Antcliff et al., 2019 - Google Patents
Baseline assumptions and future research areas for urban air mobility vehiclesAntcliff et al., 2019
View PDF- Document ID
- 17657892702347899126
- Author
- Antcliff K
- Whiteside S
- Kohlman L
- Silva C
- Publication year
- Publication venue
- AIAA Scitech 2019 Forum
External Links
Snippet
NASA is developing Urban Air Mobility (UAM) concepts to (1) create first-generation reference vehicles that can be used for technology, system, and market studies, and (2) hypothesize second-generation UAM aircraft to determine high-payoff technology targets …
- 238000011160 research 0 title abstract description 67
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically
- B64C29/0008—Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0025—Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies
- Y02T50/67—Relevant aircraft propulsion technologies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLYING SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
- B64D27/02—Aircraft characterised by the type or position of power plant
- B64D27/16—Aircraft characterised by the type or position of power plant of jet type
- B64D27/18—Aircraft characterised by the type or position of power plant of jet type within or attached to wing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/10—Shape of wings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/10—Drag reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/04—Aircraft not otherwise provided for having multiple fuselages or tail booms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces and the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C2700/00—Codes corresponding to the former IdT classification
- B64C2700/62—Codes corresponding to the former IdT classification of class 62
- B64C2700/6201—Airplanes, helicopters, autogyros
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C9/00—Adjustable control surfaces or members, e.g. rudders
- B64C9/34—Adjustable control surfaces or members, e.g. rudders collapsing or retracting against or within other surfaces or other members
- B64C9/36—Adjustable control surfaces or members, e.g. rudders collapsing or retracting against or within other surfaces or other members the members being fuselages or nacelles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C23/00—Influencing air-flow over aircraft surfaces, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLYING SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D33/00—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Antcliff et al. | Baseline assumptions and future research areas for urban air mobility vehicles | |
Cestino | Design of solar high altitude long endurance aircraft for multi payload & operations | |
Roskam | Airplane Design: Preliminary configuration design and integration of the propulsion system | |
CN114126966A (en) | Novel aircraft design using tandem wings and distributed propulsion system | |
Burston et al. | Design principles and digital control of advanced distributed propulsion systems | |
Moodie et al. | Design of a cruise-efficient compound helicopter | |
Strack et al. | Conceptual design assessment of advanced hybrid electric turboprop aircraft configurations | |
Karpuk et al. | Conceptual design trade study for an energy-efficient mid-range aircraft with novel technologies | |
US20230348036A1 (en) | Systems and methods for modular aircraft | |
US12168506B2 (en) | Apparatus for ingesting boundary layer flow for an aircraft | |
Courtin et al. | A performance comparison of eSTOL and eVTOL aircraft | |
Rohacs et al. | Conceptual design method adapted to electric/hybrid aircraft developments | |
Russell et al. | Conceptual design and performance analysis for a large civil compound helicopter | |
Jupp | The design of future passenger aircraft–the environmental and fuel price challenges | |
Winter et al. | Conceptual design structural sizing for urban air mobility | |
Chakraborty et al. | Sizing and Analysis of a Lift-Plus-Cruise VTOL Aircraft with Electrified Propulsion Systems | |
Kleemann et al. | Conceptual Design and Optimization of a Solar-Electric Blended Wing Body Aircraft for General Aviation | |
Leishman et al. | Challenges in the Aerodynamic Optimization of High‐Efficiency Proprotors | |
Andrews et al. | Stability and control effects on the design optimization of a box-wing aircraft | |
Shi et al. | Aerodynamic Investigation of a General Aviation Aircraft with Distributed Electric Propulsion | |
Rudresh et al. | Design and development of a flying wing reconnaissance UAV | |
Xiao-li et al. | A Review of Electric Propulsion for Air Vehicle Research | |
Karpuk | Influence of Future Airframe and Propulsion Technologies on Energy-efficient Aircraft | |
US12084184B2 (en) | Aerospace vehicles having multiple lifting surfaces | |
US20240253763A1 (en) | System for providing a favorable environment for propulsion system of a blended wing body aircraft and a method of manufacturing |