Kong et al., 2013 - Google Patents
Synthesis and electrochemical performance of macroporous LiNi0. 5Co0. 2Mn0. 3O2 by a modified sol–gel methodKong et al., 2013
- Document ID
- 2206012731988247279
- Author
- Kong J
- Zhai H
- Ren C
- Gao M
- Zhang X
- Li H
- Li J
- Tang Z
- Zhou F
- Publication year
- Publication venue
- Journal of alloys and compounds
External Links
Snippet
Abstract Macroporous LiNi 0.5 Co 0.2 Mn 0.3 O 2 particles were prepared by a modified sol– gel method based on resorcinol and formaldehyde. The influence of annealing temperature on the physical and electrochemical performance was investigated. Among these oxides …
- 238000003980 solgel method 0 title abstract description 10
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | K-doped layered LiNi0. 5Co0. 2Mn0. 3O2 cathode material: towards the superior rate capability and cycling performance | |
Kong et al. | Synthesis and electrochemical performance of macroporous LiNi0. 5Co0. 2Mn0. 3O2 by a modified sol–gel method | |
Liu et al. | CaF2-coated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as cathode materials for Li-ion batteries | |
Lu et al. | Enhanced electrochemical performance of Li-rich Li1. 2Mn0. 52Co0. 08Ni0. 2O2 cathode materials for Li-ion batteries by vanadium doping | |
Kong et al. | Effects of Li source and calcination temperature on the electrochemical properties of LiNi0. 5Co0. 2Mn0. 3O2 lithium-ion cathode materials | |
Yue et al. | Spray-drying synthesized LiNi0. 6Co0. 2Mn0. 2O2 and its electrochemical performance as cathode materials for lithium ion batteries | |
Zhu et al. | Preparation of 4.7 áV cathode material LiNi0. 5Mn1. 5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery | |
Wu et al. | TiP2O7-coated LiNi0. 8Co0. 15Al0. 05O2 cathode materials with improved thermal stability and superior cycle life | |
Fan et al. | Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries | |
Shi et al. | Core–shell structured Li [(Ni0. 8Co0. 1Mn0. 1) 0.7 (Ni0. 45Co0. 1Mn0. 45) 0.3] O2 cathode material for high-energy lithium ion batteries | |
Zhou et al. | Preparation and electrochemical properties of spinel LiMn2O4 prepared by solid-state combustion synthesis | |
Liang et al. | Superior electrochemical performance of quasi-concentration-gradient LiNi0. 8Co0. 15Al0. 05O2 cathode material synthesized with multi-shell precursor and new aluminum source | |
Zhu et al. | Preparation of spherical hierarchical LiNi0. 5Mn1. 5O4 with high electrochemical performances by a novel composite co-precipitation method for 5 V lithium ion secondary batteries | |
Qiu et al. | Al2O3 coated LiNi1/3Co1/3Mn1/3O2 cathode material by sol–gel method: preparation and characterization | |
Zhong et al. | Low temperature combustion synthesis and performance of spherical 0.5 Li2MnO3–LiNi0. 5Mn0. 5O2 cathode material for Li-ion batteries | |
Yan et al. | Synthesis of single crystal LiNi0. 92Co0. 06Mn0. 01Al0. 01O2 cathode materials with superior electrochemical performance for lithium ion batteries | |
Yan et al. | Effect of precipitators on the morphologies and electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 via rapid nucleation and post-solvothermal method | |
Uzun | Boron-doped Li1. 2Mn0. 6Ni0. 2O2 as a cathode active material for lithium ion battery | |
He et al. | Spherical Li4Ti5O12 synthesized by spray drying from a different kind of solution | |
Ren et al. | Electrochemical properties of Li [Ni1/3Mn1/3Al1/3− xCox] O2 as a cathode material for lithium ion battery | |
Yao et al. | Multi-shelled porous LiNi0. 5Mn1. 5O4 microspheres as a 5áV cathode material for lithium-ion batteries | |
Meng et al. | Preparation and characterization of LiNi0. 8Co0. 15Al0. 05O2 with high cycling stability by using AlO2-as Al source | |
Jiang et al. | Syntheses of spherical LiMn2O4 with Mn3O4 and its electrochemistry performance | |
Du et al. | Synthesis of Lithium vanadium tetroxide anode material via a fast sol-gel method based on spontaneous chemical reactions | |
Zhao et al. | Porous LiNi1/3Co1/3Mn1/3O2 microsheets assembled with single crystal nanoparticles as cathode materials for lithium ion batteries |