzed production of monoacylglycerols by the esterification of fish oil fatty acids with glycerol |