Ogawa et al., 2005 - Google Patents
Multipath performance of handset adaptive array antennas in the vicinity of a human operatorOgawa et al., 2005
View PDF- Document ID
- 18152139113318547231
- Author
- Ogawa K
- Yamamoto A
- Takada J
- Publication year
- Publication venue
- IEEE transactions on antennas and propagation
External Links
Snippet
This paper examines the performance of the adaptive array antennas used in digital handset systems by studying the minimum mean square error (MMSE) algorithm at 2 GHz. The array is comprised of multiple quarter-wavelength monopole antennas and planar inverted-F …
- 230000003044 adaptive 0 title abstract description 86
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/245—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/10—Polarisation diversity; Directional diversity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting aerial units or systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/24—Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/52—Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure
- H01Q1/521—Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas
- H01Q1/523—Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas between antennas of an array
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/29—Combinations of different interacting aerial units for giving a desired directional characteristic
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q25/00—Aerials or aerial systems providing at least two radiating patterns
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q19/00—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
- H01Q19/28—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | Smart antennas for advanced communication systems | |
Rajagopal et al. | Antenna array design for multi-gbps mmwave mobile broadband communication | |
Janaswamy | Effect of element mutual coupling on the capacity of fixed length linear arrays | |
Piazza et al. | Design and evaluation of a reconfigurable antenna array for MIMO systems | |
Karaboikis et al. | Integrating compact printed antennas onto small diversity/MIMO terminals | |
KR100998426B1 (en) | User terminal antenna arrangement for multiple-input multiple-output communications | |
Durrani et al. | Effect of mutual coupling on the interference rejection capabilities of linear and circular arrays in CDMA systems | |
Ogawa et al. | Multipath performance of handset adaptive array antennas in the vicinity of a human operator | |
Nishimori et al. | Channel Capacity Measurement of 8$\,\times\, $2 MIMO Transmission by Antenna Configurations in an Actual Cellular Environment | |
Dietrich Jr | Adaptive arrays and diversity antenna configurations for handheld wireless communication terminals | |
Yang et al. | Impact analysis of directional antennas and multiantenna beamformers on radio transmission | |
Suvikunnas et al. | Evaluation of the performance of multiantenna terminals using a new approach | |
Li et al. | Outage probabilities of wireless systems with imperfect beamforming | |
Villanen et al. | Performance analysis and design aspects of mobile-terminal multiantenna configurations | |
Harrysson et al. | Evaluation of user hand and body impact on multiple antenna handset performance | |
Rohani et al. | Channel Capacity Enhancement using MIMO Antenna | |
El Gholb et al. | 5G mobile antennas: MIMO implementation | |
Athley et al. | MIMO performance of realistic UE antennas in LTE scenarios at 750 MHz | |
MEKSAMOOT et al. | A polarization diversity PIFA on portable telephone and the human body effects on its performance | |
Braun et al. | Evaluation of antenna diversity performance for mobile handsets using 3-D measurement data | |
Van Torre et al. | Indoor Off‐Body Wireless Communication: Static Beamforming versus Space‐Time Coding | |
Kim et al. | Compact built-in handset MIMO antenna using L-shaped folded monopole antennas | |
Psomas et al. | Performance gains from directional antennas in full-duplex systems | |
Wang et al. | Design and performance evaluation of handset MIMO antenna prototypes | |
Karaboikis et al. | Three-branch antenna diversity systems on wireless devices using various printed monopoles |