Nothing Special   »   [go: up one dir, main page]

Kiat, 2012 - Google Patents

Optimal modeling fill guide for improved interconnect performance

Kiat, 2012

Document ID
1781900373264539581
Author
Kiat J
Publication year

External Links

Snippet

Chemical mechanical polishing (CMP) planarization process is an important step in fabrication for multi-layer metallization to create and design IC metallization and via interconnections. Fill synthesis methodologies are innovated by inserting dummy fill …
Continue reading at search.proquest.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5068Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
    • G06F17/5081Layout analysis, e.g. layout verification, design rule check
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • G06F17/5036Computer-aided design using simulation for analog modelling, e.g. for circuits, spice programme, direct methods, relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5068Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
    • G06F17/5072Floorplanning, e.g. partitioning, placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5068Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
    • G06F17/5077Routing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • G06F17/505Logic synthesis, e.g. technology mapping, optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • G06F17/5022Logic simulation, e.g. for logic circuit operation
    • G06F17/5031Timing analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/78Power analysis and optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/12Design for manufacturability
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/70Fault tolerant, i.e. transient fault suppression
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/82Noise analysis and optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/84Timing analysis and optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/08Multi-objective optimization
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body

Similar Documents

Publication Publication Date Title
Sylvester et al. Analytical modeling and characterization of deep-submicrometer interconnect
Kahng et al. VLSI physical design: from graph partitioning to timing closure
KR102396699B1 (en) Cell placement and routing using cell level layout dependent stress effects
CN103544333B (en) Semiconductor device design method, system and computer program
Lim Design for high performance, low power, and reliable 3D integrated circuits
TWI598758B (en) Method, device and computer program product for integrated circuit layout generation
Golshan Physical design essentials
Chen et al. The Y architecture for on-chip interconnect: analysis and methodology
Averill et al. Chip integration methodology for the IBM S/390 G5 and G6 custom microprocessors
US12019972B2 (en) Method and system of forming semiconductor device
Choi et al. Probe3. 0: A systematic framework for design-technology pathfinding with improved design enablement
Samal et al. Machine learning based variation modeling and optimization for 3D ICs
US20130304449A1 (en) System and method of electromigration avoidance for automatic place-and- route
Kim et al. Resource allocation and design techniques of prebond testable 3-D clock tree
Jagtap et al. A methodology for early exploration of TSV placement topologies in 3D stacked ICs
Kiat Optimal modeling fill guide for improved interconnect performance
Shah Optimization of the BEOL interconnect stack for advanced semiconductor technology nodes
Kabir et al. Cross-boundary inductive timing optimization for 2.5 D chiplet-package co-design
Zheng et al. Design and analysis of power integrity in deep submicron system-on-chip circuits
Elgamel et al. Interconnect noise optimization in nanometer technologies
Zheng et al. Wires as interconnects
Mondal et al. Rectilinear routing algorithm for crosstalk minimisation in 2D and 3D IC
Mohamed et al. Physical Design Automation of Complex ASICs
Kabir Design, Extraction, and Optimization Tool Flows and Methodologies for Homogeneous and Heterogeneous Multi-Chip 2.5 D Systems
Mak et al. Special session on bringing cores closer together: The wireless revolution in on-chip communication