Zhou et al., 2004 - Google Patents
Dynamic tracking of page miss ratio curve for memory managementZhou et al., 2004
View PDF- Document ID
- 1798882592499378388
- Author
- Zhou P
- Pandey V
- Sundaresan J
- Raghuraman A
- Zhou Y
- Kumar S
- Publication year
- Publication venue
- ACM SIGPLAN Notices
External Links
Snippet
Memory can be efficiently utilized if the dynamic memory demands of applications can be determined and analyzed at run-time. The page miss ratio curve (MRC), ie page miss rate vs. memory size curve, is a good performance-directed metric to serve this purpose …
- 230000015654 memory 0 title abstract description 256
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/12—Replacement control
- G06F12/121—Replacement control using replacement algorithms
- G06F12/122—Replacement control using replacement algorithms of the least frequently used [LFU] type, e.g. with individual count value
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3206—Monitoring a parameter, a device or an event triggering a change in power modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3409—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
- G06F2201/885—Monitoring specific for caches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3466—Performance evaluation by tracing or monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/16—Constructional details or arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/12—Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
- Y02B60/1225—Access, addressing or allocation within memory systems or architectures, e.g. to reduce power consumption or heat production, or to increase battery life
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
- G06F2201/86—Event-based monitoring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/12—Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
- Y02B60/1207—Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply acting upon the main processing unit
- Y02B60/1217—Frequency modification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/16—Reducing energy-consumption in distributed systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Dynamic tracking of page miss ratio curve for memory management | |
Qureshi et al. | Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to partition shared caches | |
US10289185B2 (en) | Apparatus and method for efficient estimation of the energy dissipation of processor based systems | |
Sudan et al. | Micro-pages: increasing DRAM efficiency with locality-aware data placement | |
Delaluz et al. | Scheduler-based DRAM energy management | |
Zhu et al. | PB-LRU: A self-tuning power aware storage cache replacement algorithm for conserving disk energy | |
Soares et al. | Reducing the harmful effects of last-level cache polluters with an OS-level, software-only pollute buffer | |
Du Bois et al. | Per-thread cycle accounting in multicore processors | |
Lee et al. | Prefetch-aware memory controllers | |
Kaseridis et al. | A bandwidth-aware memory-subsystem resource management using non-invasive resource profilers for large cmp systems | |
Mittal et al. | EnCache: Improving cache energy efficiency using a software-controlled profiling cache | |
Duan et al. | Hinuma: Numa-aware data placement and migration in hybrid memory systems | |
Sudan et al. | Tiered memory: An iso-power memory architecture to address the memory power wall | |
Samavatian et al. | Architecting the last-level cache for GPUs using STT-RAM technology | |
Chakraborty et al. | WaFFLe: Gated Cache-Wa ys with Per-Core F ine-Grained DV F S for Reduced On-Chip Temperature and Le akage Consumption | |
Koller et al. | Generalized ERSS tree model: Revisiting working sets | |
Li et al. | Set variation-aware shared LLC management for CPU-GPU heterogeneous architecture | |
ZhiBin et al. | LvtPPP: Live-time protected pseudopartitioning of multicore shared caches | |
Azimi et al. | PATH: page access tracking to improve memory management | |
Wang et al. | Cache latency control for application fairness or differentiation in power-constrained chip multiprocessors | |
Awasthi et al. | Managing data placement in memory systems with multiple memory controllers | |
Guo et al. | Self: A high performance and bandwidth efficient approach to exploiting die-stacked dram as part of memory | |
Liu et al. | Fast power and energy management for future many-core systems | |
Manivannan et al. | Runtime-assisted global cache management for task-based parallel programs | |
Cai et al. | Joint power management of memory and disk under performance constraints |