Xin, 2004 - Google Patents
Radio frequency circuits for wireless receiver front-endsXin, 2004
View PDF- Document ID
- 17776268779194468247
- Author
- Xin C
- Publication year
External Links
Snippet
The beginning of the 21st century sees great development and demands on wireless communication technologies. Wireless technologies, either based on a cable replacement or on a networked environment, penetrate our daily life more rapidly than ever. Low …
- 238000004891 communication 0 abstract description 6
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1425—Balanced arrangements with transistors
- H03D7/1441—Balanced arrangements with transistors using field-effect transistors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1425—Balanced arrangements with transistors
- H03D7/1433—Balanced arrangements with transistors using bipolar transistors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D2200/00—Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
- H03D2200/0041—Functional aspects of demodulators
- H03D2200/0088—Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1425—Balanced arrangements with transistors
- H03D7/1458—Double balanced arrangements, i.e. where both input signals are differential
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1425—Balanced arrangements with transistors
- H03D7/1491—Arrangements to linearise a transconductance stage of a mixer arrangement
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1425—Balanced arrangements with transistors
- H03D7/1466—Passive mixer arrangements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1425—Balanced arrangements with transistors
- H03D7/1483—Balanced arrangements with transistors comprising components for selecting a particular frequency component of the output
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D2200/00—Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
- H03D2200/0001—Circuit elements of demodulators
- H03D2200/0033—Current mirrors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D2200/00—Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
- H03D2200/0041—Functional aspects of demodulators
- H03D2200/0043—Bias and operating point
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1408—Balanced arrangements with diodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/16—Multiple-frequency-changing
- H03D7/165—Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D2200/00—Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
- H03D2200/0001—Circuit elements of demodulators
- H03D2200/0025—Gain control circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D2200/00—Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
- H03D2200/0041—Functional aspects of demodulators
- H03D2200/0084—Lowering the supply voltage and saving power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/50—Circuits using different frequencies for the two directions of communication
- H04B1/52—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver | |
Lin et al. | Design and analysis of a 94-GHz CMOS down-conversion mixer with CCPT-RL-based IF load | |
US20050174167A1 (en) | Method and apparatus providing cancellation of second order intermodulation distortion and enhancement of second order intercept point (IIP2) in common source and common emitter transconductance circuits | |
Xin | Radio frequency circuits for wireless receiver front-ends | |
Khan et al. | A Low leakage down-conversion K-Band MIXER using current-reuse double-balanced architecture in 130-nm CMOS process for modern RF applications | |
Manstretta et al. | Analysis and optimization of IIP2 in CMOS direct down-converters | |
Pretl et al. | A SiGe-bipolar down-conversion mixer for a UMTS zero-IF receiver | |
Abdelghany et al. | A low flicker noise direct conversion receiver for the IEEE 802.11 a wireless LAN standard | |
Son | High dynamic range CMOS mixer design | |
Poobuapheun | LNA and mixer designs for multi-band receiver front-ends | |
Mahmoudi et al. | 8 GHz 1V, CMOS quadrature downconverter for wireless applications | |
Alvarado et al. | Mixer Design | |
Yang | Design of receiver front-end for WLAN and 5G standards above 5 GHz | |
Bastos | A MOSFET-Only wideband LNA exploiting thermal noise canceling and gain optimization | |
Guan | Dual-band CMOS WLAN transceiver RF front-end design | |
Nam et al. | A Wideband Sub-㎓ Receiver Front-end Supporting High Sensitivity and Selectivity Mode | |
Rashtian | On the use of body biasing to improve the performance of CMOS RF front-end building blocks | |
Vitee | Optimized Transconductance Designs to Enhance the Linearity Performance of Rf Front-End Receiver Circuits in 130 NM CMOS Technology | |
Yoon | Multi-standard receiver for bluetooth and WLAN applications | |
Nandini | Optimized transconductance designs to enhance the linearity performance of RF front-end receiver circuits in 130 NM CMOS technology/Nandini Vitee | |
Wang | Reconfigurable CMOS mixers for radio-frequency applications | |
Mehdi | Highly Linear Mixer for On-chip RF Test in 130 nm CMOS | |
JAU | Radio frequency front-end circuits for W-CDMA direct conversion receiver | |
Balan | Design of Low Power Front-End Receiver for Bluetooth Low Energy/ZigBee in Nano-Scale CMOS Technology | |
Reddy | Low Power Balun LNAs for Narrow-Band and UWB Applications |