Nothing Special   »   [go: up one dir, main page]

Jenicka et al., 2014 - Google Patents

A textural approach for land cover classification of remotely sensed image

Jenicka et al., 2014

View HTML
Document ID
1964546206528656705
Author
Jenicka S
Suruliandi A
Publication year
Publication venue
CSI transactions on ICT

External Links

Snippet

Texture features play a vital role in land cover classification of remotely sensed images. Local binary pattern (LBP) is a texture model that has been widely used in many applications. Many variants of LBP have also been proposed. Most of these texture models …
Continue reading at link.springer.com (HTML) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • G06K9/4671Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6201Matching; Proximity measures
    • G06K9/6202Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/38Quantising the analogue image signal, e.g. histogram thresholding for discrimination between background and foreground patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/0063Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
    • G06K9/00657Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas of vegetation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/20Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30244Information retrieval; Database structures therefor; File system structures therefor in image databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Similar Documents

Publication Publication Date Title
Srivastava et al. A comprehensive review on soil classification using deep learning and computer vision techniques
Ghamisi et al. Land-cover classification using both hyperspectral and LiDAR data
Schindler An overview and comparison of smooth labeling methods for land-cover classification
Sirmacek et al. Urban-area and building detection using SIFT keypoints and graph theory
Kavzoglu et al. An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR imagery
Camps-Valls et al. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
Zhang et al. Hybrid region merging method for segmentation of high-resolution remote sensing images
Zhao et al. Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery
Zhang et al. Boundary-constrained multi-scale segmentation method for remote sensing images
Liu et al. Semantic segmentation of multisensor remote sensing imagery with deep ConvNets and higher-order conditional random fields
Cao et al. Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification
Li et al. A hybrid method combining pixel-based and object-oriented methods and its application in Hungary using Chinese HJ-1 satellite images
Sun et al. An MRF model-based active learning framework for the spectral-spatial classification of hyperspectral imagery
CN105930815A (en) Underwater organism detection method and system
Jenicka et al. A textural approach for land cover classification of remotely sensed image
Wang et al. Segmentation of multispectral high-resolution satellite imagery based on integrated feature distributions
Ziaei et al. A rule-based parameter aided with object-based classification approach for extraction of building and roads from WorldView-2 images
Ghaseminik et al. Land cover mapping of urban environments using multispectral LiDAR data under data imbalance
Suruliandi et al. Texture-based classification of remotely sensed images
Sharifzadeh et al. Farm area segmentation in satellite images using deeplabv3+ neural networks
Guo et al. Dual graph U-Nets for hyperspectral image classification
Jia et al. Saliency detection via a unified generative and discriminative model
Hasanlou et al. A sub-pixel multiple change detection approach for hyperspectral imagery
Hadavand et al. Segmentation parameter selection for object-based land-cover mapping from ultra high resolution spectral and elevation data
Zhang et al. Spatial contextual superpixel model for natural roadside vegetation classification