Nothing Special   »   [go: up one dir, main page]

Zohora et al., 2021 - Google Patents

Study of Acoustic Emission Response to Vortex Shedding of a Bluff Body

Zohora et al., 2021

View PDF
Document ID
218620030363047502
Author
Zohora F
Holmes D
Borghesani P
Cholette M
Gu Y
Publication year
Publication venue
Advances in Acoustic Emission Technology: Proceedings of the World Conference on Acoustic Emission—2019

External Links

Snippet

Acoustic emissions (AE) have been used to detect fluid flow disturbances such as leaks in pipes and turbulence. In such scenarios, fluid dynamics characteristics can be observed at a pipe wall using an AE sensor as a result of complex mechanical interactions. The purpose of …
Continue reading at eprints.qut.edu.au (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices
    • G01F1/3245Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices detection means for swirl flowmeters
    • G01F1/3254Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices detection means for swirl flowmeters for detecting fluid pressure oscillations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft

Similar Documents

Publication Publication Date Title
US5741980A (en) Flow analysis system and method
Larsson et al. Secondary flow in semi-circular ducts
Campagna et al. Fluid flow measurements by means of vibration monitoring
Maryami et al. An experimental investigation of the surface pressure fluctuations for round cylinders
Sumner A comparison of data-reduction methods for a seven-hole probe
Norman et al. Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers
Kashima et al. Experimental verification of the kinetic differential pressure method for flow measurements
McCarthy et al. Wavelet coherence of surface pressure fluctuations due to von Kármán vortex shedding near a hemispherical protuberance
Cargnelutti et al. Two-phase flow-induced forces on bends in small scale tubes
Wang et al. Non-intrusive characterization of sand particles dispersed in gas–water bubbly flow using straight and bent pipes with vibration sensing
Meng et al. Measuring turbulence in a flotation cell using the piezoelectric sensor
Kashima et al. Numerical errors in discharge measurements using the KDP method
Sun et al. Investigation of the pressure probe properties as the sensor in the vortex flowmeter
Barrett et al. On the calculation of length scales for turbulent heat transfer correlation
Boufidi et al. Design and testing of a miniaturized five-hole fast response pressure probe with large frequency bandwidth and high angular sensitivity
Davoust et al. Taylor’s hypothesis convection velocities from mass conservation equation
Venugopal et al. On the linearity, turndown ratio and shape of the bluff body for vortex flowmeter
Mahon et al. Estimation of the time delay associated with damping controlled fluidelastic instability in a normal triangular tube array
Abuhatira et al. CFD-FEA based model to predict leak-points in a 90-degree pipe elbow
Bertani et al. State-of-Art and selection of techniques in multiphase flow measurement
US9188471B2 (en) Two-phase flow sensor using cross-flow-induced vibrations
Lysak et al. Analytical model of an ultrasonic cross-correlation flow meter, part 1: Stochastic modeling of turbulence
Tresso et al. Homogeneous, isotropic flow in grid generated turbulence
Zohora et al. Study of Acoustic Emission Response to Vortex Shedding of a Bluff Body
Kurashima et al. Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive