Nothing Special   »   [go: up one dir, main page]

Zhang et al., 2007 - Google Patents

Improving the performance of phosphorescent polymer light-emitting diodes using morphology-stable carbazole-based iridium complexes

Zhang et al., 2007

Document ID
17682970507731071173
Author
Zhang K
Chen Z
Yang C
Zhang X
Tao Y
Duan L
Chen L
Zhu L
Qin J
Cao Y
Publication year
Publication venue
Journal of Materials Chemistry

External Links

Snippet

A series of morphology-stable carbazole-based iridium (III) complexes with green to red emission have been prepared and characterized by elemental analysis, nuclear magnetic resonance, and mass spectroscopy. Their thermal, electrochemical, electronic absorption …
Continue reading at pubs.rsc.org (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0084Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H01L51/0085Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/5012Electroluminescent [EL] layer
    • H01L51/5016Triplet emission
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0079Metal complexes comprising a IIIB-metal (B, Al, Ga, In or TI), e.g. Tris (8-hydroxyquinoline) gallium (Gaq3)
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0089Metal complexes comprising Lanthanides or Actinides, e.g. Eu
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0072Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds

Similar Documents

Publication Publication Date Title
Ho et al. Phosphorescence Color Tuning by Ligand, and Substituent Effects of Multifunctional Iridium (III) Cyclometalates with 9‐Arylcarbazole Moieties
US7759490B2 (en) Phosphorescent Osmium (II) complexes and uses thereof
Wong et al. Amorphous Diphenylaminofluorene‐Functionalized Iridium Complexes for High‐Efficiency Electrophosphorescent Light‐Emitting Diodes
Ho et al. Red‐light‐emitting iridium complexes with hole‐transporting 9‐arylcarbazole moieties for electrophosphorescence efficiency/color purity trade‐off optimization
Wu et al. Tuning the emission and morphology of cyclometalated iridium complexes and their applications to organic light-emitting diodes
Ma et al. Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic Light‐Emitting Diodes
Tung et al. Organic light-emitting diodes based on charge-neutral Os (II) emitters: generation of saturated red emission with very high external quantum efficiency
Ho et al. Carbazole-based coplanar molecule (CmInF) as a universal host for multi-color electrophosphorescent devices
Liang et al. New iridium complex as high-efficiency red phosphorescent emitter in polymer light-emitting devices
JP4343838B2 (en) Organic light emitting materials and devices
Tang et al. Novel yellow phosphorescent iridium complexes containing a carbazole–oxadiazole unit used in polymeric light-emitting diodes
Zhou et al. Multifunctional metallophosphors with anti-triplet–triplet annihilation properties for solution-processable electroluminescent devices
Wang et al. Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes
Liang et al. High‐Efficiency Red Phosphorescent Iridium Dendrimers with Charge‐Transporting Dendrons: Synthesis and Electroluminescent Properties
Wang et al. Carbazole and arylamine functionalized iridium complexes for efficient electro-phosphorescent light-emitting diodes
Ge et al. Highly efficient phosphorescent iridium (III) diazine complexes for OLEDs: Different photophysical property between iridium (III) pyrazine complex and iridium (III) pyrimidine complex
JP2006513278A6 (en) Organic light emitting materials and devices
Zhang et al. Improving the performance of phosphorescent polymer light-emitting diodes using morphology-stable carbazole-based iridium complexes
Park et al. Synthesis, characterization of the phenylquinoline-based on iridium (III) complexes for solution processable phosphorescent organic light-emitting diodes
Chen et al. Tuning the saturated red emission: synthesis, electrochemistry and photophysics of 2-arylquinoline based iridium (III) complexes and their application in OLEDs
Ho et al. Synthesis, characterization, photophysics and electrophosphorescent applications of phosphorescent platinum cyclometalated complexes with 9-arylcarbazole moieties
Arsenyan et al. Synthesis and performance in OLEDs of selenium-containing phosphorescent emitters with red emission color deeper than the corresponding NTSC standard
Cheng et al. A phenothiazine/dimesitylborane hybrid material as a bipolar transport host of red phosphor
Wang et al. Tuning the oxidation potential of 2-phenylpyridine-based iridium complexes to improve the performance of bluish and white OLEDs
Zhu et al. Synthesis of new iridium complexes and their electrophosphorescent properties in polymer light-emitting diodes