An et al., 2007 - Google Patents
A monolithic voltage-boosting parallel-primary transformer structures for fully integrated CMOS power amplifier designAn et al., 2007
- Document ID
- 18317915160693766691
- Author
- An K
- Kim Y
- Lee O
- Yang K
- Kim H
- Woo W
- Chang J
- Lee C
- Kim H
- Laskar J
- Publication year
- Publication venue
- 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium
External Links
Snippet
In this paper, a novel monolithic voltage-boosting parallel-primary transformer is presented for the fully integrated CMOS power amplifier design. Multiple primary loops are interweaved in parallel to combine the AC currents from multiple power devices while the higher turn ratio …
- 238000005516 engineering process 0 abstract description 8
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
- H03F3/45188—Non-folded cascode stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
- H03F1/565—Modifications of input or output impedances, not otherwise provided for using inductive elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0277—Selecting one or more amplifiers from a plurality of amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45731—Indexing scheme relating to differential amplifiers the LC comprising a transformer
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45481—Indexing scheme relating to differential amplifiers the CSC comprising only a direct connection to the supply voltage, no other components being present
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/60—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/08—Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/537—A transformer being used as coupling element between two amplifying stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/17—Structural details of sub-circuits of frequency selective networks
- H03H7/1741—Comprising typical LC combinations, irrespective of presence and location of additional resistors
- H03H7/1775—Parallel LC in shunt or branch path
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7675365B2 (en) | Systems and methods for power amplifiers with voltage boosting multi-primary transformers | |
US7936215B2 (en) | Multi-segment primary and multi-turn secondary transformer for power amplifier systems | |
Jen et al. | Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process | |
Zhao et al. | A 40-nm CMOS E-band 4-way power amplifier with neutralized bootstrapped cascode amplifier and optimum passive circuits | |
An et al. | Power-combining transformer techniques for fully-integrated CMOS power amplifiers | |
JP5490913B2 (en) | Cascade amplifier with transformer-based bypass mode | |
An et al. | A monolithic voltage-boosting parallel-primary transformer structures for fully integrated CMOS power amplifier design | |
Chou et al. | Design of a $ V $-Band 20-dBm wideband power amplifier using transformer-based radial power combining in 90-nm CMOS | |
US20100019857A1 (en) | Hybrid impedance matching | |
Huang et al. | A 22-dBm 24-GHz power amplifier using 0.18-µm CMOS technology | |
Thian et al. | A 76–84 GHz SiGe power amplifier array employing low-loss four-way differential combining transformer | |
US8803614B2 (en) | Current reuse electronic device based on magnetic coupling components | |
Ma et al. | A Reconfigurable K-/Ka-Band Power Amplifier With High PAE in 0.18-$\mu $ m SiGe BiCMOS for Multi-Band Applications | |
Javidan et al. | High power amplifier based on a transformer-type power combiner in CMOS technology | |
Farahabadi et al. | A 60-GHz dual-mode distributed active transformer power amplifier in 65-nm CMOS | |
Park et al. | Tournament-shaped magnetically coupled power-combiner architecture for RF CMOS power amplifier | |
Guo et al. | 54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB gain using transformer feedback Gm-boosting technique | |
Yeh et al. | A 24-GHz transformer-based single-in differential-out CMOS low-noise amplifier | |
Lee et al. | A 1.8-GHz 2-watt fully integrated CMOS push-pull parallel-combined power amplifier design | |
CN107548511A (en) | Input radio frequency signal is transformed to export to the radio-frequency transformer of radiofrequency signal | |
Farahabadi et al. | A dual-mode wideband+ 17.7-dBm 60-GHz power amplifier in 65-nm CMOS | |
Cui et al. | An area efficient 48-62 ghz stacked power amplifier in 22nm fd-soi | |
Javidan et al. | Implementation of a fully integrated 30-dBm RF CMOS linear power amplifier with power combiner | |
Chen et al. | A compact fully integrated high-efficiency 5GHz stacked class-E PA in 65nm CMOS based on transformer-based charging acceleration | |
Huang et al. | On-chip power-combining techniques for mm-Wave silicon power amplifiers |