Patel et al., 2019 - Google Patents
Sensor-based activity recognition in the context of ambient assisted living systems: A reviewPatel et al., 2019
View HTML- Document ID
- 2090442635386564506
- Author
- Patel A
- Shah J
- Publication year
- Publication venue
- Journal of Ambient Intelligence and Smart Environments
External Links
Snippet
Activity and behaviour monitoring of inhabitants play an essential role in an ambient environment. Different researchers proposed many promising solutions; this discipline, however, needs more accurate results. The main reason for this insufficiency is the …
- 230000000694 effects 0 title abstract description 163
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
- G06F19/322—Management of patient personal data, e.g. patient records, conversion of records or privacy aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3418—Telemedicine, e.g. remote diagnosis, remote control of instruments or remote monitoring of patient carried devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
- G06F19/327—Management of hospital data, e.g. scheduling of medical staff or operation rooms, measuring the quality or efficiency of medical staff
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3406—Local monitoring or local control of medical devices, e.g. configuration parameters, graphical user interfaces [GUI] or dedicated hardware interfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/22—Health care, e.g. hospitals; Social work
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Patel et al. | Sensor-based activity recognition in the context of ambient assisted living systems: A review | |
Serpush et al. | Wearable sensor‐based human activity recognition in the smart healthcare system | |
Bakar et al. | Activity and anomaly detection in smart home: A survey | |
Yao et al. | WITS: an IoT-endowed computational framework for activity recognition in personalized smart homes | |
Ortiz | Smartphone-based human activity recognition | |
Meng et al. | Towards online and personalized daily activity recognition, habit modeling, and anomaly detection for the solitary elderly through unobtrusive sensing | |
Rodríguez et al. | A survey on ontologies for human behavior recognition | |
Chen et al. | A knowledge-driven approach to activity recognition in smart homes | |
Chen et al. | Sensor-based activity recognition | |
Kim et al. | Multi-modal stacked denoising autoencoder for handling missing data in healthcare big data | |
Chen et al. | Human activity recognition and behaviour analysis | |
Suryadevara et al. | Smart homes | |
Gayathri et al. | Hierarchical activity recognition for dementia care using Markov Logic Network | |
Cook et al. | Mining the home environment | |
Guo et al. | Activity Feature Solving Based on TF‐IDF for Activity Recognition in Smart Homes | |
Das et al. | Explainable activity recognition for smart home systems | |
Azkune et al. | A scalable hybrid activity recognition approach for intelligent environments | |
Patel et al. | Real-time human behaviour monitoring using hybrid ambient assisted living framework | |
Shiri et al. | A survey on multi-resident activity recognition in smart environments | |
D’Aniello et al. | Situation identification in smart wearable computing systems based on machine learning and Context Space Theory | |
Zhao et al. | Attention‐based sensor fusion for emotion recognition from human motion by combining convolutional neural network and weighted kernel support vector machine and using inertial measurement unit signals | |
Tekemetieu et al. | Context modelling in ambient assisted living: Trends and lessons | |
Neves et al. | Heath-PRIOR: an intelligent ensemble architecture to identify risk cases in healthcare | |
Karthick et al. | Ambient intelligence for patient-centric healthcare delivery: Technologies, framework, and applications | |
Sarkar et al. | Application on pervasive computing in healthcare–a review |