Zhang et al., 2007 - Google Patents
Improving the performance of phosphorescent polymer light-emitting diodes using morphology-stable carbazole-based iridium complexesZhang et al., 2007
- Document ID
- 17682970507731071173
- Author
- Zhang K
- Chen Z
- Yang C
- Zhang X
- Tao Y
- Duan L
- Chen L
- Zhu L
- Qin J
- Cao Y
- Publication year
- Publication venue
- Journal of Materials Chemistry
External Links
Snippet
A series of morphology-stable carbazole-based iridium (III) complexes with green to red emission have been prepared and characterized by elemental analysis, nuclear magnetic resonance, and mass spectroscopy. Their thermal, electrochemical, electronic absorption …
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole   C1=CC=C2C3=CC=CC=C3NC2=C1 0 title abstract description 39
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0084—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H01L51/0085—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5012—Electroluminescent [EL] layer
- H01L51/5016—Triplet emission
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0079—Metal complexes comprising a IIIB-metal (B, Al, Ga, In or TI), e.g. Tris (8-hydroxyquinoline) gallium (Gaq3)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0089—Metal complexes comprising Lanthanides or Actinides, e.g. Eu
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0072—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
- C07F15/0033—Iridium compounds
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ho et al. | Phosphorescence Color Tuning by Ligand, and Substituent Effects of Multifunctional Iridium (III) Cyclometalates with 9‐Arylcarbazole Moieties | |
US7759490B2 (en) | Phosphorescent Osmium (II) complexes and uses thereof | |
Wong et al. | Amorphous Diphenylaminofluorene‐Functionalized Iridium Complexes for High‐Efficiency Electrophosphorescent Light‐Emitting Diodes | |
Ho et al. | Red‐light‐emitting iridium complexes with hole‐transporting 9‐arylcarbazole moieties for electrophosphorescence efficiency/color purity trade‐off optimization | |
Wu et al. | Tuning the emission and morphology of cyclometalated iridium complexes and their applications to organic light-emitting diodes | |
Ma et al. | Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic Light‐Emitting Diodes | |
Tung et al. | Organic light-emitting diodes based on charge-neutral Os (II) emitters: generation of saturated red emission with very high external quantum efficiency | |
Ho et al. | Carbazole-based coplanar molecule (CmInF) as a universal host for multi-color electrophosphorescent devices | |
Liang et al. | New iridium complex as high-efficiency red phosphorescent emitter in polymer light-emitting devices | |
JP4343838B2 (en) | Organic light emitting materials and devices | |
Tang et al. | Novel yellow phosphorescent iridium complexes containing a carbazole–oxadiazole unit used in polymeric light-emitting diodes | |
Zhou et al. | Multifunctional metallophosphors with anti-triplet–triplet annihilation properties for solution-processable electroluminescent devices | |
Wang et al. | Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes | |
Liang et al. | High‐Efficiency Red Phosphorescent Iridium Dendrimers with Charge‐Transporting Dendrons: Synthesis and Electroluminescent Properties | |
Wang et al. | Carbazole and arylamine functionalized iridium complexes for efficient electro-phosphorescent light-emitting diodes | |
Ge et al. | Highly efficient phosphorescent iridium (III) diazine complexes for OLEDs: Different photophysical property between iridium (III) pyrazine complex and iridium (III) pyrimidine complex | |
JP2006513278A6 (en) | Organic light emitting materials and devices | |
Zhang et al. | Improving the performance of phosphorescent polymer light-emitting diodes using morphology-stable carbazole-based iridium complexes | |
Park et al. | Synthesis, characterization of the phenylquinoline-based on iridium (III) complexes for solution processable phosphorescent organic light-emitting diodes | |
Chen et al. | Tuning the saturated red emission: synthesis, electrochemistry and photophysics of 2-arylquinoline based iridium (III) complexes and their application in OLEDs | |
Ho et al. | Synthesis, characterization, photophysics and electrophosphorescent applications of phosphorescent platinum cyclometalated complexes with 9-arylcarbazole moieties | |
Arsenyan et al. | Synthesis and performance in OLEDs of selenium-containing phosphorescent emitters with red emission color deeper than the corresponding NTSC standard | |
Cheng et al. | A phenothiazine/dimesitylborane hybrid material as a bipolar transport host of red phosphor | |
Wang et al. | Tuning the oxidation potential of 2-phenylpyridine-based iridium complexes to improve the performance of bluish and white OLEDs | |
Zhu et al. | Synthesis of new iridium complexes and their electrophosphorescent properties in polymer light-emitting diodes |